Downstream performance prediction for a manufacturing system using neural networks and six-sigma improvement techniques

Intelligent techniques have been applied in a range of industrial environments [Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in manufacturing: current developments and future prospects. Integrated Manuf Syst 2000;11(4):218–38; Stephanopoulos G, Han C. Intelligent systems in proce...

Full description

Saved in:
Bibliographic Details
Published inRobotics and computer-integrated manufacturing Vol. 25; no. 3; pp. 513 - 521
Main Authors Johnston, A.B., Maguire, L.P., McGinnity, T.M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intelligent techniques have been applied in a range of industrial environments [Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in manufacturing: current developments and future prospects. Integrated Manuf Syst 2000;11(4):218–38; Stephanopoulos G, Han C. Intelligent systems in process engineering: a review. Comput Chem Eng, 1996;20 (6–7):743–91; Johnston AB, Maguire LP, McGinnity TM. Using business improvement techniques to inform the optimisation of production cycle time: an industrial case study. Proceedings of the IEEE SMC UK-RI Chapter conference 2004 on intelligent cybernetic systems. September 7–8, 2004 ISSN:1744–9189; Proudlove NC, Vadera S, Kobbacy KAH. Intelligent management systems in operations: A review. J Oper Res Soc, 1998;49(7):682–99] although their implementation is not the first choice of many process engineers. In contrast process engineers in a diverse range of manufacturing environments regularly deploy business improvement techniques, such as the six-sigma methodology. Such techniques aim to control and subsequently identify the relationship between the process inputs and outputs so that a process engineer can more accurately predict how the process output shall perform based on the system inputs. Factors such as cost reduction, automatic process control or simply process prediction may be the defining factors in establishing prediction models. In this paper the authors use as a case study the manufacture of hard disc drives, from the developing of the read–write head to the recording media and the overall construction of the hard disc drive with its controlling mechanisms. Each of these stages are separate and complex-processing elements and integral to the functionality of the end product. In addition each of these stages of manufacturing may take days or weeks to complete and be processed in separate facilities and/or countries. This paper reports on the application of intelligent system techniques to improve the downstream performance prediction within this manufacturing environment. The application is guided by a six-sigma methodology to obtain improved performance. The results highlight that significant downstream prediction accuracy can be obtained using this hybrid approach.
AbstractList Intelligent techniques have been applied in a range of industrial environments [Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in manufacturing: current developments and future prospects. Integrated Manuf Syst 2000;11(4):218–38; Stephanopoulos G, Han C. Intelligent systems in process engineering: a review. Comput Chem Eng, 1996;20 (6–7):743–91; Johnston AB, Maguire LP, McGinnity TM. Using business improvement techniques to inform the optimisation of production cycle time: an industrial case study. Proceedings of the IEEE SMC UK-RI Chapter conference 2004 on intelligent cybernetic systems. September 7–8, 2004 ISSN:1744–9189; Proudlove NC, Vadera S, Kobbacy KAH. Intelligent management systems in operations: A review. J Oper Res Soc, 1998;49(7):682–99] although their implementation is not the first choice of many process engineers. In contrast process engineers in a diverse range of manufacturing environments regularly deploy business improvement techniques, such as the six-sigma methodology. Such techniques aim to control and subsequently identify the relationship between the process inputs and outputs so that a process engineer can more accurately predict how the process output shall perform based on the system inputs. Factors such as cost reduction, automatic process control or simply process prediction may be the defining factors in establishing prediction models. In this paper the authors use as a case study the manufacture of hard disc drives, from the developing of the read–write head to the recording media and the overall construction of the hard disc drive with its controlling mechanisms. Each of these stages are separate and complex-processing elements and integral to the functionality of the end product. In addition each of these stages of manufacturing may take days or weeks to complete and be processed in separate facilities and/or countries. This paper reports on the application of intelligent system techniques to improve the downstream performance prediction within this manufacturing environment. The application is guided by a six-sigma methodology to obtain improved performance. The results highlight that significant downstream prediction accuracy can be obtained using this hybrid approach.
Intelligent techniques have been applied in a range of industrial environments [Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in manufacturing: current developments and future prospects. Integrated Manuf Syst 2000;11(4):218-38; Stephanopoulos G, Han C. Intelligent systems in process engineering: a review. Comput Chem Eng, 1996;20 (6-7):743-91; Johnston AB, Maguire LP, McGinnity TM. Using business improvement techniques to inform the optimisation of production cycle time: an industrial case study. Proceedings of the IEEE SMC UK-RI Chapter conference 2004 on intelligent cybernetic systems. September 7-8, 2004 ISSN:1744-9189; Proudlove NC, Vadera S, Kobbacy KAH. Intelligent management systems in operations: A review. J Oper Res Soc, 1998;49(7):682-99] although their implementation is not the first choice of many process engineers. In contrast process engineers in a diverse range of manufacturing environments regularly deploy business improvement techniques, such as the six-sigma methodology. Such techniques aim to control and subsequently identify the relationship between the process inputs and outputs so that a process engineer can more accurately predict how the process output shall perform based on the system inputs. Factors such as cost reduction, automatic process control or simply process prediction may be the defining factors in establishing prediction models. In this paper the authors use as a case study the manufacture of hard disc drives, from the developing of the read-write head to the recording media and the overall construction of the hard disc drive with its controlling mechanisms. Each of these stages are separate and complex-processing elements and integral to the functionality of the end product. In addition each of these stages of manufacturing may take days or weeks to complete and be processed in separate facilities and/or countries. This paper reports on the application of intelligent system techniques to improve the downstream performance prediction within this manufacturing environment. The application is guided by a six-sigma methodology to obtain improved performance. The results highlight that significant downstream prediction accuracy can be obtained using this hybrid approach.
Author McGinnity, T.M.
Johnston, A.B.
Maguire, L.P.
Author_xml – sequence: 1
  givenname: A.B.
  surname: Johnston
  fullname: Johnston, A.B.
  email: Adrian.B.Johnston@Seagate.com
  organization: Seagate Technology, 1 Disc Drive, Springtown, Derry BT48 0BF, Northern Ireland
– sequence: 2
  givenname: L.P.
  surname: Maguire
  fullname: Maguire, L.P.
  organization: Intelligent Systems Engineering Laboratory, School of Computing and Intelligent Systems Faculty of Engineering, University of Ulster, Magee campus, Northland Road, Derry BT48 7JL, Northern Ireland
– sequence: 3
  givenname: T.M.
  surname: McGinnity
  fullname: McGinnity, T.M.
  organization: Intelligent Systems Engineering Laboratory, School of Computing and Intelligent Systems Faculty of Engineering, University of Ulster, Magee campus, Northland Road, Derry BT48 7JL, Northern Ireland
BookMark eNp9kEtP3DAUha2KSh2gf4CVV-yS-hEnjsQG0RcSEhtYW45zTT0d24PtMPDvcTSsWR3dq3Pu4ztFJyEGQOiCkpYS2v_Ytsk43zJCZEtYSyj5gjZUDmPDBB9O0IYMvG-E7MQ3dJrzlhDCOsE36PAzHkIuCbTHe0g2Jq-DAbxPMDtTXAy49rDGtb1YbcqSXHjC-S0X8HjJaxFgSXpXpRxi-p-xDjPO7rXJ7slr7Pw-xRfwEAouYP4F97xAPkdfrd5l-P6hZ-jx96-Hm7_N3f2f25vru8Z0hJZmYmYUvWCDtJYa0U3DQGfWsXkSBiYuqO01oxOnUnSz1kbKfhxGIwGkZbq3_AxdHufWI9a9RXmXDex2OkBcsuK8l3xkshrZ0WhSzDmBVfvkvE5vihK1MlZbtTJWK2NFmKqMa-jqGIL6wouDpLJxUPnNLoEpao7us_g7iiKLDQ
CitedBy_id crossref_primary_10_1108_IJLSS_12_2013_0059
crossref_primary_10_1080_2374068X_2016_1160601
crossref_primary_10_1080_09537287_2010_537286
crossref_primary_10_1016_j_asoc_2019_105683
crossref_primary_10_1016_j_compind_2019_103153
crossref_primary_10_1080_0951192X_2013_800231
crossref_primary_10_1080_14783363_2018_1520597
crossref_primary_10_1016_j_cie_2020_106972
crossref_primary_10_1016_j_measurement_2017_10_048
crossref_primary_10_1155_2022_1949061
crossref_primary_10_1007_s10845_012_0676_z
crossref_primary_10_1080_14783363_2011_637803
crossref_primary_10_1016_j_cie_2012_07_012
crossref_primary_10_1016_j_commatsci_2018_06_003
crossref_primary_10_1080_09537287_2023_2188496
Cites_doi 10.1016/S0026-0576(01)80028-3
10.1023/A:1016064126976
10.1016/0098-1354(95)00194-8
10.1108/09576060010326221
10.1080/002075499191319
10.1080/0954412988154
10.1057/palgrave.jors.2600519
10.1016/S0169-2607(00)00095-X
10.1007/s00170-003-1721-z
10.1016/S0957-4174(99)00034-2
10.1007/s005210070013
10.1016/S0003-2670(03)00726-8
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.rcim.2008.02.010
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1879-2537
EndPage 521
ExternalDocumentID 10_1016_j_rcim_2008_02_010
S0736584508000252
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c401t-b2c9565278ff1c54b771d242db5ceb351f6a21b31854daac886979c8ee8f2a6f3
IEDL.DBID AIKHN
ISSN 0736-5845
IngestDate Fri Oct 25 00:56:49 EDT 2024
Thu Sep 26 16:53:19 EDT 2024
Fri Feb 23 02:26:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Business improvements
Manufacturing
Neural networks
Six sigma
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-b2c9565278ff1c54b771d242db5ceb351f6a21b31854daac886979c8ee8f2a6f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 33683928
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_33683928
crossref_primary_10_1016_j_rcim_2008_02_010
elsevier_sciencedirect_doi_10_1016_j_rcim_2008_02_010
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationTitle Robotics and computer-integrated manufacturing
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Johnston AB, Maguire LP, McGinnity TM, Using business improvement techniques to inform the optimisation of production cycle time: an industrial case study. In: Proceedings of the IEEE SMC UK-RI Chapter conference 2004 on intelligent cybernetic systems, September 7–8, 2004, ISSN:1744–9189.
Fu-Kwun, Timon, Eldon (bib8) 2004; 15
bib12
Metaxiotis, Askounis, Psarras (bib14) 2002; 13
Zhang, Peng, Chen (bib17) 1998; B54
Kiemele, Schmidt, Berdine (bib21) 2000
bib11
Ng (bib22) 1997
Meziane, Vadera, Kobbacy, Proudlove (bib1) 2000; 11
Chul, Overall, Tonidandel (bib25) 2001; 64
Montgomery, Runger (bib29) 2003
bib27
Kiemele, Schmidt, Berdine (bib30) 2000
Montgomery, Runger (bib31) 2003
Guh, Tannock, O’Brien (bib15) 1999; 17
Pande, Neuman, Cavanagh (bib10) 2002
Breyfogle (bib5) 1999
Ludwig, Sapozhnikova, Lunin, Rosenstiel (bib18) 2000; 9
Mallison JC, Magneto-resistive heads. Fundamentals and applications. Academic press, 1996.
bib26
bib24
Chatterjee, Sorenson (bib7) 1998; 9
Flott (bib6) 2000; 98
Huang, Huang, Chang, Chang, Chung, Huang (bib13) 1999; 37
Stephanopoulos, Han (bib2) 1996; 20
bib19
Steckl, Corelli, McDonald (bib28) 1988
Tong, Tsung, Yen (bib9) 2004; 23
Proudlove, Vadera, Kobbacy (bib4) 1998; 49
Prasad, Khong (bib16) 2001; 118
Yang, Griffiths, Tate (bib23) 2003; 489
Metaxiotis (10.1016/j.rcim.2008.02.010_bib14) 2002; 13
Yang (10.1016/j.rcim.2008.02.010_bib23) 2003; 489
Chul (10.1016/j.rcim.2008.02.010_bib25) 2001; 64
Steckl (10.1016/j.rcim.2008.02.010_bib28) 1988
Stephanopoulos (10.1016/j.rcim.2008.02.010_bib2) 1996; 20
Guh (10.1016/j.rcim.2008.02.010_bib15) 1999; 17
Prasad (10.1016/j.rcim.2008.02.010_bib16) 2001; 118
Kiemele (10.1016/j.rcim.2008.02.010_bib30) 2000
Tong (10.1016/j.rcim.2008.02.010_bib9) 2004; 23
Zhang (10.1016/j.rcim.2008.02.010_bib17) 1998; B54
Huang (10.1016/j.rcim.2008.02.010_bib13) 1999; 37
Montgomery (10.1016/j.rcim.2008.02.010_bib29) 2003
Chatterjee (10.1016/j.rcim.2008.02.010_bib7) 1998; 9
Montgomery (10.1016/j.rcim.2008.02.010_bib31) 2003
Pande (10.1016/j.rcim.2008.02.010_bib10) 2002
10.1016/j.rcim.2008.02.010_bib3
Ng (10.1016/j.rcim.2008.02.010_bib22) 1997
Proudlove (10.1016/j.rcim.2008.02.010_bib4) 1998; 49
Meziane (10.1016/j.rcim.2008.02.010_bib1) 2000; 11
Flott (10.1016/j.rcim.2008.02.010_bib6) 2000; 98
Fu-Kwun (10.1016/j.rcim.2008.02.010_bib8) 2004; 15
Kiemele (10.1016/j.rcim.2008.02.010_bib21) 2000
Breyfogle (10.1016/j.rcim.2008.02.010_bib5) 1999
Ludwig (10.1016/j.rcim.2008.02.010_bib18) 2000; 9
10.1016/j.rcim.2008.02.010_bib20
References_xml – volume: 98
  start-page: 43
  year: 2000
  end-page: 48
  ident: bib6
  article-title: Six sigma controversy
  publication-title: Met Finish
  contributor:
    fullname: Flott
– ident: bib19
– volume: 489
  start-page: 125
  year: 2003
  end-page: 136
  ident: bib23
  article-title: Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase fourier transform infrared spectra
  publication-title: Anal Chim Acta
  contributor:
    fullname: Tate
– year: 1997
  ident: bib22
  article-title: Application of neural networks to adaptive control of nonlinear systems
  contributor:
    fullname: Ng
– ident: bib11
– year: 2003
  ident: bib29
  article-title: Applied statistics and probability for engineers
  contributor:
    fullname: Runger
– volume: 9
  start-page: 202
  year: 2000
  end-page: 210
  ident: bib18
  article-title: Error classification and yield prediction of chips in semiconductor industry applications
  publication-title: Neural Comput Appl
  contributor:
    fullname: Rosenstiel
– ident: bib26
– volume: 17
  start-page: 195
  year: 1999
  end-page: 212
  ident: bib15
  article-title: IntelliSPC: a hybrid intelligent tool for the on-line economical statistical process control
  publication-title: Expert Syst Appl
  contributor:
    fullname: O’Brien
– volume: 64
  start-page: 121
  year: 2001
  end-page: 124
  ident: bib25
  article-title: Sample size and power calculations in repeated measurement analysis
  publication-title: Comput Methods Programs Biomed
  contributor:
    fullname: Tonidandel
– ident: bib24
– volume: 118
  start-page: 110
  year: 2001
  end-page: 116
  ident: bib16
  article-title: Development of a hybrid neural network system for prediction of process parameters in injection moulding
  publication-title: J Mater Process Technol
  contributor:
    fullname: Khong
– year: 2000
  ident: bib21
  article-title: Basic statistics. Tools for continuous improvement
  contributor:
    fullname: Berdine
– year: 1988
  ident: bib28
  article-title: Emerging technologies for in-situ processing
  contributor:
    fullname: McDonald
– volume: 23
  start-page: 523
  year: 2004
  end-page: 531
  ident: bib9
  article-title: A DMAIC approach to printed circuit board quality improvement
  publication-title: J Adv Manuf Technol
  contributor:
    fullname: Yen
– year: 1999
  ident: bib5
  article-title: Implementing six sigma: smarter solutions using statistical methods
  contributor:
    fullname: Breyfogle
– volume: 37
  start-page: 1387
  year: 1999
  end-page: 1402
  ident: bib13
  article-title: The construction of production performance prediction system for semiconductor manufacturing with artificial neural networks
  publication-title: J Prod Res
  contributor:
    fullname: Huang
– ident: bib12
– volume: B54
  start-page: 149
  year: 1998
  end-page: 152
  ident: bib17
  article-title: Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors
  publication-title: Mater Sci Eng
  contributor:
    fullname: Chen
– volume: 49
  start-page: 682
  year: 1998
  end-page: 699
  ident: bib4
  article-title: Intelligent management systems in operations: a review
  publication-title: J Oper Res Soc
  contributor:
    fullname: Kobbacy
– volume: 20
  start-page: 743
  year: 1996
  end-page: 791
  ident: bib2
  article-title: Intelligent systems in process engineering: a review
  publication-title: Comput Chem Eng
  contributor:
    fullname: Han
– year: 2002
  ident: bib10
  article-title: The six sigma way. An implementation guide for process improvement teams
  contributor:
    fullname: Cavanagh
– volume: 9
  start-page: 681
  year: 1998
  end-page: 687
  ident: bib7
  article-title: A pareto-like effect in regression?
  publication-title: Total Qual Manage
  contributor:
    fullname: Sorenson
– volume: 13
  start-page: 253
  year: 2002
  end-page: 260
  ident: bib14
  article-title: Expert systems in production planning and scheduling
  publication-title: J Intell Manuf
  contributor:
    fullname: Psarras
– ident: bib27
– year: 2003
  ident: bib31
  article-title: Applied statistics and probability for engineers
  contributor:
    fullname: Runger
– year: 2000
  ident: bib30
  article-title: Basic statistics. Tools for continuous improvement
  contributor:
    fullname: Berdine
– volume: 11
  start-page: 218
  year: 2000
  end-page: 238
  ident: bib1
  article-title: Intelligent systems in manufacturing: current developments and future prospects
  publication-title: Integrated Manuf Syst
  contributor:
    fullname: Proudlove
– volume: 15
  start-page: 217
  year: 2004
  end-page: 1229
  ident: bib8
  article-title: Applying six-sigma to supplier development
  publication-title: Total Quality Manage
  contributor:
    fullname: Eldon
– year: 2000
  ident: 10.1016/j.rcim.2008.02.010_bib30
  contributor:
    fullname: Kiemele
– volume: 98
  start-page: 43
  issue: 12
  year: 2000
  ident: 10.1016/j.rcim.2008.02.010_bib6
  article-title: Six sigma controversy
  publication-title: Met Finish
  doi: 10.1016/S0026-0576(01)80028-3
  contributor:
    fullname: Flott
– volume: 13
  start-page: 253
  year: 2002
  ident: 10.1016/j.rcim.2008.02.010_bib14
  article-title: Expert systems in production planning and scheduling
  publication-title: J Intell Manuf
  doi: 10.1023/A:1016064126976
  contributor:
    fullname: Metaxiotis
– year: 2000
  ident: 10.1016/j.rcim.2008.02.010_bib21
  contributor:
    fullname: Kiemele
– ident: 10.1016/j.rcim.2008.02.010_bib3
– volume: 20
  start-page: 743
  issue: 6-7
  year: 1996
  ident: 10.1016/j.rcim.2008.02.010_bib2
  article-title: Intelligent systems in process engineering: a review
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(95)00194-8
  contributor:
    fullname: Stephanopoulos
– year: 2002
  ident: 10.1016/j.rcim.2008.02.010_bib10
  contributor:
    fullname: Pande
– volume: 11
  start-page: 218
  issue: 4
  year: 2000
  ident: 10.1016/j.rcim.2008.02.010_bib1
  article-title: Intelligent systems in manufacturing: current developments and future prospects
  publication-title: Integrated Manuf Syst
  doi: 10.1108/09576060010326221
  contributor:
    fullname: Meziane
– volume: 37
  start-page: 1387
  issue: 60
  year: 1999
  ident: 10.1016/j.rcim.2008.02.010_bib13
  article-title: The construction of production performance prediction system for semiconductor manufacturing with artificial neural networks
  publication-title: J Prod Res
  doi: 10.1080/002075499191319
  contributor:
    fullname: Huang
– volume: B54
  start-page: 149
  year: 1998
  ident: 10.1016/j.rcim.2008.02.010_bib17
  article-title: Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors
  publication-title: Mater Sci Eng
  contributor:
    fullname: Zhang
– year: 1997
  ident: 10.1016/j.rcim.2008.02.010_bib22
  contributor:
    fullname: Ng
– volume: 9
  start-page: 681
  issue: 8
  year: 1998
  ident: 10.1016/j.rcim.2008.02.010_bib7
  article-title: A pareto-like effect in regression?
  publication-title: Total Qual Manage
  doi: 10.1080/0954412988154
  contributor:
    fullname: Chatterjee
– volume: 118
  start-page: 110
  year: 2001
  ident: 10.1016/j.rcim.2008.02.010_bib16
  article-title: Development of a hybrid neural network system for prediction of process parameters in injection moulding
  publication-title: J Mater Process Technol
  contributor:
    fullname: Prasad
– volume: 49
  start-page: 682
  issue: 7
  year: 1998
  ident: 10.1016/j.rcim.2008.02.010_bib4
  article-title: Intelligent management systems in operations: a review
  publication-title: J Oper Res Soc
  doi: 10.1057/palgrave.jors.2600519
  contributor:
    fullname: Proudlove
– volume: 64
  start-page: 121
  year: 2001
  ident: 10.1016/j.rcim.2008.02.010_bib25
  article-title: Sample size and power calculations in repeated measurement analysis
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/S0169-2607(00)00095-X
  contributor:
    fullname: Chul
– volume: 23
  start-page: 523
  year: 2004
  ident: 10.1016/j.rcim.2008.02.010_bib9
  article-title: A DMAIC approach to printed circuit board quality improvement
  publication-title: J Adv Manuf Technol
  doi: 10.1007/s00170-003-1721-z
  contributor:
    fullname: Tong
– year: 2003
  ident: 10.1016/j.rcim.2008.02.010_bib31
  contributor:
    fullname: Montgomery
– volume: 17
  start-page: 195
  issue: 3
  year: 1999
  ident: 10.1016/j.rcim.2008.02.010_bib15
  article-title: IntelliSPC: a hybrid intelligent tool for the on-line economical statistical process control
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(99)00034-2
  contributor:
    fullname: Guh
– year: 1988
  ident: 10.1016/j.rcim.2008.02.010_bib28
  contributor:
    fullname: Steckl
– volume: 9
  start-page: 202
  year: 2000
  ident: 10.1016/j.rcim.2008.02.010_bib18
  article-title: Error classification and yield prediction of chips in semiconductor industry applications
  publication-title: Neural Comput Appl
  doi: 10.1007/s005210070013
  contributor:
    fullname: Ludwig
– volume: 489
  start-page: 125
  year: 2003
  ident: 10.1016/j.rcim.2008.02.010_bib23
  article-title: Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase fourier transform infrared spectra
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(03)00726-8
  contributor:
    fullname: Yang
– year: 1999
  ident: 10.1016/j.rcim.2008.02.010_bib5
  contributor:
    fullname: Breyfogle
– volume: 15
  start-page: 217
  issue: 9–10
  year: 2004
  ident: 10.1016/j.rcim.2008.02.010_bib8
  article-title: Applying six-sigma to supplier development
  publication-title: Total Quality Manage
  contributor:
    fullname: Fu-Kwun
– ident: 10.1016/j.rcim.2008.02.010_bib20
– year: 2003
  ident: 10.1016/j.rcim.2008.02.010_bib29
  contributor:
    fullname: Montgomery
SSID ssj0002453
Score 1.9819294
Snippet Intelligent techniques have been applied in a range of industrial environments [Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 513
SubjectTerms Business improvements
Manufacturing
Neural networks
Six sigma
Title Downstream performance prediction for a manufacturing system using neural networks and six-sigma improvement techniques
URI https://dx.doi.org/10.1016/j.rcim.2008.02.010
https://search.proquest.com/docview/33683928
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5Be4EDC11WwC7FB24otLHjxD2iAipPrZZF4hY5jo2C1FA1reDEb9-ZxGEfWu1hj7FiJ_KMv288nhkDHA6lzHIqPih0mAXRKDSBds4GLkoMPiAjG3IN3NzGk_vo8kE-rMC4zYWhsEqP_Q2m12jtWwZ-NgezohjcoXISfUqyeZC5EYe7SEdcdaB7cnE1uX0HZB41xSjx_YA6-NyZJsxrboqpD6nkx0NKpP07P_2B1DX9nG_Chrcb2Unza1uwYssefGjvZGB-ifZg_ZcCgx_h5ZScxxRMPmWznykCbDan8xmSCcM2phk2LynHoU5aZE15Z0Yx8Y-MKl7il8smXrxiusxZVbwGVfE41ayonRK1j5G914OttuH-_Oz7eBL4qxYCgxusRZBxgxslyRPlXGhklCVJmCN755k0uN2WoYs1DzNKtY5yrY1S8SgZGWWtclzHTnyCTvlc2h1gzkjBhbU6ljpy3CotrRiJTJihcjLPd-GoneB01lTUSNtQs6eUxOGvxuQpimMXZCuD9De9SBHy_9nvoBVYiguGTkF0aZ-XVSpETEah2vvPkT_DWnOiRJ6YL9BZzJd2Hw2TRdaH1eO3sI_qN_52_bXv1fAHC6LoHw
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGICBN6K86oENhTZ2nKQjKqAChQWQ2CzHsVGQmlZNK5j47dwlDgWEGBhj2UnkO9-dz993JuS4I0SSYvFBrvzEC7q-9pS1xrNBpOEBPLLG1MDtXdh_DK6fxFOD9GouDMIqne2vbHpprV1L281me5xl7XtQTnSfAmMe8NxghxcDjI9BqU_f5zgPFlSlKKG3h90dc6YCeU10NnSASnbaQRrt797ph50unc_lOll1USM9q35sgzRMvknW6hsZqFugm2TlS3nBLfJ6jqljhJIP6XhOEKDjCZ7OoEQotFFFoXmGDIeSskir4s4UEfHPFOtdwpfzCi1eUJWntMjevCJ7HiqalSmJMsNIP6vBFtvk8fLiodf33EULnobt1dRLmIZtkmBRbK2vRZBEkZ-C704ToWGzLXwbKuYnSLQOUqV0HIfdqKtjY2LLVGj5DlnIR7nZJdRqwRk3RoVCBZaZWAnDuzzhuhNbkaZNclJPsBxX9TRkDTR7kSgOdzEmkyCOJhG1DOQ3rZBg8P8c16oFJmG54BmIys1oVkjOQwwJ471_vrlFlvoPtwM5uLq72SfL1dkS5mQOyMJ0MjOHEKJMk6NSBT8A7SjnYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Downstream+performance+prediction+for+a+manufacturing+system+using+neural+networks+and+six-sigma+improvement+techniques&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Johnston%2C+A+B&rft.au=Maguire%2C+L+P&rft.au=McGinnity%2C+T+M&rft.date=2009-06-01&rft.issn=0736-5845&rft.volume=25&rft.issue=3&rft.spage=513&rft.epage=521&rft_id=info:doi/10.1016%2Fj.rcim.2008.02.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon