On the estimation of interval censored destructive negative binomial cure model

In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval‐censored, a...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 42; no. 28; pp. 5113 - 5134
Main Authors Treszoks, Jodi, Pal, Suvra
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 10.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval‐censored, and considering both the number of initial risks and risks remaining active after destruction to be missing data, we develop two distinct estimation algorithms for this model. Making use of the conditional distributions of the missing data, we develop an expectation maximization (EM) algorithm, in which the conditional expected complete log‐likelihood function is decomposed into simpler functions which are then maximized independently. A variation of the EM algorithm, called the stochastic EM (SEM) algorithm, is also developed with the goal of avoiding the calculation of complicated expectations and improving performance at parameter recovery. A Monte Carlo simulation study is carried out to evaluate the performance of both estimation methods through calculated bias, root mean square error, and coverage probability of the asymptotic confidence interval. We demonstrate the proposed SEM algorithm as the preferred estimation method through simulation and further illustrate the advantage of the SEM algorithm, as well as the use of a destructive model, with data from a children's mortality study.
AbstractList In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval-censored, and considering both the number of initial risks and risks remaining active after destruction to be missing data, we develop two distinct estimation algorithms for this model. Making use of the conditional distributions of the missing data, we develop an expectation maximization (EM) algorithm, in which the conditional expected complete log-likelihood function is decomposed into simpler functions which are then maximized independently. A variation of the EM algorithm, called the stochastic EM (SEM) algorithm, is also developed with the goal of avoiding the calculation of complicated expectations and improving performance at parameter recovery. A Monte Carlo simulation study is carried out to evaluate the performance of both estimation methods through calculated bias, root mean square error, and coverage probability of the asymptotic confidence interval. We demonstrate the proposed SEM algorithm as the preferred estimation method through simulation and further illustrate the advantage of the SEM algorithm, as well as the use of a destructive model, with data from a children's mortality study.
In this paper, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval-censored, and considering both the number of initial risks and risks remaining active after destruction to be missing data, we develop two distinct estimation algorithms for this model. Making use of the conditional distributions of the missing data, we develop an expectation maximization (EM) algorithm, in which the conditional expected complete log-likelihood function is decomposed into simpler functions which are then maximized independently. A variation of the EM algorithm, called the stochastic EM (SEM) algorithm, is also developed with the goal of avoiding the calculation of complicated expectations and improving performance at parameter recovery. A Monte Carlo simulation study is carried out to evaluate the performance of both estimation methods through calculated bias, root mean square error, and coverage probability of the asymptotic confidence interval. We demonstrate the proposed SEM algorithm as the preferred estimation method through simulation and further illustrate the advantage of the SEM algorithm, as well as the use of a destructive model, with data from a children’s mortality study.
In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval-censored, and considering both the number of initial risks and risks remaining active after destruction to be missing data, we develop two distinct estimation algorithms for this model. Making use of the conditional distributions of the missing data, we develop an expectation maximization (EM) algorithm, in which the conditional expected complete log-likelihood function is decomposed into simpler functions which are then maximized independently. A variation of the EM algorithm, called the stochastic EM (SEM) algorithm, is also developed with the goal of avoiding the calculation of complicated expectations and improving performance at parameter recovery. A Monte Carlo simulation study is carried out to evaluate the performance of both estimation methods through calculated bias, root mean square error, and coverage probability of the asymptotic confidence interval. We demonstrate the proposed SEM algorithm as the preferred estimation method through simulation and further illustrate the advantage of the SEM algorithm, as well as the use of a destructive model, with data from a children's mortality study.In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is subject to a destructive mechanism. Assuming the population of interest to have a cure component, the form of the data as interval-censored, and considering both the number of initial risks and risks remaining active after destruction to be missing data, we develop two distinct estimation algorithms for this model. Making use of the conditional distributions of the missing data, we develop an expectation maximization (EM) algorithm, in which the conditional expected complete log-likelihood function is decomposed into simpler functions which are then maximized independently. A variation of the EM algorithm, called the stochastic EM (SEM) algorithm, is also developed with the goal of avoiding the calculation of complicated expectations and improving performance at parameter recovery. A Monte Carlo simulation study is carried out to evaluate the performance of both estimation methods through calculated bias, root mean square error, and coverage probability of the asymptotic confidence interval. We demonstrate the proposed SEM algorithm as the preferred estimation method through simulation and further illustrate the advantage of the SEM algorithm, as well as the use of a destructive model, with data from a children's mortality study.
Author Treszoks, Jodi
Pal, Suvra
AuthorAffiliation 1 Department of Mathematics, University of Texas at Arlington, 411 S. Nedderman Drive, Arlington, TX, 76019, USA
AuthorAffiliation_xml – name: 1 Department of Mathematics, University of Texas at Arlington, 411 S. Nedderman Drive, Arlington, TX, 76019, USA
Author_xml – sequence: 1
  givenname: Jodi
  surname: Treszoks
  fullname: Treszoks, Jodi
  organization: Department of Mathematics University of Texas at Arlington Arlington Texas USA
– sequence: 2
  givenname: Suvra
  orcidid: 0000-0001-9864-9489
  surname: Pal
  fullname: Pal, Suvra
  organization: Department of Mathematics University of Texas at Arlington Arlington Texas USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37706586$$D View this record in MEDLINE/PubMed
BookMark eNplkUtP3DAUhS1EVQZaqb-gisSGTabXiR_xCiFUHhLSbGBteewbMEpssJOR-Pf18Cq0K1_J3z0659x9shtiQEJ-UFhSgOZX9uNSKWA7ZEFByRoa3u2SBTRS1kJSvkf2c74HoJQ38ivZa6UEwTuxIKtVqKY7rDBPfjSTj6GKfeXDhGljhspiyDGhq1wB0mwnv8Eq4K15HtY-xNFvsTlhNUaHwzfypTdDxu-v7wG5Oft9fXpRX63OL09PrmrLgE418tbxrocOpG2URWdZa7g0wNwaG94bxh30ruXMgXVcOCtA2DW4rrNCOtsekOMX3Yd5PZZ1DFMyg35IJUV60tF4_fkn-Dt9GzealoKUYqooHL0qpPg4l3h69NniMJiAcc666QRTAAygoIf_oPdxTqHkK5QCwaRgbaF-frT07uWt7AIsXwCbYs4Je2399Nx5cegHTUFvr6nLNfX2mn8tvi-8af6H_gFv16En
CitedBy_id crossref_primary_10_1007_s11222_024_10456_y
crossref_primary_10_1007_s00180_024_01480_7
crossref_primary_10_1080_03610918_2024_2393702
crossref_primary_10_1080_02664763_2024_2418476
crossref_primary_10_1177_09622802231210917
Cites_doi 10.1080/15598608.2012.719803
10.2307/3318671
10.1016/j.spl.2016.04.005
10.1111/j.2517-6161.1949.tb00020.x
10.1201/9780429032301
10.1111/stan.12237
10.1111/iwj.14001
10.1214/14-AOAS752
10.1080/03610926.2017.1321769
10.1177/0962280213491641
10.1007/978-3-031-08564-2_3
10.1080/03610918.2020.1819321
10.1080/00949659608811772
10.1007/s42519-022-00274-8
10.1007/s10985-010-9189-2
10.1007/s00180‐023‐01389‐7
10.1016/j.csda.2011.10.013
10.1080/01621459.1999.10474196
10.1111/j.0006-341X.2004.00032.x
10.1080/15326349308807283
10.2307/1390802
10.1016/S0167-7152(01)00105-5
10.1016/j.csda.2018.09.008
10.1016/j.csda.2013.04.018
10.1002/sim.7293
10.1007/s00184-017-0638-8
10.1080/03610926.2014.964807
10.1002/sim.2918
10.1007/s40745-019-00224-5
10.1080/03610918.2015.1053918
10.1080/01621459.1990.10474930
10.1093/biomet/88.1.281
10.1007/s00180-014-0527-9
10.1002/sim.9498
10.1109/JBHI.2017.2704920
10.1016/j.jspi.2009.04.014
10.1080/00949655.2015.1071375
10.1080/03610918.2019.1642483
10.1214/aos/1176346060
10.1002/sim.9363
10.1177/0962280217708686
10.1002/sim.9189
10.1002/sim.9739
10.1002/sim.9850
10.1080/03610918.2022.2067876
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.9904
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 5134
ExternalDocumentID PMC11099949
37706586
10_1002_sim_9904
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R15 GM150091
– fundername: NIGMS NIH HHS
  grantid: R15GM150091
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c401t-e53d58f0807c29cedc43a57a04dbe25fa45d0fd354d0cd56dc606cb0d88c67dc3
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:29:44 EDT 2025
Thu Jul 10 17:52:14 EDT 2025
Fri Jul 25 06:46:20 EDT 2025
Mon Jul 21 06:01:27 EDT 2025
Tue Jul 01 03:28:19 EDT 2025
Thu Apr 24 23:11:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords interval censoring
children's mortality
SEM algorithm
competing causes
Language English
License 2023 John Wiley & Sons Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-e53d58f0807c29cedc43a57a04dbe25fa45d0fd354d0cd56dc606cb0d88c67dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9864-9489
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11099949
PMID 37706586
PQID 2890647643
PQPubID 48361
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11099949
proquest_miscellaneous_2864900400
proquest_journals_2890647643
pubmed_primary_37706586
crossref_citationtrail_10_1002_sim_9904
crossref_primary_10_1002_sim_9904
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-10
PublicationDateYYYYMMDD 2023-12-10
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_10_23_1
Tsodikov AD (e_1_2_10_32_1) 1996
e_1_2_10_46_1
e_1_2_10_21_1
McLachlan GJ (e_1_2_10_33_1) 2007
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Maller RA (e_1_2_10_7_1) 1996
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_16_1
Celeux G (e_1_2_10_38_1) 1985; 2
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Demographic N (e_1_2_10_47_1) 2019
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
References_xml – ident: e_1_2_10_13_1
  doi: 10.1080/15598608.2012.719803
– ident: e_1_2_10_44_1
  doi: 10.2307/3318671
– volume-title: Health Survey 2019. National Population Commission (NPC)
  year: 2019
  ident: e_1_2_10_47_1
– ident: e_1_2_10_18_1
  doi: 10.1016/j.spl.2016.04.005
– ident: e_1_2_10_5_1
  doi: 10.1111/j.2517-6161.1949.tb00020.x
– ident: e_1_2_10_8_1
  doi: 10.1201/9780429032301
– ident: e_1_2_10_35_1
  doi: 10.1111/stan.12237
– volume: 2
  start-page: 73
  year: 1985
  ident: e_1_2_10_38_1
  article-title: The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
  publication-title: Comput Stat
– ident: e_1_2_10_4_1
  doi: 10.1111/iwj.14001
– ident: e_1_2_10_46_1
  doi: 10.1214/14-AOAS752
– ident: e_1_2_10_28_1
  doi: 10.1080/03610926.2017.1321769
– ident: e_1_2_10_17_1
  doi: 10.1177/0962280213491641
– ident: e_1_2_10_3_1
  doi: 10.1007/978-3-031-08564-2_3
– volume-title: The EM Algorithm and Extensions
  year: 2007
  ident: e_1_2_10_33_1
– ident: e_1_2_10_34_1
  doi: 10.1080/03610918.2020.1819321
– ident: e_1_2_10_39_1
  doi: 10.1080/00949659608811772
– ident: e_1_2_10_41_1
  doi: 10.1007/s42519-022-00274-8
– volume-title: Survival Analysis with Long‐term Survivors
  year: 1996
  ident: e_1_2_10_7_1
– ident: e_1_2_10_11_1
  doi: 10.1007/s10985-010-9189-2
– ident: e_1_2_10_25_1
  doi: 10.1007/s00180‐023‐01389‐7
– ident: e_1_2_10_42_1
– volume-title: Stochastic Models of Tumor Latency and their Biostatistical Applications
  year: 1996
  ident: e_1_2_10_32_1
– ident: e_1_2_10_12_1
  doi: 10.1016/j.csda.2011.10.013
– ident: e_1_2_10_9_1
  doi: 10.1080/01621459.1999.10474196
– ident: e_1_2_10_26_1
  doi: 10.1111/j.0006-341X.2004.00032.x
– ident: e_1_2_10_43_1
  doi: 10.1080/15326349308807283
– ident: e_1_2_10_49_1
  doi: 10.2307/1390802
– ident: e_1_2_10_31_1
  doi: 10.1016/S0167-7152(01)00105-5
– ident: e_1_2_10_48_1
  doi: 10.1016/j.csda.2018.09.008
– ident: e_1_2_10_14_1
  doi: 10.1016/j.csda.2013.04.018
– ident: e_1_2_10_50_1
  doi: 10.1002/sim.7293
– ident: e_1_2_10_22_1
  doi: 10.1007/s00184-017-0638-8
– ident: e_1_2_10_16_1
  doi: 10.1080/03610926.2014.964807
– ident: e_1_2_10_27_1
  doi: 10.1002/sim.2918
– ident: e_1_2_10_2_1
  doi: 10.1007/s40745-019-00224-5
– ident: e_1_2_10_21_1
  doi: 10.1080/03610918.2015.1053918
– ident: e_1_2_10_40_1
  doi: 10.1080/01621459.1990.10474930
– ident: e_1_2_10_45_1
  doi: 10.1093/biomet/88.1.281
– ident: e_1_2_10_15_1
  doi: 10.1007/s00180-014-0527-9
– ident: e_1_2_10_51_1
  doi: 10.1002/sim.9498
– ident: e_1_2_10_20_1
  doi: 10.1109/JBHI.2017.2704920
– ident: e_1_2_10_10_1
  doi: 10.1016/j.jspi.2009.04.014
– ident: e_1_2_10_24_1
  doi: 10.1080/00949655.2015.1071375
– ident: e_1_2_10_23_1
  doi: 10.1080/03610918.2019.1642483
– ident: e_1_2_10_37_1
  doi: 10.1214/aos/1176346060
– ident: e_1_2_10_52_1
  doi: 10.1002/sim.9363
– ident: e_1_2_10_19_1
  doi: 10.1177/0962280217708686
– ident: e_1_2_10_30_1
  doi: 10.1002/sim.9189
– ident: e_1_2_10_36_1
  doi: 10.1002/sim.9739
– ident: e_1_2_10_6_1
  doi: 10.1002/sim.9850
– ident: e_1_2_10_29_1
  doi: 10.1080/03610918.2022.2067876
SSID ssj0011527
Score 2.4560673
Snippet In this article, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is...
In this paper, a competitive risk survival model is considered in which the initial number of risks, assumed to follow a negative binomial distribution, is...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5113
SubjectTerms Algorithms
Binomial distribution
Child
Child mortality
Computer Simulation
Humans
Likelihood Functions
Missing data
Models, Statistical
Monte Carlo Method
Monte Carlo simulation
Performance evaluation
Scanning electron microscopy
Title On the estimation of interval censored destructive negative binomial cure model
URI https://www.ncbi.nlm.nih.gov/pubmed/37706586
https://www.proquest.com/docview/2890647643
https://www.proquest.com/docview/2864900400
https://pubmed.ncbi.nlm.nih.gov/PMC11099949
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB6NQxpbdsrVDg8EehjNHlnx5HGtLGVkDw4G8GVtSOrPGLmvah_76nWNJttOU0u3FGFvYQufTuegcfSLk40SKiQRD60lfCY-zPAE9KISnEl34UiueF02V72l4MuffF2IxGEx7VUtX62Isb-7cV_I_UoVnIFfcJfsPkm0_Cg_gHuQLV5AwXB8k45mpUUSijFXr-pVNFSPSfkCEWmN5udKWJfZaf670maH6hoi4XuFyucQUQnMgTt9RRSfUcjiX1VYGPoUg_ab-bXMIquwSUeem1Of6T95fT2AB1mbYytKHaa2ehsL8bxiZ_ZhjbTSoj_SuzPCxOxXLWQ9KdjO4UZjg7wU94ysmZmlzS7EbotjLcjUG88k74-US9qez7Hg-nWbp0SJ9RB5DxxieZ3H4syUTm7gDfF2nHRWxz7647246J1sRx-3C2Z4nkj4jT20IQb8aPDwnA10NyZMfVkRDsmeWYqnZYTYku50sX5DZrKKAGdphhtZL6jBDHWZoDzPUYYY6zFDEDG0w85LMj4_SbyeePVTDkxBKrz0tAiXiJQQKkWQJzEbJg1xEuc9VoZlY5lwof6kCwZUvlQiVhBBXFr6KYxlGSgavyE5VV_oNoZwHsQpZrLkCv5DrApPAGlS6lEqD2RyRT240M2kZ5_Hgk_PMcGWzDMY9w3EfkQ9tywvDsnJHm30nkMzOwcsM0-Qhj-DH8In2NWhITHvlla6vsE3Ik8ZYjchrI7_2J0GEaf44HJF4Q7JtA2Rf33xTlb8aFnak6k0Snry9v1_vyG43y_bJDshOH4Afuy7eN_D8C9ISpO8
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+estimation+of+interval+censored+destructive+negative+binomial+cure+model&rft.jtitle=Statistics+in+medicine&rft.au=Treszoks%2C+Jodi&rft.au=Pal%2C+Suvra&rft.date=2023-12-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=42&rft.issue=28&rft.spage=5113&rft.epage=5134&rft_id=info:doi/10.1002%2Fsim.9904&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon