Piezo1:the potential new therapeutic target for fibrotic diseases

Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavio...

Full description

Saved in:
Bibliographic Details
Published inProgress in biophysics and molecular biology Vol. 184; pp. 42 - 49
Main Authors Liu, Xin, Niu, Weipin, Zhao, Shuqing, Zhang, Wenjuan, Zhao, Ying, Li, Jing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Online AccessGet full text
ISSN0079-6107
1873-1732
1873-1732
DOI10.1016/j.pbiomolbio.2023.09.001

Cover

Loading…
Abstract Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.
AbstractList Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.
Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.
Author Li, Jing
Liu, Xin
Zhang, Wenjuan
Niu, Weipin
Zhao, Shuqing
Zhao, Ying
Author_xml – sequence: 1
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
– sequence: 2
  givenname: Weipin
  surname: Niu
  fullname: Niu, Weipin
  organization: The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
– sequence: 3
  givenname: Shuqing
  surname: Zhao
  fullname: Zhao, Shuqing
  organization: The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
– sequence: 4
  givenname: Wenjuan
  surname: Zhang
  fullname: Zhang, Wenjuan
  organization: Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
– sequence: 5
  givenname: Ying
  surname: Zhao
  fullname: Zhao, Ying
  email: sdwfclyn@163.com
  organization: Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
– sequence: 6
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  email: bmsjingl@leeds.ac.uk
  organization: Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
BookMark eNqNkM1KxDAUhYOM4Dj6Dl26ac1PmzYbQQf_YEAXug5pcqMZOk1NMoo-is_iO_kKdhhBcKObe-Fwzrf49tGk9z0glBFcEEz48bIYWudXvhtvQTFlBRYFxmQHTUlTs5zUjE7QFONa5Jzgeg_tx7jEGFNS8yma3zp48-Tz4z09Qjb4BH1yqst6eMnGJKgB1snpLKnwACmzPmTWtcFvMuMiqAjxAO1a1UU4_P4zdH9xfje_yhc3l9fz00WuS0xS3talNkBBN9oowZktGVOiKmveVGUFRmhlgVprWNuIkpiKMyJUCQxEoy3lbIaOttwh-Kc1xCRXLmroOtWDX0dJG85ZLThuxurJtqqDjzGAldollZzvU1CukwTLjT25lD_25MaexEKO9kZA8wswBLdS4fU_07PtFEYXzw6CjNpBr8G4ADpJ493fkC8P85VW
CitedBy_id crossref_primary_10_1007_s13105_025_01070_1
crossref_primary_10_1016_j_yexcr_2024_114218
crossref_primary_10_1016_j_rechem_2025_102058
crossref_primary_10_1111_apha_14152
Cites_doi 10.1186/1756-6606-6-57
10.1016/j.tcb.2021.10.002
10.1038/s41419-021-03481-6
10.1152/ajpcell.00346.2018
10.1056/NEJMoa1602812
10.1111/bph.16050
10.3389/fmolb.2021.725275
10.1038/s41598-018-32572-2
10.3390/cancers12071780
10.1053/j.gastro.2019.03.013
10.1038/s41467-018-03570-9
10.1016/j.tips.2019.10.002
10.1016/j.phrs.2020.105316
10.3389/fphys.2020.569322
10.1146/annurev-physiol-060721-100935
10.1016/j.celrep.2015.09.072
10.1126/science.1193270
10.1038/s41467-019-12501-1
10.1016/j.celrep.2022.110342
10.3390/cells10050994
10.1111/febs.14711
10.1038/nature20793
10.1113/JP274996
10.1074/jbc.RA119.009167
10.1096/fj.202000613RRR
10.7554/eLife.12088
10.1016/j.jpainsymman.2019.12.364
10.1161/HYPERTENSIONAHA.121.18750
10.1113/JP281135
10.1073/pnas.1910650117
10.12688/f1000research.18293.1
10.1186/s12931-019-1083-1
10.1172/JCI134111
10.3389/fcell.2021.741060
10.1002/dvdy.401
10.3390/ijms21155203
10.1038/s41581-019-0234-4
10.1002/path.2277
10.1038/s41467-021-23482-5
10.1172/jci.insight.94979
10.1007/978-981-13-8871-2_9
10.1111/bph.14188
10.3390/cells10071745
10.1038/s41575-018-0020-y
10.1038/s41467-019-14146-6
10.1172/jci.insight.152330
10.1021/bi200770q
10.1016/j.neulet.2014.05.055
10.3390/cells10071716
10.1038/srep25923
10.1016/j.mam.2018.06.003
10.1073/pnas.1414298111
10.1038/nature25453
10.1016/j.bbamcr.2021.118950
10.3390/cells10030663
10.1016/bs.ctm.2016.09.001
10.3390/cells11071199
10.1186/s10020-020-00223-w
10.1007/978-981-13-8871-2_16
10.3389/fphys.2020.00089
10.1038/s41586-019-1485-8
10.1038/s41584-019-0322-7
10.1038/s41467-021-21178-4
10.1113/JP272718
10.1038/nrneph.2011.149
10.1021/acs.jmedchem.2c00085
10.1038/ncomms10366
10.1016/j.cell.2014.02.026
10.1038/nn.4449
10.1038/s41467-021-23683-y
10.1172/JCI139519
10.1172/jci.insight.158288
10.1172/JCI93561
10.1016/bs.ctm.2016.11.003
10.1038/s41467-018-04194-9
10.1038/nature25743
10.1093/cvr/cvaa324
10.1161/ATVBAHA.119.313348
10.1146/annurev-physiol-022516-034227
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.pbiomolbio.2023.09.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1873-1732
EndPage 49
ExternalDocumentID 10_1016_j_pbiomolbio_2023_09_001
S0079610723000822
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
3O-
4.4
457
4G.
53G
5RE
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABDPE
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABTAH
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HX~
HZ~
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SPD
SSH
SSU
SSZ
T5K
UNMZH
UQL
VQP
WUQ
ZGI
ZY4
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7X8
ID FETCH-LOGICAL-c401t-b74cde2ec8cda963f433a954768545ed9cafe2ffd3b8941d56319a4e3e98cf263
IEDL.DBID .~1
ISSN 0079-6107
1873-1732
IngestDate Fri Jul 11 03:50:33 EDT 2025
Tue Jul 01 00:42:42 EDT 2025
Thu Apr 24 23:07:01 EDT 2025
Sun Apr 06 06:56:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-b74cde2ec8cda963f433a954768545ed9cafe2ffd3b8941d56319a4e3e98cf263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0079610723000822
PQID 2866379608
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2866379608
crossref_citationtrail_10_1016_j_pbiomolbio_2023_09_001
crossref_primary_10_1016_j_pbiomolbio_2023_09_001
elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2023_09_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Progress in biophysics and molecular biology
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ploeg (bib51) 2021; 10
Bartoli (bib4) 2022; 11
Florez-Paz (bib20) 2016; 6
Kuntze (bib39) 2020; 11
Retailleau (bib53) 2015; 13
Shah, Patel, Shah (bib57) 2022; 251
Jiang (bib35) 2023; 180
Yang, Plotnikov (bib75) 2021; 10
Blythe (bib7) 2019; 294
Ikeda, Gu (bib30) 2014; 583
Diem (bib14) 2020; 34
Shetty, Lalor, Adams (bib59) 2018; 15
Atcha (bib2) 2021; 12
Beech, Kalli (bib5) 2019; 39
Solis (bib60) 2019; 573
Yang (bib74) 2020; 26
Jiang (bib34) 2021; 12
Ma, Meng (bib47) 2019; 1165
Huang (bib27) 2020; 21
Wang (bib69) 2020; 11
Hilscher (bib26) 2019; 157
Karppinen (bib37) 2019; 8
Poole (bib52) 2022; 84
Rozenberg (bib55) 2020; 59
He (bib24) 2021; 12
Zhao (bib78) 2018; 554
Zhao (bib79) 2019; 286
Sheng, Zhuang (bib58) 2020; 11
Wang (bib68) 2018; 9
Coste (bib10) 2010; 330
Liang (bib43) 2019; 20
Maneshi (bib48) 2018; 8
Kang (bib36) 2019; 316
Tschumperlin (bib65) 2018; 128
Bae, Sachs, Gottlieb (bib3) 2011; 50
He (bib25) 2022; 79
Nonomura (bib50) 2017; 541
Romac (bib54) 2018; 9
Emig (bib17) 2021; 10
Wang (bib70) 2022; 38
Zhao (bib77) 2019; 1165
Cox, Bavi, Martinac (bib12) 2017; 79
Long (bib46) 2022; 32
Wu (bib72) 2017; 20
Imamura (bib32) 2018; 3
Lewis, Grandl (bib42) 2015; 4
Saotome (bib56) 2018; 554
Swain (bib61) 2020; 130
Katzen, Beers (bib38) 2020; 130
Kurose (bib40) 2021; 10
Swain (bib62) 2022; 7
Van den Eynde, Vriens, De Clercq (bib66) 2021; 1868
Evans (bib18) 2018; 175
Fu (bib22) 2021; 9
Zhao (bib80) 2022; 7
Chesler (bib9) 2016; 375
Weiskirchen, Weiskirchen, Tacke (bib71) 2019; 65
Humphreys (bib29) 2018; 80
Tang, Yiu (bib63) 2020; 16
Zhang (bib76) 2021; 1876
Distler (bib15) 2019; 15
Frangogiannis (bib21) 2021; 117
Tang (bib64) 2022; 65
Ferdek (bib19) 2022; 600
Liu (bib45) 2020; 117
Beurg, Fettiplace (bib6) 2017; 595
Ikeda (bib31) 2014; 157
Lee (bib41) 2014; 111
Alcaino, Farrugia, Beyder (bib1) 2017; 79
Botello-Smith (bib8) 2019; 10
Cox (bib11) 2016; 7
De Felice, Alaimo (bib13) 2020; 12
Wang (bib67) 2017; 595
Miao (bib49) 2021; 163
Douguet (bib16) 2019; 40
Geng (bib23) 2021; 12
Wynn (bib73) 2008; 214
Jia (bib33) 2013; 6
Liu (bib44) 2011; 7
Huang (bib28) 2021; 8
Liang (10.1016/j.pbiomolbio.2023.09.001_bib43) 2019; 20
Huang (10.1016/j.pbiomolbio.2023.09.001_bib28) 2021; 8
Karppinen (10.1016/j.pbiomolbio.2023.09.001_bib37) 2019; 8
Poole (10.1016/j.pbiomolbio.2023.09.001_bib52) 2022; 84
Maneshi (10.1016/j.pbiomolbio.2023.09.001_bib48) 2018; 8
Cox (10.1016/j.pbiomolbio.2023.09.001_bib12) 2017; 79
Jia (10.1016/j.pbiomolbio.2023.09.001_bib33) 2013; 6
Emig (10.1016/j.pbiomolbio.2023.09.001_bib17) 2021; 10
Beech (10.1016/j.pbiomolbio.2023.09.001_bib5) 2019; 39
Swain (10.1016/j.pbiomolbio.2023.09.001_bib61) 2020; 130
Florez-Paz (10.1016/j.pbiomolbio.2023.09.001_bib20) 2016; 6
Jiang (10.1016/j.pbiomolbio.2023.09.001_bib34) 2021; 12
Nonomura (10.1016/j.pbiomolbio.2023.09.001_bib50) 2017; 541
Ferdek (10.1016/j.pbiomolbio.2023.09.001_bib19) 2022; 600
Tang (10.1016/j.pbiomolbio.2023.09.001_bib64) 2022; 65
Rozenberg (10.1016/j.pbiomolbio.2023.09.001_bib55) 2020; 59
Solis (10.1016/j.pbiomolbio.2023.09.001_bib60) 2019; 573
Coste (10.1016/j.pbiomolbio.2023.09.001_bib10) 2010; 330
Ploeg (10.1016/j.pbiomolbio.2023.09.001_bib51) 2021; 10
Fu (10.1016/j.pbiomolbio.2023.09.001_bib22) 2021; 9
Imamura (10.1016/j.pbiomolbio.2023.09.001_bib32) 2018; 3
Miao (10.1016/j.pbiomolbio.2023.09.001_bib49) 2021; 163
Kurose (10.1016/j.pbiomolbio.2023.09.001_bib40) 2021; 10
Wynn (10.1016/j.pbiomolbio.2023.09.001_bib73) 2008; 214
Liu (10.1016/j.pbiomolbio.2023.09.001_bib44) 2011; 7
Shah (10.1016/j.pbiomolbio.2023.09.001_bib57) 2022; 251
Jiang (10.1016/j.pbiomolbio.2023.09.001_bib35) 2023; 180
Lewis (10.1016/j.pbiomolbio.2023.09.001_bib42) 2015; 4
Atcha (10.1016/j.pbiomolbio.2023.09.001_bib2) 2021; 12
Long (10.1016/j.pbiomolbio.2023.09.001_bib46) 2022; 32
Huang (10.1016/j.pbiomolbio.2023.09.001_bib27) 2020; 21
Yang (10.1016/j.pbiomolbio.2023.09.001_bib74) 2020; 26
Sheng (10.1016/j.pbiomolbio.2023.09.001_bib58) 2020; 11
Hilscher (10.1016/j.pbiomolbio.2023.09.001_bib26) 2019; 157
Tang (10.1016/j.pbiomolbio.2023.09.001_bib63) 2020; 16
Zhao (10.1016/j.pbiomolbio.2023.09.001_bib80) 2022; 7
Cox (10.1016/j.pbiomolbio.2023.09.001_bib11) 2016; 7
Shetty (10.1016/j.pbiomolbio.2023.09.001_bib59) 2018; 15
Wang (10.1016/j.pbiomolbio.2023.09.001_bib69) 2020; 11
Alcaino (10.1016/j.pbiomolbio.2023.09.001_bib1) 2017; 79
Yang (10.1016/j.pbiomolbio.2023.09.001_bib75) 2021; 10
Wang (10.1016/j.pbiomolbio.2023.09.001_bib68) 2018; 9
Ikeda (10.1016/j.pbiomolbio.2023.09.001_bib31) 2014; 157
Lee (10.1016/j.pbiomolbio.2023.09.001_bib41) 2014; 111
Chesler (10.1016/j.pbiomolbio.2023.09.001_bib9) 2016; 375
Geng (10.1016/j.pbiomolbio.2023.09.001_bib23) 2021; 12
Kuntze (10.1016/j.pbiomolbio.2023.09.001_bib39) 2020; 11
Beurg (10.1016/j.pbiomolbio.2023.09.001_bib6) 2017; 595
Botello-Smith (10.1016/j.pbiomolbio.2023.09.001_bib8) 2019; 10
De Felice (10.1016/j.pbiomolbio.2023.09.001_bib13) 2020; 12
Frangogiannis (10.1016/j.pbiomolbio.2023.09.001_bib21) 2021; 117
Diem (10.1016/j.pbiomolbio.2023.09.001_bib14) 2020; 34
Wu (10.1016/j.pbiomolbio.2023.09.001_bib72) 2017; 20
Saotome (10.1016/j.pbiomolbio.2023.09.001_bib56) 2018; 554
Douguet (10.1016/j.pbiomolbio.2023.09.001_bib16) 2019; 40
Wang (10.1016/j.pbiomolbio.2023.09.001_bib70) 2022; 38
Bae (10.1016/j.pbiomolbio.2023.09.001_bib3) 2011; 50
Kang (10.1016/j.pbiomolbio.2023.09.001_bib36) 2019; 316
Romac (10.1016/j.pbiomolbio.2023.09.001_bib54) 2018; 9
Weiskirchen (10.1016/j.pbiomolbio.2023.09.001_bib71) 2019; 65
Swain (10.1016/j.pbiomolbio.2023.09.001_bib62) 2022; 7
Humphreys (10.1016/j.pbiomolbio.2023.09.001_bib29) 2018; 80
Retailleau (10.1016/j.pbiomolbio.2023.09.001_bib53) 2015; 13
Katzen (10.1016/j.pbiomolbio.2023.09.001_bib38) 2020; 130
Liu (10.1016/j.pbiomolbio.2023.09.001_bib45) 2020; 117
Blythe (10.1016/j.pbiomolbio.2023.09.001_bib7) 2019; 294
Ikeda (10.1016/j.pbiomolbio.2023.09.001_bib30) 2014; 583
Tschumperlin (10.1016/j.pbiomolbio.2023.09.001_bib65) 2018; 128
Evans (10.1016/j.pbiomolbio.2023.09.001_bib18) 2018; 175
He (10.1016/j.pbiomolbio.2023.09.001_bib25) 2022; 79
Van den Eynde (10.1016/j.pbiomolbio.2023.09.001_bib66) 2021; 1868
Ma (10.1016/j.pbiomolbio.2023.09.001_bib47) 2019; 1165
Bartoli (10.1016/j.pbiomolbio.2023.09.001_bib4) 2022; 11
Zhao (10.1016/j.pbiomolbio.2023.09.001_bib77) 2019; 1165
Wang (10.1016/j.pbiomolbio.2023.09.001_bib67) 2017; 595
Zhang (10.1016/j.pbiomolbio.2023.09.001_bib76) 2021; 1876
He (10.1016/j.pbiomolbio.2023.09.001_bib24) 2021; 12
Distler (10.1016/j.pbiomolbio.2023.09.001_bib15) 2019; 15
Zhao (10.1016/j.pbiomolbio.2023.09.001_bib78) 2018; 554
Zhao (10.1016/j.pbiomolbio.2023.09.001_bib79) 2019; 286
References_xml – volume: 554
  start-page: 481
  year: 2018
  end-page: 486
  ident: bib56
  article-title: Structure of the mechanically activated ion channel Piezo1
  publication-title: Nature
– volume: 15
  start-page: 705
  year: 2019
  end-page: 730
  ident: bib15
  article-title: Shared and distinct mechanisms of fibrosis
  publication-title: Nat. Rev. Rheumatol.
– volume: 59
  start-page: 1362
  year: 2020
  end-page: 1378
  ident: bib55
  article-title: Idiopathic pulmonary fibrosis: a review of disease, pharmacological, and nonpharmacological strategies with a focus on symptoms, function, and health-related quality of life
  publication-title: J. Pain Symptom Manag.
– volume: 294
  start-page: 17395
  year: 2019
  end-page: 17408
  ident: bib7
  article-title: Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion
  publication-title: J. Biol. Chem.
– volume: 1876
  year: 2021
  ident: bib76
  article-title: Matrix stiffness and its influence on pancreatic diseases
  publication-title: Biochim. Biophys. Acta Rev. Canc
– volume: 286
  start-page: 2461
  year: 2019
  end-page: 2470
  ident: bib79
  article-title: The mechanosensitive Piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism
  publication-title: FEBS J.
– volume: 1165
  start-page: 347
  year: 2019
  end-page: 364
  ident: bib47
  article-title: TGF-beta/Smad and renal fibrosis
  publication-title: Adv. Exp. Med. Biol.
– volume: 8
  year: 2018
  ident: bib48
  article-title: Enantiomeric Abeta peptides inhibit the fluid shear stress response of Piezo1
  publication-title: Sci. Rep.
– volume: 7
  year: 2022
  ident: bib62
  article-title: Piezo1-mediated stellate cell activation causes pressure-induced pancreatic fibrosis in mice
  publication-title: JCI Insight
– volume: 554
  start-page: 487
  year: 2018
  end-page: 492
  ident: bib78
  article-title: Structure and mechanogating mechanism of the Piezo1 channel
  publication-title: Nature
– volume: 7
  year: 2022
  ident: bib80
  article-title: Mechanosensitive Piezo1 channels mediate renal fibrosis
  publication-title: JCI Insight
– volume: 157
  start-page: 193
  year: 2019
  end-page: 209 e9
  ident: bib26
  article-title: Mechanical stretch increases expression of CXCL1 in in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension
  publication-title: Gastroenterology
– volume: 583
  start-page: 210
  year: 2014
  end-page: 215
  ident: bib30
  article-title: Piezo2 channel conductance and localization domains in Merkel cells of rat whisker hair follicles
  publication-title: Neurosci. Lett.
– volume: 251
  start-page: 276
  year: 2022
  end-page: 286
  ident: bib57
  article-title: Emerging role of Piezo ion channels in cardiovascular development
  publication-title: Dev. Dynam.
– volume: 32
  start-page: 70
  year: 2022
  end-page: 90
  ident: bib46
  article-title: Mechanical communication in fibrosis progression
  publication-title: Trends Cell Biol.
– volume: 330
  start-page: 55
  year: 2010
  end-page: 60
  ident: bib10
  article-title: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
  publication-title: Science
– volume: 79
  start-page: 59
  year: 2017
  end-page: 96
  ident: bib12
  article-title: Origin of the force: the Force-From-Lipids principle applied to Piezo channels
  publication-title: Curr. Top. Membr.
– volume: 6
  start-page: 57
  year: 2013
  ident: bib33
  article-title: GTP-dependent run-up of Piezo2-type mechanically activated currents in rat dorsal root ganglion neurons
  publication-title: Mol. Brain
– volume: 9
  start-page: 1300
  year: 2018
  ident: bib68
  article-title: A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel
  publication-title: Nat. Commun.
– volume: 20
  start-page: 24
  year: 2017
  end-page: 33
  ident: bib72
  article-title: Mechanosensory hair cells express two molecularly distinct mechanotransduction channels
  publication-title: Nat. Neurosci.
– volume: 38
  year: 2022
  ident: bib70
  article-title: Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-beta-catenin mechanotransduction complex
  publication-title: Cell Rep.
– volume: 79
  start-page: 219
  year: 2017
  end-page: 244
  ident: bib1
  article-title: Mechanosensitive Piezo channels in the gastrointestinal tract
  publication-title: Curr. Top. Membr.
– volume: 111
  start-page: E5114
  year: 2014
  end-page: E5122
  ident: bib41
  article-title: Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 11
  start-page: 282
  year: 2020
  ident: bib69
  article-title: Mechanical sensing protein Piezo1 regulates bone homeostasis via osteoblast-osteoclast crosstalk
  publication-title: Nat. Commun.
– volume: 573
  start-page: 69
  year: 2019
  end-page: 74
  ident: bib60
  article-title: Mechanosensation of cyclical force by Piezo1 is essential for innate immunity
  publication-title: Nature
– volume: 8
  year: 2019
  ident: bib37
  article-title: Toward understanding scarless skin wound healing and pathological scarring
  publication-title: F1000Res
– volume: 11
  year: 2022
  ident: bib4
  article-title: Global Piezo1 gain-of-function mutation causes cardiac hypertrophy and fibrosis in mice
  publication-title: Cells
– volume: 20
  start-page: 118
  year: 2019
  ident: bib43
  article-title: Piezo1 induced apoptosis of type II pneumocytes during ARDS
  publication-title: Respir. Res.
– volume: 12
  start-page: 3519
  year: 2021
  ident: bib23
  article-title: TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection
  publication-title: Nat. Commun.
– volume: 7
  start-page: 684
  year: 2011
  end-page: 696
  ident: bib44
  article-title: Cellular and molecular mechanisms of renal fibrosis
  publication-title: Nat. Rev. Nephrol.
– volume: 10
  year: 2021
  ident: bib75
  article-title: Mechanosensitive regulation of fibrosis
  publication-title: Cells
– volume: 50
  start-page: 6295
  year: 2011
  end-page: 6300
  ident: bib3
  article-title: The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4
  publication-title: Biochemistry
– volume: 10
  start-page: 4503
  year: 2019
  ident: bib8
  article-title: A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1
  publication-title: Nat. Commun.
– volume: 180
  start-page: 1862
  year: 2023
  end-page: 1877
  ident: bib35
  article-title: Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells
  publication-title: Br. J. Pharmacol.
– volume: 15
  start-page: 555
  year: 2018
  end-page: 567
  ident: bib59
  article-title: Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 595
  start-page: 7039
  year: 2017
  end-page: 7048
  ident: bib6
  article-title: Piezo2 as the anomalous mechanotransducer channel in auditory hair cells
  publication-title: J. Physiol.
– volume: 163
  year: 2021
  ident: bib49
  article-title: Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues
  publication-title: Pharmacol. Res.
– volume: 157
  start-page: 664
  year: 2014
  end-page: 675
  ident: bib31
  article-title: Merkel cells transduce and encode tactile stimuli to drive Abeta-afferent impulses
  publication-title: Cell
– volume: 600
  start-page: 2579
  year: 2022
  end-page: 2612
  ident: bib19
  article-title: When healing turns into killing - the pathophysiology of pancreatic and hepatic fibrosis
  publication-title: J. Physiol.
– volume: 80
  start-page: 309
  year: 2018
  end-page: 326
  ident: bib29
  article-title: Mechanisms of renal fibrosis
  publication-title: Annu. Rev. Physiol.
– volume: 12
  start-page: 226
  year: 2021
  ident: bib24
  article-title: Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1
  publication-title: Cell Death Dis.
– volume: 40
  start-page: 956
  year: 2019
  end-page: 970
  ident: bib16
  article-title: Piezo ion channels in cardiovascular mechanobiology
  publication-title: Trends Pharmacol. Sci.
– volume: 9
  start-page: 1715
  year: 2018
  ident: bib54
  article-title: Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis
  publication-title: Nat. Commun.
– volume: 130
  start-page: 2527
  year: 2020
  end-page: 2541
  ident: bib61
  article-title: TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation
  publication-title: J. Clin. Invest.
– volume: 65
  start-page: 6441
  year: 2022
  end-page: 6453
  ident: bib64
  article-title: Piezo-type mechanosensitive ion channel component 1 (Piezo1): a promising therapeutic target and its modulators
  publication-title: J. Med. Chem.
– volume: 65
  start-page: 2
  year: 2019
  end-page: 15
  ident: bib71
  article-title: Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications
  publication-title: Mol. Aspect. Med.
– volume: 21
  year: 2020
  ident: bib27
  article-title: The roles of immune cells in the pathogenesis of fibrosis
  publication-title: Int. J. Mol. Sci.
– volume: 4
  year: 2015
  ident: bib42
  article-title: Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension
  publication-title: Elife
– volume: 10
  year: 2021
  ident: bib51
  article-title: Piezo1 mechanosensitive ion channel mediates stretch-induced Nppb expression in adult rat cardiac fibroblasts
  publication-title: Cells
– volume: 79
  start-page: 918
  year: 2022
  end-page: 931
  ident: bib25
  article-title: Myeloid Piezo1 deletion protects renal fibrosis by restraining macrophage infiltration and activation
  publication-title: Hypertension
– volume: 11
  year: 2020
  ident: bib58
  article-title: New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis
  publication-title: Front. Physiol.
– volume: 84
  start-page: 307
  year: 2022
  end-page: 329
  ident: bib52
  article-title: The diverse physiological functions of mechanically activated ion channels in mammals
  publication-title: Annu. Rev. Physiol.
– volume: 130
  start-page: 5088
  year: 2020
  end-page: 5099
  ident: bib38
  article-title: Contributions of alveolar epithelial cell quality control to pulmonary fibrosis
  publication-title: J. Clin. Invest.
– volume: 11
  start-page: 89
  year: 2020
  ident: bib39
  article-title: Protonation of Piezo1 impairs cell-matrix interactions of pancreatic stellate cells
  publication-title: Front. Physiol.
– volume: 12
  start-page: 3256
  year: 2021
  ident: bib2
  article-title: Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing
  publication-title: Nat. Commun.
– volume: 9
  year: 2021
  ident: bib22
  article-title: Targeting mechanosensitive Piezo1 alleviated renal fibrosis through p38MAPK-YAP pathway
  publication-title: Front. Cell Dev. Biol.
– volume: 1868
  year: 2021
  ident: bib66
  article-title: Transient receptor potential channel regulation by growth factors
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 10
  year: 2021
  ident: bib40
  article-title: Cardiac fibrosis and fibroblasts
  publication-title: Cells
– volume: 595
  start-page: 79
  year: 2017
  end-page: 91
  ident: bib67
  article-title: Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces
  publication-title: J. Physiol.
– volume: 214
  start-page: 199
  year: 2008
  end-page: 210
  ident: bib73
  article-title: Cellular and molecular mechanisms of fibrosis
  publication-title: J. Pathol.
– volume: 117
  start-page: 1450
  year: 2021
  end-page: 1488
  ident: bib21
  article-title: Cardiac fibrosis
  publication-title: Cardiovasc. Res.
– volume: 13
  start-page: 1161
  year: 2015
  end-page: 1171
  ident: bib53
  article-title: Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling
  publication-title: Cell Rep.
– volume: 3
  year: 2018
  ident: bib32
  article-title: RIPK3 promotes kidney fibrosis via AKT-dependent ATP citrate lyase
  publication-title: JCI Insight
– volume: 12
  start-page: 869
  year: 2021
  ident: bib34
  article-title: The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction
  publication-title: Nat. Commun.
– volume: 1165
  start-page: 165
  year: 2019
  end-page: 194
  ident: bib77
  article-title: Mesangial cells and renal fibrosis
  publication-title: Adv. Exp. Med. Biol.
– volume: 175
  start-page: 1744
  year: 2018
  end-page: 1759
  ident: bib18
  article-title: Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation
  publication-title: Br. J. Pharmacol.
– volume: 8
  year: 2021
  ident: bib28
  article-title: Mechanically activated calcium channel Piezo1 modulates radiation-induced epithelial-mesenchymal transition by forming a positive feedback with TGF-beta 1
  publication-title: Front. Mol. Biosci.
– volume: 316
  start-page: C92
  year: 2019
  end-page: C103
  ident: bib36
  article-title: Piezo1 mediates angiogenesis through activation of MT1-MMP signaling
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 128
  start-page: 74
  year: 2018
  end-page: 84
  ident: bib65
  article-title: Mechanosensing and fibrosis
  publication-title: J. Clin. Invest.
– volume: 26
  start-page: 95
  year: 2020
  ident: bib74
  article-title: Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis
  publication-title: Mol. Med.
– volume: 34
  start-page: 12785
  year: 2020
  end-page: 12804
  ident: bib14
  article-title: Mechanical stretch activates Piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells
  publication-title: Faseb. J.
– volume: 10
  year: 2021
  ident: bib17
  article-title: Piezo1 channels contribute to the regulation of human atrial fibroblast mechanical properties and matrix stiffness sensing
  publication-title: Cells
– volume: 16
  start-page: 206
  year: 2020
  end-page: 222
  ident: bib63
  article-title: Innate immunity in diabetic kidney disease
  publication-title: Nat. Rev. Nephrol.
– volume: 7
  year: 2016
  ident: bib11
  article-title: Removal of the mechanoprotective influence of the cytoskeleton reveals Piezo1 is gated by bilayer tension
  publication-title: Nat. Commun.
– volume: 541
  start-page: 176
  year: 2017
  end-page: 181
  ident: bib50
  article-title: Piezo2 senses airway stretch and mediates lung inflation-induced apnoea
  publication-title: Nature
– volume: 12
  year: 2020
  ident: bib13
  article-title: Mechanosensitive Piezo channels in cancer: focus on altered calcium signaling in cancer cells and in tumor progression
  publication-title: Cancers
– volume: 375
  start-page: 1355
  year: 2016
  end-page: 1364
  ident: bib9
  article-title: The role of Piezo2 in human mechanosensation
  publication-title: N. Engl. J. Med.
– volume: 6
  year: 2016
  ident: bib20
  article-title: A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons
  publication-title: Sci. Rep.
– volume: 117
  start-page: 10832
  year: 2020
  end-page: 10838
  ident: bib45
  article-title: Matrix-transmitted paratensile signaling enables myofibroblast-fibroblast cross talk in fibrosis expansion
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 39
  start-page: 2228
  year: 2019
  end-page: 2239
  ident: bib5
  article-title: Force sensing by Piezo channels in cardiovascular health and disease
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 6
  start-page: 57
  year: 2013
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib33
  article-title: GTP-dependent run-up of Piezo2-type mechanically activated currents in rat dorsal root ganglion neurons
  publication-title: Mol. Brain
  doi: 10.1186/1756-6606-6-57
– volume: 32
  start-page: 70
  issue: 1
  year: 2022
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib46
  article-title: Mechanical communication in fibrosis progression
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2021.10.002
– volume: 12
  start-page: 226
  issue: 3
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib24
  article-title: Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-021-03481-6
– volume: 316
  start-page: C92
  issue: 1
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib36
  article-title: Piezo1 mediates angiogenesis through activation of MT1-MMP signaling
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00346.2018
– volume: 375
  start-page: 1355
  issue: 14
  year: 2016
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib9
  article-title: The role of Piezo2 in human mechanosensation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1602812
– volume: 180
  start-page: 1862
  issue: 14
  year: 2023
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib35
  article-title: Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.16050
– volume: 8
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib28
  article-title: Mechanically activated calcium channel Piezo1 modulates radiation-induced epithelial-mesenchymal transition by forming a positive feedback with TGF-beta 1
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2021.725275
– volume: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib48
  article-title: Enantiomeric Abeta peptides inhibit the fluid shear stress response of Piezo1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32572-2
– volume: 12
  issue: 7
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib13
  article-title: Mechanosensitive Piezo channels in cancer: focus on altered calcium signaling in cancer cells and in tumor progression
  publication-title: Cancers
  doi: 10.3390/cancers12071780
– volume: 157
  start-page: 193
  issue: 1
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib26
  article-title: Mechanical stretch increases expression of CXCL1 in in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.03.013
– volume: 9
  start-page: 1300
  issue: 1
  year: 2018
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib68
  article-title: A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03570-9
– volume: 40
  start-page: 956
  issue: 12
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib16
  article-title: Piezo ion channels in cardiovascular mechanobiology
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2019.10.002
– volume: 163
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib49
  article-title: Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2020.105316
– volume: 11
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib58
  article-title: New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.569322
– volume: 84
  start-page: 307
  year: 2022
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib52
  article-title: The diverse physiological functions of mechanically activated ion channels in mammals
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-060721-100935
– volume: 13
  start-page: 1161
  issue: 6
  year: 2015
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib53
  article-title: Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.09.072
– volume: 330
  start-page: 55
  issue: 6000
  year: 2010
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib10
  article-title: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
  publication-title: Science
  doi: 10.1126/science.1193270
– volume: 10
  start-page: 4503
  issue: 1
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib8
  article-title: A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12501-1
– volume: 38
  issue: 6
  year: 2022
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib70
  article-title: Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-beta-catenin mechanotransduction complex
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110342
– volume: 10
  issue: 5
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib75
  article-title: Mechanosensitive regulation of fibrosis
  publication-title: Cells
  doi: 10.3390/cells10050994
– volume: 286
  start-page: 2461
  issue: 13
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib79
  article-title: The mechanosensitive Piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism
  publication-title: FEBS J.
  doi: 10.1111/febs.14711
– volume: 541
  start-page: 176
  issue: 7636
  year: 2017
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib50
  article-title: Piezo2 senses airway stretch and mediates lung inflation-induced apnoea
  publication-title: Nature
  doi: 10.1038/nature20793
– volume: 595
  start-page: 7039
  issue: 23
  year: 2017
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib6
  article-title: Piezo2 as the anomalous mechanotransducer channel in auditory hair cells
  publication-title: J. Physiol.
  doi: 10.1113/JP274996
– volume: 294
  start-page: 17395
  issue: 46
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib7
  article-title: Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.009167
– volume: 34
  start-page: 12785
  issue: 9
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib14
  article-title: Mechanical stretch activates Piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells
  publication-title: Faseb. J.
  doi: 10.1096/fj.202000613RRR
– volume: 4
  year: 2015
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib42
  article-title: Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension
  publication-title: Elife
  doi: 10.7554/eLife.12088
– volume: 59
  start-page: 1362
  issue: 6
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib55
  article-title: Idiopathic pulmonary fibrosis: a review of disease, pharmacological, and nonpharmacological strategies with a focus on symptoms, function, and health-related quality of life
  publication-title: J. Pain Symptom Manag.
  doi: 10.1016/j.jpainsymman.2019.12.364
– volume: 1876
  issue: 1
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib76
  article-title: Matrix stiffness and its influence on pancreatic diseases
  publication-title: Biochim. Biophys. Acta Rev. Canc
– volume: 79
  start-page: 918
  issue: 5
  year: 2022
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib25
  article-title: Myeloid Piezo1 deletion protects renal fibrosis by restraining macrophage infiltration and activation
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.121.18750
– volume: 600
  start-page: 2579
  issue: 11
  year: 2022
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib19
  article-title: When healing turns into killing - the pathophysiology of pancreatic and hepatic fibrosis
  publication-title: J. Physiol.
  doi: 10.1113/JP281135
– volume: 117
  start-page: 10832
  issue: 20
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib45
  article-title: Matrix-transmitted paratensile signaling enables myofibroblast-fibroblast cross talk in fibrosis expansion
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1910650117
– volume: 8
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib37
  article-title: Toward understanding scarless skin wound healing and pathological scarring
  publication-title: F1000Res
  doi: 10.12688/f1000research.18293.1
– volume: 20
  start-page: 118
  issue: 1
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib43
  article-title: Piezo1 induced apoptosis of type II pneumocytes during ARDS
  publication-title: Respir. Res.
  doi: 10.1186/s12931-019-1083-1
– volume: 130
  start-page: 2527
  issue: 5
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib61
  article-title: TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI134111
– volume: 9
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib22
  article-title: Targeting mechanosensitive Piezo1 alleviated renal fibrosis through p38MAPK-YAP pathway
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.741060
– volume: 251
  start-page: 276
  issue: 2
  year: 2022
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib57
  article-title: Emerging role of Piezo ion channels in cardiovascular development
  publication-title: Dev. Dynam.
  doi: 10.1002/dvdy.401
– volume: 21
  issue: 15
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib27
  article-title: The roles of immune cells in the pathogenesis of fibrosis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21155203
– volume: 16
  start-page: 206
  issue: 4
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib63
  article-title: Innate immunity in diabetic kidney disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-019-0234-4
– volume: 214
  start-page: 199
  issue: 2
  year: 2008
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib73
  article-title: Cellular and molecular mechanisms of fibrosis
  publication-title: J. Pathol.
  doi: 10.1002/path.2277
– volume: 12
  start-page: 3256
  issue: 1
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib2
  article-title: Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23482-5
– volume: 3
  issue: 3
  year: 2018
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib32
  article-title: RIPK3 promotes kidney fibrosis via AKT-dependent ATP citrate lyase
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.94979
– volume: 1165
  start-page: 165
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib77
  article-title: Mesangial cells and renal fibrosis
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-13-8871-2_9
– volume: 175
  start-page: 1744
  issue: 10
  year: 2018
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib18
  article-title: Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.14188
– volume: 10
  issue: 7
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib51
  article-title: Piezo1 mechanosensitive ion channel mediates stretch-induced Nppb expression in adult rat cardiac fibroblasts
  publication-title: Cells
  doi: 10.3390/cells10071745
– volume: 15
  start-page: 555
  issue: 9
  year: 2018
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib59
  article-title: Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-018-0020-y
– volume: 11
  start-page: 282
  issue: 1
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib69
  article-title: Mechanical sensing protein Piezo1 regulates bone homeostasis via osteoblast-osteoclast crosstalk
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14146-6
– volume: 7
  issue: 7
  year: 2022
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib80
  article-title: Mechanosensitive Piezo1 channels mediate renal fibrosis
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.152330
– volume: 50
  start-page: 6295
  issue: 29
  year: 2011
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib3
  article-title: The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4
  publication-title: Biochemistry
  doi: 10.1021/bi200770q
– volume: 583
  start-page: 210
  year: 2014
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib30
  article-title: Piezo2 channel conductance and localization domains in Merkel cells of rat whisker hair follicles
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2014.05.055
– volume: 10
  issue: 7
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib40
  article-title: Cardiac fibrosis and fibroblasts
  publication-title: Cells
  doi: 10.3390/cells10071716
– volume: 6
  year: 2016
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib20
  article-title: A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons
  publication-title: Sci. Rep.
  doi: 10.1038/srep25923
– volume: 65
  start-page: 2
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib71
  article-title: Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications
  publication-title: Mol. Aspect. Med.
  doi: 10.1016/j.mam.2018.06.003
– volume: 111
  start-page: E5114
  issue: 47
  year: 2014
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib41
  article-title: Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1414298111
– volume: 554
  start-page: 481
  issue: 7693
  year: 2018
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib56
  article-title: Structure of the mechanically activated ion channel Piezo1
  publication-title: Nature
  doi: 10.1038/nature25453
– volume: 1868
  issue: 4
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib66
  article-title: Transient receptor potential channel regulation by growth factors
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2021.118950
– volume: 10
  issue: 3
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib17
  article-title: Piezo1 channels contribute to the regulation of human atrial fibroblast mechanical properties and matrix stiffness sensing
  publication-title: Cells
  doi: 10.3390/cells10030663
– volume: 79
  start-page: 59
  year: 2017
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib12
  article-title: Origin of the force: the Force-From-Lipids principle applied to Piezo channels
  publication-title: Curr. Top. Membr.
  doi: 10.1016/bs.ctm.2016.09.001
– volume: 11
  issue: 7
  year: 2022
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib4
  article-title: Global Piezo1 gain-of-function mutation causes cardiac hypertrophy and fibrosis in mice
  publication-title: Cells
  doi: 10.3390/cells11071199
– volume: 26
  start-page: 95
  issue: 1
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib74
  article-title: Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis
  publication-title: Mol. Med.
  doi: 10.1186/s10020-020-00223-w
– volume: 1165
  start-page: 347
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib47
  article-title: TGF-beta/Smad and renal fibrosis
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-13-8871-2_16
– volume: 11
  start-page: 89
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib39
  article-title: Protonation of Piezo1 impairs cell-matrix interactions of pancreatic stellate cells
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.00089
– volume: 573
  start-page: 69
  issue: 7772
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib60
  article-title: Mechanosensation of cyclical force by Piezo1 is essential for innate immunity
  publication-title: Nature
  doi: 10.1038/s41586-019-1485-8
– volume: 15
  start-page: 705
  issue: 12
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib15
  article-title: Shared and distinct mechanisms of fibrosis
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/s41584-019-0322-7
– volume: 12
  start-page: 869
  issue: 1
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib34
  article-title: The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21178-4
– volume: 595
  start-page: 79
  issue: 1
  year: 2017
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib67
  article-title: Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces
  publication-title: J. Physiol.
  doi: 10.1113/JP272718
– volume: 7
  start-page: 684
  issue: 12
  year: 2011
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib44
  article-title: Cellular and molecular mechanisms of renal fibrosis
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2011.149
– volume: 65
  start-page: 6441
  issue: 9
  year: 2022
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib64
  article-title: Piezo-type mechanosensitive ion channel component 1 (Piezo1): a promising therapeutic target and its modulators
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.2c00085
– volume: 7
  year: 2016
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib11
  article-title: Removal of the mechanoprotective influence of the cytoskeleton reveals Piezo1 is gated by bilayer tension
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10366
– volume: 157
  start-page: 664
  issue: 3
  year: 2014
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib31
  article-title: Merkel cells transduce and encode tactile stimuli to drive Abeta-afferent impulses
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.026
– volume: 20
  start-page: 24
  issue: 1
  year: 2017
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib72
  article-title: Mechanosensory hair cells express two molecularly distinct mechanotransduction channels
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4449
– volume: 12
  start-page: 3519
  issue: 1
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib23
  article-title: TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23683-y
– volume: 130
  start-page: 5088
  issue: 10
  year: 2020
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib38
  article-title: Contributions of alveolar epithelial cell quality control to pulmonary fibrosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI139519
– volume: 7
  issue: 8
  year: 2022
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib62
  article-title: Piezo1-mediated stellate cell activation causes pressure-induced pancreatic fibrosis in mice
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.158288
– volume: 128
  start-page: 74
  issue: 1
  year: 2018
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib65
  article-title: Mechanosensing and fibrosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI93561
– volume: 79
  start-page: 219
  year: 2017
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib1
  article-title: Mechanosensitive Piezo channels in the gastrointestinal tract
  publication-title: Curr. Top. Membr.
  doi: 10.1016/bs.ctm.2016.11.003
– volume: 9
  start-page: 1715
  issue: 1
  year: 2018
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib54
  article-title: Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04194-9
– volume: 554
  start-page: 487
  issue: 7693
  year: 2018
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib78
  article-title: Structure and mechanogating mechanism of the Piezo1 channel
  publication-title: Nature
  doi: 10.1038/nature25743
– volume: 117
  start-page: 1450
  issue: 6
  year: 2021
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib21
  article-title: Cardiac fibrosis
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvaa324
– volume: 39
  start-page: 2228
  issue: 11
  year: 2019
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib5
  article-title: Force sensing by Piezo channels in cardiovascular health and disease
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.119.313348
– volume: 80
  start-page: 309
  year: 2018
  ident: 10.1016/j.pbiomolbio.2023.09.001_bib29
  article-title: Mechanisms of renal fibrosis
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-022516-034227
SSID ssj0002176
Score 2.4321887
SecondaryResourceType review_article
Snippet Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
Title Piezo1:the potential new therapeutic target for fibrotic diseases
URI https://dx.doi.org/10.1016/j.pbiomolbio.2023.09.001
https://www.proquest.com/docview/2866379608
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA9jIvgi_sX5Z1TwNdvaZm2CT2M4puLwwcHeQpomMBlrcd2DPvhB_Cx-J7-ClyZ1KggDXwoNCS2Xy90v3O_uELrQgQAnkIQ4Ij7D4PEEpiSlWCeJFH4CPqfs1nA3ioZjcjPpTmqoX-XCGFqls_3WppfW2o20nTTb-XRqcnxjBs4_BhBd1i03GewkNlreel3RPAByl_FKmIzNbMfmsRyv3OS4ZzN4tkwb8ZYtXvmXi_plrEsPNNhB2w46ej37d7uopuZ7aNM2k3zeR_37qXrJ_I_3N8B0Xp4VhgcE8wE3e9-yrDzL_fYArHoa7sqZGXNhmsUBGg-uHvpD7FokYAkXowInMZGpCpSkMhVwljQJQ8G6IAYK0EilTAqtAq3TMKGM-Gk3giMniAoVo1IHUXiI6vNsro6QF0TC2LqASRURxSTVlAE6oKGBHLB_DRRXUuHS1Q83bSxmvCKKPfKVPLmRJ-8ww5lrIP9rZW5raKyx5rISPP-hDxxM_Rqrz6u94nBcTAxEzFW2XPCAAsQCvenQ43994QRtmTeblXiK6sXTUp0BPCmSZql_TbTRu74djj4BtZnn6A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEB3ShNJeSleari706iRe4kj0FEJD0iz0kEBuQpYlSAl2aJJD-yn9lv5Tf6EjW04XKAR68UHWYDOSZp6YNzMAt8rl6ARCzw58h9ro8bhN_IjYKgwFd0L0OWm3hsEw6Iz9h0l9UoBWngujaZXG9mc2PbXWZqRqtFmdT6c6x7dB0fk3EESndcu3oKSrU9WLUGp2e53h2iAj6k5Dljjf1gKG0JPRvOY6zT2Z4bOiO4lXsvqVf3mpX_Y6dULtfdgz6NFqZj94AAUZH8J21k_y5Qhaj1P5mjgf728I66x5stRUIJyP0Nn6lmhlZfRvC_GqpfC6nOgxE6lZHMO4fT9qdWzTJcEWeDda2mHDF5F0pSAi4niclO95nKIiAoLoSEZUcCVdpSIvJNR3onqAp4770pOUCOUG3gkU4ySWp2C5AdfmzqVCBr6kgihCESAQT6MOXMIyNHKtMGFKiOtOFjOWc8We2Jc-mdYnq1FNmyuDs5acZ2U0NpC5yxXPfmwJhtZ-A-mbfK0YnhgdBuGxTFYL5hJEWbh1auTsX1-4hp3OaNBn_e6wdw67-k2WpHgBxeXzSl4iWlmGV2Y3fgKlnOqZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezo1%EF%BC%9Athe+potential+new+therapeutic+target+for+fibrotic+diseases&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Liu%2C+Xin&rft.au=Niu%2C+Weipin&rft.au=Zhao%2C+Shuqing&rft.au=Zhang%2C+Wenjuan&rft.date=2023-11-01&rft.issn=0079-6107&rft.volume=184&rft.spage=42&rft.epage=49&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2023.09.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pbiomolbio_2023_09_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon