Countermeasures against lumbar spine deconditioning in prolonged bed rest: resistive exercise with and without whole body vibration

To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed res...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 109; no. 6; pp. 1801 - 1811
Main Authors Belavý, Daniel L., Armbrecht, Gabriele, Gast, Ulf, Richardson, Carolyn A., Hides, Julie A., Felsenberg, Dieter
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Physiological Society 01.12.2010
Subjects
Online AccessGet full text
ISSN8750-7587
1522-1601
1522-1601
DOI10.1152/japplphysiol.00707.2010

Cover

Loading…
Abstract To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise ( n = 7), resistive exercise only ( n = 8), or no exercise ( n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups ( P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only ( P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen ( P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.
AbstractList To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.
To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required. [PUBLICATION ABSTRACT]
To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise ( n = 7), resistive exercise only ( n = 8), or no exercise ( n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups ( P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only ( P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen ( P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.
To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P less than or equal to 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P greater than or equal to 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.
Author Armbrecht, Gabriele
Hides, Julie A.
Felsenberg, Dieter
Richardson, Carolyn A.
Belavý, Daniel L.
Gast, Ulf
Author_xml – sequence: 1
  givenname: Daniel L.
  surname: Belavý
  fullname: Belavý, Daniel L.
  organization: Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Berlin, Germany; and
– sequence: 2
  givenname: Gabriele
  surname: Armbrecht
  fullname: Armbrecht, Gabriele
  organization: Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Berlin, Germany; and
– sequence: 3
  givenname: Ulf
  surname: Gast
  fullname: Gast, Ulf
  organization: Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Berlin, Germany; and
– sequence: 4
  givenname: Carolyn A.
  surname: Richardson
  fullname: Richardson, Carolyn A.
  organization: School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane; and
– sequence: 5
  givenname: Julie A.
  surname: Hides
  fullname: Hides, Julie A.
  organization: School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane; and, Mater/UQ Back Stability Clinic, Mater Health Services Brisbane Limited, South Brisbane, Queensland, Australia
– sequence: 6
  givenname: Dieter
  surname: Felsenberg
  fullname: Felsenberg, Dieter
  organization: Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Berlin, Germany; and
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23620023$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20864564$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPCXwALCXHa4I_1eoPEAUV8SZW4wNmyd8eJI6-92LstOfeP10lTgXrpwfZIft6Z8fi9QGchBkDoDSVLSgX7sNPj6MftPrvol4RIIpeMUPIMLcotq2hD6BlatFKQSopWnqOLnHeE0LoW9AU6Z6RtatHUC3S7jnOYIA2g85wgY73RLuQJ-3kwOuE8ugC4hy6G3k0uBhc22AU8puhj2ECPTVlFOH087C5P7how_IXUuQz4xk1brEN_DOI84Ztt9IBN7Pf42pmkDylfoudW-wyvTucl-v31y6_19-rq57cf689XVVcTOlVGWGF123BmBasJdLrTfGVJb61YgWRcsBZAtsZq0wsCjTUlFpRRajiDnl-i9_d5S_N_5tKyGlzuwHsdIM5ZtZJR1vBS4Umy5FzRulkV8u0jchfnFMozCsQk56tGFOj1CZrNAL0akxt02quHbyjAuxOgc6e9TTqU8f3jeMMIYbxwn-65LsWcE1jVuek4wylp5xUl6mAP9b891NEe6mCPopeP9A8lnlLeAVRzx1Q
CODEN JAPHEV
CitedBy_id crossref_primary_10_1016_j_neubiorev_2021_09_055
crossref_primary_10_1007_s40279_015_0444_2
crossref_primary_10_1152_japplphysiol_00611_2012
crossref_primary_10_1249_MSS_0b013e318256b53b
crossref_primary_10_1016_j_jelekin_2013_04_007
crossref_primary_10_1007_s00234_020_02423_x
crossref_primary_10_1016_j_msksp_2021_102429
crossref_primary_10_1249_MSS_0000000000001096
crossref_primary_10_1007_s00586_015_3917_y
crossref_primary_10_1016_j_burns_2015_10_017
crossref_primary_10_1016_j_spinee_2017_07_002
crossref_primary_10_1097_BRS_0000000000001873
crossref_primary_10_1021_acs_jproteome_0c00256
crossref_primary_10_25259_IJPP_2_2021
crossref_primary_10_1016_j_spinee_2021_11_007
crossref_primary_10_1007_s00421_011_2137_3
crossref_primary_10_1016_j_gaitpost_2018_08_033
crossref_primary_10_1371_journal_pone_0182403
crossref_primary_10_1097_MCO_0b013e32834da629
crossref_primary_10_3389_fphys_2019_01046
crossref_primary_10_3390_jfmk7040099
crossref_primary_10_1002_art_39154
crossref_primary_10_1016_j_spinee_2013_02_004
crossref_primary_10_1186_s12891_018_2364_4
crossref_primary_10_3389_fphys_2022_862793
crossref_primary_10_1007_s00421_012_2548_9
crossref_primary_10_1016_j_actaastro_2025_03_029
crossref_primary_10_1038_s41526_017_0013_0
crossref_primary_10_1016_j_clineuro_2021_106755
crossref_primary_10_1016_j_joca_2017_01_004
crossref_primary_10_1177_2192568219879087
crossref_primary_10_1186_s13063_017_1913_8
crossref_primary_10_1152_japplphysiol_00695_2011
crossref_primary_10_1016_j_spinee_2013_01_046
crossref_primary_10_1016_j_actaastro_2011_05_015
crossref_primary_10_1155_2015_309386
crossref_primary_10_1111_eos_12091
crossref_primary_10_1097_BRS_0b013e3182354d84
crossref_primary_10_1002_phy2_135
crossref_primary_10_1007_s00125_017_4298_z
crossref_primary_10_12688_f1000research_129719_1
crossref_primary_10_1016_j_bone_2015_12_057
crossref_primary_10_3389_fphys_2020_00812
crossref_primary_10_1210_jc_2017_02267
crossref_primary_10_1007_s00586_015_4221_6
crossref_primary_10_1088_0967_3334_36_3_503
crossref_primary_10_3390_nu4122047
crossref_primary_10_1152_ajpregu_00055_2022
crossref_primary_10_1007_s00774_015_0681_3
crossref_primary_10_1038_s41598_023_46987_z
crossref_primary_10_3389_fphys_2017_00279
crossref_primary_10_1007_s00586_015_4311_5
crossref_primary_10_1186_s13018_023_04217_2
crossref_primary_10_1016_j_actaastro_2015_12_007
crossref_primary_10_1097_MD_0000000000012534
crossref_primary_10_1152_japplphysiol_00935_2015
crossref_primary_10_1016_j_actaastro_2018_01_015
crossref_primary_10_1186_s12891_020_03257_7
crossref_primary_10_1002_bem_22150
crossref_primary_10_1016_j_math_2016_10_003
crossref_primary_10_1249_MSS_0000000000001620
crossref_primary_10_1152_japplphysiol_00990_2020
crossref_primary_10_1186_s12891_015_0825_6
crossref_primary_10_1016_j_msksp_2016_12_009
crossref_primary_10_1152_japplphysiol_00125_2020
crossref_primary_10_1152_japplphysiol_00376_2013
Cites_doi 10.1136/ard.37.4.378
10.1359/jbmr.080315
10.1111/j.1748-1716.2006.01642.x
10.3357/ASEM.2427.2010
10.1152/jappl.1992.73.5.2172
10.1007/s00421-004-1172-8
10.1007/BF00253639
10.1097/01.brs.0000146050.57722.2a
10.1016/0094-5765(94)90114-7
10.1007/s00421-008-0899-z
10.1152/japplphysiol.01400.2004
10.1111/j.1365-201X.2004.01293.x
10.1007/BF01676574
10.1016/j.bone.2004.11.014
10.1097/BRS.0b013e3181657f98
10.1152/japplphysiol.00894.2002
10.1097/01.BRS.0000102682.61791.C9
10.1016/S0021-9290(03)00290-2
10.1152/japplphysiol.00541.2006
10.1097/BRS.0b013e3181908ead
10.1016/j.spinee.2010.01.004
10.1007/s004210050648
10.1016/j.jbiomech.2008.02.002
10.1097/BRS.0b013e318074c386
10.1016/j.actaastro.2006.10.006
10.1007/978-1-4419-0318-1
10.1152/japplphysiol.00741.2003
10.1093/ajcn/36.5.936
10.1016/S0030-5898(20)31651-5
10.1055/s-2005-872903
10.1002/mus.21330
10.1097/00002517-199212000-00001
10.1152/jappl.2000.89.6.2158
10.1016/j.spinee.2009.02.009
10.1097/BRS.0b013e318158cb61
10.1359/JBMR.040811
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Physiological Society Dec 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Physiological Society Dec 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/japplphysiol.00707.2010
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
CrossRef
MEDLINE
Physical Education Index
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1811
ExternalDocumentID 2232034401
20864564
23620023
10_1152_japplphysiol_00707_2010
Genre Comparative Study
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.55
.GJ
18M
1CY
29J
2WC
39C
3O-
4.4
53G
5VS
85S
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
ACPRK
ACYGS
ADBBV
ADFNX
ADXHL
AEILP
AENEX
AETEA
AFOSN
AFRAH
AGCDD
AGNAY
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
C2-
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
J5H
KQ8
L7B
MVM
NEJ
OHT
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7M
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c401t-b5f5fa8632f5240ecaca39f0dff59e723528ee78bfabd50e6fb8bf51211b32ed3
ISSN 8750-7587
1522-1601
IngestDate Thu Sep 04 23:23:50 EDT 2025
Fri Sep 05 07:24:50 EDT 2025
Mon Jun 30 08:31:17 EDT 2025
Mon Jul 21 06:05:35 EDT 2025
Mon Jul 21 09:16:27 EDT 2025
Tue Jul 01 01:13:32 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Physical exercise
magnetic resonance imaging
Vibration
Lumbar spine
countermeasures
Space flight
Bed rest
Nuclear magnetic resonance imaging
spaceflight
Vertebrata
Mammalia
Microgravity
Intervertebral disk
Prolonged
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-b5f5fa8632f5240ecaca39f0dff59e723528ee78bfabd50e6fb8bf51211b32ed3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Undefined-3
PMID 20864564
PQID 822733965
PQPubID 40905
PageCount 11
ParticipantIDs proquest_miscellaneous_872126386
proquest_miscellaneous_821191469
proquest_journals_822733965
pubmed_primary_20864564
pascalfrancis_primary_23620023
crossref_citationtrail_10_1152_japplphysiol_00707_2010
crossref_primary_10_1152_japplphysiol_00707_2010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2010
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
Nicogossian AE (B30) 1982
B42
B43
B22
B44
B23
B45
B24
Hutchinson KJ (B21) 1995; 66
B25
B47
B26
B28
B29
Belavý DL (B11) 2009; 9
Bogduk N (B13) 1997
Le Blanc A (B27) 1995; 66
Belavý DL (B8) 2010
Roelants M (B36) 2006; 20
B31
B10
B32
B33
B34
B35
Wing PC (B46) 1991; 22
B14
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
Belavý DL (B7) 2010
B5
B6
Belavý DL (B9) 2010; 10
Berry P (B12) 1993; 64
B40
B41
References_xml – ident: B17
  doi: 10.1136/ard.37.4.378
– ident: B24
  doi: 10.1359/jbmr.080315
– ident: B25
  doi: 10.1111/j.1748-1716.2006.01642.x
– ident: B22
  doi: 10.3357/ASEM.2427.2010
– ident: B28
  doi: 10.1152/jappl.1992.73.5.2172
– ident: B4
  doi: 10.1007/s00421-004-1172-8
– ident: B38
  doi: 10.1007/BF00253639
– ident: B40
  doi: 10.1097/01.brs.0000146050.57722.2a
– ident: B42
  doi: 10.1016/0094-5765(94)90114-7
– volume: 66
  start-page: 256
  year: 1995
  ident: B21
  publication-title: Aviat Space Environ Med
– ident: B47
  doi: 10.1007/s00421-008-0899-z
– ident: B14
  doi: 10.1152/japplphysiol.01400.2004
– ident: B3
  doi: 10.1111/j.1365-201X.2004.01293.x
– volume: 64
  start-page: 212
  year: 1993
  ident: B12
  publication-title: Aviat Space Environ Med
– year: 2010
  ident: B8
  publication-title: Osteoporos Int
– ident: B23
  doi: 10.1007/BF01676574
– year: 2010
  ident: B7
  publication-title: Spine (Phila Pa 1976)
– ident: B35
  doi: 10.1016/j.bone.2004.11.014
– ident: B10
  doi: 10.1097/BRS.0b013e3181657f98
– ident: B33
  doi: 10.1152/japplphysiol.00894.2002
– ident: B37
– volume: 9
  start-page: 225
  year: 2009
  ident: B11
  publication-title: J Musculoskelet Neuronal Interact
– start-page: 240
  volume-title: Space Physiology and Medicine
  year: 1982
  ident: B30
– ident: B39
  doi: 10.1097/01.BRS.0000102682.61791.C9
– volume: 10
  start-page: 207
  year: 2010
  ident: B9
  publication-title: J Musculoskelet Neuronal Interact
– ident: B43
  doi: 10.1016/S0021-9290(03)00290-2
– ident: B29
  doi: 10.1152/japplphysiol.00541.2006
– ident: B15
  doi: 10.1097/BRS.0b013e3181908ead
– ident: B6
  doi: 10.1016/j.spinee.2010.01.004
– ident: B1
  doi: 10.1007/s004210050648
– ident: B20
  doi: 10.1016/j.jbiomech.2008.02.002
– ident: B18
  doi: 10.1097/BRS.0b013e318074c386
– ident: B2
  doi: 10.1016/j.actaastro.2006.10.006
– ident: B32
  doi: 10.1007/978-1-4419-0318-1
– volume: 66
  start-page: 1151
  year: 1995
  ident: B27
  publication-title: Aviat Space Environ Med
– ident: B41
  doi: 10.1152/japplphysiol.00741.2003
– ident: B5
  doi: 10.1093/ajcn/36.5.936
– volume-title: Clinical Anatomy of the Lumbar Spine and Sacrum
  year: 1997
  ident: B13
– volume: 22
  start-page: 255
  year: 1991
  ident: B46
  publication-title: Orthop Clin North Am
  doi: 10.1016/S0030-5898(20)31651-5
– ident: B34
  doi: 10.1055/s-2005-872903
– ident: B16
  doi: 10.1002/mus.21330
– ident: B31
  doi: 10.1097/00002517-199212000-00001
– ident: B26
  doi: 10.1152/jappl.2000.89.6.2158
– ident: B19
  doi: 10.1016/j.spinee.2009.02.009
– ident: B44
  doi: 10.1097/BRS.0b013e318158cb61
– volume: 20
  start-page: 124
  year: 2006
  ident: B36
  publication-title: J Strength Cond Res
– ident: B45
  doi: 10.1359/JBMR.040811
SSID ssj0014451
Score 2.2839382
Snippet To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1801
SubjectTerms Adult
Analysis of Variance
Back pain
Bed Rest - adverse effects
Biological and medical sciences
Chi-Square Distribution
Exercise
Fundamental and applied biological sciences. Psychology
Head-Down Tilt
Humans
Impact analysis
Intervertebral Disc - pathology
Intervertebral Disc - physiopathology
Linear Models
Low back pain
Low Back Pain - etiology
Low Back Pain - pathology
Low Back Pain - physiopathology
Low Back Pain - prevention & control
Lumbar Vertebrae
Magnetic Resonance Imaging
Male
Muscle, Skeletal - pathology
Muscle, Skeletal - physiopathology
Muscles
Muscular Atrophy - etiology
Muscular Atrophy - pathology
Muscular Atrophy - physiopathology
Muscular Atrophy - therapy
NMR
Nuclear magnetic resonance
Pain Measurement
Resistance Training
Space Flight
Spinal cord
Spine
Spine - pathology
Spine - physiopathology
Surveys and Questionnaires
Time Factors
Treatment Outcome
Vibration
Vibration - therapeutic use
Weightlessness Countermeasures
Weightlessness Simulation - adverse effects
Title Countermeasures against lumbar spine deconditioning in prolonged bed rest: resistive exercise with and without whole body vibration
URI https://www.ncbi.nlm.nih.gov/pubmed/20864564
https://www.proquest.com/docview/822733965
https://www.proquest.com/docview/821191469
https://www.proquest.com/docview/872126386
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBASQrDBKIPJD4iXKiNN4sThbYN9CG2Dh1bqW-Qk9lSppFWTFpVX_hz-Se4cx03ZxoCX1HHz0eb38-XufHcm5E2QRpL5rnRUHgROEEjpcK6YE_PMjXkay0yga-DiMjwbBp9GbNTp_GxFLS2q9CD7fmNeyf-gCn2AK2bJ_gOy9qLQAW3AF7aAMGz_CmNMKEfRWvv5yp64Aju_rHogcFIx75UzVCFzNHnzceN4HeuYrMm0uELdU2LySqndg_CJ430p7TJM68Q3bGAA8zdcTbeXTvNVb4l2tkX1unorjHqrXSd1oSesCRVz1nI-HMmJWOJc_dHHdb5777zFQrTYa-_BqUjnmA1vI4ZEna4ynCg7a7SRRKZjWVaF8dYaz8ZGlIgRxmAo90PTJW_oayS4G7eo2pbHfV4fef1FwTy9QAE8C_McDnTlIx3st343NvEAl5-Tk-H5eTI4Hg3ukfteFOmYgNORjSfqY6U3XZzX_EATTAj77265zYYq9GgmShiVql5O5XZ7R-s9gyfksUGUHtbse0o6stgmO4eFqKZfV_Qt_WLx3SYPLkykxg758Rs3qeEmrblJNTfpJjfpuKCWmxS4SZGb76llJm2YSZGQFJhJDTOpZiZFZlLLzGdkeHI8-HDmmAU_nAzM_MpJmWJK8ND3FANNE-QESIpYublSLJaRh5WIpIx4qkSaM1eGKoU2wyqFqe_J3H9OtoppIV8Qmvv9gOVRrJTiYJPkgvMsiwMucwkGgB92Sdg8-yQz1fBxUZZJoq1i5iVt0BINWoKgdYlrT5zVBWHuPmV_A1x7ngfaIyrNXbLXoJ0Y8VImoLlHvh-HrEuo_RZkP07oiUJOF3iILs8Yxn84JALdFN6x8Id3axqt7-7yEItJvbz7-nvk4XqAviJb1XwhX4MyXqX7ehD8Aqg26Zg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Countermeasures+against+lumbar+spine+deconditioning+in+prolonged+bed+rest%3A+resistive+exercise+with+and+without+whole+body+vibration&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Belav%C3%BD%2C+Daniel+L&rft.au=Armbrecht%2C+Gabriele&rft.au=Gast%2C+Ulf&rft.au=Richardson%2C+Carolyn+A&rft.date=2010-12-01&rft.issn=1522-1601&rft.eissn=1522-1601&rft.volume=109&rft.issue=6&rft.spage=1801&rft_id=info:doi/10.1152%2Fjapplphysiol.00707.2010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon