On the estimation of interval censored destructive negative binomial cure model
In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval‐censored, a...
Saved in:
Published in | Statistics in medicine Vol. 42; no. 28; pp. 5113 - 5134 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
10.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval‐censored, and considering both the number of initial risks and risks remaining active after destruction to be missing data, we develop two distinct estimation algorithms for this model. Making use of the conditional distributions of the missing data, we develop an expectation maximization (EM) algorithm, in which the conditional expected complete log‐likelihood function is decomposed into simpler functions which are then maximized independently. A variation of the EM algorithm, called the stochastic EM (SEM) algorithm, is also developed with the goal of avoiding the calculation of complicated expectations and improving performance at parameter recovery. A Monte Carlo simulation study is carried out to evaluate the performance of both estimation methods through calculated bias, root mean square error, and coverage probability of the asymptotic confidence interval. We demonstrate the proposed SEM algorithm as the preferred estimation method through simulation and further illustrate the advantage of the SEM algorithm, as well as the use of a destructive model, with data from a children's mortality study. |
---|---|
AbstractList | In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval-censored, and considering both the number of initial risks and risks remaining active after destruction to be missing data, we develop two distinct estimation algorithms for this model. Making use of the conditional distributions of the missing data, we develop an expectation maximization (EM) algorithm, in which the conditional expected complete log-likelihood function is decomposed into simpler functions which are then maximized independently. A variation of the EM algorithm, called the stochastic EM (SEM) algorithm, is also developed with the goal of avoiding the calculation of complicated expectations and improving performance at parameter recovery. A Monte Carlo simulation study is carried out to evaluate the performance of both estimation methods through calculated bias, root mean square error, and coverage probability of the asymptotic confidence interval. We demonstrate the proposed SEM algorithm as the preferred estimation method through simulation and further illustrate the advantage of the SEM algorithm, as well as the use of a destructive model, with data from a children's mortality study. In this paper, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval-censored, and considering both the number of initial risks and risks remaining active after destruction to be missing data, we develop two distinct estimation algorithms for this model. Making use of the conditional distributions of the missing data, we develop an expectation maximization (EM) algorithm, in which the conditional expected complete log-likelihood function is decomposed into simpler functions which are then maximized independently. A variation of the EM algorithm, called the stochastic EM (SEM) algorithm, is also developed with the goal of avoiding the calculation of complicated expectations and improving performance at parameter recovery. A Monte Carlo simulation study is carried out to evaluate the performance of both estimation methods through calculated bias, root mean square error, and coverage probability of the asymptotic confidence interval. We demonstrate the proposed SEM algorithm as the preferred estimation method through simulation and further illustrate the advantage of the SEM algorithm, as well as the use of a destructive model, with data from a children’s mortality study. In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval-censored, and considering both the number of initial risks and risks remaining active after destruction to be missing data, we develop two distinct estimation algorithms for this model. Making use of the conditional distributions of the missing data, we develop an expectation maximization (EM) algorithm, in which the conditional expected complete log-likelihood function is decomposed into simpler functions which are then maximized independently. A variation of the EM algorithm, called the stochastic EM (SEM) algorithm, is also developed with the goal of avoiding the calculation of complicated expectations and improving performance at parameter recovery. A Monte Carlo simulation study is carried out to evaluate the performance of both estimation methods through calculated bias, root mean square error, and coverage probability of the asymptotic confidence interval. We demonstrate the proposed SEM algorithm as the preferred estimation method through simulation and further illustrate the advantage of the SEM algorithm, as well as the use of a destructive model, with data from a children's mortality study.In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval-censored, and considering both the number of initial risks and risks remaining active after destruction to be missing data, we develop two distinct estimation algorithms for this model. Making use of the conditional distributions of the missing data, we develop an expectation maximization (EM) algorithm, in which the conditional expected complete log-likelihood function is decomposed into simpler functions which are then maximized independently. A variation of the EM algorithm, called the stochastic EM (SEM) algorithm, is also developed with the goal of avoiding the calculation of complicated expectations and improving performance at parameter recovery. A Monte Carlo simulation study is carried out to evaluate the performance of both estimation methods through calculated bias, root mean square error, and coverage probability of the asymptotic confidence interval. We demonstrate the proposed SEM algorithm as the preferred estimation method through simulation and further illustrate the advantage of the SEM algorithm, as well as the use of a destructive model, with data from a children's mortality study. |
Author | Treszoks, Jodi Pal, Suvra |
AuthorAffiliation | 1 Department of Mathematics, University of Texas at Arlington, 411 S. Nedderman Drive, Arlington, TX, 76019, USA |
AuthorAffiliation_xml | – name: 1 Department of Mathematics, University of Texas at Arlington, 411 S. Nedderman Drive, Arlington, TX, 76019, USA |
Author_xml | – sequence: 1 givenname: Jodi surname: Treszoks fullname: Treszoks, Jodi organization: Department of Mathematics University of Texas at Arlington Arlington Texas USA – sequence: 2 givenname: Suvra orcidid: 0000-0001-9864-9489 surname: Pal fullname: Pal, Suvra organization: Department of Mathematics University of Texas at Arlington Arlington Texas USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37706586$$D View this record in MEDLINE/PubMed |
BookMark | eNplkUtP3DAUhS1EVQZaqb-gisSGTabXiR_xCiFUHhLSbGBteewbMEpssJOR-Pf18Cq0K1_J3z0659x9shtiQEJ-UFhSgOZX9uNSKWA7ZEFByRoa3u2SBTRS1kJSvkf2c74HoJQ38ivZa6UEwTuxIKtVqKY7rDBPfjSTj6GKfeXDhGljhspiyDGhq1wB0mwnv8Eq4K15HtY-xNFvsTlhNUaHwzfypTdDxu-v7wG5Oft9fXpRX63OL09PrmrLgE418tbxrocOpG2URWdZa7g0wNwaG94bxh30ruXMgXVcOCtA2DW4rrNCOtsekOMX3Yd5PZZ1DFMyg35IJUV60tF4_fkn-Dt9GzealoKUYqooHL0qpPg4l3h69NniMJiAcc666QRTAAygoIf_oPdxTqHkK5QCwaRgbaF-frT07uWt7AIsXwCbYs4Je2399Nx5cegHTUFvr6nLNfX2mn8tvi-8af6H_gFv16En |
CitedBy_id | crossref_primary_10_1007_s11222_024_10456_y crossref_primary_10_1007_s00180_024_01480_7 crossref_primary_10_1080_03610918_2024_2393702 crossref_primary_10_1080_02664763_2024_2418476 crossref_primary_10_1177_09622802231210917 |
Cites_doi | 10.1080/15598608.2012.719803 10.2307/3318671 10.1016/j.spl.2016.04.005 10.1111/j.2517-6161.1949.tb00020.x 10.1201/9780429032301 10.1111/stan.12237 10.1111/iwj.14001 10.1214/14-AOAS752 10.1080/03610926.2017.1321769 10.1177/0962280213491641 10.1007/978-3-031-08564-2_3 10.1080/03610918.2020.1819321 10.1080/00949659608811772 10.1007/s42519-022-00274-8 10.1007/s10985-010-9189-2 10.1007/s00180‐023‐01389‐7 10.1016/j.csda.2011.10.013 10.1080/01621459.1999.10474196 10.1111/j.0006-341X.2004.00032.x 10.1080/15326349308807283 10.2307/1390802 10.1016/S0167-7152(01)00105-5 10.1016/j.csda.2018.09.008 10.1016/j.csda.2013.04.018 10.1002/sim.7293 10.1007/s00184-017-0638-8 10.1080/03610926.2014.964807 10.1002/sim.2918 10.1007/s40745-019-00224-5 10.1080/03610918.2015.1053918 10.1080/01621459.1990.10474930 10.1093/biomet/88.1.281 10.1007/s00180-014-0527-9 10.1002/sim.9498 10.1109/JBHI.2017.2704920 10.1016/j.jspi.2009.04.014 10.1080/00949655.2015.1071375 10.1080/03610918.2019.1642483 10.1214/aos/1176346060 10.1002/sim.9363 10.1177/0962280217708686 10.1002/sim.9189 10.1002/sim.9739 10.1002/sim.9850 10.1080/03610918.2022.2067876 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.9904 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 5134 |
ExternalDocumentID | PMC11099949 37706586 10_1002_sim_9904 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R15 GM150091 – fundername: NIGMS NIH HHS grantid: R15GM150091 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c401t-e53d58f0807c29cedc43a57a04dbe25fa45d0fd354d0cd56dc606cb0d88c67dc3 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 18:29:44 EDT 2025 Thu Jul 10 17:52:14 EDT 2025 Fri Jul 25 06:46:20 EDT 2025 Mon Jul 21 06:01:27 EDT 2025 Tue Jul 01 03:28:19 EDT 2025 Thu Apr 24 23:11:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | interval censoring children's mortality SEM algorithm competing causes |
Language | English |
License | 2023 John Wiley & Sons Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c401t-e53d58f0807c29cedc43a57a04dbe25fa45d0fd354d0cd56dc606cb0d88c67dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9864-9489 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11099949 |
PMID | 37706586 |
PQID | 2890647643 |
PQPubID | 48361 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11099949 proquest_miscellaneous_2864900400 proquest_journals_2890647643 pubmed_primary_37706586 crossref_citationtrail_10_1002_sim_9904 crossref_primary_10_1002_sim_9904 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-10 |
PublicationDateYYYYMMDD | 2023-12-10 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_10_23_1 Tsodikov AD (e_1_2_10_32_1) 1996 e_1_2_10_46_1 e_1_2_10_21_1 McLachlan GJ (e_1_2_10_33_1) 2007 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Maller RA (e_1_2_10_7_1) 1996 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_16_1 Celeux G (e_1_2_10_38_1) 1985; 2 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Demographic N (e_1_2_10_47_1) 2019 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 |
References_xml | – ident: e_1_2_10_13_1 doi: 10.1080/15598608.2012.719803 – ident: e_1_2_10_44_1 doi: 10.2307/3318671 – volume-title: Health Survey 2019. National Population Commission (NPC) year: 2019 ident: e_1_2_10_47_1 – ident: e_1_2_10_18_1 doi: 10.1016/j.spl.2016.04.005 – ident: e_1_2_10_5_1 doi: 10.1111/j.2517-6161.1949.tb00020.x – ident: e_1_2_10_8_1 doi: 10.1201/9780429032301 – ident: e_1_2_10_35_1 doi: 10.1111/stan.12237 – volume: 2 start-page: 73 year: 1985 ident: e_1_2_10_38_1 article-title: The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem publication-title: Comput Stat – ident: e_1_2_10_4_1 doi: 10.1111/iwj.14001 – ident: e_1_2_10_46_1 doi: 10.1214/14-AOAS752 – ident: e_1_2_10_28_1 doi: 10.1080/03610926.2017.1321769 – ident: e_1_2_10_17_1 doi: 10.1177/0962280213491641 – ident: e_1_2_10_3_1 doi: 10.1007/978-3-031-08564-2_3 – volume-title: The EM Algorithm and Extensions year: 2007 ident: e_1_2_10_33_1 – ident: e_1_2_10_34_1 doi: 10.1080/03610918.2020.1819321 – ident: e_1_2_10_39_1 doi: 10.1080/00949659608811772 – ident: e_1_2_10_41_1 doi: 10.1007/s42519-022-00274-8 – volume-title: Survival Analysis with Long‐term Survivors year: 1996 ident: e_1_2_10_7_1 – ident: e_1_2_10_11_1 doi: 10.1007/s10985-010-9189-2 – ident: e_1_2_10_25_1 doi: 10.1007/s00180‐023‐01389‐7 – ident: e_1_2_10_42_1 – volume-title: Stochastic Models of Tumor Latency and their Biostatistical Applications year: 1996 ident: e_1_2_10_32_1 – ident: e_1_2_10_12_1 doi: 10.1016/j.csda.2011.10.013 – ident: e_1_2_10_9_1 doi: 10.1080/01621459.1999.10474196 – ident: e_1_2_10_26_1 doi: 10.1111/j.0006-341X.2004.00032.x – ident: e_1_2_10_43_1 doi: 10.1080/15326349308807283 – ident: e_1_2_10_49_1 doi: 10.2307/1390802 – ident: e_1_2_10_31_1 doi: 10.1016/S0167-7152(01)00105-5 – ident: e_1_2_10_48_1 doi: 10.1016/j.csda.2018.09.008 – ident: e_1_2_10_14_1 doi: 10.1016/j.csda.2013.04.018 – ident: e_1_2_10_50_1 doi: 10.1002/sim.7293 – ident: e_1_2_10_22_1 doi: 10.1007/s00184-017-0638-8 – ident: e_1_2_10_16_1 doi: 10.1080/03610926.2014.964807 – ident: e_1_2_10_27_1 doi: 10.1002/sim.2918 – ident: e_1_2_10_2_1 doi: 10.1007/s40745-019-00224-5 – ident: e_1_2_10_21_1 doi: 10.1080/03610918.2015.1053918 – ident: e_1_2_10_40_1 doi: 10.1080/01621459.1990.10474930 – ident: e_1_2_10_45_1 doi: 10.1093/biomet/88.1.281 – ident: e_1_2_10_15_1 doi: 10.1007/s00180-014-0527-9 – ident: e_1_2_10_51_1 doi: 10.1002/sim.9498 – ident: e_1_2_10_20_1 doi: 10.1109/JBHI.2017.2704920 – ident: e_1_2_10_10_1 doi: 10.1016/j.jspi.2009.04.014 – ident: e_1_2_10_24_1 doi: 10.1080/00949655.2015.1071375 – ident: e_1_2_10_23_1 doi: 10.1080/03610918.2019.1642483 – ident: e_1_2_10_37_1 doi: 10.1214/aos/1176346060 – ident: e_1_2_10_52_1 doi: 10.1002/sim.9363 – ident: e_1_2_10_19_1 doi: 10.1177/0962280217708686 – ident: e_1_2_10_30_1 doi: 10.1002/sim.9189 – ident: e_1_2_10_36_1 doi: 10.1002/sim.9739 – ident: e_1_2_10_6_1 doi: 10.1002/sim.9850 – ident: e_1_2_10_29_1 doi: 10.1080/03610918.2022.2067876 |
SSID | ssj0011527 |
Score | 2.4560673 |
Snippet | In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is... In this paper, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5113 |
SubjectTerms | Algorithms Binomial distribution Child Child mortality Computer Simulation Humans Likelihood Functions Missing data Models, Statistical Monte Carlo Method Monte Carlo simulation Performance evaluation Scanning electron microscopy |
Title | On the estimation of interval censored destructive negative binomial cure model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37706586 https://www.proquest.com/docview/2890647643 https://www.proquest.com/docview/2864900400 https://pubmed.ncbi.nlm.nih.gov/PMC11099949 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB6NQxpbdsrVDg8EehjNHlnx5HGtLGVkDw4G8GVtSOrPGLmvah_76nWNJttOU0u3FGFvYQufTuegcfSLk40SKiQRD60lfCY-zPAE9KISnEl34UiueF02V72l4MuffF2IxGEx7VUtX62Isb-7cV_I_UoVnIFfcJfsPkm0_Cg_gHuQLV5AwXB8k45mpUUSijFXr-pVNFSPSfkCEWmN5udKWJfZaf670maH6hoi4XuFyucQUQnMgTt9RRSfUcjiX1VYGPoUg_ab-bXMIquwSUeem1Of6T95fT2AB1mbYytKHaa2ehsL8bxiZ_ZhjbTSoj_SuzPCxOxXLWQ9KdjO4UZjg7wU94ysmZmlzS7EbotjLcjUG88k74-US9qez7Hg-nWbp0SJ9RB5DxxieZ3H4syUTm7gDfF2nHRWxz7647246J1sRx-3C2Z4nkj4jT20IQb8aPDwnA10NyZMfVkRDsmeWYqnZYTYku50sX5DZrKKAGdphhtZL6jBDHWZoDzPUYYY6zFDEDG0w85LMj4_SbyeePVTDkxBKrz0tAiXiJQQKkWQJzEbJg1xEuc9VoZlY5lwof6kCwZUvlQiVhBBXFr6KYxlGSgavyE5VV_oNoZwHsQpZrLkCv5DrApPAGlS6lEqD2RyRT240M2kZ5_Hgk_PMcGWzDMY9w3EfkQ9tywvDsnJHm30nkMzOwcsM0-Qhj-DH8In2NWhITHvlla6vsE3Ik8ZYjchrI7_2J0GEaf44HJF4Q7JtA2Rf33xTlb8aFnak6k0Snry9v1_vyG43y_bJDshOH4Afuy7eN_D8C9ISpO8 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+estimation+of+interval+censored+destructive+negative+binomial+cure+model&rft.jtitle=Statistics+in+medicine&rft.au=Treszoks%2C+Jodi&rft.au=Pal%2C+Suvra&rft.date=2023-12-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=42&rft.issue=28&rft.spage=5113&rft.epage=5134&rft_id=info:doi/10.1002%2Fsim.9904&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |