Classification of olive cultivars by machine learning based on olive oil chemical composition

•Classification of olive cultivars by machine learning based on olive oil chemical composition.•Olive oil chemical characteristics of Greek and Italian cultivars were studied.•Exploratory data analysis was used to reveal discriminative patterns.•The XGBoost algorithm was used for olive cultivar and...

Full description

Saved in:
Bibliographic Details
Published inFood chemistry Vol. 429; p. 136793
Main Authors Skiada, Vasiliki, Katsaris, Panagiotis, Kambouris, Manousos E., Gkisakis, Vasileios, Manoussopoulos, Yiannis
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Classification of olive cultivars by machine learning based on olive oil chemical composition.•Olive oil chemical characteristics of Greek and Italian cultivars were studied.•Exploratory data analysis was used to reveal discriminative patterns.•The XGBoost algorithm was used for olive cultivar and geographic classification.•Olive Cultivars and country of origin were predicted with high accuracy. Extra virgin olive oil traceability and authenticity are important quality indicators, and are currently the subject of exhaustive research, for developing methods to secure olive oil origin-related issues. The aim of this study was the development of a classification model capable of olive cultivar identification based on olive oil chemical composition. To achieve our aim, 385 samples of two Greek and three Italian olive cultivars were collected during two successive crop years from different locations in the coastline part of western Greece and southern Italy and analyzed for their chemical characteristics. Principal Component Analysis showed trends of differentiation among olive cultivars within or between the crop years. Artificial intelligence model of the XGBoost machine learning algorithm showed high performance in classifying the five olive cultivars from the pooled samples.
AbstractList Extra virgin olive oil traceability and authenticity are important quality indicators, and are currently the subject of exhaustive research, for developing methods to secure olive oil origin-related issues. The aim of this study was the development of a classification model capable of olive cultivar identification based on olive oil chemical composition. To achieve our aim, 385 samples of two Greek and three Italian olive cultivars were collected during two successive crop years from different locations in the coastline part of western Greece and southern Italy and analyzed for their chemical characteristics. Principal Component Analysis showed trends of differentiation among olive cultivars within or between the crop years. Artificial intelligence model of the XGBoost machine learning algorithm showed high performance in classifying the five olive cultivars from the pooled samples.Extra virgin olive oil traceability and authenticity are important quality indicators, and are currently the subject of exhaustive research, for developing methods to secure olive oil origin-related issues. The aim of this study was the development of a classification model capable of olive cultivar identification based on olive oil chemical composition. To achieve our aim, 385 samples of two Greek and three Italian olive cultivars were collected during two successive crop years from different locations in the coastline part of western Greece and southern Italy and analyzed for their chemical characteristics. Principal Component Analysis showed trends of differentiation among olive cultivars within or between the crop years. Artificial intelligence model of the XGBoost machine learning algorithm showed high performance in classifying the five olive cultivars from the pooled samples.
Extra virgin olive oil traceability and authenticity are important quality indicators, and are currently the subject of exhaustive research, for developing methods to secure olive oil origin-related issues. The aim of this study was the development of a classification model capable of olive cultivar identification based on olive oil chemical composition. To achieve our aim, 385 samples of two Greek and three Italian olive cultivars were collected during two successive crop years from different locations in the coastline part of western Greece and southern Italy and analyzed for their chemical characteristics. Principal Component Analysis showed trends of differentiation among olive cultivars within or between the crop years. Artificial intelligence model of the XGBoost machine learning algorithm showed high performance in classifying the five olive cultivars from the pooled samples.
•Classification of olive cultivars by machine learning based on olive oil chemical composition.•Olive oil chemical characteristics of Greek and Italian cultivars were studied.•Exploratory data analysis was used to reveal discriminative patterns.•The XGBoost algorithm was used for olive cultivar and geographic classification.•Olive Cultivars and country of origin were predicted with high accuracy. Extra virgin olive oil traceability and authenticity are important quality indicators, and are currently the subject of exhaustive research, for developing methods to secure olive oil origin-related issues. The aim of this study was the development of a classification model capable of olive cultivar identification based on olive oil chemical composition. To achieve our aim, 385 samples of two Greek and three Italian olive cultivars were collected during two successive crop years from different locations in the coastline part of western Greece and southern Italy and analyzed for their chemical characteristics. Principal Component Analysis showed trends of differentiation among olive cultivars within or between the crop years. Artificial intelligence model of the XGBoost machine learning algorithm showed high performance in classifying the five olive cultivars from the pooled samples.
ArticleNumber 136793
Author Gkisakis, Vasileios
Katsaris, Panagiotis
Skiada, Vasiliki
Kambouris, Manousos E.
Manoussopoulos, Yiannis
Author_xml – sequence: 1
  givenname: Vasiliki
  surname: Skiada
  fullname: Skiada, Vasiliki
  organization: Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization-DEMETER, 24100 Kalamata, Greece
– sequence: 2
  givenname: Panagiotis
  surname: Katsaris
  fullname: Katsaris, Panagiotis
  organization: Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization-DEMETER, 24100 Kalamata, Greece
– sequence: 3
  givenname: Manousos E.
  surname: Kambouris
  fullname: Kambouris, Manousos E.
  organization: Department of Pharmacy, University of Patras, Rio Patras 26504 Patras, Greece
– sequence: 4
  givenname: Vasileios
  surname: Gkisakis
  fullname: Gkisakis, Vasileios
  organization: Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization-DEMETER, 24100 Kalamata, Greece
– sequence: 5
  givenname: Yiannis
  surname: Manoussopoulos
  fullname: Manoussopoulos, Yiannis
  email: inminz@gmail.com
  organization: Plant Protection Division of Patras, Hellenic Agricultural Organization – DEMETER, N.E.O & Amerikis, 264 42 Patras, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37535989$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vGyEQxVGVqnHSfoWIYy_rDguGReqhlZX-kSL10h4rxMLQYLGLC2tL-fbdjeNLLz4xh997w7x3Q67GPCIhdwzWDJj8sFuHnL17xGHdQsvXjEul-SuyYp3ijQLVXpEVcOiajgl5TW5q3QFAC6x7Q6652vCN7vSK_N4mW2sM0dkp5pHmQHOKR6TukKZ4tKXS_okO1j3GEWlCW8Y4_qG9rejpwj_DOSa6_GV2mYc87HONi91b8jrYVPHdy3tLfn25_7n91jz8-Pp9-_mhcQLY1PRciACWeeXB9XojZQhWgugQlLYuoPMt672XXPFNLxACcKG0tkp67aDnt-T9yXdf8t8D1skMsTpMyY6YD9Xwdj5dcya6i2jbCTmTjIkZvXtBD_2A3uxLHGx5Muf0ZuDjCXAl11owGBen5xynYmMyDMxSltmZc1lmKcucyprl8j_5ecNF4aeTEOdMjxGLqS7i6NDHgm4yPsdLFv8AyPqzCQ
CitedBy_id crossref_primary_10_1016_j_jfp_2024_100251
crossref_primary_10_1002_ejlt_202400126
crossref_primary_10_1016_j_foodchem_2024_138758
crossref_primary_10_1111_joss_70001
crossref_primary_10_1002_aocs_12818
crossref_primary_10_1021_acsfoodscitech_4c00376
crossref_primary_10_1016_j_tifs_2023_104286
Cites_doi 10.1016/j.foodcont.2022.108939
10.1016/j.foodres.2018.02.010
10.1016/j.chemolab.2003.12.007
10.3390/s22249651
10.3389/fchem.2019.00929
10.1016/j.tifs.2019.02.025
10.1016/j.lwt.2017.07.050
10.3390/horticulturae7110493
10.1016/j.talanta.2016.08.033
10.1111/1541-4337.12949
10.1080/10408398.2018.1433628
10.1016/j.talanta.2018.11.033
10.21105/joss.01686
10.1016/j.foodres.2019.03.063
10.1016/j.foodchem.2018.04.019
10.17660/ActaHortic.2008.791.106
10.1016/j.foodchem.2021.130633
10.1021/jf070523r
10.1002/jsfa.7616
10.1002/ejlt.201500293
10.1002/ejlt.200900015
10.21105/joss.03139
10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C
10.1111/ijfs.12245
10.1021/jf049894n
10.1016/j.foodchem.2022.133945
10.1016/j.foodchem.2016.09.041
10.1016/j.foodchem.2022.134543
10.1016/j.foodcont.2021.108318
10.1016/j.foodchem.2012.08.005
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2023.136793
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 37535989
10_1016_j_foodchem_2023_136793
S0308814623014115
Genre Journal Article
GeographicLocations Greece
Italy
GeographicLocations_xml – name: Greece
– name: Italy
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
AALCJ
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
RIG
SCB
SEW
SSH
VH1
WUQ
Y6R
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-b344f0a1d7d0cb9566ffa6048e079acfecd21bdd63735b4e0f034799a76d9c0b3
IEDL.DBID .~1
ISSN 0308-8146
1873-7072
IngestDate Wed Jul 02 04:56:12 EDT 2025
Tue Aug 05 10:22:01 EDT 2025
Mon Jul 21 05:57:03 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Tue Jul 01 01:33:09 EDT 2025
Sat Jan 18 16:10:23 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Authenticity
Cultivar classification
Artificial intelligent models
Chemical composition
Olive oil
Machine learning
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-b344f0a1d7d0cb9566ffa6048e079acfecd21bdd63735b4e0f034799a76d9c0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37535989
PQID 2846931114
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3200293148
proquest_miscellaneous_2846931114
pubmed_primary_37535989
crossref_citationtrail_10_1016_j_foodchem_2023_136793
crossref_primary_10_1016_j_foodchem_2023_136793
elsevier_sciencedirect_doi_10_1016_j_foodchem_2023_136793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Di Bella, Maisano, La Pera, Lo Turco, Salvo, Dugo (b0035) 2007; 55
Jiménez-Carvelo, Cruz, Olivieri, González-Casado, Cuadros-Rodríguez (b0050) 2019; 195
Wickham, Averick, Bryan, Chang, D’Agostino McGowan, Francois, Yutani (b0190) 2019; 4
Lukić, Lukić, Moslavac (b0100) 2021; 7
Chen, Guestrin (b0020) 2016; 11
Kassambara, A., & Mundt, F. (2020).
https://CRAN.R-project.org/package=caret.
Vega-Márquez, Nepomuceno-Chamorro, Jurado-Campos, Rubio-Escudero (b0185) 2019; 7
Piironen, Lindsay, Miettinen, Toivo, Lampi (b0115) 2000; 80
https://CRAN.R-project.org/package=factoextra.
García-González, Luna, Morales, Aparicio (b0040) 2009; 111
Jiménez-Carvelo, Osorio, Koidis, González-Casado, Cuadros-Rodríguez (b0060) 2017; 86
Marini, Balestrieri, Bucci, Magrı̀, Magrı̀, Marini (b0105) 2004; 73
R Core Team (2021).
Conte, Bendini, Valli, Lucci, Moret, Maquet, Gallina Toschi (b0025) 2020; 105
Aroca-Santos, Cancilla, Pariente, Torrecilla (b0005) 2016; 161
Tahir, Arslan, Komla Mahunu, Adam Mariod, B H Hashim, Xiaobo, Jiyong, El-Seedi, Musa (b0165) 2022; 366
Binetti, Del Coco, Ragone, Zelasco, Perri, Montemurro, Schena (b0015) 2017; 219
Rodrigues, N., Ferreiro, N., Veloso, A. C. A., Pereira, J. A., & Peres, A. M. (2022). An Electronic Nose as a Non-Destructive Analytical Tool to Identify the Geographical Origin of Portuguese Olive Oils from Two Adjacent Regions.
https://CRAN.R-project.org/package=openxlsx.
Covas, Fitó, de La Torre (b0030) 2015
Ludecke, Ben-Shachar, Patil, Waggoner, Makowski (b0090) 2021; 6
Lozano-Castellón, López-Yerena, Domínguez-López, Siscart-Serra, Fraga, Sámano, Pérez (b0085) 2022; 21
Schauberger, P., & Walker, A. (2021).
Stefas, Gyftokostas, Kourelias, Nanou, Kokkinos, Bouras, Couris (b0160) 2021; 130
Jiménez-Carvelo, González-Casado, Bagur-González, Cuadros-Rodríguez (b0055) 2019; 122
Senizza, Ganugi, Trevisan, Lucini (b0155) 2023; 404
Ranalli, Lucera, Contento, Fontanazza, Patumi (b0125) 2008
,
Gonzalez-Fernandez, Iglesias-Otero, Esteki, Moldes, Mejuto, Simal-Gandara (b0045) 2019; 59
Tang, Polari, Green, Wang, Hatzakis (b0170) 2022; 137
Mohamed, Rocchetti, Montesano, Ali, Guasmi, Grati-Kamoun, Lucini (b0110) 2018; 106
.
Lukić, Lukić, Krapac, Sladonja, Piližota (b0095) 2013; 136
Beltrán, Del Rio, Sánchez, Martínez (b0010) 2004; 52
Lenth, R. V. (2021).
Torrecilla, Cancilla, Matute, Díaz-Rodríguez (b0180) 2013; 48
Kuhn, M. (2020).
Rodrigues, Peres, Casal, Santamaria-Echart, Barreiro, Peres, Alberto Pereira (b0135) 2023; 398
Vienna, Austria. https://www.R-project.org/.
Kyçyk, Aguilera, Gaforio, Jiménez, Beltrán (b0080) 2016; 96
Sayago, González-Domínguez, Beltrán, Fernández-Recamales (b0145) 2018; 261
Kosma, Badeka, Vatavali, Kontakos, Kontominas (b0070) 2016; 118
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., & Li, Y. (2021).
Ranalli (10.1016/j.foodchem.2023.136793_b0125) 2008
Senizza (10.1016/j.foodchem.2023.136793_b0155) 2023; 404
Covas (10.1016/j.foodchem.2023.136793_b0030) 2015
Tahir (10.1016/j.foodchem.2023.136793_b0165) 2022; 366
Conte (10.1016/j.foodchem.2023.136793_b0025) 2020; 105
Wickham (10.1016/j.foodchem.2023.136793_b0190) 2019; 4
10.1016/j.foodchem.2023.136793_b0140
10.1016/j.foodchem.2023.136793_b0065
10.1016/j.foodchem.2023.136793_b0120
Rodrigues (10.1016/j.foodchem.2023.136793_b0135) 2023; 398
Mohamed (10.1016/j.foodchem.2023.136793_b0110) 2018; 106
García-González (10.1016/j.foodchem.2023.136793_b0040) 2009; 111
Stefas (10.1016/j.foodchem.2023.136793_b0160) 2021; 130
Vega-Márquez (10.1016/j.foodchem.2023.136793_b0185) 2019; 7
Binetti (10.1016/j.foodchem.2023.136793_b0015) 2017; 219
Marini (10.1016/j.foodchem.2023.136793_b0105) 2004; 73
Torrecilla (10.1016/j.foodchem.2023.136793_b0180) 2013; 48
Beltrán (10.1016/j.foodchem.2023.136793_b0010) 2004; 52
Piironen (10.1016/j.foodchem.2023.136793_b0115) 2000; 80
Ludecke (10.1016/j.foodchem.2023.136793_b0090) 2021; 6
Chen (10.1016/j.foodchem.2023.136793_b0020) 2016; 11
Lukić (10.1016/j.foodchem.2023.136793_b0095) 2013; 136
Aroca-Santos (10.1016/j.foodchem.2023.136793_b0005) 2016; 161
Jiménez-Carvelo (10.1016/j.foodchem.2023.136793_b0050) 2019; 195
Jiménez-Carvelo (10.1016/j.foodchem.2023.136793_b0060) 2017; 86
Sayago (10.1016/j.foodchem.2023.136793_b0145) 2018; 261
Di Bella (10.1016/j.foodchem.2023.136793_b0035) 2007; 55
Lukić (10.1016/j.foodchem.2023.136793_b0100) 2021; 7
Tang (10.1016/j.foodchem.2023.136793_b0170) 2022; 137
Jiménez-Carvelo (10.1016/j.foodchem.2023.136793_b0055) 2019; 122
Lozano-Castellón (10.1016/j.foodchem.2023.136793_b0085) 2022; 21
10.1016/j.foodchem.2023.136793_b0150
10.1016/j.foodchem.2023.136793_b0075
10.1016/j.foodchem.2023.136793_b0130
10.1016/j.foodchem.2023.136793_b0175
Kosma (10.1016/j.foodchem.2023.136793_b0070) 2016; 118
Kyçyk (10.1016/j.foodchem.2023.136793_b0080) 2016; 96
Gonzalez-Fernandez (10.1016/j.foodchem.2023.136793_b0045) 2019; 59
References_xml – reference: Kuhn, M. (2020).
– volume: 21
  start-page: 2639
  year: 2022
  end-page: 2664
  ident: b0085
  article-title: Extra virgin olive oil: A comprehensive review of efforts to ensure its authenticity, traceability, and safety
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 118
  start-page: 849
  year: 2016
  end-page: 861
  ident: b0070
  article-title: Differentiation of Greek extra virgin olive oils according to cultivar based on volatile compound analysis and fatty acid composition
  publication-title: European Journal of Lipid Science and Technology
– reference: . Vienna, Austria. https://www.R-project.org/.
– reference: . https://CRAN.R-project.org/package=caret.
– volume: 6
  start-page: 3139
  year: 2021
  ident: b0090
  article-title: performance: An R package for assessment, comparison and testing of statistical models
  publication-title: Journal of Open Source Software
– reference: ,
– volume: 111
  start-page: 1003
  year: 2009
  end-page: 1013
  ident: b0040
  article-title: Stepwise geographical traceability of virgin olive oils by chemical profiles using artificial neural network models
  publication-title: European Journal of Lipid Science and Technology
– volume: 48
  start-page: 2528
  year: 2013
  end-page: 2534
  ident: b0180
  article-title: Neural network models to classify olive oils within the protected denomination of origin framework
  publication-title: International Journal of Food Science and Technology
– volume: 161
  start-page: 304
  year: 2016
  end-page: 308
  ident: b0005
  article-title: Neural networks applied to characterize blends containing refined and extra virgin olive oils
  publication-title: Talanta
– reference: . https://CRAN.R-project.org/package=openxlsx.
– volume: 59
  start-page: 1913
  year: 2019
  end-page: 1926
  ident: b0045
  article-title: A critical review on the use of artificial neural networks in olive oil production, characterization and authentication
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 136
  start-page: 251
  year: 2013
  end-page: 258
  ident: b0095
  article-title: Sterols and triterpene diols in olive oil as indicators of variety and degree of ripening
  publication-title: Food Chemistry
– start-page: 697
  year: 2008
  end-page: 704
  ident: b0125
  article-title: Assessment of physico-chemical, sensory and nutritional parameters in virgin olive oil from the new genotype Favolosa (FS17)
  publication-title: Acta Horticulturae
– volume: 55
  start-page: 6568
  year: 2007
  end-page: 6574
  ident: b0035
  article-title: Statistical characterization of sicilian olive oils from the Peloritana and Maghrebian zones according to the fatty acid profile
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 86
  start-page: 174
  year: 2017
  end-page: 184
  ident: b0060
  article-title: Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy
  publication-title: LWT
– volume: 7
  start-page: 493
  year: 2021
  ident: b0100
  article-title: Sterols and triterpene diols in virgin olive oil: A comprehensive review on their properties and significance, with a special emphasis on the influence of variety and ripening degree
  publication-title: Horticulturae
– volume: 404
  year: 2023
  ident: b0155
  article-title: Combining untargeted profiling of phenolics and sterols, supervised multivariate class modelling and artificial neural networks for the origin and authenticity of extra-virgin olive oil: A case study on Taggiasca Ligure
  publication-title: Food Chemistry
– volume: 137
  year: 2022
  ident: b0170
  article-title: NMR-based metabolomics for olive oil cultivar classification: A comparison with standard targeted analysis of fatty acids and triglycerides
  publication-title: Food Control
– volume: 366
  year: 2022
  ident: b0165
  article-title: The use of analytical techniques coupled with chemometrics for tracing the geographical origin of oils: A systematic review (2013–2020)
  publication-title: Food Chemistry
– volume: 4
  start-page: 1686
  year: 2019
  ident: b0190
  article-title: Welcome to the tidyverse
  publication-title: Journal of Open Source Software
– reference: Rodrigues, N., Ferreiro, N., Veloso, A. C. A., Pereira, J. A., & Peres, A. M. (2022). An Electronic Nose as a Non-Destructive Analytical Tool to Identify the Geographical Origin of Portuguese Olive Oils from Two Adjacent Regions.
– volume: 261
  start-page: 42
  year: 2018
  end-page: 50
  ident: b0145
  article-title: Combination of complementary data mining methods for geographical characterization of extra virgin olive oils based on mineral composition
  publication-title: Food Chemistry
– reference: R Core Team (2021).
– volume: 122
  start-page: 25
  year: 2019
  end-page: 39
  ident: b0055
  article-title: Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity – A review
  publication-title: Food research international (Ottawa, Ont.)
– volume: 7
  start-page: 929
  year: 2019
  ident: b0185
  article-title: Deep learning techniques to improve the performance of olive oil classification
  publication-title: Frontiers in Chemistry
– volume: 11
  start-page: 785
  year: 2016
  end-page: 794
  ident: b0020
  publication-title: XGBoost
– reference: . https://CRAN.R-project.org/package=factoextra.
– volume: 130
  year: 2021
  ident: b0160
  article-title: Discrimination of olive oils based on the olive cultivar origin by machine learning employing the fusion of emission and absorption spectroscopic data
  publication-title: Food Control
– reference: .
– volume: 105
  start-page: 483
  year: 2020
  end-page: 493
  ident: b0025
  article-title: Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future
  publication-title: Trends in Food Science and Technology
– volume: 52
  start-page: 3434
  year: 2004
  end-page: 3440
  ident: b0010
  article-title: Influence of harvest date and crop yield on the fatty acid composition of virgin olive oils from cv. Picual
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 398
  year: 2023
  ident: b0135
  article-title: Geographical discrimination of olive oils from Cv. 'Galega Vulgar'
  publication-title: Food Chemistry
– volume: 96
  start-page: 4143
  year: 2016
  end-page: 4150
  ident: b0080
  article-title: Sterol composition of virgin olive oil of forty-three olive cultivars from the World Collection Olive Germplasm Bank of Cordoba
  publication-title: Journal of the Science of Food and Agriculture
– reference: Schauberger, P., & Walker, A. (2021).
– reference: Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., & Li, Y. (2021).
– start-page: 31
  year: 2015
  end-page: 52
  ident: b0030
  article-title: Minor Bioactive Olive Oil Components and Health: Key Data for Their Role in Providing Health Benefits in Humans
  publication-title: Olive and Olive Oil Bioactive Constituents
– volume: 195
  start-page: 69
  year: 2019
  end-page: 76
  ident: b0050
  article-title: Classification of olive oils according to their cultivars based on second-order data using LC-DAD
  publication-title: Talanta
– volume: 80
  start-page: 939
  year: 2000
  end-page: 966
  ident: b0115
  article-title: Plant sterols: Biosynthesis, biological function and their importance to human nutrition
  publication-title: Journal of the Science of Food and Agriculture
– reference: Lenth, R. V. (2021).
– volume: 106
  start-page: 920
  year: 2018
  end-page: 927
  ident: b0110
  article-title: Discrimination of Tunisian and Italian extra-virgin olive oils according to their phenolic and sterolic fingerprints
  publication-title: Food Research International (Ottawa, Ont.)
– volume: 219
  start-page: 131
  year: 2017
  end-page: 138
  ident: b0015
  article-title: Cultivar classification of Apulian olive oils: Use of artificial neural networks for comparing NMR, NIR and merceological data
  publication-title: Food Chemistry
– volume: 73
  start-page: 85
  year: 2004
  end-page: 93
  ident: b0105
  article-title: Supervised pattern recognition to authenticate Italian extra virgin olive oil varieties
  publication-title: Chemometrics and Intelligent Laboratory Systems
– reference: .
– reference: Kassambara, A., & Mundt, F. (2020).
– ident: 10.1016/j.foodchem.2023.136793_b0120
– ident: 10.1016/j.foodchem.2023.136793_b0065
– volume: 137
  year: 2022
  ident: 10.1016/j.foodchem.2023.136793_b0170
  article-title: NMR-based metabolomics for olive oil cultivar classification: A comparison with standard targeted analysis of fatty acids and triglycerides
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.108939
– volume: 106
  start-page: 920
  year: 2018
  ident: 10.1016/j.foodchem.2023.136793_b0110
  article-title: Discrimination of Tunisian and Italian extra-virgin olive oils according to their phenolic and sterolic fingerprints
  publication-title: Food Research International (Ottawa, Ont.)
  doi: 10.1016/j.foodres.2018.02.010
– volume: 73
  start-page: 85
  year: 2004
  ident: 10.1016/j.foodchem.2023.136793_b0105
  article-title: Supervised pattern recognition to authenticate Italian extra virgin olive oil varieties
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2003.12.007
– ident: 10.1016/j.foodchem.2023.136793_b0130
  doi: 10.3390/s22249651
– volume: 7
  start-page: 929
  year: 2019
  ident: 10.1016/j.foodchem.2023.136793_b0185
  article-title: Deep learning techniques to improve the performance of olive oil classification
  publication-title: Frontiers in Chemistry
  doi: 10.3389/fchem.2019.00929
– volume: 11
  start-page: 785
  year: 2016
  ident: 10.1016/j.foodchem.2023.136793_b0020
  publication-title: XGBoost
– volume: 105
  start-page: 483
  year: 2020
  ident: 10.1016/j.foodchem.2023.136793_b0025
  article-title: Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future
  publication-title: Trends in Food Science and Technology
  doi: 10.1016/j.tifs.2019.02.025
– volume: 86
  start-page: 174
  year: 2017
  ident: 10.1016/j.foodchem.2023.136793_b0060
  article-title: Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy
  publication-title: LWT
  doi: 10.1016/j.lwt.2017.07.050
– volume: 7
  start-page: 493
  year: 2021
  ident: 10.1016/j.foodchem.2023.136793_b0100
  article-title: Sterols and triterpene diols in virgin olive oil: A comprehensive review on their properties and significance, with a special emphasis on the influence of variety and ripening degree
  publication-title: Horticulturae
  doi: 10.3390/horticulturae7110493
– volume: 161
  start-page: 304
  year: 2016
  ident: 10.1016/j.foodchem.2023.136793_b0005
  article-title: Neural networks applied to characterize blends containing refined and extra virgin olive oils
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.08.033
– volume: 21
  start-page: 2639
  year: 2022
  ident: 10.1016/j.foodchem.2023.136793_b0085
  article-title: Extra virgin olive oil: A comprehensive review of efforts to ensure its authenticity, traceability, and safety
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12949
– start-page: 31
  year: 2015
  ident: 10.1016/j.foodchem.2023.136793_b0030
  article-title: Minor Bioactive Olive Oil Components and Health: Key Data for Their Role in Providing Health Benefits in Humans
– volume: 59
  start-page: 1913
  year: 2019
  ident: 10.1016/j.foodchem.2023.136793_b0045
  article-title: A critical review on the use of artificial neural networks in olive oil production, characterization and authentication
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408398.2018.1433628
– ident: 10.1016/j.foodchem.2023.136793_b0075
– volume: 195
  start-page: 69
  year: 2019
  ident: 10.1016/j.foodchem.2023.136793_b0050
  article-title: Classification of olive oils according to their cultivars based on second-order data using LC-DAD
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.11.033
– ident: 10.1016/j.foodchem.2023.136793_b0140
– volume: 4
  start-page: 1686
  year: 2019
  ident: 10.1016/j.foodchem.2023.136793_b0190
  article-title: Welcome to the tidyverse
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.01686
– volume: 122
  start-page: 25
  year: 2019
  ident: 10.1016/j.foodchem.2023.136793_b0055
  article-title: Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity – A review
  publication-title: Food research international (Ottawa, Ont.)
  doi: 10.1016/j.foodres.2019.03.063
– volume: 261
  start-page: 42
  year: 2018
  ident: 10.1016/j.foodchem.2023.136793_b0145
  article-title: Combination of complementary data mining methods for geographical characterization of extra virgin olive oils based on mineral composition
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.04.019
– start-page: 697
  year: 2008
  ident: 10.1016/j.foodchem.2023.136793_b0125
  article-title: Assessment of physico-chemical, sensory and nutritional parameters in virgin olive oil from the new genotype Favolosa (FS17)
  publication-title: Acta Horticulturae
  doi: 10.17660/ActaHortic.2008.791.106
– volume: 366
  year: 2022
  ident: 10.1016/j.foodchem.2023.136793_b0165
  article-title: The use of analytical techniques coupled with chemometrics for tracing the geographical origin of oils: A systematic review (2013–2020)
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2021.130633
– volume: 55
  start-page: 6568
  year: 2007
  ident: 10.1016/j.foodchem.2023.136793_b0035
  article-title: Statistical characterization of sicilian olive oils from the Peloritana and Maghrebian zones according to the fatty acid profile
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf070523r
– volume: 96
  start-page: 4143
  year: 2016
  ident: 10.1016/j.foodchem.2023.136793_b0080
  article-title: Sterol composition of virgin olive oil of forty-three olive cultivars from the World Collection Olive Germplasm Bank of Cordoba
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.7616
– volume: 118
  start-page: 849
  year: 2016
  ident: 10.1016/j.foodchem.2023.136793_b0070
  article-title: Differentiation of Greek extra virgin olive oils according to cultivar based on volatile compound analysis and fatty acid composition
  publication-title: European Journal of Lipid Science and Technology
  doi: 10.1002/ejlt.201500293
– ident: 10.1016/j.foodchem.2023.136793_b0175
– volume: 111
  start-page: 1003
  year: 2009
  ident: 10.1016/j.foodchem.2023.136793_b0040
  article-title: Stepwise geographical traceability of virgin olive oils by chemical profiles using artificial neural network models
  publication-title: European Journal of Lipid Science and Technology
  doi: 10.1002/ejlt.200900015
– ident: 10.1016/j.foodchem.2023.136793_b0150
– volume: 6
  start-page: 3139
  year: 2021
  ident: 10.1016/j.foodchem.2023.136793_b0090
  article-title: performance: An R package for assessment, comparison and testing of statistical models
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.03139
– volume: 80
  start-page: 939
  year: 2000
  ident: 10.1016/j.foodchem.2023.136793_b0115
  article-title: Plant sterols: Biosynthesis, biological function and their importance to human nutrition
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C
– volume: 48
  start-page: 2528
  year: 2013
  ident: 10.1016/j.foodchem.2023.136793_b0180
  article-title: Neural network models to classify olive oils within the protected denomination of origin framework
  publication-title: International Journal of Food Science and Technology
  doi: 10.1111/ijfs.12245
– volume: 52
  start-page: 3434
  year: 2004
  ident: 10.1016/j.foodchem.2023.136793_b0010
  article-title: Influence of harvest date and crop yield on the fatty acid composition of virgin olive oils from cv. Picual
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf049894n
– volume: 398
  year: 2023
  ident: 10.1016/j.foodchem.2023.136793_b0135
  article-title: Geographical discrimination of olive oils from Cv. 'Galega Vulgar'
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2022.133945
– volume: 219
  start-page: 131
  year: 2017
  ident: 10.1016/j.foodchem.2023.136793_b0015
  article-title: Cultivar classification of Apulian olive oils: Use of artificial neural networks for comparing NMR, NIR and merceological data
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.09.041
– volume: 404
  year: 2023
  ident: 10.1016/j.foodchem.2023.136793_b0155
  article-title: Combining untargeted profiling of phenolics and sterols, supervised multivariate class modelling and artificial neural networks for the origin and authenticity of extra-virgin olive oil: A case study on Taggiasca Ligure
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2022.134543
– volume: 130
  year: 2021
  ident: 10.1016/j.foodchem.2023.136793_b0160
  article-title: Discrimination of olive oils based on the olive cultivar origin by machine learning employing the fusion of emission and absorption spectroscopic data
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2021.108318
– volume: 136
  start-page: 251
  year: 2013
  ident: 10.1016/j.foodchem.2023.136793_b0095
  article-title: Sterols and triterpene diols in olive oil as indicators of variety and degree of ripening
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2012.08.005
SSID ssj0002018
Score 2.4795372
Snippet •Classification of olive cultivars by machine learning based on olive oil chemical composition.•Olive oil chemical characteristics of Greek and Italian...
Extra virgin olive oil traceability and authenticity are important quality indicators, and are currently the subject of exhaustive research, for developing...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 136793
SubjectTerms algorithms
artificial intelligence
Artificial intelligent models
Authenticity
Chemical composition
coasts
Cultivar classification
cultivar identification
cultivars
extra-virgin olive oil
food chemistry
Greece
Italy
Machine learning
Olive oil
olives
principal component analysis
traceability
Title Classification of olive cultivars by machine learning based on olive oil chemical composition
URI https://dx.doi.org/10.1016/j.foodchem.2023.136793
https://www.ncbi.nlm.nih.gov/pubmed/37535989
https://www.proquest.com/docview/2846931114
https://www.proquest.com/docview/3200293148
Volume 429
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5QAXBOW1PCojIW7pJrETx8dqoVpA7AUq9YKs-IVSLZuKbpG48NuZcewCh1UPHBONJctjz8P-5huAV3j2MBDlfeG9aQohnCp6ZVWheBu5U3gdeQo-rtrlqXh_1pztwSLXwhCsMtn-yaZHa53-zNNqzi-GYf6JmFboAqumrKCKheZCSNrlR7_-wDzQwXXTS0IXr7v-qhI-Pwrj6HBtqCK95oT4korvclC7AtDoiE7uwd0UQbLjaZL3Yc9vDuD2IjduO4DZm8Fv2WuWKD_XbJUZ91EuFyJfPoAvsSEmQYWidtgY2LhG48eIjWP4gRkvMz_Zt4i29Cy1l_jKyO85RvJReBzWzCbWAUYA9YQCewinJ28_L5ZF6rZQWMyxtoXhQoSyr5x0pTWYNrUh9C0ecF9K1dvgrasr41zLJW-M8GUoqQpV9bJ1ypaGP4L9zbjxT4C1vuq8xMjFVVx0TTCYE8naB2kt507JGTR5ibVNVOTUEWOtM-bsXGfVaFKNnlQzg_n1uIuJjOPGESprUP-zrTR6jBvHvswq16hBekjpN368utTo0lvF0UuI3TKc0C8oJLoZPJ72y_WcOa5Hozr19D9m9wzu0Bcha6rmOexvv1_5Fxgfbc1hPACHcOv43Yfl6jdwog7n
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQcqCXqqWvLaV1paq3dJPYieMjWoqWAnspSFwqK36hoO0GlQWJf8-MY6_aw4pDr8lYsjz2POxvviHkC5w9CERZmzmnq4xzK7NWGplJVgfuFFYGnoKzeT274D8uq8stMk21MAirjLZ_sOnBWscvk7iak5uum_xEphW8wCoxKyiw0Hwb2amqEdk-OD6ZzdcGGXxcMzwmNOHG669C4etvvu8tLA8WpZcMQV9Csk0-alMMGnzR0QvyPAaR9GCY50uy5Za7ZGeaerftkvFh51b0K42snws6T6T7IJdqkW9fkV-hJyaihYKCaO9pvwD7R5GQo7uHpJfqB_o7AC4djR0mrii6PktRPgj33YKaSDxAEaMegWCvycXR9_PpLIsNFzIDadYq04xzn7eFFTY3GjKn2vu2hjPuciFb452xZaGtrZlgleYu9zkWospW1FaaXLM3ZLTsl-4dobUrGicgeLEF403lNaRFonReGMOYlWJMqrTEykQ2cmyKsVAJdnatkmoUqkYNqhmTyXrczcDH8eQImTSo_tlZCpzGk2M_J5Ur0CC-pbRL19_dKvDqtWTgKPhmGYYAGBDizZi8HfbLes4M1qOSjXz_H7P7RHZm52en6vR4frJHnuEfBNoU1QcyWv25c_sQLq30x3gcHgGrbhGY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+olive+cultivars+by+machine+learning+based+on+olive+oil+chemical+composition&rft.jtitle=Food+chemistry&rft.au=Skiada%2C+Vasiliki&rft.au=Katsaris%2C+Panagiotis&rft.au=Kambouris%2C+Manousos+E&rft.au=Gkisakis%2C+Vasileios&rft.date=2023-12-15&rft.issn=0308-8146&rft.volume=429+p.136793-&rft_id=info:doi/10.1016%2Fj.foodchem.2023.136793&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon