Piezo1:the potential new therapeutic target for fibrotic diseases
Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavio...
Saved in:
Published in | Progress in biophysics and molecular biology Vol. 184; pp. 42 - 49 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
|
Online Access | Get full text |
ISSN | 0079-6107 1873-1732 1873-1732 |
DOI | 10.1016/j.pbiomolbio.2023.09.001 |
Cover
Loading…
Abstract | Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases. |
---|---|
AbstractList | Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases. Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases. |
Author | Li, Jing Liu, Xin Zhang, Wenjuan Niu, Weipin Zhao, Shuqing Zhao, Ying |
Author_xml | – sequence: 1 givenname: Xin surname: Liu fullname: Liu, Xin organization: Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China – sequence: 2 givenname: Weipin surname: Niu fullname: Niu, Weipin organization: The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China – sequence: 3 givenname: Shuqing surname: Zhao fullname: Zhao, Shuqing organization: The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China – sequence: 4 givenname: Wenjuan surname: Zhang fullname: Zhang, Wenjuan organization: Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China – sequence: 5 givenname: Ying surname: Zhao fullname: Zhao, Ying email: sdwfclyn@163.com organization: Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China – sequence: 6 givenname: Jing surname: Li fullname: Li, Jing email: bmsjingl@leeds.ac.uk organization: Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China |
BookMark | eNqNkM1KxDAUhYOM4Dj6Dl26ac1PmzYbQQf_YEAXug5pcqMZOk1NMoo-is_iO_kKdhhBcKObe-Fwzrf49tGk9z0glBFcEEz48bIYWudXvhtvQTFlBRYFxmQHTUlTs5zUjE7QFONa5Jzgeg_tx7jEGFNS8yma3zp48-Tz4z09Qjb4BH1yqst6eMnGJKgB1snpLKnwACmzPmTWtcFvMuMiqAjxAO1a1UU4_P4zdH9xfje_yhc3l9fz00WuS0xS3talNkBBN9oowZktGVOiKmveVGUFRmhlgVprWNuIkpiKMyJUCQxEoy3lbIaOttwh-Kc1xCRXLmroOtWDX0dJG85ZLThuxurJtqqDjzGAldollZzvU1CukwTLjT25lD_25MaexEKO9kZA8wswBLdS4fU_07PtFEYXzw6CjNpBr8G4ADpJ493fkC8P85VW |
CitedBy_id | crossref_primary_10_1007_s13105_025_01070_1 crossref_primary_10_1016_j_yexcr_2024_114218 crossref_primary_10_1016_j_rechem_2025_102058 crossref_primary_10_1111_apha_14152 |
Cites_doi | 10.1186/1756-6606-6-57 10.1016/j.tcb.2021.10.002 10.1038/s41419-021-03481-6 10.1152/ajpcell.00346.2018 10.1056/NEJMoa1602812 10.1111/bph.16050 10.3389/fmolb.2021.725275 10.1038/s41598-018-32572-2 10.3390/cancers12071780 10.1053/j.gastro.2019.03.013 10.1038/s41467-018-03570-9 10.1016/j.tips.2019.10.002 10.1016/j.phrs.2020.105316 10.3389/fphys.2020.569322 10.1146/annurev-physiol-060721-100935 10.1016/j.celrep.2015.09.072 10.1126/science.1193270 10.1038/s41467-019-12501-1 10.1016/j.celrep.2022.110342 10.3390/cells10050994 10.1111/febs.14711 10.1038/nature20793 10.1113/JP274996 10.1074/jbc.RA119.009167 10.1096/fj.202000613RRR 10.7554/eLife.12088 10.1016/j.jpainsymman.2019.12.364 10.1161/HYPERTENSIONAHA.121.18750 10.1113/JP281135 10.1073/pnas.1910650117 10.12688/f1000research.18293.1 10.1186/s12931-019-1083-1 10.1172/JCI134111 10.3389/fcell.2021.741060 10.1002/dvdy.401 10.3390/ijms21155203 10.1038/s41581-019-0234-4 10.1002/path.2277 10.1038/s41467-021-23482-5 10.1172/jci.insight.94979 10.1007/978-981-13-8871-2_9 10.1111/bph.14188 10.3390/cells10071745 10.1038/s41575-018-0020-y 10.1038/s41467-019-14146-6 10.1172/jci.insight.152330 10.1021/bi200770q 10.1016/j.neulet.2014.05.055 10.3390/cells10071716 10.1038/srep25923 10.1016/j.mam.2018.06.003 10.1073/pnas.1414298111 10.1038/nature25453 10.1016/j.bbamcr.2021.118950 10.3390/cells10030663 10.1016/bs.ctm.2016.09.001 10.3390/cells11071199 10.1186/s10020-020-00223-w 10.1007/978-981-13-8871-2_16 10.3389/fphys.2020.00089 10.1038/s41586-019-1485-8 10.1038/s41584-019-0322-7 10.1038/s41467-021-21178-4 10.1113/JP272718 10.1038/nrneph.2011.149 10.1021/acs.jmedchem.2c00085 10.1038/ncomms10366 10.1016/j.cell.2014.02.026 10.1038/nn.4449 10.1038/s41467-021-23683-y 10.1172/JCI139519 10.1172/jci.insight.158288 10.1172/JCI93561 10.1016/bs.ctm.2016.11.003 10.1038/s41467-018-04194-9 10.1038/nature25743 10.1093/cvr/cvaa324 10.1161/ATVBAHA.119.313348 10.1146/annurev-physiol-022516-034227 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 |
DOI | 10.1016/j.pbiomolbio.2023.09.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1873-1732 |
EndPage | 49 |
ExternalDocumentID | 10_1016_j_pbiomolbio_2023_09_001 S0079610723000822 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 3O- 4.4 457 4G. 53G 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABDPE ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABTAH ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HX~ HZ~ IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SPD SSH SSU SSZ T5K UNMZH UQL VQP WUQ ZGI ZY4 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7X8 |
ID | FETCH-LOGICAL-c401t-b74cde2ec8cda963f433a954768545ed9cafe2ffd3b8941d56319a4e3e98cf263 |
IEDL.DBID | .~1 |
ISSN | 0079-6107 1873-1732 |
IngestDate | Fri Jul 11 03:50:33 EDT 2025 Tue Jul 01 00:42:42 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Sun Apr 06 06:56:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-b74cde2ec8cda963f433a954768545ed9cafe2ffd3b8941d56319a4e3e98cf263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0079610723000822 |
PQID | 2866379608 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2866379608 crossref_citationtrail_10_1016_j_pbiomolbio_2023_09_001 crossref_primary_10_1016_j_pbiomolbio_2023_09_001 elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2023_09_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2023 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationTitle | Progress in biophysics and molecular biology |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ploeg (bib51) 2021; 10 Bartoli (bib4) 2022; 11 Florez-Paz (bib20) 2016; 6 Kuntze (bib39) 2020; 11 Retailleau (bib53) 2015; 13 Shah, Patel, Shah (bib57) 2022; 251 Jiang (bib35) 2023; 180 Yang, Plotnikov (bib75) 2021; 10 Blythe (bib7) 2019; 294 Ikeda, Gu (bib30) 2014; 583 Diem (bib14) 2020; 34 Shetty, Lalor, Adams (bib59) 2018; 15 Atcha (bib2) 2021; 12 Beech, Kalli (bib5) 2019; 39 Solis (bib60) 2019; 573 Yang (bib74) 2020; 26 Jiang (bib34) 2021; 12 Ma, Meng (bib47) 2019; 1165 Huang (bib27) 2020; 21 Wang (bib69) 2020; 11 Hilscher (bib26) 2019; 157 Karppinen (bib37) 2019; 8 Poole (bib52) 2022; 84 Rozenberg (bib55) 2020; 59 He (bib24) 2021; 12 Zhao (bib78) 2018; 554 Zhao (bib79) 2019; 286 Sheng, Zhuang (bib58) 2020; 11 Wang (bib68) 2018; 9 Coste (bib10) 2010; 330 Liang (bib43) 2019; 20 Maneshi (bib48) 2018; 8 Kang (bib36) 2019; 316 Tschumperlin (bib65) 2018; 128 Bae, Sachs, Gottlieb (bib3) 2011; 50 He (bib25) 2022; 79 Nonomura (bib50) 2017; 541 Romac (bib54) 2018; 9 Emig (bib17) 2021; 10 Wang (bib70) 2022; 38 Zhao (bib77) 2019; 1165 Cox, Bavi, Martinac (bib12) 2017; 79 Long (bib46) 2022; 32 Wu (bib72) 2017; 20 Imamura (bib32) 2018; 3 Lewis, Grandl (bib42) 2015; 4 Saotome (bib56) 2018; 554 Swain (bib61) 2020; 130 Katzen, Beers (bib38) 2020; 130 Kurose (bib40) 2021; 10 Swain (bib62) 2022; 7 Van den Eynde, Vriens, De Clercq (bib66) 2021; 1868 Evans (bib18) 2018; 175 Fu (bib22) 2021; 9 Zhao (bib80) 2022; 7 Chesler (bib9) 2016; 375 Weiskirchen, Weiskirchen, Tacke (bib71) 2019; 65 Humphreys (bib29) 2018; 80 Tang, Yiu (bib63) 2020; 16 Zhang (bib76) 2021; 1876 Distler (bib15) 2019; 15 Frangogiannis (bib21) 2021; 117 Tang (bib64) 2022; 65 Ferdek (bib19) 2022; 600 Liu (bib45) 2020; 117 Beurg, Fettiplace (bib6) 2017; 595 Ikeda (bib31) 2014; 157 Lee (bib41) 2014; 111 Alcaino, Farrugia, Beyder (bib1) 2017; 79 Botello-Smith (bib8) 2019; 10 Cox (bib11) 2016; 7 De Felice, Alaimo (bib13) 2020; 12 Wang (bib67) 2017; 595 Miao (bib49) 2021; 163 Douguet (bib16) 2019; 40 Geng (bib23) 2021; 12 Wynn (bib73) 2008; 214 Jia (bib33) 2013; 6 Liu (bib44) 2011; 7 Huang (bib28) 2021; 8 Liang (10.1016/j.pbiomolbio.2023.09.001_bib43) 2019; 20 Huang (10.1016/j.pbiomolbio.2023.09.001_bib28) 2021; 8 Karppinen (10.1016/j.pbiomolbio.2023.09.001_bib37) 2019; 8 Poole (10.1016/j.pbiomolbio.2023.09.001_bib52) 2022; 84 Maneshi (10.1016/j.pbiomolbio.2023.09.001_bib48) 2018; 8 Cox (10.1016/j.pbiomolbio.2023.09.001_bib12) 2017; 79 Jia (10.1016/j.pbiomolbio.2023.09.001_bib33) 2013; 6 Emig (10.1016/j.pbiomolbio.2023.09.001_bib17) 2021; 10 Beech (10.1016/j.pbiomolbio.2023.09.001_bib5) 2019; 39 Swain (10.1016/j.pbiomolbio.2023.09.001_bib61) 2020; 130 Florez-Paz (10.1016/j.pbiomolbio.2023.09.001_bib20) 2016; 6 Jiang (10.1016/j.pbiomolbio.2023.09.001_bib34) 2021; 12 Nonomura (10.1016/j.pbiomolbio.2023.09.001_bib50) 2017; 541 Ferdek (10.1016/j.pbiomolbio.2023.09.001_bib19) 2022; 600 Tang (10.1016/j.pbiomolbio.2023.09.001_bib64) 2022; 65 Rozenberg (10.1016/j.pbiomolbio.2023.09.001_bib55) 2020; 59 Solis (10.1016/j.pbiomolbio.2023.09.001_bib60) 2019; 573 Coste (10.1016/j.pbiomolbio.2023.09.001_bib10) 2010; 330 Ploeg (10.1016/j.pbiomolbio.2023.09.001_bib51) 2021; 10 Fu (10.1016/j.pbiomolbio.2023.09.001_bib22) 2021; 9 Imamura (10.1016/j.pbiomolbio.2023.09.001_bib32) 2018; 3 Miao (10.1016/j.pbiomolbio.2023.09.001_bib49) 2021; 163 Kurose (10.1016/j.pbiomolbio.2023.09.001_bib40) 2021; 10 Wynn (10.1016/j.pbiomolbio.2023.09.001_bib73) 2008; 214 Liu (10.1016/j.pbiomolbio.2023.09.001_bib44) 2011; 7 Shah (10.1016/j.pbiomolbio.2023.09.001_bib57) 2022; 251 Jiang (10.1016/j.pbiomolbio.2023.09.001_bib35) 2023; 180 Lewis (10.1016/j.pbiomolbio.2023.09.001_bib42) 2015; 4 Atcha (10.1016/j.pbiomolbio.2023.09.001_bib2) 2021; 12 Long (10.1016/j.pbiomolbio.2023.09.001_bib46) 2022; 32 Huang (10.1016/j.pbiomolbio.2023.09.001_bib27) 2020; 21 Yang (10.1016/j.pbiomolbio.2023.09.001_bib74) 2020; 26 Sheng (10.1016/j.pbiomolbio.2023.09.001_bib58) 2020; 11 Hilscher (10.1016/j.pbiomolbio.2023.09.001_bib26) 2019; 157 Tang (10.1016/j.pbiomolbio.2023.09.001_bib63) 2020; 16 Zhao (10.1016/j.pbiomolbio.2023.09.001_bib80) 2022; 7 Cox (10.1016/j.pbiomolbio.2023.09.001_bib11) 2016; 7 Shetty (10.1016/j.pbiomolbio.2023.09.001_bib59) 2018; 15 Wang (10.1016/j.pbiomolbio.2023.09.001_bib69) 2020; 11 Alcaino (10.1016/j.pbiomolbio.2023.09.001_bib1) 2017; 79 Yang (10.1016/j.pbiomolbio.2023.09.001_bib75) 2021; 10 Wang (10.1016/j.pbiomolbio.2023.09.001_bib68) 2018; 9 Ikeda (10.1016/j.pbiomolbio.2023.09.001_bib31) 2014; 157 Lee (10.1016/j.pbiomolbio.2023.09.001_bib41) 2014; 111 Chesler (10.1016/j.pbiomolbio.2023.09.001_bib9) 2016; 375 Geng (10.1016/j.pbiomolbio.2023.09.001_bib23) 2021; 12 Kuntze (10.1016/j.pbiomolbio.2023.09.001_bib39) 2020; 11 Beurg (10.1016/j.pbiomolbio.2023.09.001_bib6) 2017; 595 Botello-Smith (10.1016/j.pbiomolbio.2023.09.001_bib8) 2019; 10 De Felice (10.1016/j.pbiomolbio.2023.09.001_bib13) 2020; 12 Frangogiannis (10.1016/j.pbiomolbio.2023.09.001_bib21) 2021; 117 Diem (10.1016/j.pbiomolbio.2023.09.001_bib14) 2020; 34 Wu (10.1016/j.pbiomolbio.2023.09.001_bib72) 2017; 20 Saotome (10.1016/j.pbiomolbio.2023.09.001_bib56) 2018; 554 Douguet (10.1016/j.pbiomolbio.2023.09.001_bib16) 2019; 40 Wang (10.1016/j.pbiomolbio.2023.09.001_bib70) 2022; 38 Bae (10.1016/j.pbiomolbio.2023.09.001_bib3) 2011; 50 Kang (10.1016/j.pbiomolbio.2023.09.001_bib36) 2019; 316 Romac (10.1016/j.pbiomolbio.2023.09.001_bib54) 2018; 9 Weiskirchen (10.1016/j.pbiomolbio.2023.09.001_bib71) 2019; 65 Swain (10.1016/j.pbiomolbio.2023.09.001_bib62) 2022; 7 Humphreys (10.1016/j.pbiomolbio.2023.09.001_bib29) 2018; 80 Retailleau (10.1016/j.pbiomolbio.2023.09.001_bib53) 2015; 13 Katzen (10.1016/j.pbiomolbio.2023.09.001_bib38) 2020; 130 Liu (10.1016/j.pbiomolbio.2023.09.001_bib45) 2020; 117 Blythe (10.1016/j.pbiomolbio.2023.09.001_bib7) 2019; 294 Ikeda (10.1016/j.pbiomolbio.2023.09.001_bib30) 2014; 583 Tschumperlin (10.1016/j.pbiomolbio.2023.09.001_bib65) 2018; 128 Evans (10.1016/j.pbiomolbio.2023.09.001_bib18) 2018; 175 He (10.1016/j.pbiomolbio.2023.09.001_bib25) 2022; 79 Van den Eynde (10.1016/j.pbiomolbio.2023.09.001_bib66) 2021; 1868 Ma (10.1016/j.pbiomolbio.2023.09.001_bib47) 2019; 1165 Bartoli (10.1016/j.pbiomolbio.2023.09.001_bib4) 2022; 11 Zhao (10.1016/j.pbiomolbio.2023.09.001_bib77) 2019; 1165 Wang (10.1016/j.pbiomolbio.2023.09.001_bib67) 2017; 595 Zhang (10.1016/j.pbiomolbio.2023.09.001_bib76) 2021; 1876 He (10.1016/j.pbiomolbio.2023.09.001_bib24) 2021; 12 Distler (10.1016/j.pbiomolbio.2023.09.001_bib15) 2019; 15 Zhao (10.1016/j.pbiomolbio.2023.09.001_bib78) 2018; 554 Zhao (10.1016/j.pbiomolbio.2023.09.001_bib79) 2019; 286 |
References_xml | – volume: 554 start-page: 481 year: 2018 end-page: 486 ident: bib56 article-title: Structure of the mechanically activated ion channel Piezo1 publication-title: Nature – volume: 15 start-page: 705 year: 2019 end-page: 730 ident: bib15 article-title: Shared and distinct mechanisms of fibrosis publication-title: Nat. Rev. Rheumatol. – volume: 59 start-page: 1362 year: 2020 end-page: 1378 ident: bib55 article-title: Idiopathic pulmonary fibrosis: a review of disease, pharmacological, and nonpharmacological strategies with a focus on symptoms, function, and health-related quality of life publication-title: J. Pain Symptom Manag. – volume: 294 start-page: 17395 year: 2019 end-page: 17408 ident: bib7 article-title: Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion publication-title: J. Biol. Chem. – volume: 1876 year: 2021 ident: bib76 article-title: Matrix stiffness and its influence on pancreatic diseases publication-title: Biochim. Biophys. Acta Rev. Canc – volume: 286 start-page: 2461 year: 2019 end-page: 2470 ident: bib79 article-title: The mechanosensitive Piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism publication-title: FEBS J. – volume: 1165 start-page: 347 year: 2019 end-page: 364 ident: bib47 article-title: TGF-beta/Smad and renal fibrosis publication-title: Adv. Exp. Med. Biol. – volume: 8 year: 2018 ident: bib48 article-title: Enantiomeric Abeta peptides inhibit the fluid shear stress response of Piezo1 publication-title: Sci. Rep. – volume: 7 year: 2022 ident: bib62 article-title: Piezo1-mediated stellate cell activation causes pressure-induced pancreatic fibrosis in mice publication-title: JCI Insight – volume: 554 start-page: 487 year: 2018 end-page: 492 ident: bib78 article-title: Structure and mechanogating mechanism of the Piezo1 channel publication-title: Nature – volume: 7 year: 2022 ident: bib80 article-title: Mechanosensitive Piezo1 channels mediate renal fibrosis publication-title: JCI Insight – volume: 157 start-page: 193 year: 2019 end-page: 209 e9 ident: bib26 article-title: Mechanical stretch increases expression of CXCL1 in in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension publication-title: Gastroenterology – volume: 583 start-page: 210 year: 2014 end-page: 215 ident: bib30 article-title: Piezo2 channel conductance and localization domains in Merkel cells of rat whisker hair follicles publication-title: Neurosci. Lett. – volume: 251 start-page: 276 year: 2022 end-page: 286 ident: bib57 article-title: Emerging role of Piezo ion channels in cardiovascular development publication-title: Dev. Dynam. – volume: 32 start-page: 70 year: 2022 end-page: 90 ident: bib46 article-title: Mechanical communication in fibrosis progression publication-title: Trends Cell Biol. – volume: 330 start-page: 55 year: 2010 end-page: 60 ident: bib10 article-title: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels publication-title: Science – volume: 79 start-page: 59 year: 2017 end-page: 96 ident: bib12 article-title: Origin of the force: the Force-From-Lipids principle applied to Piezo channels publication-title: Curr. Top. Membr. – volume: 6 start-page: 57 year: 2013 ident: bib33 article-title: GTP-dependent run-up of Piezo2-type mechanically activated currents in rat dorsal root ganglion neurons publication-title: Mol. Brain – volume: 9 start-page: 1300 year: 2018 ident: bib68 article-title: A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel publication-title: Nat. Commun. – volume: 20 start-page: 24 year: 2017 end-page: 33 ident: bib72 article-title: Mechanosensory hair cells express two molecularly distinct mechanotransduction channels publication-title: Nat. Neurosci. – volume: 38 year: 2022 ident: bib70 article-title: Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-beta-catenin mechanotransduction complex publication-title: Cell Rep. – volume: 79 start-page: 219 year: 2017 end-page: 244 ident: bib1 article-title: Mechanosensitive Piezo channels in the gastrointestinal tract publication-title: Curr. Top. Membr. – volume: 111 start-page: E5114 year: 2014 end-page: E5122 ident: bib41 article-title: Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 11 start-page: 282 year: 2020 ident: bib69 article-title: Mechanical sensing protein Piezo1 regulates bone homeostasis via osteoblast-osteoclast crosstalk publication-title: Nat. Commun. – volume: 573 start-page: 69 year: 2019 end-page: 74 ident: bib60 article-title: Mechanosensation of cyclical force by Piezo1 is essential for innate immunity publication-title: Nature – volume: 8 year: 2019 ident: bib37 article-title: Toward understanding scarless skin wound healing and pathological scarring publication-title: F1000Res – volume: 11 year: 2022 ident: bib4 article-title: Global Piezo1 gain-of-function mutation causes cardiac hypertrophy and fibrosis in mice publication-title: Cells – volume: 20 start-page: 118 year: 2019 ident: bib43 article-title: Piezo1 induced apoptosis of type II pneumocytes during ARDS publication-title: Respir. Res. – volume: 12 start-page: 3519 year: 2021 ident: bib23 article-title: TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection publication-title: Nat. Commun. – volume: 7 start-page: 684 year: 2011 end-page: 696 ident: bib44 article-title: Cellular and molecular mechanisms of renal fibrosis publication-title: Nat. Rev. Nephrol. – volume: 10 year: 2021 ident: bib75 article-title: Mechanosensitive regulation of fibrosis publication-title: Cells – volume: 50 start-page: 6295 year: 2011 end-page: 6300 ident: bib3 article-title: The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4 publication-title: Biochemistry – volume: 10 start-page: 4503 year: 2019 ident: bib8 article-title: A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1 publication-title: Nat. Commun. – volume: 180 start-page: 1862 year: 2023 end-page: 1877 ident: bib35 article-title: Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells publication-title: Br. J. Pharmacol. – volume: 15 start-page: 555 year: 2018 end-page: 567 ident: bib59 article-title: Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 595 start-page: 7039 year: 2017 end-page: 7048 ident: bib6 article-title: Piezo2 as the anomalous mechanotransducer channel in auditory hair cells publication-title: J. Physiol. – volume: 163 year: 2021 ident: bib49 article-title: Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues publication-title: Pharmacol. Res. – volume: 157 start-page: 664 year: 2014 end-page: 675 ident: bib31 article-title: Merkel cells transduce and encode tactile stimuli to drive Abeta-afferent impulses publication-title: Cell – volume: 600 start-page: 2579 year: 2022 end-page: 2612 ident: bib19 article-title: When healing turns into killing - the pathophysiology of pancreatic and hepatic fibrosis publication-title: J. Physiol. – volume: 80 start-page: 309 year: 2018 end-page: 326 ident: bib29 article-title: Mechanisms of renal fibrosis publication-title: Annu. Rev. Physiol. – volume: 12 start-page: 226 year: 2021 ident: bib24 article-title: Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1 publication-title: Cell Death Dis. – volume: 40 start-page: 956 year: 2019 end-page: 970 ident: bib16 article-title: Piezo ion channels in cardiovascular mechanobiology publication-title: Trends Pharmacol. Sci. – volume: 9 start-page: 1715 year: 2018 ident: bib54 article-title: Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis publication-title: Nat. Commun. – volume: 130 start-page: 2527 year: 2020 end-page: 2541 ident: bib61 article-title: TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation publication-title: J. Clin. Invest. – volume: 65 start-page: 6441 year: 2022 end-page: 6453 ident: bib64 article-title: Piezo-type mechanosensitive ion channel component 1 (Piezo1): a promising therapeutic target and its modulators publication-title: J. Med. Chem. – volume: 65 start-page: 2 year: 2019 end-page: 15 ident: bib71 article-title: Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications publication-title: Mol. Aspect. Med. – volume: 21 year: 2020 ident: bib27 article-title: The roles of immune cells in the pathogenesis of fibrosis publication-title: Int. J. Mol. Sci. – volume: 4 year: 2015 ident: bib42 article-title: Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension publication-title: Elife – volume: 10 year: 2021 ident: bib51 article-title: Piezo1 mechanosensitive ion channel mediates stretch-induced Nppb expression in adult rat cardiac fibroblasts publication-title: Cells – volume: 79 start-page: 918 year: 2022 end-page: 931 ident: bib25 article-title: Myeloid Piezo1 deletion protects renal fibrosis by restraining macrophage infiltration and activation publication-title: Hypertension – volume: 11 year: 2020 ident: bib58 article-title: New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis publication-title: Front. Physiol. – volume: 84 start-page: 307 year: 2022 end-page: 329 ident: bib52 article-title: The diverse physiological functions of mechanically activated ion channels in mammals publication-title: Annu. Rev. Physiol. – volume: 130 start-page: 5088 year: 2020 end-page: 5099 ident: bib38 article-title: Contributions of alveolar epithelial cell quality control to pulmonary fibrosis publication-title: J. Clin. Invest. – volume: 11 start-page: 89 year: 2020 ident: bib39 article-title: Protonation of Piezo1 impairs cell-matrix interactions of pancreatic stellate cells publication-title: Front. Physiol. – volume: 12 start-page: 3256 year: 2021 ident: bib2 article-title: Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing publication-title: Nat. Commun. – volume: 9 year: 2021 ident: bib22 article-title: Targeting mechanosensitive Piezo1 alleviated renal fibrosis through p38MAPK-YAP pathway publication-title: Front. Cell Dev. Biol. – volume: 1868 year: 2021 ident: bib66 article-title: Transient receptor potential channel regulation by growth factors publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 10 year: 2021 ident: bib40 article-title: Cardiac fibrosis and fibroblasts publication-title: Cells – volume: 595 start-page: 79 year: 2017 end-page: 91 ident: bib67 article-title: Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces publication-title: J. Physiol. – volume: 214 start-page: 199 year: 2008 end-page: 210 ident: bib73 article-title: Cellular and molecular mechanisms of fibrosis publication-title: J. Pathol. – volume: 117 start-page: 1450 year: 2021 end-page: 1488 ident: bib21 article-title: Cardiac fibrosis publication-title: Cardiovasc. Res. – volume: 13 start-page: 1161 year: 2015 end-page: 1171 ident: bib53 article-title: Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling publication-title: Cell Rep. – volume: 3 year: 2018 ident: bib32 article-title: RIPK3 promotes kidney fibrosis via AKT-dependent ATP citrate lyase publication-title: JCI Insight – volume: 12 start-page: 869 year: 2021 ident: bib34 article-title: The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction publication-title: Nat. Commun. – volume: 1165 start-page: 165 year: 2019 end-page: 194 ident: bib77 article-title: Mesangial cells and renal fibrosis publication-title: Adv. Exp. Med. Biol. – volume: 175 start-page: 1744 year: 2018 end-page: 1759 ident: bib18 article-title: Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation publication-title: Br. J. Pharmacol. – volume: 8 year: 2021 ident: bib28 article-title: Mechanically activated calcium channel Piezo1 modulates radiation-induced epithelial-mesenchymal transition by forming a positive feedback with TGF-beta 1 publication-title: Front. Mol. Biosci. – volume: 316 start-page: C92 year: 2019 end-page: C103 ident: bib36 article-title: Piezo1 mediates angiogenesis through activation of MT1-MMP signaling publication-title: Am. J. Physiol. Cell Physiol. – volume: 128 start-page: 74 year: 2018 end-page: 84 ident: bib65 article-title: Mechanosensing and fibrosis publication-title: J. Clin. Invest. – volume: 26 start-page: 95 year: 2020 ident: bib74 article-title: Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis publication-title: Mol. Med. – volume: 34 start-page: 12785 year: 2020 end-page: 12804 ident: bib14 article-title: Mechanical stretch activates Piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells publication-title: Faseb. J. – volume: 10 year: 2021 ident: bib17 article-title: Piezo1 channels contribute to the regulation of human atrial fibroblast mechanical properties and matrix stiffness sensing publication-title: Cells – volume: 16 start-page: 206 year: 2020 end-page: 222 ident: bib63 article-title: Innate immunity in diabetic kidney disease publication-title: Nat. Rev. Nephrol. – volume: 7 year: 2016 ident: bib11 article-title: Removal of the mechanoprotective influence of the cytoskeleton reveals Piezo1 is gated by bilayer tension publication-title: Nat. Commun. – volume: 541 start-page: 176 year: 2017 end-page: 181 ident: bib50 article-title: Piezo2 senses airway stretch and mediates lung inflation-induced apnoea publication-title: Nature – volume: 12 year: 2020 ident: bib13 article-title: Mechanosensitive Piezo channels in cancer: focus on altered calcium signaling in cancer cells and in tumor progression publication-title: Cancers – volume: 375 start-page: 1355 year: 2016 end-page: 1364 ident: bib9 article-title: The role of Piezo2 in human mechanosensation publication-title: N. Engl. J. Med. – volume: 6 year: 2016 ident: bib20 article-title: A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons publication-title: Sci. Rep. – volume: 117 start-page: 10832 year: 2020 end-page: 10838 ident: bib45 article-title: Matrix-transmitted paratensile signaling enables myofibroblast-fibroblast cross talk in fibrosis expansion publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 39 start-page: 2228 year: 2019 end-page: 2239 ident: bib5 article-title: Force sensing by Piezo channels in cardiovascular health and disease publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 6 start-page: 57 year: 2013 ident: 10.1016/j.pbiomolbio.2023.09.001_bib33 article-title: GTP-dependent run-up of Piezo2-type mechanically activated currents in rat dorsal root ganglion neurons publication-title: Mol. Brain doi: 10.1186/1756-6606-6-57 – volume: 32 start-page: 70 issue: 1 year: 2022 ident: 10.1016/j.pbiomolbio.2023.09.001_bib46 article-title: Mechanical communication in fibrosis progression publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2021.10.002 – volume: 12 start-page: 226 issue: 3 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib24 article-title: Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1 publication-title: Cell Death Dis. doi: 10.1038/s41419-021-03481-6 – volume: 316 start-page: C92 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib36 article-title: Piezo1 mediates angiogenesis through activation of MT1-MMP signaling publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00346.2018 – volume: 375 start-page: 1355 issue: 14 year: 2016 ident: 10.1016/j.pbiomolbio.2023.09.001_bib9 article-title: The role of Piezo2 in human mechanosensation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1602812 – volume: 180 start-page: 1862 issue: 14 year: 2023 ident: 10.1016/j.pbiomolbio.2023.09.001_bib35 article-title: Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells publication-title: Br. J. Pharmacol. doi: 10.1111/bph.16050 – volume: 8 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib28 article-title: Mechanically activated calcium channel Piezo1 modulates radiation-induced epithelial-mesenchymal transition by forming a positive feedback with TGF-beta 1 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.725275 – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.pbiomolbio.2023.09.001_bib48 article-title: Enantiomeric Abeta peptides inhibit the fluid shear stress response of Piezo1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-32572-2 – volume: 12 issue: 7 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib13 article-title: Mechanosensitive Piezo channels in cancer: focus on altered calcium signaling in cancer cells and in tumor progression publication-title: Cancers doi: 10.3390/cancers12071780 – volume: 157 start-page: 193 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib26 article-title: Mechanical stretch increases expression of CXCL1 in in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.03.013 – volume: 9 start-page: 1300 issue: 1 year: 2018 ident: 10.1016/j.pbiomolbio.2023.09.001_bib68 article-title: A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel publication-title: Nat. Commun. doi: 10.1038/s41467-018-03570-9 – volume: 40 start-page: 956 issue: 12 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib16 article-title: Piezo ion channels in cardiovascular mechanobiology publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2019.10.002 – volume: 163 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib49 article-title: Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2020.105316 – volume: 11 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib58 article-title: New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis publication-title: Front. Physiol. doi: 10.3389/fphys.2020.569322 – volume: 84 start-page: 307 year: 2022 ident: 10.1016/j.pbiomolbio.2023.09.001_bib52 article-title: The diverse physiological functions of mechanically activated ion channels in mammals publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-060721-100935 – volume: 13 start-page: 1161 issue: 6 year: 2015 ident: 10.1016/j.pbiomolbio.2023.09.001_bib53 article-title: Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.09.072 – volume: 330 start-page: 55 issue: 6000 year: 2010 ident: 10.1016/j.pbiomolbio.2023.09.001_bib10 article-title: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels publication-title: Science doi: 10.1126/science.1193270 – volume: 10 start-page: 4503 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib8 article-title: A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12501-1 – volume: 38 issue: 6 year: 2022 ident: 10.1016/j.pbiomolbio.2023.09.001_bib70 article-title: Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-beta-catenin mechanotransduction complex publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110342 – volume: 10 issue: 5 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib75 article-title: Mechanosensitive regulation of fibrosis publication-title: Cells doi: 10.3390/cells10050994 – volume: 286 start-page: 2461 issue: 13 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib79 article-title: The mechanosensitive Piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism publication-title: FEBS J. doi: 10.1111/febs.14711 – volume: 541 start-page: 176 issue: 7636 year: 2017 ident: 10.1016/j.pbiomolbio.2023.09.001_bib50 article-title: Piezo2 senses airway stretch and mediates lung inflation-induced apnoea publication-title: Nature doi: 10.1038/nature20793 – volume: 595 start-page: 7039 issue: 23 year: 2017 ident: 10.1016/j.pbiomolbio.2023.09.001_bib6 article-title: Piezo2 as the anomalous mechanotransducer channel in auditory hair cells publication-title: J. Physiol. doi: 10.1113/JP274996 – volume: 294 start-page: 17395 issue: 46 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib7 article-title: Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.009167 – volume: 34 start-page: 12785 issue: 9 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib14 article-title: Mechanical stretch activates Piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells publication-title: Faseb. J. doi: 10.1096/fj.202000613RRR – volume: 4 year: 2015 ident: 10.1016/j.pbiomolbio.2023.09.001_bib42 article-title: Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension publication-title: Elife doi: 10.7554/eLife.12088 – volume: 59 start-page: 1362 issue: 6 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib55 article-title: Idiopathic pulmonary fibrosis: a review of disease, pharmacological, and nonpharmacological strategies with a focus on symptoms, function, and health-related quality of life publication-title: J. Pain Symptom Manag. doi: 10.1016/j.jpainsymman.2019.12.364 – volume: 1876 issue: 1 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib76 article-title: Matrix stiffness and its influence on pancreatic diseases publication-title: Biochim. Biophys. Acta Rev. Canc – volume: 79 start-page: 918 issue: 5 year: 2022 ident: 10.1016/j.pbiomolbio.2023.09.001_bib25 article-title: Myeloid Piezo1 deletion protects renal fibrosis by restraining macrophage infiltration and activation publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.121.18750 – volume: 600 start-page: 2579 issue: 11 year: 2022 ident: 10.1016/j.pbiomolbio.2023.09.001_bib19 article-title: When healing turns into killing - the pathophysiology of pancreatic and hepatic fibrosis publication-title: J. Physiol. doi: 10.1113/JP281135 – volume: 117 start-page: 10832 issue: 20 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib45 article-title: Matrix-transmitted paratensile signaling enables myofibroblast-fibroblast cross talk in fibrosis expansion publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1910650117 – volume: 8 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib37 article-title: Toward understanding scarless skin wound healing and pathological scarring publication-title: F1000Res doi: 10.12688/f1000research.18293.1 – volume: 20 start-page: 118 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib43 article-title: Piezo1 induced apoptosis of type II pneumocytes during ARDS publication-title: Respir. Res. doi: 10.1186/s12931-019-1083-1 – volume: 130 start-page: 2527 issue: 5 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib61 article-title: TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation publication-title: J. Clin. Invest. doi: 10.1172/JCI134111 – volume: 9 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib22 article-title: Targeting mechanosensitive Piezo1 alleviated renal fibrosis through p38MAPK-YAP pathway publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.741060 – volume: 251 start-page: 276 issue: 2 year: 2022 ident: 10.1016/j.pbiomolbio.2023.09.001_bib57 article-title: Emerging role of Piezo ion channels in cardiovascular development publication-title: Dev. Dynam. doi: 10.1002/dvdy.401 – volume: 21 issue: 15 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib27 article-title: The roles of immune cells in the pathogenesis of fibrosis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21155203 – volume: 16 start-page: 206 issue: 4 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib63 article-title: Innate immunity in diabetic kidney disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-019-0234-4 – volume: 214 start-page: 199 issue: 2 year: 2008 ident: 10.1016/j.pbiomolbio.2023.09.001_bib73 article-title: Cellular and molecular mechanisms of fibrosis publication-title: J. Pathol. doi: 10.1002/path.2277 – volume: 12 start-page: 3256 issue: 1 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib2 article-title: Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing publication-title: Nat. Commun. doi: 10.1038/s41467-021-23482-5 – volume: 3 issue: 3 year: 2018 ident: 10.1016/j.pbiomolbio.2023.09.001_bib32 article-title: RIPK3 promotes kidney fibrosis via AKT-dependent ATP citrate lyase publication-title: JCI Insight doi: 10.1172/jci.insight.94979 – volume: 1165 start-page: 165 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib77 article-title: Mesangial cells and renal fibrosis publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-13-8871-2_9 – volume: 175 start-page: 1744 issue: 10 year: 2018 ident: 10.1016/j.pbiomolbio.2023.09.001_bib18 article-title: Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14188 – volume: 10 issue: 7 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib51 article-title: Piezo1 mechanosensitive ion channel mediates stretch-induced Nppb expression in adult rat cardiac fibroblasts publication-title: Cells doi: 10.3390/cells10071745 – volume: 15 start-page: 555 issue: 9 year: 2018 ident: 10.1016/j.pbiomolbio.2023.09.001_bib59 article-title: Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-018-0020-y – volume: 11 start-page: 282 issue: 1 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib69 article-title: Mechanical sensing protein Piezo1 regulates bone homeostasis via osteoblast-osteoclast crosstalk publication-title: Nat. Commun. doi: 10.1038/s41467-019-14146-6 – volume: 7 issue: 7 year: 2022 ident: 10.1016/j.pbiomolbio.2023.09.001_bib80 article-title: Mechanosensitive Piezo1 channels mediate renal fibrosis publication-title: JCI Insight doi: 10.1172/jci.insight.152330 – volume: 50 start-page: 6295 issue: 29 year: 2011 ident: 10.1016/j.pbiomolbio.2023.09.001_bib3 article-title: The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4 publication-title: Biochemistry doi: 10.1021/bi200770q – volume: 583 start-page: 210 year: 2014 ident: 10.1016/j.pbiomolbio.2023.09.001_bib30 article-title: Piezo2 channel conductance and localization domains in Merkel cells of rat whisker hair follicles publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2014.05.055 – volume: 10 issue: 7 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib40 article-title: Cardiac fibrosis and fibroblasts publication-title: Cells doi: 10.3390/cells10071716 – volume: 6 year: 2016 ident: 10.1016/j.pbiomolbio.2023.09.001_bib20 article-title: A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons publication-title: Sci. Rep. doi: 10.1038/srep25923 – volume: 65 start-page: 2 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib71 article-title: Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications publication-title: Mol. Aspect. Med. doi: 10.1016/j.mam.2018.06.003 – volume: 111 start-page: E5114 issue: 47 year: 2014 ident: 10.1016/j.pbiomolbio.2023.09.001_bib41 article-title: Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1414298111 – volume: 554 start-page: 481 issue: 7693 year: 2018 ident: 10.1016/j.pbiomolbio.2023.09.001_bib56 article-title: Structure of the mechanically activated ion channel Piezo1 publication-title: Nature doi: 10.1038/nature25453 – volume: 1868 issue: 4 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib66 article-title: Transient receptor potential channel regulation by growth factors publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2021.118950 – volume: 10 issue: 3 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib17 article-title: Piezo1 channels contribute to the regulation of human atrial fibroblast mechanical properties and matrix stiffness sensing publication-title: Cells doi: 10.3390/cells10030663 – volume: 79 start-page: 59 year: 2017 ident: 10.1016/j.pbiomolbio.2023.09.001_bib12 article-title: Origin of the force: the Force-From-Lipids principle applied to Piezo channels publication-title: Curr. Top. Membr. doi: 10.1016/bs.ctm.2016.09.001 – volume: 11 issue: 7 year: 2022 ident: 10.1016/j.pbiomolbio.2023.09.001_bib4 article-title: Global Piezo1 gain-of-function mutation causes cardiac hypertrophy and fibrosis in mice publication-title: Cells doi: 10.3390/cells11071199 – volume: 26 start-page: 95 issue: 1 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib74 article-title: Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis publication-title: Mol. Med. doi: 10.1186/s10020-020-00223-w – volume: 1165 start-page: 347 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib47 article-title: TGF-beta/Smad and renal fibrosis publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-13-8871-2_16 – volume: 11 start-page: 89 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib39 article-title: Protonation of Piezo1 impairs cell-matrix interactions of pancreatic stellate cells publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00089 – volume: 573 start-page: 69 issue: 7772 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib60 article-title: Mechanosensation of cyclical force by Piezo1 is essential for innate immunity publication-title: Nature doi: 10.1038/s41586-019-1485-8 – volume: 15 start-page: 705 issue: 12 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib15 article-title: Shared and distinct mechanisms of fibrosis publication-title: Nat. Rev. Rheumatol. doi: 10.1038/s41584-019-0322-7 – volume: 12 start-page: 869 issue: 1 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib34 article-title: The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction publication-title: Nat. Commun. doi: 10.1038/s41467-021-21178-4 – volume: 595 start-page: 79 issue: 1 year: 2017 ident: 10.1016/j.pbiomolbio.2023.09.001_bib67 article-title: Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces publication-title: J. Physiol. doi: 10.1113/JP272718 – volume: 7 start-page: 684 issue: 12 year: 2011 ident: 10.1016/j.pbiomolbio.2023.09.001_bib44 article-title: Cellular and molecular mechanisms of renal fibrosis publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2011.149 – volume: 65 start-page: 6441 issue: 9 year: 2022 ident: 10.1016/j.pbiomolbio.2023.09.001_bib64 article-title: Piezo-type mechanosensitive ion channel component 1 (Piezo1): a promising therapeutic target and its modulators publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.2c00085 – volume: 7 year: 2016 ident: 10.1016/j.pbiomolbio.2023.09.001_bib11 article-title: Removal of the mechanoprotective influence of the cytoskeleton reveals Piezo1 is gated by bilayer tension publication-title: Nat. Commun. doi: 10.1038/ncomms10366 – volume: 157 start-page: 664 issue: 3 year: 2014 ident: 10.1016/j.pbiomolbio.2023.09.001_bib31 article-title: Merkel cells transduce and encode tactile stimuli to drive Abeta-afferent impulses publication-title: Cell doi: 10.1016/j.cell.2014.02.026 – volume: 20 start-page: 24 issue: 1 year: 2017 ident: 10.1016/j.pbiomolbio.2023.09.001_bib72 article-title: Mechanosensory hair cells express two molecularly distinct mechanotransduction channels publication-title: Nat. Neurosci. doi: 10.1038/nn.4449 – volume: 12 start-page: 3519 issue: 1 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib23 article-title: TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection publication-title: Nat. Commun. doi: 10.1038/s41467-021-23683-y – volume: 130 start-page: 5088 issue: 10 year: 2020 ident: 10.1016/j.pbiomolbio.2023.09.001_bib38 article-title: Contributions of alveolar epithelial cell quality control to pulmonary fibrosis publication-title: J. Clin. Invest. doi: 10.1172/JCI139519 – volume: 7 issue: 8 year: 2022 ident: 10.1016/j.pbiomolbio.2023.09.001_bib62 article-title: Piezo1-mediated stellate cell activation causes pressure-induced pancreatic fibrosis in mice publication-title: JCI Insight doi: 10.1172/jci.insight.158288 – volume: 128 start-page: 74 issue: 1 year: 2018 ident: 10.1016/j.pbiomolbio.2023.09.001_bib65 article-title: Mechanosensing and fibrosis publication-title: J. Clin. Invest. doi: 10.1172/JCI93561 – volume: 79 start-page: 219 year: 2017 ident: 10.1016/j.pbiomolbio.2023.09.001_bib1 article-title: Mechanosensitive Piezo channels in the gastrointestinal tract publication-title: Curr. Top. Membr. doi: 10.1016/bs.ctm.2016.11.003 – volume: 9 start-page: 1715 issue: 1 year: 2018 ident: 10.1016/j.pbiomolbio.2023.09.001_bib54 article-title: Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis publication-title: Nat. Commun. doi: 10.1038/s41467-018-04194-9 – volume: 554 start-page: 487 issue: 7693 year: 2018 ident: 10.1016/j.pbiomolbio.2023.09.001_bib78 article-title: Structure and mechanogating mechanism of the Piezo1 channel publication-title: Nature doi: 10.1038/nature25743 – volume: 117 start-page: 1450 issue: 6 year: 2021 ident: 10.1016/j.pbiomolbio.2023.09.001_bib21 article-title: Cardiac fibrosis publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvaa324 – volume: 39 start-page: 2228 issue: 11 year: 2019 ident: 10.1016/j.pbiomolbio.2023.09.001_bib5 article-title: Force sensing by Piezo channels in cardiovascular health and disease publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.119.313348 – volume: 80 start-page: 309 year: 2018 ident: 10.1016/j.pbiomolbio.2023.09.001_bib29 article-title: Mechanisms of renal fibrosis publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-022516-034227 |
SSID | ssj0002176 |
Score | 2.4321887 |
SecondaryResourceType | review_article |
Snippet | Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 42 |
Title | Piezo1:the potential new therapeutic target for fibrotic diseases |
URI | https://dx.doi.org/10.1016/j.pbiomolbio.2023.09.001 https://www.proquest.com/docview/2866379608 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA9jIvgi_sX5Z1TwNdvaZm2CT2M4puLwwcHeQpomMBlrcd2DPvhB_Cx-J7-ClyZ1KggDXwoNCS2Xy90v3O_uELrQgQAnkIQ4Ij7D4PEEpiSlWCeJFH4CPqfs1nA3ioZjcjPpTmqoX-XCGFqls_3WppfW2o20nTTb-XRqcnxjBs4_BhBd1i03GewkNlreel3RPAByl_FKmIzNbMfmsRyv3OS4ZzN4tkwb8ZYtXvmXi_plrEsPNNhB2w46ej37d7uopuZ7aNM2k3zeR_37qXrJ_I_3N8B0Xp4VhgcE8wE3e9-yrDzL_fYArHoa7sqZGXNhmsUBGg-uHvpD7FokYAkXowInMZGpCpSkMhVwljQJQ8G6IAYK0EilTAqtAq3TMKGM-Gk3giMniAoVo1IHUXiI6vNsro6QF0TC2LqASRURxSTVlAE6oKGBHLB_DRRXUuHS1Q83bSxmvCKKPfKVPLmRJ-8ww5lrIP9rZW5raKyx5rISPP-hDxxM_Rqrz6u94nBcTAxEzFW2XPCAAsQCvenQ43994QRtmTeblXiK6sXTUp0BPCmSZql_TbTRu74djj4BtZnn6A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEB3ShNJeSleari706iRe4kj0FEJD0iz0kEBuQpYlSAl2aJJD-yn9lv5Tf6EjW04XKAR68UHWYDOSZp6YNzMAt8rl6ARCzw58h9ro8bhN_IjYKgwFd0L0OWm3hsEw6Iz9h0l9UoBWngujaZXG9mc2PbXWZqRqtFmdT6c6x7dB0fk3EESndcu3oKSrU9WLUGp2e53h2iAj6k5Dljjf1gKG0JPRvOY6zT2Z4bOiO4lXsvqVf3mpX_Y6dULtfdgz6NFqZj94AAUZH8J21k_y5Qhaj1P5mjgf728I66x5stRUIJyP0Nn6lmhlZfRvC_GqpfC6nOgxE6lZHMO4fT9qdWzTJcEWeDda2mHDF5F0pSAi4niclO95nKIiAoLoSEZUcCVdpSIvJNR3onqAp4770pOUCOUG3gkU4ySWp2C5AdfmzqVCBr6kgihCESAQT6MOXMIyNHKtMGFKiOtOFjOWc8We2Jc-mdYnq1FNmyuDs5acZ2U0NpC5yxXPfmwJhtZ-A-mbfK0YnhgdBuGxTFYL5hJEWbh1auTsX1-4hp3OaNBn_e6wdw67-k2WpHgBxeXzSl4iWlmGV2Y3fgKlnOqZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezo1%EF%BC%9Athe+potential+new+therapeutic+target+for+fibrotic+diseases&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Liu%2C+Xin&rft.au=Niu%2C+Weipin&rft.au=Zhao%2C+Shuqing&rft.au=Zhang%2C+Wenjuan&rft.date=2023-11-01&rft.issn=0079-6107&rft.volume=184&rft.spage=42&rft.epage=49&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2023.09.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pbiomolbio_2023_09_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon |