Two steps generalized maximum entropy estimation procedure for fitting linear regression when both covariates are subject to error

This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear structural measurement error model parameters exactly. The first step estimates the unknowns from the horizontal line, and then the estimate...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 41; no. 8; pp. 1708 - 1720
Main Author Al-Nasser, Amjad D.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.08.2014
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0266-4763
1360-0532
DOI10.1080/02664763.2014.888544

Cover

Abstract This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear structural measurement error model parameters exactly. The first step estimates the unknowns from the horizontal line, and then the estimates were used in a second step to estimate the unknowns from the vertical line. The proposed estimation procedure has the ability to minimize the number of unknown parameters in formulating the GME system within each step, and hence reduce variability of the estimates. Analytical and illustrative Monte Carlo simulation comparison experiments with the maximum likelihood estimators and a one-step GME estimation procedure were presented. Simulation experiments demonstrated that the two steps estimation procedure produced parameter estimates that are more accurate and more efficient than the classical estimation methods. An application of the proposed method is illustrated using a data set gathered from the Centre for Integrated Government Services in Delma Island - UAE to predict the association between perceived quality and the customer satisfaction.
AbstractList This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear structural measurement error model parameters exactly. The first step estimates the unknowns from the horizontal line, and then the estimates were used in a second step to estimate the unknowns from the vertical line. The proposed estimation procedure has the ability to minimize the number of unknown parameters in formulating the GME system within each step, and hence reduce variability of the estimates. Analytical and illustrative Monte Carlo simulation comparison experiments with the maximum likelihood estimators and a one-step GME estimation procedure were presented. Simulation experiments demonstrated that the two steps estimation procedure produced parameter estimates that are more accurate and more efficient than the classical estimation methods. An application of the proposed method is illustrated using a data set gathered from the Centre for Integrated Government Services in Delma Island - UAE to predict the association between perceived quality and the customer satisfaction.
This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear structural measurement error model parameters exactly. The first step estimates the unknowns from the horizontal line, and then the estimates were used in a second step to estimate the unknowns from the vertical line. The proposed estimation procedure has the ability to minimize the number of unknown parameters in formulating the GME system within each step, and hence reduce variability of the estimates. Analytical and illustrative Monte Carlo simulation comparison experiments with the maximum likelihood estimators and a one-step GME estimation procedure were presented. Simulation experiments demonstrated that the two steps estimation procedure produced parameter estimates that are more accurate and more efficient than the classical estimation methods. An application of the proposed method is illustrated using a data set gathered from the Centre for Integrated Government Services in Delma Island -- UAE to predict the association between perceived quality and the customer satisfaction. [PUBLICATION ABSTRACT]
Author Al-Nasser, Amjad D.
Author_xml – sequence: 1
  givenname: Amjad D.
  surname: Al-Nasser
  fullname: Al-Nasser, Amjad D.
  email: amjadyu@yahoo.com
  organization: Department of Economics and Statistics, College of Business Administration, University of Dubai
BookMark eNqFkT2P1DAQhi10SOwt_AMKSzQ0WezYcbI0CJ34kk6iOWpr1pnseZXYy9hhWUp-OQ4LzRVQuXmeGc_7XrOrEAMy9lyKjRSdeCVqY3Rr1KYWUm-6rmu0fsRWUhlRiUbVV2y1INXCPGHXKR2EEJ1s1Ir9vDtFnjIeE99jQILR_8CeT_DdT_PEMWSKxzPHlP0E2cfAjxQd9jMhHyLxwefsw56PPiAQJ9wTprRwp3sMfBfzPXfxG5CHjIlD0dK8O6DLPEeORJGesscDjAmf_XnX7Mv7d3c3H6vbzx8-3by9rZwWMlf9dhhQGGNUq7VApxXotpYAWkMLtRBQQ906uTNtOwCCqU2vmsKJHoetRrVmLy9zywVf53KRnXxyOI4QMM7JykZLbYQqG9bsxQP0EGcK5XeFqptt02hVF-r1hXIUUyIcrPP5d0iZwI9WCrvUY__WY5d67KWeIusH8pFKxHT-n_bmovlQ4p_gFGnsbYbzGGkgCM4nq_454Rd05asU
CitedBy_id crossref_primary_10_1080_02331888_2022_2126474
crossref_primary_10_17341_gazimmfd_897120
Cites_doi 10.1201/9781420010138
10.1080/10485250903009037
10.1103/PhysRev.108.171
10.1002/j.1538-7305.1948.tb01338.x
10.1007/s001840200217
10.4310/SII.2011.v4.n3.a7
10.1111/j.1467-9469.2006.00538.x
10.17713/ajs.v34i3.418
10.1007/BF02918550
10.2307/2984115
10.1002/9780470316665
10.1080/00031305.1994.10476030
10.1080/03610926.2011.581182
10.1111/j.1467-9469.2006.00468.x
10.1201/9781420066586
ContentType Journal Article
Copyright 2014 Taylor & Francis 2014
Copyright Taylor & Francis Ltd. 2014
Copyright_xml – notice: 2014 Taylor & Francis 2014
– notice: Copyright Taylor & Francis Ltd. 2014
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7U5
DOI 10.1080/02664763.2014.888544
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
DatabaseTitleList Aerospace Database

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1360-0532
EndPage 1720
ExternalDocumentID 3308102311
10_1080_02664763_2014_888544
888544
Genre Article
Feature
GeographicLocations United Arab Emirates
GeographicLocations_xml – name: United Arab Emirates
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBE
EBO
EBR
EBS
EBU
ECR
EJD
EMK
EPL
E~A
E~B
F5P
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
K60
K6~
KYCEM
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RPM
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
PQBIZ
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
TASJS
7U5
ID FETCH-LOGICAL-c401t-d9ffe066637440ec43a4721aa44a7a200a2a27c1b677faea626d35ec40def94e3
ISSN 0266-4763
IngestDate Fri Sep 05 12:55:14 EDT 2025
Wed Aug 13 03:16:54 EDT 2025
Tue Jul 01 02:25:07 EDT 2025
Thu Apr 24 22:52:03 EDT 2025
Wed Dec 25 09:00:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-d9ffe066637440ec43a4721aa44a7a200a2a27c1b677faea626d35ec40def94e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1525955432
PQPubID 32901
PageCount 13
ParticipantIDs proquest_journals_1525955432
proquest_miscellaneous_1541460366
crossref_citationtrail_10_1080_02664763_2014_888544
crossref_primary_10_1080_02664763_2014_888544
informaworld_taylorfrancis_310_1080_02664763_2014_888544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-03
PublicationDateYYYYMMDD 2014-08-03
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of applied statistics
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Al-Rawwash M. (CIT0003) 2013; 67
Cheng C-L. (CIT0006) 1999
Ghapor A.A. (CIT0011) 2014; 30
Kukush A. (CIT0017) 2003; 57
Lindley D.V. (CIT0018) 1947; 9
CIT0010
CIT0021
CIT0020
Al-Nasser A. (CIT0002) 2011; 40
Konings H. (CIT0016) 1982; 1
Al-Nasser A. (CIT0001) 2005; 34
Deming W.E. (CIT0008) 1943
CIT0014
CIT0013
CIT0005
CIT0004
CIT0015
CIT0007
CIT0009
CIT0019
References_xml – ident: CIT0005
  doi: 10.1201/9781420010138
– ident: CIT0007
  doi: 10.1080/10485250903009037
– volume: 30
  start-page: 129
  issue: 1
  year: 2014
  ident: CIT0011
  publication-title: Pak. J. Statist
– volume: 40
  start-page: 469
  issue: 3
  year: 2011
  ident: CIT0002
  publication-title: Hacettepe J. Math. Stat
– ident: CIT0014
  doi: 10.1103/PhysRev.108.171
– ident: CIT0020
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 57
  start-page: 253
  year: 2003
  ident: CIT0017
  publication-title: Metrika
  doi: 10.1007/s001840200217
– ident: CIT0009
  doi: 10.4310/SII.2011.v4.n3.a7
– ident: CIT0015
  doi: 10.1111/j.1467-9469.2006.00538.x
– volume: 34
  start-page: 283
  issue: 3
  year: 2005
  ident: CIT0001
  publication-title: Austrian J. Stat
  doi: 10.17713/ajs.v34i3.418
– volume: 1
  start-page: 271
  issue: 4
  year: 1982
  ident: CIT0016
  publication-title: Surv Immunologic Res
  doi: 10.1007/BF02918550
– volume: 9
  start-page: 218
  year: 1947
  ident: CIT0018
  publication-title: J. R. Stat. Soc
  doi: 10.2307/2984115
– volume: 67
  start-page: 100
  issue: 1
  year: 2013
  ident: CIT0003
  publication-title: Repeated Measures and longitudinal data analysis using higher-order entropies
– ident: CIT0010
  doi: 10.1002/9780470316665
– ident: CIT0019
  doi: 10.1080/00031305.1994.10476030
– volume-title: Statistical Regression with Measurement Error
  year: 1999
  ident: CIT0006
– ident: CIT0021
  doi: 10.1080/03610926.2011.581182
– volume-title: Statistical Adjustment of Data
  year: 1943
  ident: CIT0008
– ident: CIT0013
  doi: 10.1111/j.1467-9469.2006.00468.x
– ident: CIT0004
  doi: 10.1201/9781420066586
SSID ssj0008153
Score 2.0154364
Snippet This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1708
SubjectTerms Applied statistics
Computer simulation
Customer satisfaction
Errors
Estimates
Estimating techniques
Fittings
generalized maximum entropy
Mathematical models
Maximum entropy
Maximum entropy method
Monte Carlo methods
Monte Carlo simulation
perceived quality
Quality of service
structural measurement error model
Studies
Title Two steps generalized maximum entropy estimation procedure for fitting linear regression when both covariates are subject to error
URI https://www.tandfonline.com/doi/abs/10.1080/02664763.2014.888544
https://www.proquest.com/docview/1525955432
https://www.proquest.com/docview/1541460366
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLZgu4wDggGiMJCRuEVBTezUyXGCTRXaxoFWVFwsJ3GgE02qNGWwI7-c92wnTUWBwSWqUqdO8748f7bf-x4hL3PNYqGz0GehMCXMEj9OeOFnKol4gWOMqTx3fjEaT_nbWTTrZVxjdkmTvsqud-aV_I9V4RzYFbNk_8Gy3Y_CCfgM9oUjWBiON7PxVeWBlZYrLISMi0vza-CPC_VtvlgvPFy3rZbfPdTRsAmKnhmuctwzwOjCYm6DnpFpqtqr9ScbFFt6V5916aWViUr_CrNpJKQexoit1iku3CBj1XVd1b_htspxW0xXskrQHbAwiwxDAIxTWlyq3MUcu5WHgJu4N9ZzUDC4-7x1UNo6UDbCzXW25WGttJVDUtxzl4EYxr2hF8jUcKdbd3GQ0B92hwF5HLAQR1Y6cltF--KdPJ2encnJyWxym-yHQuD2_f7x-M3HD90YHQdWn7T9B21SJaqu7-hli7RsSdr-MoQbXjK5R-66h06PLTruk1u6PCR3zjs13tUhOXjfmeEB-QGgoQY0tAca6kBDHWjoBjS0Aw2FG6IONNSChm5AQxE0FEFDN6ChABrqQEObihrQPCTT05PJ67HvCnH4GUy_Gz9PikLjRJehnKTOOFNchIFSnCuh4I1UoQpFFqQjIQqlFUyScxZBu2Gui4Rr9ojslVWpHxOaFKOURfAO5zrkKlUqHSquowhmFUqkQgwIa5-0zJxKPRZL-SKDVszW2UeifaS1z4D43VVLq9Lyl_Zx34iyMatjhS1lI9mfLz1qDS6dK1hJLCKWADFn4YC86L4GR427b6rU1RrbcGAlQBhHT27Q5ik52LxyR2Svqdf6GdDfJn3usPwTYbixTg
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHCgHHgXEQgEjcU3ZjZ04OSJEtUB3T1uJmzVO7LKCTVZ5UOiRX86MnawoCJDgbE_i2PPO-BvGnpdWZMoWcSRi5VuY5VGWSxcVkCfSkY3xnecWy3R-Kt--T8ZqwnYoq6QY2gWgCK-rSbgpGT2WxL3AuCGVKBhUmSXxqLNEyqvsWoKuOzG5mC53yjibBSBKpIiIZLw995unXLJOl7BLf9HV3gAd32JmXHqoO_l41HfmqLj4CdXxv77tNrs5uKf8ZeCnO-yKrQ7YjcUO27U9YPvknwZ457vs2-q85sgo25afBQDr9YUt-Qa-rDf9hlPquN5-5QTlEe5Icm8xy76xHL-au7Wvu-a0Umh4Y89CXW7Fzz_YihvkI17UnzGgJ5-YA5K1vaHcEe9qbpumbu6x0-PXq1fzaGjrEBUYzHVRmTtnKWwSBE5oCylAYhwKICUoQKmFGGJVzEyqlAMLGHKVIsF509K6XFpxn-1VdWUfMJ671IgE5by0sQQDYKYgbZKgjwrKKDVhYjxOXQyY59R645OejdCow3Zr2m4dtnvCoh3VNmB-_GV-9iOn6M7nWlxojKLFn0kPR67Sg_JoNbWkytHNE_GEPdsNo9jTvxyobN3THIk2Dt2P9OG_v_0puz5fLU70yZvlu0dsn0Z8baM4ZHtd09vH6G915omXqO8iTx7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgSKgcChQQCwWMxDVlN3bi5IhaVuWjKw6t1Js1Tux2BZussgmlPfLLmbGTVQsCJDjbkzj2jOeNM37D2KvSikzZIo5ErHwJszzKcumiAvJEOvIxvvLc4Sw9OJbvT5KTK7f4Ka2SYmgXiCL8Xk3GvSzdkBH3GsOGVKJdUGKWxJXOEilvslspohNK6hPj2XovziaBhxIlIhIZLs_95inXnNM16tJftmrvf6Z3GQwjD2knn3e71uwWlz-ROv7Pp91jWz045W-CNt1nN2y1ze4crpldV9tsk9BpIHd-wL4fndcc1WS54qeBvnp-aUu-gG_zRbfgdHBcLy84EXmEG5Lc-8uyayzHj-Zu7rOuOQ0UGt7Y05CVW_HzM1txg1rEi_orhvOEiDmg2KozdHLE25rbpqmbh-x4-vZo7yDqizpEBYZybVTmzlkKmgRRE9pCCpAYhQJICQrQZiGGWBUTkyrlwAIGXKVIsN-4tC6XVjxiG1Vd2ceM5y41IkErL20swQCYMUibJIhQQRmlRkwMq6mLnvGcCm980ZOBGLWfbk3TrcN0j1i0lloGxo-_9M-uKopu_UmLC2VRtPiz6M6gVLrfOlaaClLlCPJEPGIv181o9PQnBypbd9RHoodD8JE--fe3v2C3P-1P9cd3sw9P2SY1-MRGscM22qazzxBstea5t6cffyQdlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+steps+generalized+maximum+entropy+estimation+procedure+for+fitting+linear+regression+when+both+covariates+are+subject+to+error&rft.jtitle=Journal+of+applied+statistics&rft.au=Al-Nasser%2C+Amjad+D&rft.date=2014-08-03&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=41&rft.issue=8&rft.spage=1708&rft.epage=1720&rft_id=info:doi/10.1080%2F02664763.2014.888544&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon