Perimetric coordinate system in potential energy surfaces, spline interpolations, and the study of triatomic reaction dynamics

Two applications of the perimetric coordinates to triatomic potential energy surfaces are explored. The first is the depiction of level surfaces, providing a global visualization of the potential energy surface. In this representation, the relation among the stationary points and the dissociation ch...

Full description

Saved in:
Bibliographic Details
Published inTheoretical chemistry accounts Vol. 133; no. 9
Main Authors Aoto, Yuri Alexando, Ornellas, Fernando R.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2014
Subjects
Online AccessGet full text
ISSN1432-881X
1432-2234
DOI10.1007/s00214-014-1547-9

Cover

Abstract Two applications of the perimetric coordinates to triatomic potential energy surfaces are explored. The first is the depiction of level surfaces, providing a global visualization of the potential energy surface. In this representation, the relation among the stationary points and the dissociation channels are easily seen. These level surfaces are shown to be the natural generalization of the well-known two-dimensional level curves of restricted potential energy surfaces; they also allow us to understand the relation of the two-dimensional graphs with the global potential energy surface. Case studies for [Cl, H 2 ], [H, O, Cl] and [O 3 ] potential energy surfaces are discussed in detail. The second application of the perimetric coordinates is the construction of global potential energy surfaces by means of cubic splines, thus avoiding the restrictions related to the triangular inequality. The procedure is straightforward, and a careful analysis of the influence of the interpolation knots on the quality of the potential energy surface was carried out. The potential energy surfaces constructed by such procedure were able to reproduce known dynamical features of the following chemical reactions: Cl + H 2  → H + HCl, F + HD → HF(DH) + D(H) and O( 1 D) + HCl → Cl + OH (H + OCl).
AbstractList Two applications of the perimetric coordinates to triatomic potential energy surfaces are explored. The first is the depiction of level surfaces, providing a global visualization of the potential energy surface. In this representation, the relation among the stationary points and the dissociation channels are easily seen. These level surfaces are shown to be the natural generalization of the well-known two-dimensional level curves of restricted potential energy surfaces; they also allow us to understand the relation of the two-dimensional graphs with the global potential energy surface. Case studies for [Cl, H 2 ], [H, O, Cl] and [O 3 ] potential energy surfaces are discussed in detail. The second application of the perimetric coordinates is the construction of global potential energy surfaces by means of cubic splines, thus avoiding the restrictions related to the triangular inequality. The procedure is straightforward, and a careful analysis of the influence of the interpolation knots on the quality of the potential energy surface was carried out. The potential energy surfaces constructed by such procedure were able to reproduce known dynamical features of the following chemical reactions: Cl + H 2  → H + HCl, F + HD → HF(DH) + D(H) and O( 1 D) + HCl → Cl + OH (H + OCl).
ArticleNumber 1547
Author Ornellas, Fernando R.
Aoto, Yuri Alexando
Author_xml – sequence: 1
  givenname: Yuri Alexando
  surname: Aoto
  fullname: Aoto, Yuri Alexando
  organization: Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Institut für Theoretische Chemie, Universität Stuttgart
– sequence: 2
  givenname: Fernando R.
  surname: Ornellas
  fullname: Ornellas, Fernando R.
  email: frornell@usp.br
  organization: Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo
BookMark eNp9kM1OwzAQhC0EEm3hAbj5AQj4L016RBV_UiU4gMQt2tib4iq1I9s95MKz49KeOPRgebWab1YzU3LuvENCbji744xV95ExwVXB8uOlqorFGZlwJUUhhFTnx7mu-dclmca4YVkuympCft4x2C2mYDXV3gdjHSSkcYwJt9Q6OviELlnoKToM65HGXehAY7ylceitwyxKGAbfQ7Le5TU4Q9N39kg7M1Lf0WwOyW_zhYCg9ypqRgd5Ea_IRQd9xOvjPyOfT48fy5di9fb8unxYFVoxngqsWKnaPMt2rlBqBUbxxZyzEpTAkptOadW1DFpdGy40Sl4bkBKw1oaDkTPCD746-BgDds2QY0MYG86afYHNocAmF9jsC2wWman-Mdqmv5ApgO1PkuJAxnzFrTE0G78LLgc8Af0CQaOLMA
CitedBy_id crossref_primary_10_1039_C6CP05782A
Cites_doi 10.1016/S0010-4655(00)00167-3
10.1063/1.1448285
10.1063/1.4799915
10.1016/0009-2614(87)80540-7
10.1063/1.1308560
10.1103/PhysRev.127.509
10.1007/BF00528470
10.1007/BF00526931
10.1002/(SICI)1097-461X(1997)63:1<93::AID-QUA12>3.0.CO;2-7
10.1063/1.468875
10.1063/1.435883
10.1080/00268979200100941
10.1103/PhysRev.112.1649
10.1063/1.1669950
10.1088/0305-4470/39/50/009
10.1007/s002140050221
10.1016/0301-0104(83)87010-4
10.1021/ja00444a015
10.1063/1.480574
10.1103/PhysRevA.4.516
10.1007/s002140050222
10.1002/nme.1296
10.1021/jp8067014
10.1063/1.1703296
10.1103/PhysRev.126.1057
10.1063/1.1372764
10.1063/1.471372
10.1063/1.1670652
10.1063/1.481041
10.1103/PhysRev.115.1216
10.1063/1.1780158
10.1103/PhysRevA.4.885
10.1103/PhysRev.51.855
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
DBID AAYXX
CITATION
DOI 10.1007/s00214-014-1547-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1432-2234
ExternalDocumentID 10_1007_s00214_014_1547_9
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
ML-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WIP
WJK
WK8
YLTOR
Z45
Z5O
Z7S
Z7V
Z7X
Z7Y
Z83
Z86
Z8N
Z8P
Z8S
Z8W
Z92
ZCG
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c401t-e7054bc403b64e3c4ad4196105a42e51df4c4fb0abc8d12ce318da33ae8cd1ad3
IEDL.DBID AGYKE
ISSN 1432-881X
IngestDate Thu Apr 24 23:11:34 EDT 2025
Tue Jul 01 02:59:47 EDT 2025
Fri Feb 21 02:33:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Potential energy surface
Splines interpolation
Pekeris coordinates
Perimetric coordinates sytem
Reaction dynamics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-e7054bc403b64e3c4ad4196105a42e51df4c4fb0abc8d12ce318da33ae8cd1ad3
OpenAccessLink http://dx.doi.org/10.1007/s00214-014-1547-9
ParticipantIDs crossref_primary_10_1007_s00214_014_1547_9
crossref_citationtrail_10_1007_s00214_014_1547_9
springer_journals_10_1007_s00214_014_1547_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140900
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 9
  year: 2014
  text: 20140900
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle Theory, Computation, and Modeling
PublicationTitle Theoretical chemistry accounts
PublicationTitleAbbrev Theor Chem Acc
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Ley-KooEBungeCFJáureguiRInt J Quantum Chem199763931:CAS:528:DyaK2sXisl2lurc%3D10.1002/(SICI)1097-461X(1997)63:1<93::AID-QUA12>3.0.CO;2-7
CarterBPJ Chem Phys19684936831:CAS:528:DyaF1MXmsF2l10.1063/1.1670652
LekienFMarsdenJInt J Numer Meth Eng20056345510.1002/nme.1296
AhlbergJHNilsonENWalshJLThe theory of splines and their applications1967New YorkAcademic Press
AtchityGJRuedenbergKNamayakkaraATheor Chem Acc1997961951:CAS:528:DyaK2sXlsFGrsbY%3D10.1007/s002140050221
FrolovAMJ Phys A: Math Gen200639154211:CAS:528:DC%2BD2sXhs1Wgs7k%3D10.1088/0305-4470/39/50/009
VarandasAJCChem Phys Lett19871384551:CAS:528:DyaL2sXlsVWlur4%3D10.1016/0009-2614(87)80540-7
PetteyLRWyattREJ Phys Chem A2008112133351:CAS:528:DC%2BD1cXhsVKlu73N10.1021/jp8067014
PekerisCLPhys Rev19621275091:CAS:528:DyaF38XkslensLY%3D10.1103/PhysRev.127.509
WangPSCJ Chem Phys19674722291:CAS:528:DyaF2sXltFWmsLo%3D10.1063/1.1703296
BittererováMBowmanJMPetersonKJ Chem Phys2000113618610.1063/1.1308560
BianWWernerH-JJ Chem Phys20001122201:CAS:528:DC%2BD3cXit12muw%3D%3D10.1063/1.480574
BabikovDZhangPMorokumaKJ Chem Phys200412167431:CAS:528:DC%2BD2cXotVKmsLo%3D10.1063/1.1780158
AtchityGJRuedenbergKTheor Chem Acc1997962051:CAS:528:DyaK2sXlsFGrsbc%3D10.1007/s002140050222
PekerisCLPhys Rev195911512161:CAS:528:DyaF3cXltl2jtQ%3D%3D10.1103/PhysRev.115.1216
ChapmanSDupuisMGreenSChem Phys198378931:CAS:528:DyaL3sXkvFCjsLs%3D10.1016/0301-0104(83)87010-4
WangPSCJ Chem Phys196849473010.1063/1.1669950
PekerisCLPhys Rev195811216491:CAS:528:DyaG1MXkvFWjsQ%3D%3D10.1103/PhysRev.112.1649
SkouterisDWernerH-JAoizFJBañaresLCastilloJFMenéndesMBalucaniNCartechiniLCasavecchiaPJ Chem Phys2001114106621:CAS:528:DC%2BD3MXktl2gt7c%3D10.1063/1.1372764
DavidsonERJ Am Chem Soc1977993971:CAS:528:DyaE2sXps1egsA%3D%3D10.1021/ja00444a015
CoolidgeASJamesHMPhys Rev19375185510.1103/PhysRev.51.855
RasielYKarlJTheor Chim Acta196651791:CAS:528:DyaF28XksVarsb8%3D10.1007/BF00526931
WhiteRJTheor Chim Acta196664501:CAS:528:DyaF2sXlvV2htg%3D%3D10.1007/BF00528470
GraySKWrightJSJ Chem Phys19786820021:CAS:528:DyaE1cXhsFyrs7k%3D10.1063/1.435883
StarkKWernerH-JJ Chem Phys199610465151:CAS:528:DyaK28XislyjtLw%3D10.1063/1.471372
PekerisCLSchiffBLifsonHPhys Rev196212610571:CAS:528:DyaF38XksVOjtbg%3D10.1103/PhysRev.126.1057
SkodjeRTSkouterisDManolopoulosDELeeS-HDongFLiuKJ Chem Phys200011245361:CAS:528:DC%2BD3cXhsV2hurY%3D10.1063/1.481041
AyouzMBabikovDJ Chem Phys201313816431110.1063/1.4799915
KatzGYamashitaKZeiriYKosloffRJ Chem Phys200211644031:CAS:528:DC%2BD38XhslCjsr4%3D10.1063/1.1448285
SutcliffeBTMol Phys19927512331:CAS:528:DyaK38XktFCksr0%3D10.1080/00268979200100941
SchiffBPekerisCLAccadYPhys Rev A1971488510.1103/PhysRevA.4.885
SkouterisDCastilloJFManolopoulosDEComput Phys Commun20001331281:CAS:528:DC%2BD3cXotlCrs70%3D10.1016/S0010-4655(00)00167-3
AccadYPekerisCLSchiffBPhys Rev A1971451610.1103/PhysRevA.4.516
AoizFJBañaresLHerreroVJRábanosVSStarkKWernerH-JJ Chem Phys199510292481:CAS:528:DyaK2MXmtlelsLo%3D10.1063/1.468875
LR Pettey (1547_CR1) 2008; 112
F Lekien (1547_CR29) 2005; 63
AS Coolidge (1547_CR9) 1937; 51
CL Pekeris (1547_CR12) 1962; 126
D Skouteris (1547_CR30) 2001; 114
RT Skodje (1547_CR34) 2000; 112
AM Frolov (1547_CR23) 2006; 39
CL Pekeris (1547_CR11) 1959; 115
E Ley-Koo (1547_CR24) 1997; 63
PSC Wang (1547_CR20) 1967; 47
W Bian (1547_CR26) 2000; 112
CL Pekeris (1547_CR13) 1962; 127
AJC Varandas (1547_CR8) 1987; 138
M Bittererová (1547_CR27) 2000; 113
D Skouteris (1547_CR32) 2000; 133
ER Davidson (1547_CR6) 1977; 99
BP Carter (1547_CR21) 1968; 49
PSC Wang (1547_CR22) 1968; 49
SK Gray (1547_CR4) 1978; 68
GJ Atchity (1547_CR16) 1997; 96
D Babikov (1547_CR2) 2004; 121
CL Pekeris (1547_CR10) 1958; 112
FJ Aoiz (1547_CR33) 1995; 102
JH Ahlberg (1547_CR28) 1967
Y Rasiel (1547_CR18) 1966; 5
K Stark (1547_CR31) 1996; 104
BT Sutcliffe (1547_CR25) 1992; 75
RJ White (1547_CR19) 1966; 6
S Chapman (1547_CR5) 1983; 78
GJ Atchity (1547_CR17) 1997; 96
Y Accad (1547_CR14) 1971; 4
G Katz (1547_CR7) 2002; 116
M Ayouz (1547_CR3) 2013; 138
B Schiff (1547_CR15) 1971; 4
References_xml – reference: WhiteRJTheor Chim Acta196664501:CAS:528:DyaF2sXlvV2htg%3D%3D10.1007/BF00528470
– reference: AoizFJBañaresLHerreroVJRábanosVSStarkKWernerH-JJ Chem Phys199510292481:CAS:528:DyaK2MXmtlelsLo%3D10.1063/1.468875
– reference: DavidsonERJ Am Chem Soc1977993971:CAS:528:DyaE2sXps1egsA%3D%3D10.1021/ja00444a015
– reference: KatzGYamashitaKZeiriYKosloffRJ Chem Phys200211644031:CAS:528:DC%2BD38XhslCjsr4%3D10.1063/1.1448285
– reference: Ley-KooEBungeCFJáureguiRInt J Quantum Chem199763931:CAS:528:DyaK2sXisl2lurc%3D10.1002/(SICI)1097-461X(1997)63:1<93::AID-QUA12>3.0.CO;2-7
– reference: AtchityGJRuedenbergKTheor Chem Acc1997962051:CAS:528:DyaK2sXlsFGrsbc%3D10.1007/s002140050222
– reference: CoolidgeASJamesHMPhys Rev19375185510.1103/PhysRev.51.855
– reference: SkouterisDWernerH-JAoizFJBañaresLCastilloJFMenéndesMBalucaniNCartechiniLCasavecchiaPJ Chem Phys2001114106621:CAS:528:DC%2BD3MXktl2gt7c%3D10.1063/1.1372764
– reference: AyouzMBabikovDJ Chem Phys201313816431110.1063/1.4799915
– reference: GraySKWrightJSJ Chem Phys19786820021:CAS:528:DyaE1cXhsFyrs7k%3D10.1063/1.435883
– reference: AccadYPekerisCLSchiffBPhys Rev A1971451610.1103/PhysRevA.4.516
– reference: BabikovDZhangPMorokumaKJ Chem Phys200412167431:CAS:528:DC%2BD2cXotVKmsLo%3D10.1063/1.1780158
– reference: FrolovAMJ Phys A: Math Gen200639154211:CAS:528:DC%2BD2sXhs1Wgs7k%3D10.1088/0305-4470/39/50/009
– reference: SchiffBPekerisCLAccadYPhys Rev A1971488510.1103/PhysRevA.4.885
– reference: WangPSCJ Chem Phys196849473010.1063/1.1669950
– reference: AtchityGJRuedenbergKNamayakkaraATheor Chem Acc1997961951:CAS:528:DyaK2sXlsFGrsbY%3D10.1007/s002140050221
– reference: LekienFMarsdenJInt J Numer Meth Eng20056345510.1002/nme.1296
– reference: SutcliffeBTMol Phys19927512331:CAS:528:DyaK38XktFCksr0%3D10.1080/00268979200100941
– reference: StarkKWernerH-JJ Chem Phys199610465151:CAS:528:DyaK28XislyjtLw%3D10.1063/1.471372
– reference: PekerisCLPhys Rev195911512161:CAS:528:DyaF3cXltl2jtQ%3D%3D10.1103/PhysRev.115.1216
– reference: CarterBPJ Chem Phys19684936831:CAS:528:DyaF1MXmsF2l10.1063/1.1670652
– reference: PekerisCLPhys Rev19621275091:CAS:528:DyaF38XkslensLY%3D10.1103/PhysRev.127.509
– reference: VarandasAJCChem Phys Lett19871384551:CAS:528:DyaL2sXlsVWlur4%3D10.1016/0009-2614(87)80540-7
– reference: SkouterisDCastilloJFManolopoulosDEComput Phys Commun20001331281:CAS:528:DC%2BD3cXotlCrs70%3D10.1016/S0010-4655(00)00167-3
– reference: ChapmanSDupuisMGreenSChem Phys198378931:CAS:528:DyaL3sXkvFCjsLs%3D10.1016/0301-0104(83)87010-4
– reference: WangPSCJ Chem Phys19674722291:CAS:528:DyaF2sXltFWmsLo%3D10.1063/1.1703296
– reference: SkodjeRTSkouterisDManolopoulosDELeeS-HDongFLiuKJ Chem Phys200011245361:CAS:528:DC%2BD3cXhsV2hurY%3D10.1063/1.481041
– reference: PetteyLRWyattREJ Phys Chem A2008112133351:CAS:528:DC%2BD1cXhsVKlu73N10.1021/jp8067014
– reference: BittererováMBowmanJMPetersonKJ Chem Phys2000113618610.1063/1.1308560
– reference: PekerisCLSchiffBLifsonHPhys Rev196212610571:CAS:528:DyaF38XksVOjtbg%3D10.1103/PhysRev.126.1057
– reference: PekerisCLPhys Rev195811216491:CAS:528:DyaG1MXkvFWjsQ%3D%3D10.1103/PhysRev.112.1649
– reference: BianWWernerH-JJ Chem Phys20001122201:CAS:528:DC%2BD3cXit12muw%3D%3D10.1063/1.480574
– reference: AhlbergJHNilsonENWalshJLThe theory of splines and their applications1967New YorkAcademic Press
– reference: RasielYKarlJTheor Chim Acta196651791:CAS:528:DyaF28XksVarsb8%3D10.1007/BF00526931
– volume: 133
  start-page: 128
  year: 2000
  ident: 1547_CR32
  publication-title: Comput Phys Commun
  doi: 10.1016/S0010-4655(00)00167-3
– volume: 116
  start-page: 4403
  year: 2002
  ident: 1547_CR7
  publication-title: J Chem Phys
  doi: 10.1063/1.1448285
– volume: 138
  start-page: 164311
  year: 2013
  ident: 1547_CR3
  publication-title: J Chem Phys
  doi: 10.1063/1.4799915
– volume: 138
  start-page: 455
  year: 1987
  ident: 1547_CR8
  publication-title: Chem Phys Lett
  doi: 10.1016/0009-2614(87)80540-7
– volume: 113
  start-page: 6186
  year: 2000
  ident: 1547_CR27
  publication-title: J Chem Phys
  doi: 10.1063/1.1308560
– volume: 127
  start-page: 509
  year: 1962
  ident: 1547_CR13
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.127.509
– volume: 6
  start-page: 450
  year: 1966
  ident: 1547_CR19
  publication-title: Theor Chim Acta
  doi: 10.1007/BF00528470
– volume: 5
  start-page: 179
  year: 1966
  ident: 1547_CR18
  publication-title: Theor Chim Acta
  doi: 10.1007/BF00526931
– volume: 63
  start-page: 93
  year: 1997
  ident: 1547_CR24
  publication-title: Int J Quantum Chem
  doi: 10.1002/(SICI)1097-461X(1997)63:1<93::AID-QUA12>3.0.CO;2-7
– volume: 102
  start-page: 9248
  year: 1995
  ident: 1547_CR33
  publication-title: J Chem Phys
  doi: 10.1063/1.468875
– volume: 68
  start-page: 2002
  year: 1978
  ident: 1547_CR4
  publication-title: J Chem Phys
  doi: 10.1063/1.435883
– volume: 75
  start-page: 1233
  year: 1992
  ident: 1547_CR25
  publication-title: Mol Phys
  doi: 10.1080/00268979200100941
– volume: 112
  start-page: 1649
  year: 1958
  ident: 1547_CR10
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.112.1649
– volume: 49
  start-page: 4730
  year: 1968
  ident: 1547_CR22
  publication-title: J Chem Phys
  doi: 10.1063/1.1669950
– volume: 39
  start-page: 15421
  year: 2006
  ident: 1547_CR23
  publication-title: J Phys A: Math Gen
  doi: 10.1088/0305-4470/39/50/009
– volume: 96
  start-page: 195
  year: 1997
  ident: 1547_CR17
  publication-title: Theor Chem Acc
  doi: 10.1007/s002140050221
– volume: 78
  start-page: 93
  year: 1983
  ident: 1547_CR5
  publication-title: Chem Phys
  doi: 10.1016/0301-0104(83)87010-4
– volume: 99
  start-page: 397
  year: 1977
  ident: 1547_CR6
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00444a015
– volume: 112
  start-page: 220
  year: 2000
  ident: 1547_CR26
  publication-title: J Chem Phys
  doi: 10.1063/1.480574
– volume-title: The theory of splines and their applications
  year: 1967
  ident: 1547_CR28
– volume: 4
  start-page: 516
  year: 1971
  ident: 1547_CR14
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.4.516
– volume: 96
  start-page: 205
  year: 1997
  ident: 1547_CR16
  publication-title: Theor Chem Acc
  doi: 10.1007/s002140050222
– volume: 63
  start-page: 455
  year: 2005
  ident: 1547_CR29
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1296
– volume: 112
  start-page: 13335
  year: 2008
  ident: 1547_CR1
  publication-title: J Phys Chem A
  doi: 10.1021/jp8067014
– volume: 47
  start-page: 2229
  year: 1967
  ident: 1547_CR20
  publication-title: J Chem Phys
  doi: 10.1063/1.1703296
– volume: 126
  start-page: 1057
  year: 1962
  ident: 1547_CR12
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.126.1057
– volume: 114
  start-page: 10662
  year: 2001
  ident: 1547_CR30
  publication-title: J Chem Phys
  doi: 10.1063/1.1372764
– volume: 104
  start-page: 6515
  year: 1996
  ident: 1547_CR31
  publication-title: J Chem Phys
  doi: 10.1063/1.471372
– volume: 49
  start-page: 3683
  year: 1968
  ident: 1547_CR21
  publication-title: J Chem Phys
  doi: 10.1063/1.1670652
– volume: 112
  start-page: 4536
  year: 2000
  ident: 1547_CR34
  publication-title: J Chem Phys
  doi: 10.1063/1.481041
– volume: 115
  start-page: 1216
  year: 1959
  ident: 1547_CR11
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.115.1216
– volume: 121
  start-page: 6743
  year: 2004
  ident: 1547_CR2
  publication-title: J Chem Phys
  doi: 10.1063/1.1780158
– volume: 4
  start-page: 885
  year: 1971
  ident: 1547_CR15
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.4.885
– volume: 51
  start-page: 855
  year: 1937
  ident: 1547_CR9
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.51.855
SSID ssj0002257
Score 2.0782075
Snippet Two applications of the perimetric coordinates to triatomic potential energy surfaces are explored. The first is the depiction of level surfaces, providing a...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Atomic/Molecular Structure and Spectra
Chemistry
Chemistry and Materials Science
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Regular Article
Theoretical and Computational Chemistry
Title Perimetric coordinate system in potential energy surfaces, spline interpolations, and the study of triatomic reaction dynamics
URI https://link.springer.com/article/10.1007/s00214-014-1547-9
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5sPejFt_gse_CkTcljkybHWlpFsXhooZ7CvgJFSUqTHvTgb3d2kxQqKngLy-6y7O7sfJOZ-QbgKlE-l4JSS4mQW9SzUaQST1k2E74TSLdrGw_-0yi4n9CHqT-t8rjzOtq9dkmal3qV7GbovdD0pRaq_a4VNWDTd8IobMJm7-7lcbB6gN2S4BORAAp76ExrZ-ZPk6yro3VfqFExw10Y14srI0teO8uCd8THN97Gf65-D3YqyEl65R3Zhw2VHsBWv670dgifz4bkX3P1E5GhNTpLEYGSkuSZzFIyzwodVISTKJMqSPLlItGxXG2S64xeRWZlua4qsK5NWCoJQkti2GtJlhBdHaTQGdAEUarJpSDyPWXYkB_BZDgY9--tqi6DJdAaKyzVRZzH8dvjAVWeoExSFGREaoy6yndkQgVNuM24CKXjCv2bVTLPYyoU0mHSO4ZmmqXqBIh0AsUihQMjQUXEeKLJaGQovW6oAiZPwa6PJxYVabmunfEWr-iWzcbGuLGx3tg4OoXr1ZB5ydjxV-eb-rjiSnjz33uf_av3OWy7-rxNQNoFNIvFUl0igil4C2_s8PZ21KpubgsaE7f3BWCP7OE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDGVBPEV53sAEjZTEzmusEFWBtmJopW6RX5EqobRq0pXfztl5SJUAiS3D2cPZZ3_O3X0fIQ-ZDoSSjDlaxsJh1MWQyqh2XC4DL1R-5NoM_mQajubsbREs6j7uoql2b1KS9qRum90svRc-fZmD137kJPvkALFAbGQL5v6gPX79it4TcQCGeuwtmlTmT1PsXka7mVB7wQyPyVGNDGFQLeUJ2dP5Kek-N4JsZ-Trw3LxG0p9kCt8NC5zBIpQcTHDMof1qjS1PziJth19UGw3mSm56kNhGm81LCtVrbr-rQ88V4AIECzJLKwyMCIepWlUBgSTtuUBVKVZX5yT-fBl9jxyavkER-KjqXR0hHBM4DcVIdNUMq4YxhsCKs58HXgqY5JlwuVCxsrzpfkbqjilXMdSeVzRC9LJV7m-JKC8UPNE48BEMplwkRnOGBUrGsU65KpH3MaPqay5xY3ExWfasiJb16fo-tS4Pk165LEdsq6INf4yfmoWJ61jrPjd-upf1vekO5pNxun4dfp-TQ59sztsDdkN6ZSbrb5F0FGKO7vJvgEUldCc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnoRn1ifc_CkDc1j8zqWaqmv0oOF3sJmH1CQpDTp1d_u7OYBBRW85bAbyOzM7reZme8j5E5JPxWcUkvyKLWoZ2NIKU9aNuO-Ewg3tE0G_30SjGf0Ze7Pa53Toql2b1KSVU-DZmnKyv5SqH7b-GaovvAaTC2EAKEVb5Md3I0d7egzd9BuxW5F9YmYAMM-cuZNWvOnV2weTJtZUXPYjA7JQY0SYVAt6xHZktkx2Rs24mwn5GtqePk1vT7wHC-QiwxBI1S8zLDIYJnrz0HnAmm6-6BYr5Quv-pBoZtwJSwqha26Fq4HLBOAaBAM4SzkCrSgR6mblgGBpWl_AFHp1xenZDZ6-hiOrVpKweJ4gSotGSI0S_HZSwMqPU6ZoBh7CK4YdaXvCEU5VanNUh4Jx-X6z6hgnsdkxIXDhHdGOlmeyXMCwgkkiyVOjDnlMUuV5o8RkfDCSAZMdInd2DHhNc-4lrv4TFqGZGP6BE2faNMncZfct1OWFcnGX4MfmsVJ6ngrfh998a_Rt2R3-jhK3p4nr5dk39XOYcrJrkinXK3lNeKPMr0xPvYNHhbU2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perimetric+coordinate+system+in+potential+energy+surfaces%2C+spline+interpolations%2C+and+the+study+of+triatomic+reaction+dynamics&rft.jtitle=Theoretical+chemistry+accounts&rft.au=Aoto%2C+Yuri+Alexando&rft.au=Ornellas%2C+Fernando+R.&rft.date=2014-09-01&rft.issn=1432-881X&rft.eissn=1432-2234&rft.volume=133&rft.issue=9&rft_id=info:doi/10.1007%2Fs00214-014-1547-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00214_014_1547_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-881X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-881X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-881X&client=summon