Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term

The main goal of this work is to investigate the initial boundary value problem of nonlinear wave equation with weak and strong damping terms and logarithmic term at three different initial energy levels, i.e., subcritical energy (0) < , critical initial energy (0) = and the arbitrary high initia...

Full description

Saved in:
Bibliographic Details
Published inAdvances in nonlinear analysis Vol. 9; no. 1; pp. 613 - 632
Main Authors Lian, Wei, Xu, Runzhang
Format Journal Article
LanguageEnglish
Published De Gruyter 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main goal of this work is to investigate the initial boundary value problem of nonlinear wave equation with weak and strong damping terms and logarithmic term at three different initial energy levels, i.e., subcritical energy (0) < , critical initial energy (0) = and the arbitrary high initial energy (0) > 0 ( = 0). Firstly, we prove the local existence of weak solution by using contraction mapping principle. And in the framework of potential well, we show the global existence, energy decay and, unlike the power type nonlinearity, infinite time blow up of the solution with sub-critical initial energy. Then we parallelly extend all the conclusions for the subcritical case to the critical case by scaling technique. Besides, a high energy infinite time blow up result is established.
AbstractList The main goal of this work is to investigate the initial boundary value problem of nonlinear wave equation with weak and strong damping terms and logarithmic term at three different initial energy levels, i.e., subcritical energy (0) < , critical initial energy (0) = and the arbitrary high initial energy (0) > 0 ( = 0). Firstly, we prove the local existence of weak solution by using contraction mapping principle. And in the framework of potential well, we show the global existence, energy decay and, unlike the power type nonlinearity, infinite time blow up of the solution with sub-critical initial energy. Then we parallelly extend all the conclusions for the subcritical case to the critical case by scaling technique. Besides, a high energy infinite time blow up result is established.
The main goal of this work is to investigate the initial boundary value problem of nonlinear wave equation with weak and strong damping terms and logarithmic term at three different initial energy levels, i.e., subcritical energy E (0) < d , critical initial energy E (0) = d and the arbitrary high initial energy E (0) > 0 ( ω = 0). Firstly, we prove the local existence of weak solution by using contraction mapping principle. And in the framework of potential well, we show the global existence, energy decay and, unlike the power type nonlinearity, infinite time blow up of the solution with sub-critical initial energy. Then we parallelly extend all the conclusions for the subcritical case to the critical case by scaling technique. Besides, a high energy infinite time blow up result is established.
The main goal of this work is to investigate the initial boundary value problem of nonlinear wave equation with weak and strong damping terms and logarithmic term at three different initial energy levels, i.e., subcritical energy E(0) < d, critical initial energy E(0) = d and the arbitrary high initial energy E(0) > 0 (ω = 0). Firstly, we prove the local existence of weak solution by using contraction mapping principle. And in the framework of potential well, we show the global existence, energy decay and, unlike the power type nonlinearity, infinite time blow up of the solution with sub-critical initial energy. Then we parallelly extend all the conclusions for the subcritical case to the critical case by scaling technique. Besides, a high energy infinite time blow up result is established.
Author Lian, Wei
Xu, Runzhang
Author_xml – sequence: 1
  givenname: Wei
  surname: Lian
  fullname: Lian, Wei
  organization: College of Automation, Harbin Engineering University, Harbin, People’s Republic of China
– sequence: 2
  givenname: Runzhang
  surname: Xu
  fullname: Xu, Runzhang
  organization: College of Mathematical Sciences, Harbin Engineering University, Harbin, People’s Republic of China
BookMark eNp9kEFLJDEQhcOisOrOea_5A61Jp9PpgBcRdQcGvCjsLVSnq8fMZjpj0uPgvzfTs4gIGgJVyav3oL5TcjSEAQn5zdk5l1xeQH5DUbKSFYzx-gc5KbnmhZbs79GH_ieZpbRi-TSSK8VOSLjzoQVPd-h9sQkJuwFToqGnOdG7ASHSHbwgxectjC4MdOfGpzwO_ygMHU1jDMOSdrDeuFxHjOs0CT4sIebRtbM0hW20OIm_yHEPPuHsfz0jj7c3D9d_isX93fz6alHYivGxaMHWlUSUssayZbUSKBrbKpCt0L2wdd_WspFYamgq2VQi62hVXp0pi0yJMzI_5HYBVmYT3RriqwngzPQR4tJAHJ31aATWva50BRpzlug1K7v9rRS3lqs-Z10csmwMKUXs3_M4M3v8ZsJv9vjNHn92yE8O68YJ3xjB-W98lwffDnym1eEybl9zY1aZ4JB5feXUvOZCvAGNQKI7
CitedBy_id crossref_primary_10_1111_sapm_12405
crossref_primary_10_3934_math_20221006
crossref_primary_10_3934_dcdss_2021122
crossref_primary_10_1007_s13226_023_00518_8
crossref_primary_10_3934_dcdss_2021125
crossref_primary_10_1016_j_padiff_2024_100984
crossref_primary_10_3934_mbe_2023225
crossref_primary_10_1016_j_jde_2021_10_036
crossref_primary_10_3934_era_2020034
crossref_primary_10_1007_s12220_024_01747_x
crossref_primary_10_1007_s12215_021_00698_4
crossref_primary_10_3934_dcdss_2021110
crossref_primary_10_1515_anly_2023_0072
crossref_primary_10_1016_j_na_2019_111729
crossref_primary_10_3934_dcdss_2021112
crossref_primary_10_1111_sapm_12498
crossref_primary_10_3934_math_20241425
crossref_primary_10_1016_j_jmaa_2022_126132
crossref_primary_10_3934_dcdss_2021114
crossref_primary_10_3934_dcdss_2021115
crossref_primary_10_1186_s13661_022_01634_w
crossref_primary_10_3390_axioms13100709
crossref_primary_10_3934_dcdss_2021108
crossref_primary_10_3934_era_2020021
crossref_primary_10_3934_era_2020020
crossref_primary_10_3934_math_2023046
crossref_primary_10_3390_mca27010010
crossref_primary_10_3934_era_2021073
crossref_primary_10_12677_AAM_2023_124152
crossref_primary_10_3934_era_2020025
crossref_primary_10_1007_s42985_022_00207_x
crossref_primary_10_3934_cam_2023012
crossref_primary_10_1016_j_na_2020_111832
crossref_primary_10_1002_mana_202000266
crossref_primary_10_1080_00036811_2022_2125387
crossref_primary_10_1186_s13661_020_01374_9
crossref_primary_10_3934_mbe_2023174
crossref_primary_10_1140_epjp_s13360_020_00568_5
crossref_primary_10_11650_tjm_220702
crossref_primary_10_1186_s13661_021_01535_4
crossref_primary_10_1002_mma_8912
crossref_primary_10_1515_anona_2021_0207
crossref_primary_10_1515_anona_2022_0267
crossref_primary_10_1515_anona_2023_0115
crossref_primary_10_3934_cam_2023021
crossref_primary_10_1007_s00245_020_09704_0
crossref_primary_10_1016_j_aml_2023_108954
crossref_primary_10_1002_mana_202300275
crossref_primary_10_1186_s13661_022_01611_3
crossref_primary_10_1016_j_nonrwa_2023_103958
crossref_primary_10_3233_ASY_201621
crossref_primary_10_1016_j_apnum_2020_06_002
crossref_primary_10_3934_math_2024627
crossref_primary_10_1186_s13661_020_01382_9
crossref_primary_10_1002_mma_9684
crossref_primary_10_1186_s13661_020_01357_w
crossref_primary_10_3934_math_20231404
crossref_primary_10_1002_mma_7812
crossref_primary_10_1155_2022_9801331
crossref_primary_10_1016_j_jmaa_2024_128408
crossref_primary_10_1080_00036811_2023_2241493
crossref_primary_10_3934_era_2024248
crossref_primary_10_1515_ans_2022_0024
crossref_primary_10_1016_j_na_2020_111898
crossref_primary_10_1186_s13661_020_01438_w
crossref_primary_10_1186_s13662_020_02694_x
crossref_primary_10_1016_j_na_2020_111776
crossref_primary_10_1186_s13662_020_03037_6
crossref_primary_10_3934_math_2021326
crossref_primary_10_1515_anona_2024_0015
crossref_primary_10_3390_fractalfract6100581
crossref_primary_10_1002_zamm_202000094
crossref_primary_10_3934_math_20231018
crossref_primary_10_1186_s13661_019_01308_0
crossref_primary_10_1007_s00009_023_02469_0
crossref_primary_10_1186_s13661_020_01482_6
crossref_primary_10_1186_s13661_019_1266_1
crossref_primary_10_1016_j_na_2020_111885
crossref_primary_10_3934_cam_2023008
crossref_primary_10_1002_mma_10343
crossref_primary_10_1002_mma_10100
crossref_primary_10_1112_jlms_70091
crossref_primary_10_1016_j_apnum_2022_08_014
crossref_primary_10_1016_j_nonrwa_2024_104209
crossref_primary_10_1016_j_cnsns_2024_108450
crossref_primary_10_1063_5_0149240
crossref_primary_10_1016_j_apnum_2022_12_017
crossref_primary_10_3390_math13020319
crossref_primary_10_1016_j_na_2020_111752
crossref_primary_10_1016_j_na_2020_111873
crossref_primary_10_3934_era_2020019
crossref_primary_10_1016_j_na_2020_111759
crossref_primary_10_36753_mathenot_1084371
crossref_primary_10_3934_math_2021425
crossref_primary_10_1007_s13324_025_01017_1
crossref_primary_10_1016_j_aml_2024_109290
crossref_primary_10_1007_s00033_023_02177_5
crossref_primary_10_1002_mma_9007
crossref_primary_10_3934_era_2021066
crossref_primary_10_1080_00036811_2023_2253830
crossref_primary_10_3934_mbe_2022398
crossref_primary_10_1155_2021_9924504
crossref_primary_10_11650_tjm_220107
crossref_primary_10_3934_era_2020016
crossref_primary_10_3934_era_2020015
crossref_primary_10_1134_S0965542523060192
crossref_primary_10_3233_ASY_211731
crossref_primary_10_1016_j_nonrwa_2022_103587
crossref_primary_10_1016_j_apnum_2023_01_010
crossref_primary_10_1007_s13324_023_00782_1
crossref_primary_10_1016_j_na_2020_111866
crossref_primary_10_1016_j_na_2020_111864
crossref_primary_10_3934_dcdss_2021134
crossref_primary_10_3934_dcdss_2021135
crossref_primary_10_1186_s13661_022_01633_x
crossref_primary_10_1016_j_na_2019_111664
crossref_primary_10_3934_era_2021052
crossref_primary_10_3934_era_2020006
crossref_primary_10_3934_cam_2025011
crossref_primary_10_3934_era_2020088
crossref_primary_10_1007_s10883_020_09522_1
crossref_primary_10_3934_era_2020003
crossref_primary_10_3934_era_2020002
crossref_primary_10_3934_era_2021057
Cites_doi 10.1006/jdeq.1998.3477
10.1007/BF00250942
10.1143/PTPS.190.229
10.1007/BF02761595
10.4208/jpde.v28.n3.5
10.1090/gsm/014
10.2307/2373688
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/anona-2020-0016
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-950X
EndPage 632
ExternalDocumentID oai_doaj_org_article_3e6f9494a9e8453f902d02d0471cc17f
10_1515_anona_2020_0016
10_1515_anona_2020_001691613
GroupedDBID 0R~
0~D
4.4
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
AAWFC
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACMKP
ACXLN
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AEKEB
AENEX
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AIKXB
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BAKPI
BBCWN
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
J9A
M48
O9-
OK1
QD8
SA.
SLJYH
AAYXX
CITATION
ID FETCH-LOGICAL-c401t-bac645ee556e2b0673e38cb7a5b39f3c6fb6585e29a8458433e3ec701607ce073
IEDL.DBID DOA
ISSN 2191-950X
IngestDate Wed Aug 27 01:06:31 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
Tue Jul 01 00:37:48 EDT 2025
Thu Jul 10 10:37:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 Public License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-bac645ee556e2b0673e38cb7a5b39f3c6fb6585e29a8458433e3ec701607ce073
OpenAccessLink https://doaj.org/article/3e6f9494a9e8453f902d02d0471cc17f
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_3e6f9494a9e8453f902d02d0471cc17f
crossref_primary_10_1515_anona_2020_0016
crossref_citationtrail_10_1515_anona_2020_0016
walterdegruyter_journals_10_1515_anona_2020_001691613
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in nonlinear analysis
PublicationYear 2020
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2021020917371768664_j_anona-2020-0016_ref_005
2021020917371768664_j_anona-2020-0016_ref_016
2021020917371768664_j_anona-2020-0016_ref_006
2021020917371768664_j_anona-2020-0016_ref_017
2021020917371768664_j_anona-2020-0016_ref_003
2021020917371768664_j_anona-2020-0016_ref_014
2021020917371768664_j_anona-2020-0016_ref_004
2021020917371768664_j_anona-2020-0016_ref_015
2021020917371768664_j_anona-2020-0016_ref_001
2021020917371768664_j_anona-2020-0016_ref_012
2021020917371768664_j_anona-2020-0016_ref_002
2021020917371768664_j_anona-2020-0016_ref_013
2021020917371768664_j_anona-2020-0016_ref_010
2021020917371768664_j_anona-2020-0016_ref_011
2021020917371768664_j_anona-2020-0016_ref_020
2021020917371768664_j_anona-2020-0016_ref_009
2021020917371768664_j_anona-2020-0016_ref_007
2021020917371768664_j_anona-2020-0016_ref_018
2021020917371768664_j_anona-2020-0016_ref_008
2021020917371768664_j_anona-2020-0016_ref_019
References_xml – ident: 2021020917371768664_j_anona-2020-0016_ref_012
– ident: 2021020917371768664_j_anona-2020-0016_ref_009
– ident: 2021020917371768664_j_anona-2020-0016_ref_008
– ident: 2021020917371768664_j_anona-2020-0016_ref_007
– ident: 2021020917371768664_j_anona-2020-0016_ref_015
– ident: 2021020917371768664_j_anona-2020-0016_ref_013
– ident: 2021020917371768664_j_anona-2020-0016_ref_010
– ident: 2021020917371768664_j_anona-2020-0016_ref_011
– ident: 2021020917371768664_j_anona-2020-0016_ref_017
– ident: 2021020917371768664_j_anona-2020-0016_ref_018
– ident: 2021020917371768664_j_anona-2020-0016_ref_005
  doi: 10.1006/jdeq.1998.3477
– ident: 2021020917371768664_j_anona-2020-0016_ref_001
– ident: 2021020917371768664_j_anona-2020-0016_ref_004
– ident: 2021020917371768664_j_anona-2020-0016_ref_002
  doi: 10.1007/BF00250942
– ident: 2021020917371768664_j_anona-2020-0016_ref_014
  doi: 10.1143/PTPS.190.229
– ident: 2021020917371768664_j_anona-2020-0016_ref_006
– ident: 2021020917371768664_j_anona-2020-0016_ref_003
  doi: 10.1007/BF02761595
– ident: 2021020917371768664_j_anona-2020-0016_ref_016
  doi: 10.4208/jpde.v28.n3.5
– ident: 2021020917371768664_j_anona-2020-0016_ref_020
  doi: 10.1090/gsm/014
– ident: 2021020917371768664_j_anona-2020-0016_ref_019
  doi: 10.2307/2373688
SSID ssj0000851770
Score 2.5216367
Snippet The main goal of this work is to investigate the initial boundary value problem of nonlinear wave equation with weak and strong damping terms and logarithmic...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 613
SubjectTerms energy decay
global solution
infinite time blow up
logarithmic nonlinearity
Wave equation
weak and strong damping terms
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaeikHBH2ILQ_5wIFLtmT9SHxACBAIIdETK-0tsp3xFtgX2VDg3zPjZGlBcKuUU2zL9ow9L9vfMLZTklbwkCcqMyaRoG1iHAXyS5tbIYxOA4UGLn7ps748H6jB33RALQHnb7p2lE-qX426D7ePB7jh92P2nlT9tOgoW2R3j95Ip_oj-4QDyGiXXrS2_nVzISvNsr0W3ueNdi80UwTwX2Yr9_HQuoRhdfdYLw5Jo-45XWUrrdHIDxsur7EPMPnClv-BEvzKpg14P6dYXDKbzqEkGcangU8aMAxb8Xv7BzjcNuDenCKwWN3ecDsp-ZxC4kNe2jE9oOIksOexAGUjutP17_GV502kPxZ-Y_3Tk8vjs6RNppB4dKHqxFmvpQJQSkPPUXoaELl3mVVOmCC8Dg6NEQU9Y3M6OxVYDj6LAHQeUBB8Z0s4YFhnHC3C3KMnUsrgZGa9C2CU9J4e5aYilx3WXRCy8C3SOCW8GBXkcSDli0j5gihPd-p0h-0-N5g1IBvvVz0izjxXI3Ts-GNaDYt2sxUCdDDSSGsA5yKC2euV9KEi9j7NQoepV3wtFgvvvX7Rik7Fj__R-Qb73Cw5CuNssqW6uoMtNGxqtx0X7BOUfPhe
  priority: 102
  providerName: Scholars Portal
Title Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term
URI https://www.degruyter.com/doi/10.1515/anona-2020-0016
https://doaj.org/article/3e6f9494a9e8453f902d02d0471cc17f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xf5ODBS9VukrY5qiiLoCcX9laSdOJzH-52Ff-9M0ldFkG8CKWHTkrCZDKvJN8wdlSRVXBQJCrXOpGQmURbSuRXpjBC6Cz1lBq4vcu6PXnTV_2FUl90JizCA0fGnQrIvJZaGg2FVMLrs05FDypV59Lck_ZFm7cQTD3H01dpnp81WD5os08NRtMGZaJDF6mpuvmCGQpo_Sts9SPsUFfwMJl91t87osHQXK-x1cZD5OdxZOtsCYYbbGUBN3CTjSJSP6fEWzIeTaEihcVHng8j8oWZ8A_zDhzeIpI3p3QrNjcv3AwrPqX89wOvzIBuS3HSztNAQEWIsXP9OHhyPKb1A3GL9a6v7i-7SVM5IXEYL9WJNS6TCkCpDDqWatGAKJzNjbJCe-Eyb9HzUNDRpqCNUoF0cHlAm3OAq36btXDAsMM4un-Fw7Cjkt7K3DjrQSvpHN3ATUUh2-zkm5Gla2DFqbrFa0nhBXK-DJwvifN0gC5rs-P5D-OIqPF70wuamXkzgsIOH1BAykZAyr8EpM3Uj3ktm2U6_a1fdJlTsfsfne-x5ShylLPZZ616MoMD9GJqexgEFt-3svgCqXPxHg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dByQPSlbh_Uhx56SZesH4mPFBW2LdBDQeIWOfZ4QWU3dDdb1H_fmSREtIJLpZxiW3FmbM_MZ89ngHeBrYLHPNGZtYlC4xJbMpAfXO6ktCaNDA0cHZvJqfpyps_WYO8mF4aPVQacLla_65YhdRQqv2KgrOcaIAs8chQbO9LwmNOiUzM6r2eXD2DdkPufD2B9d3Lw_VsPtbBXkWU7HbHPHc3_skkNdf8GbF4329V9X25Znf0t2OzcRbHb6vcxrOH8CWzcIhF8ClVL2y8YhUuuqiUGXr1EFcW8pcFwC3HtfqHAny2tt2Dslaq7H8LNg1gyGD4Vwc04dUrwUr1sCmhVpEC6Pp9deNFi_E3hMzjd_3SyN0m6axQST8FTnZTOG6URtTY4LvliGpS5LzOnS2mj9CaW5IZoHFuX866ppHL0WUM955GWgOcwoA7jCxDkC-aeYpCgYqky58uIVivvOR03lbkawocbQRa-4xjnqy4uC441SPJFI_mCJc-n6cwQ3vcNrlp6jfurfmTN9NWYF7t5US2mRTfNCokmWmWVs0j_IqPdGQd-yAR7n2ZxCPofvRbdnF3e913yn1P58j_bvYWHk5Ojw-Lw8_HXV_CoHXGM37yGQb1Y4RvyaOpyuxuxfwDSrvTf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVkL0UPFUl0LxgQOXsM3aceJjgS7LqyBBpd4iP8YLgm6W3Wyr_ntmkjRaEL0g5RTbijNje2Y-ez4DPAtsFTwWSZYbkyjUNjGOgfxgCyul0WlkaODjsZ6eqHen2elGLgwfqww4W64v65YhdRQqv2agrOcaIAs8shQbW9LwmNOiUz1ahHgTtrQ2Ug1g63D65sunHmlhpyLPDzpen3-0_sMkNcz927Bz0exW913ZMDqTO7DTeYvisFXvXbiB83uwvcEheB-qlrVfMAiXLKoVBl68RBXFvGXBsEtxYc9R4K-W1Vsw9ErV7Q9h50GsGAufiWDPOHNK8Eq9agpoUaQ4uv529t2LFuJvCh_AyeTo66tp0t2ikHiKnerEWa9VhphlGseO76VBWXiX28xJE6XX0ZEXkuHY2II3TSWVo88b5jmPtAI8hAF1GHdBkCtYeApBgopO5da7iCZT3nM2bioLNYQXV4IsfUcxzjdd_Cw51CDJl43kS5Y8H6bTQ3jeN1i07BrXV33JmumrMS1286JazspulpUSdTTKKGuQ_kVGczAO_JAF9j7N4xCyv_RadlN2dd13yX1O5aP_bPcUbn1-PSk_vD1-vwe32wHH6M1jGNTLNT4hf6Z2-92A_Q1aMfQF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+well-posedness+of+nonlinear+wave+equation+with+weak+and+strong+damping+terms+and+logarithmic+source+term&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Lian+Wei&rft.au=Xu+Runzhang&rft.date=2020-01-01&rft.pub=De+Gruyter&rft.eissn=2191-950X&rft.volume=9&rft.issue=1&rft.spage=613&rft.epage=632&rft_id=info:doi/10.1515%2Fanona-2020-0016&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3e6f9494a9e8453f902d02d0471cc17f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-950X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-950X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-950X&client=summon