Two steps generalized maximum entropy estimation procedure for fitting linear regression when both covariates are subject to error
This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear structural measurement error model parameters exactly. The first step estimates the unknowns from the horizontal line, and then the estimate...
Saved in:
Published in | Journal of applied statistics Vol. 41; no. 8; pp. 1708 - 1720 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.08.2014
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0266-4763 1360-0532 |
DOI | 10.1080/02664763.2014.888544 |
Cover
Abstract | This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear structural measurement error model parameters exactly. The first step estimates the unknowns from the horizontal line, and then the estimates were used in a second step to estimate the unknowns from the vertical line. The proposed estimation procedure has the ability to minimize the number of unknown parameters in formulating the GME system within each step, and hence reduce variability of the estimates. Analytical and illustrative Monte Carlo simulation comparison experiments with the maximum likelihood estimators and a one-step GME estimation procedure were presented. Simulation experiments demonstrated that the two steps estimation procedure produced parameter estimates that are more accurate and more efficient than the classical estimation methods. An application of the proposed method is illustrated using a data set gathered from the Centre for Integrated Government Services in Delma Island - UAE to predict the association between perceived quality and the customer satisfaction. |
---|---|
AbstractList | This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear structural measurement error model parameters exactly. The first step estimates the unknowns from the horizontal line, and then the estimates were used in a second step to estimate the unknowns from the vertical line. The proposed estimation procedure has the ability to minimize the number of unknown parameters in formulating the GME system within each step, and hence reduce variability of the estimates. Analytical and illustrative Monte Carlo simulation comparison experiments with the maximum likelihood estimators and a one-step GME estimation procedure were presented. Simulation experiments demonstrated that the two steps estimation procedure produced parameter estimates that are more accurate and more efficient than the classical estimation methods. An application of the proposed method is illustrated using a data set gathered from the Centre for Integrated Government Services in Delma Island - UAE to predict the association between perceived quality and the customer satisfaction. This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear structural measurement error model parameters exactly. The first step estimates the unknowns from the horizontal line, and then the estimates were used in a second step to estimate the unknowns from the vertical line. The proposed estimation procedure has the ability to minimize the number of unknown parameters in formulating the GME system within each step, and hence reduce variability of the estimates. Analytical and illustrative Monte Carlo simulation comparison experiments with the maximum likelihood estimators and a one-step GME estimation procedure were presented. Simulation experiments demonstrated that the two steps estimation procedure produced parameter estimates that are more accurate and more efficient than the classical estimation methods. An application of the proposed method is illustrated using a data set gathered from the Centre for Integrated Government Services in Delma Island -- UAE to predict the association between perceived quality and the customer satisfaction. [PUBLICATION ABSTRACT] |
Author | Al-Nasser, Amjad D. |
Author_xml | – sequence: 1 givenname: Amjad D. surname: Al-Nasser fullname: Al-Nasser, Amjad D. email: amjadyu@yahoo.com organization: Department of Economics and Statistics, College of Business Administration, University of Dubai |
BookMark | eNqFkT2P1DAQhi10SOwt_AMKSzQ0WezYcbI0CJ34kk6iOWpr1pnseZXYy9hhWUp-OQ4LzRVQuXmeGc_7XrOrEAMy9lyKjRSdeCVqY3Rr1KYWUm-6rmu0fsRWUhlRiUbVV2y1INXCPGHXKR2EEJ1s1Ir9vDtFnjIeE99jQILR_8CeT_DdT_PEMWSKxzPHlP0E2cfAjxQd9jMhHyLxwefsw56PPiAQJ9wTprRwp3sMfBfzPXfxG5CHjIlD0dK8O6DLPEeORJGesscDjAmf_XnX7Mv7d3c3H6vbzx8-3by9rZwWMlf9dhhQGGNUq7VApxXotpYAWkMLtRBQQ906uTNtOwCCqU2vmsKJHoetRrVmLy9zywVf53KRnXxyOI4QMM7JykZLbYQqG9bsxQP0EGcK5XeFqptt02hVF-r1hXIUUyIcrPP5d0iZwI9WCrvUY__WY5d67KWeIusH8pFKxHT-n_bmovlQ4p_gFGnsbYbzGGkgCM4nq_454Rd05asU |
CitedBy_id | crossref_primary_10_1080_02331888_2022_2126474 crossref_primary_10_17341_gazimmfd_897120 |
Cites_doi | 10.1201/9781420010138 10.1080/10485250903009037 10.1103/PhysRev.108.171 10.1002/j.1538-7305.1948.tb01338.x 10.1007/s001840200217 10.4310/SII.2011.v4.n3.a7 10.1111/j.1467-9469.2006.00538.x 10.17713/ajs.v34i3.418 10.1007/BF02918550 10.2307/2984115 10.1002/9780470316665 10.1080/00031305.1994.10476030 10.1080/03610926.2011.581182 10.1111/j.1467-9469.2006.00468.x 10.1201/9781420066586 |
ContentType | Journal Article |
Copyright | 2014 Taylor & Francis 2014 Copyright Taylor & Francis Ltd. 2014 |
Copyright_xml | – notice: 2014 Taylor & Francis 2014 – notice: Copyright Taylor & Francis Ltd. 2014 |
DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D 7U5 |
DOI | 10.1080/02664763.2014.888544 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1360-0532 |
EndPage | 1720 |
ExternalDocumentID | 3308102311 10_1080_02664763_2014_888544 888544 |
Genre | Article Feature |
GeographicLocations | United Arab Emirates |
GeographicLocations_xml | – name: United Arab Emirates |
GroupedDBID | .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 7WY 8FL 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBE EBO EBR EBS EBU ECR EJD EMK EPL E~A E~B F5P GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G K60 K6~ KYCEM M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RPM RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TH9 TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION PQBIZ 7SC 8FD H8D JQ2 L7M L~C L~D TASJS 7U5 |
ID | FETCH-LOGICAL-c401t-d9ffe066637440ec43a4721aa44a7a200a2a27c1b677faea626d35ec40def94e3 |
ISSN | 0266-4763 |
IngestDate | Fri Sep 05 12:55:14 EDT 2025 Wed Aug 13 03:16:54 EDT 2025 Tue Jul 01 02:25:07 EDT 2025 Thu Apr 24 22:52:03 EDT 2025 Wed Dec 25 09:00:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c401t-d9ffe066637440ec43a4721aa44a7a200a2a27c1b677faea626d35ec40def94e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1525955432 |
PQPubID | 32901 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1525955432 proquest_miscellaneous_1541460366 crossref_citationtrail_10_1080_02664763_2014_888544 crossref_primary_10_1080_02664763_2014_888544 informaworld_taylorfrancis_310_1080_02664763_2014_888544 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-03 |
PublicationDateYYYYMMDD | 2014-08-03 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of applied statistics |
PublicationYear | 2014 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Al-Rawwash M. (CIT0003) 2013; 67 Cheng C-L. (CIT0006) 1999 Ghapor A.A. (CIT0011) 2014; 30 Kukush A. (CIT0017) 2003; 57 Lindley D.V. (CIT0018) 1947; 9 CIT0010 CIT0021 CIT0020 Al-Nasser A. (CIT0002) 2011; 40 Konings H. (CIT0016) 1982; 1 Al-Nasser A. (CIT0001) 2005; 34 Deming W.E. (CIT0008) 1943 CIT0014 CIT0013 CIT0005 CIT0004 CIT0015 CIT0007 CIT0009 CIT0019 |
References_xml | – ident: CIT0005 doi: 10.1201/9781420010138 – ident: CIT0007 doi: 10.1080/10485250903009037 – volume: 30 start-page: 129 issue: 1 year: 2014 ident: CIT0011 publication-title: Pak. J. Statist – volume: 40 start-page: 469 issue: 3 year: 2011 ident: CIT0002 publication-title: Hacettepe J. Math. Stat – ident: CIT0014 doi: 10.1103/PhysRev.108.171 – ident: CIT0020 doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 57 start-page: 253 year: 2003 ident: CIT0017 publication-title: Metrika doi: 10.1007/s001840200217 – ident: CIT0009 doi: 10.4310/SII.2011.v4.n3.a7 – ident: CIT0015 doi: 10.1111/j.1467-9469.2006.00538.x – volume: 34 start-page: 283 issue: 3 year: 2005 ident: CIT0001 publication-title: Austrian J. Stat doi: 10.17713/ajs.v34i3.418 – volume: 1 start-page: 271 issue: 4 year: 1982 ident: CIT0016 publication-title: Surv Immunologic Res doi: 10.1007/BF02918550 – volume: 9 start-page: 218 year: 1947 ident: CIT0018 publication-title: J. R. Stat. Soc doi: 10.2307/2984115 – volume: 67 start-page: 100 issue: 1 year: 2013 ident: CIT0003 publication-title: Repeated Measures and longitudinal data analysis using higher-order entropies – ident: CIT0010 doi: 10.1002/9780470316665 – ident: CIT0019 doi: 10.1080/00031305.1994.10476030 – volume-title: Statistical Regression with Measurement Error year: 1999 ident: CIT0006 – ident: CIT0021 doi: 10.1080/03610926.2011.581182 – volume-title: Statistical Adjustment of Data year: 1943 ident: CIT0008 – ident: CIT0013 doi: 10.1111/j.1467-9469.2006.00468.x – ident: CIT0004 doi: 10.1201/9781420066586 |
SSID | ssj0008153 |
Score | 2.0154364 |
Snippet | This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1708 |
SubjectTerms | Applied statistics Computer simulation Customer satisfaction Errors Estimates Estimating techniques Fittings generalized maximum entropy Mathematical models Maximum entropy Maximum entropy method Monte Carlo methods Monte Carlo simulation perceived quality Quality of service structural measurement error model Studies |
Title | Two steps generalized maximum entropy estimation procedure for fitting linear regression when both covariates are subject to error |
URI | https://www.tandfonline.com/doi/abs/10.1080/02664763.2014.888544 https://www.proquest.com/docview/1525955432 https://www.proquest.com/docview/1541460366 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLZgu4wDggGiMJCRuEVBTezUyXGCTRXaxoFWVFwsJ3GgE02qNGWwI7-c92wnTUWBwSWqUqdO8748f7bf-x4hL3PNYqGz0GehMCXMEj9OeOFnKol4gWOMqTx3fjEaT_nbWTTrZVxjdkmTvsqud-aV_I9V4RzYFbNk_8Gy3Y_CCfgM9oUjWBiON7PxVeWBlZYrLISMi0vza-CPC_VtvlgvPFy3rZbfPdTRsAmKnhmuctwzwOjCYm6DnpFpqtqr9ScbFFt6V5916aWViUr_CrNpJKQexoit1iku3CBj1XVd1b_htspxW0xXskrQHbAwiwxDAIxTWlyq3MUcu5WHgJu4N9ZzUDC4-7x1UNo6UDbCzXW25WGttJVDUtxzl4EYxr2hF8jUcKdbd3GQ0B92hwF5HLAQR1Y6cltF--KdPJ2encnJyWxym-yHQuD2_f7x-M3HD90YHQdWn7T9B21SJaqu7-hli7RsSdr-MoQbXjK5R-66h06PLTruk1u6PCR3zjs13tUhOXjfmeEB-QGgoQY0tAca6kBDHWjoBjS0Aw2FG6IONNSChm5AQxE0FEFDN6ChABrqQEObihrQPCTT05PJ67HvCnH4GUy_Gz9PikLjRJehnKTOOFNchIFSnCuh4I1UoQpFFqQjIQqlFUyScxZBu2Gui4Rr9ojslVWpHxOaFKOURfAO5zrkKlUqHSquowhmFUqkQgwIa5-0zJxKPRZL-SKDVszW2UeifaS1z4D43VVLq9Lyl_Zx34iyMatjhS1lI9mfLz1qDS6dK1hJLCKWADFn4YC86L4GR427b6rU1RrbcGAlQBhHT27Q5ik52LxyR2Svqdf6GdDfJn3usPwTYbixTg |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHCgHHgXEQgEjcU3ZjZ04OSJEtUB3T1uJmzVO7LKCTVZ5UOiRX86MnawoCJDgbE_i2PPO-BvGnpdWZMoWcSRi5VuY5VGWSxcVkCfSkY3xnecWy3R-Kt--T8ZqwnYoq6QY2gWgCK-rSbgpGT2WxL3AuCGVKBhUmSXxqLNEyqvsWoKuOzG5mC53yjibBSBKpIiIZLw995unXLJOl7BLf9HV3gAd32JmXHqoO_l41HfmqLj4CdXxv77tNrs5uKf8ZeCnO-yKrQ7YjcUO27U9YPvknwZ457vs2-q85sgo25afBQDr9YUt-Qa-rDf9hlPquN5-5QTlEe5Icm8xy76xHL-au7Wvu-a0Umh4Y89CXW7Fzz_YihvkI17UnzGgJ5-YA5K1vaHcEe9qbpumbu6x0-PXq1fzaGjrEBUYzHVRmTtnKWwSBE5oCylAYhwKICUoQKmFGGJVzEyqlAMLGHKVIsF509K6XFpxn-1VdWUfMJ671IgE5by0sQQDYKYgbZKgjwrKKDVhYjxOXQyY59R645OejdCow3Zr2m4dtnvCoh3VNmB-_GV-9iOn6M7nWlxojKLFn0kPR67Sg_JoNbWkytHNE_GEPdsNo9jTvxyobN3THIk2Dt2P9OG_v_0puz5fLU70yZvlu0dsn0Z8baM4ZHtd09vH6G915omXqO8iTx7w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgSKgcChQQCwWMxDVlN3bi5IhaVuWjKw6t1Js1Tux2BZussgmlPfLLmbGTVQsCJDjbkzj2jOeNM37D2KvSikzZIo5ErHwJszzKcumiAvJEOvIxvvLc4Sw9OJbvT5KTK7f4Ka2SYmgXiCL8Xk3GvSzdkBH3GsOGVKJdUGKWxJXOEilvslspohNK6hPj2XovziaBhxIlIhIZLs_95inXnNM16tJftmrvf6Z3GQwjD2knn3e71uwWlz-ROv7Pp91jWz045W-CNt1nN2y1ze4crpldV9tsk9BpIHd-wL4fndcc1WS54qeBvnp-aUu-gG_zRbfgdHBcLy84EXmEG5Lc-8uyayzHj-Zu7rOuOQ0UGt7Y05CVW_HzM1txg1rEi_orhvOEiDmg2KozdHLE25rbpqmbh-x4-vZo7yDqizpEBYZybVTmzlkKmgRRE9pCCpAYhQJICQrQZiGGWBUTkyrlwAIGXKVIsN-4tC6XVjxiG1Vd2ceM5y41IkErL20swQCYMUibJIhQQRmlRkwMq6mLnvGcCm980ZOBGLWfbk3TrcN0j1i0lloGxo-_9M-uKopu_UmLC2VRtPiz6M6gVLrfOlaaClLlCPJEPGIv181o9PQnBypbd9RHoodD8JE--fe3v2C3P-1P9cd3sw9P2SY1-MRGscM22qazzxBstea5t6cffyQdlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+steps+generalized+maximum+entropy+estimation+procedure+for+fitting+linear+regression+when+both+covariates+are+subject+to+error&rft.jtitle=Journal+of+applied+statistics&rft.au=Al-Nasser%2C+Amjad+D&rft.date=2014-08-03&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=41&rft.issue=8&rft.spage=1708&rft.epage=1720&rft_id=info:doi/10.1080%2F02664763.2014.888544&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon |