Countermeasures against lumbar spine deconditioning in prolonged bed rest: resistive exercise with and without whole body vibration
To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed res...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 109; no. 6; pp. 1801 - 1811 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
American Physiological Society
01.12.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 8750-7587 1522-1601 1522-1601 |
DOI | 10.1152/japplphysiol.00707.2010 |
Cover
Loading…
Abstract | To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise ( n = 7), resistive exercise only ( n = 8), or no exercise ( n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups ( P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only ( P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen ( P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required. |
---|---|
AbstractList | To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required. To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required. [PUBLICATION ABSTRACT] To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise ( n = 7), resistive exercise only ( n = 8), or no exercise ( n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups ( P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only ( P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen ( P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required. To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P less than or equal to 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P greater than or equal to 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required. |
Author | Armbrecht, Gabriele Hides, Julie A. Felsenberg, Dieter Richardson, Carolyn A. Belavý, Daniel L. Gast, Ulf |
Author_xml | – sequence: 1 givenname: Daniel L. surname: Belavý fullname: Belavý, Daniel L. organization: Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Berlin, Germany; and – sequence: 2 givenname: Gabriele surname: Armbrecht fullname: Armbrecht, Gabriele organization: Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Berlin, Germany; and – sequence: 3 givenname: Ulf surname: Gast fullname: Gast, Ulf organization: Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Berlin, Germany; and – sequence: 4 givenname: Carolyn A. surname: Richardson fullname: Richardson, Carolyn A. organization: School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane; and – sequence: 5 givenname: Julie A. surname: Hides fullname: Hides, Julie A. organization: School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane; and, Mater/UQ Back Stability Clinic, Mater Health Services Brisbane Limited, South Brisbane, Queensland, Australia – sequence: 6 givenname: Dieter surname: Felsenberg fullname: Felsenberg, Dieter organization: Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Berlin, Germany; and |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23620023$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20864564$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhi1URNPCXwALCXHa4I_1eoPEAUV8SZW4wNmyd8eJI6-92LstOfeP10lTgXrpwfZIft6Z8fi9QGchBkDoDSVLSgX7sNPj6MftPrvol4RIIpeMUPIMLcotq2hD6BlatFKQSopWnqOLnHeE0LoW9AU6Z6RtatHUC3S7jnOYIA2g85wgY73RLuQJ-3kwOuE8ugC4hy6G3k0uBhc22AU8puhj2ECPTVlFOH087C5P7how_IXUuQz4xk1brEN_DOI84Ztt9IBN7Pf42pmkDylfoudW-wyvTucl-v31y6_19-rq57cf689XVVcTOlVGWGF123BmBasJdLrTfGVJb61YgWRcsBZAtsZq0wsCjTUlFpRRajiDnl-i9_d5S_N_5tKyGlzuwHsdIM5ZtZJR1vBS4Umy5FzRulkV8u0jchfnFMozCsQk56tGFOj1CZrNAL0akxt02quHbyjAuxOgc6e9TTqU8f3jeMMIYbxwn-65LsWcE1jVuek4wylp5xUl6mAP9b891NEe6mCPopeP9A8lnlLeAVRzx1Q |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1016_j_neubiorev_2021_09_055 crossref_primary_10_1007_s40279_015_0444_2 crossref_primary_10_1152_japplphysiol_00611_2012 crossref_primary_10_1249_MSS_0b013e318256b53b crossref_primary_10_1016_j_jelekin_2013_04_007 crossref_primary_10_1007_s00234_020_02423_x crossref_primary_10_1016_j_msksp_2021_102429 crossref_primary_10_1249_MSS_0000000000001096 crossref_primary_10_1007_s00586_015_3917_y crossref_primary_10_1016_j_burns_2015_10_017 crossref_primary_10_1016_j_spinee_2017_07_002 crossref_primary_10_1097_BRS_0000000000001873 crossref_primary_10_1021_acs_jproteome_0c00256 crossref_primary_10_25259_IJPP_2_2021 crossref_primary_10_1016_j_spinee_2021_11_007 crossref_primary_10_1007_s00421_011_2137_3 crossref_primary_10_1016_j_gaitpost_2018_08_033 crossref_primary_10_1371_journal_pone_0182403 crossref_primary_10_1097_MCO_0b013e32834da629 crossref_primary_10_3389_fphys_2019_01046 crossref_primary_10_3390_jfmk7040099 crossref_primary_10_1002_art_39154 crossref_primary_10_1016_j_spinee_2013_02_004 crossref_primary_10_1186_s12891_018_2364_4 crossref_primary_10_3389_fphys_2022_862793 crossref_primary_10_1007_s00421_012_2548_9 crossref_primary_10_1016_j_actaastro_2025_03_029 crossref_primary_10_1038_s41526_017_0013_0 crossref_primary_10_1016_j_clineuro_2021_106755 crossref_primary_10_1016_j_joca_2017_01_004 crossref_primary_10_1177_2192568219879087 crossref_primary_10_1186_s13063_017_1913_8 crossref_primary_10_1152_japplphysiol_00695_2011 crossref_primary_10_1016_j_spinee_2013_01_046 crossref_primary_10_1016_j_actaastro_2011_05_015 crossref_primary_10_1155_2015_309386 crossref_primary_10_1111_eos_12091 crossref_primary_10_1097_BRS_0b013e3182354d84 crossref_primary_10_1002_phy2_135 crossref_primary_10_1007_s00125_017_4298_z crossref_primary_10_12688_f1000research_129719_1 crossref_primary_10_1016_j_bone_2015_12_057 crossref_primary_10_3389_fphys_2020_00812 crossref_primary_10_1210_jc_2017_02267 crossref_primary_10_1007_s00586_015_4221_6 crossref_primary_10_1088_0967_3334_36_3_503 crossref_primary_10_3390_nu4122047 crossref_primary_10_1152_ajpregu_00055_2022 crossref_primary_10_1007_s00774_015_0681_3 crossref_primary_10_1038_s41598_023_46987_z crossref_primary_10_3389_fphys_2017_00279 crossref_primary_10_1007_s00586_015_4311_5 crossref_primary_10_1186_s13018_023_04217_2 crossref_primary_10_1016_j_actaastro_2015_12_007 crossref_primary_10_1097_MD_0000000000012534 crossref_primary_10_1152_japplphysiol_00935_2015 crossref_primary_10_1016_j_actaastro_2018_01_015 crossref_primary_10_1186_s12891_020_03257_7 crossref_primary_10_1002_bem_22150 crossref_primary_10_1016_j_math_2016_10_003 crossref_primary_10_1249_MSS_0000000000001620 crossref_primary_10_1152_japplphysiol_00990_2020 crossref_primary_10_1186_s12891_015_0825_6 crossref_primary_10_1016_j_msksp_2016_12_009 crossref_primary_10_1152_japplphysiol_00125_2020 crossref_primary_10_1152_japplphysiol_00376_2013 |
Cites_doi | 10.1136/ard.37.4.378 10.1359/jbmr.080315 10.1111/j.1748-1716.2006.01642.x 10.3357/ASEM.2427.2010 10.1152/jappl.1992.73.5.2172 10.1007/s00421-004-1172-8 10.1007/BF00253639 10.1097/01.brs.0000146050.57722.2a 10.1016/0094-5765(94)90114-7 10.1007/s00421-008-0899-z 10.1152/japplphysiol.01400.2004 10.1111/j.1365-201X.2004.01293.x 10.1007/BF01676574 10.1016/j.bone.2004.11.014 10.1097/BRS.0b013e3181657f98 10.1152/japplphysiol.00894.2002 10.1097/01.BRS.0000102682.61791.C9 10.1016/S0021-9290(03)00290-2 10.1152/japplphysiol.00541.2006 10.1097/BRS.0b013e3181908ead 10.1016/j.spinee.2010.01.004 10.1007/s004210050648 10.1016/j.jbiomech.2008.02.002 10.1097/BRS.0b013e318074c386 10.1016/j.actaastro.2006.10.006 10.1007/978-1-4419-0318-1 10.1152/japplphysiol.00741.2003 10.1093/ajcn/36.5.936 10.1016/S0030-5898(20)31651-5 10.1055/s-2005-872903 10.1002/mus.21330 10.1097/00002517-199212000-00001 10.1152/jappl.2000.89.6.2158 10.1016/j.spinee.2009.02.009 10.1097/BRS.0b013e318158cb61 10.1359/JBMR.040811 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Physiological Society Dec 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Physiological Society Dec 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
DOI | 10.1152/japplphysiol.00707.2010 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database CrossRef MEDLINE Physical Education Index |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1811 |
ExternalDocumentID | 2232034401 20864564 23620023 10_1152_japplphysiol_00707_2010 |
Genre | Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .55 .GJ 18M 1CY 29J 2WC 39C 3O- 4.4 53G 5VS 85S 8M5 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ABOCM ACBEA ACGFO ACGFS ACIWK ACKIV ACPRK ACYGS ADBBV ADFNX ADXHL AEILP AENEX AETEA AFOSN AFRAH AGCDD AGNAY AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A C2- CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX J5H KQ8 L7B MVM NEJ OHT OK1 P-O P2P P6G PQQKQ RAP RHI RPL RPRKH SJN TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7M XOL XSW YBH YQJ YQT YWH ZXP ~02 IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c401t-b5f5fa8632f5240ecaca39f0dff59e723528ee78bfabd50e6fb8bf51211b32ed3 |
ISSN | 8750-7587 1522-1601 |
IngestDate | Thu Sep 04 23:23:50 EDT 2025 Fri Sep 05 07:24:50 EDT 2025 Mon Jun 30 08:31:17 EDT 2025 Mon Jul 21 06:05:35 EDT 2025 Mon Jul 21 09:16:27 EDT 2025 Tue Jul 01 01:13:32 EDT 2025 Thu Apr 24 23:02:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Physical exercise magnetic resonance imaging Vibration Lumbar spine countermeasures Space flight Bed rest Nuclear magnetic resonance imaging spaceflight Vertebrata Mammalia Microgravity Intervertebral disk Prolonged |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c401t-b5f5fa8632f5240ecaca39f0dff59e723528ee78bfabd50e6fb8bf51211b32ed3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Undefined-3 |
PMID | 20864564 |
PQID | 822733965 |
PQPubID | 40905 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_872126386 proquest_miscellaneous_821191469 proquest_journals_822733965 pubmed_primary_20864564 pascalfrancis_primary_23620023 crossref_citationtrail_10_1152_japplphysiol_00707_2010 crossref_primary_10_1152_japplphysiol_00707_2010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2010 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 Nicogossian AE (B30) 1982 B42 B43 B22 B44 B23 B45 B24 Hutchinson KJ (B21) 1995; 66 B25 B47 B26 B28 B29 Belavý DL (B11) 2009; 9 Bogduk N (B13) 1997 Le Blanc A (B27) 1995; 66 Belavý DL (B8) 2010 Roelants M (B36) 2006; 20 B31 B10 B32 B33 B34 B35 Wing PC (B46) 1991; 22 B14 B15 B37 B16 B38 B17 B39 B18 B19 B1 B2 B3 B4 Belavý DL (B7) 2010 B5 B6 Belavý DL (B9) 2010; 10 Berry P (B12) 1993; 64 B40 B41 |
References_xml | – ident: B17 doi: 10.1136/ard.37.4.378 – ident: B24 doi: 10.1359/jbmr.080315 – ident: B25 doi: 10.1111/j.1748-1716.2006.01642.x – ident: B22 doi: 10.3357/ASEM.2427.2010 – ident: B28 doi: 10.1152/jappl.1992.73.5.2172 – ident: B4 doi: 10.1007/s00421-004-1172-8 – ident: B38 doi: 10.1007/BF00253639 – ident: B40 doi: 10.1097/01.brs.0000146050.57722.2a – ident: B42 doi: 10.1016/0094-5765(94)90114-7 – volume: 66 start-page: 256 year: 1995 ident: B21 publication-title: Aviat Space Environ Med – ident: B47 doi: 10.1007/s00421-008-0899-z – ident: B14 doi: 10.1152/japplphysiol.01400.2004 – ident: B3 doi: 10.1111/j.1365-201X.2004.01293.x – volume: 64 start-page: 212 year: 1993 ident: B12 publication-title: Aviat Space Environ Med – year: 2010 ident: B8 publication-title: Osteoporos Int – ident: B23 doi: 10.1007/BF01676574 – year: 2010 ident: B7 publication-title: Spine (Phila Pa 1976) – ident: B35 doi: 10.1016/j.bone.2004.11.014 – ident: B10 doi: 10.1097/BRS.0b013e3181657f98 – ident: B33 doi: 10.1152/japplphysiol.00894.2002 – ident: B37 – volume: 9 start-page: 225 year: 2009 ident: B11 publication-title: J Musculoskelet Neuronal Interact – start-page: 240 volume-title: Space Physiology and Medicine year: 1982 ident: B30 – ident: B39 doi: 10.1097/01.BRS.0000102682.61791.C9 – volume: 10 start-page: 207 year: 2010 ident: B9 publication-title: J Musculoskelet Neuronal Interact – ident: B43 doi: 10.1016/S0021-9290(03)00290-2 – ident: B29 doi: 10.1152/japplphysiol.00541.2006 – ident: B15 doi: 10.1097/BRS.0b013e3181908ead – ident: B6 doi: 10.1016/j.spinee.2010.01.004 – ident: B1 doi: 10.1007/s004210050648 – ident: B20 doi: 10.1016/j.jbiomech.2008.02.002 – ident: B18 doi: 10.1097/BRS.0b013e318074c386 – ident: B2 doi: 10.1016/j.actaastro.2006.10.006 – ident: B32 doi: 10.1007/978-1-4419-0318-1 – volume: 66 start-page: 1151 year: 1995 ident: B27 publication-title: Aviat Space Environ Med – ident: B41 doi: 10.1152/japplphysiol.00741.2003 – ident: B5 doi: 10.1093/ajcn/36.5.936 – volume-title: Clinical Anatomy of the Lumbar Spine and Sacrum year: 1997 ident: B13 – volume: 22 start-page: 255 year: 1991 ident: B46 publication-title: Orthop Clin North Am doi: 10.1016/S0030-5898(20)31651-5 – ident: B34 doi: 10.1055/s-2005-872903 – ident: B16 doi: 10.1002/mus.21330 – ident: B31 doi: 10.1097/00002517-199212000-00001 – ident: B26 doi: 10.1152/jappl.2000.89.6.2158 – ident: B19 doi: 10.1016/j.spinee.2009.02.009 – ident: B44 doi: 10.1097/BRS.0b013e318158cb61 – volume: 20 start-page: 124 year: 2006 ident: B36 publication-title: J Strength Cond Res – ident: B45 doi: 10.1359/JBMR.040811 |
SSID | ssj0014451 |
Score | 2.2839382 |
Snippet | To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1801 |
SubjectTerms | Adult Analysis of Variance Back pain Bed Rest - adverse effects Biological and medical sciences Chi-Square Distribution Exercise Fundamental and applied biological sciences. Psychology Head-Down Tilt Humans Impact analysis Intervertebral Disc - pathology Intervertebral Disc - physiopathology Linear Models Low back pain Low Back Pain - etiology Low Back Pain - pathology Low Back Pain - physiopathology Low Back Pain - prevention & control Lumbar Vertebrae Magnetic Resonance Imaging Male Muscle, Skeletal - pathology Muscle, Skeletal - physiopathology Muscles Muscular Atrophy - etiology Muscular Atrophy - pathology Muscular Atrophy - physiopathology Muscular Atrophy - therapy NMR Nuclear magnetic resonance Pain Measurement Resistance Training Space Flight Spinal cord Spine Spine - pathology Spine - physiopathology Surveys and Questionnaires Time Factors Treatment Outcome Vibration Vibration - therapeutic use Weightlessness Countermeasures Weightlessness Simulation - adverse effects |
Title | Countermeasures against lumbar spine deconditioning in prolonged bed rest: resistive exercise with and without whole body vibration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20864564 https://www.proquest.com/docview/822733965 https://www.proquest.com/docview/821191469 https://www.proquest.com/docview/872126386 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBASQrDBKIPJD4iXKiNN4sThbYN9CG2Dh1bqW-Qk9lSppFWTFpVX_hz-Se4cx03ZxoCX1HHz0eb38-XufHcm5E2QRpL5rnRUHgROEEjpcK6YE_PMjXkay0yga-DiMjwbBp9GbNTp_GxFLS2q9CD7fmNeyf-gCn2AK2bJ_gOy9qLQAW3AF7aAMGz_CmNMKEfRWvv5yp64Aju_rHogcFIx75UzVCFzNHnzceN4HeuYrMm0uELdU2LySqndg_CJ430p7TJM68Q3bGAA8zdcTbeXTvNVb4l2tkX1unorjHqrXSd1oSesCRVz1nI-HMmJWOJc_dHHdb5777zFQrTYa-_BqUjnmA1vI4ZEna4ynCg7a7SRRKZjWVaF8dYaz8ZGlIgRxmAo90PTJW_oayS4G7eo2pbHfV4fef1FwTy9QAE8C_McDnTlIx3st343NvEAl5-Tk-H5eTI4Hg3ukfteFOmYgNORjSfqY6U3XZzX_EATTAj77265zYYq9GgmShiVql5O5XZ7R-s9gyfksUGUHtbse0o6stgmO4eFqKZfV_Qt_WLx3SYPLkykxg758Rs3qeEmrblJNTfpJjfpuKCWmxS4SZGb76llJm2YSZGQFJhJDTOpZiZFZlLLzGdkeHI8-HDmmAU_nAzM_MpJmWJK8ND3FANNE-QESIpYublSLJaRh5WIpIx4qkSaM1eGKoU2wyqFqe_J3H9OtoppIV8Qmvv9gOVRrJTiYJPkgvMsiwMucwkGgB92Sdg8-yQz1fBxUZZJoq1i5iVt0BINWoKgdYlrT5zVBWHuPmV_A1x7ngfaIyrNXbLXoJ0Y8VImoLlHvh-HrEuo_RZkP07oiUJOF3iILs8Yxn84JALdFN6x8Id3axqt7-7yEItJvbz7-nvk4XqAviJb1XwhX4MyXqX7ehD8Aqg26Zg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Countermeasures+against+lumbar+spine+deconditioning+in+prolonged+bed+rest%3A+resistive+exercise+with+and+without+whole+body+vibration&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Belav%C3%BD%2C+Daniel+L&rft.au=Armbrecht%2C+Gabriele&rft.au=Gast%2C+Ulf&rft.au=Richardson%2C+Carolyn+A&rft.date=2010-12-01&rft.issn=1522-1601&rft.eissn=1522-1601&rft.volume=109&rft.issue=6&rft.spage=1801&rft_id=info:doi/10.1152%2Fjapplphysiol.00707.2010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |