Downstream performance prediction for a manufacturing system using neural networks and six-sigma improvement techniques
Intelligent techniques have been applied in a range of industrial environments [Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in manufacturing: current developments and future prospects. Integrated Manuf Syst 2000;11(4):218–38; Stephanopoulos G, Han C. Intelligent systems in proce...
Saved in:
Published in | Robotics and computer-integrated manufacturing Vol. 25; no. 3; pp. 513 - 521 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intelligent techniques have been applied in a range of industrial environments [Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in manufacturing: current developments and future prospects. Integrated Manuf Syst 2000;11(4):218–38; Stephanopoulos G, Han C. Intelligent systems in process engineering: a review. Comput Chem Eng, 1996;20 (6–7):743–91; Johnston AB, Maguire LP, McGinnity TM. Using business improvement techniques to inform the optimisation of production cycle time: an industrial case study. Proceedings of the IEEE SMC UK-RI Chapter conference 2004 on intelligent cybernetic systems. September 7–8, 2004 ISSN:1744–9189; Proudlove NC, Vadera S, Kobbacy KAH. Intelligent management systems in operations: A review. J Oper Res Soc, 1998;49(7):682–99] although their implementation is not the first choice of many process engineers. In contrast process engineers in a diverse range of manufacturing environments regularly deploy business improvement techniques, such as the six-sigma methodology. Such techniques aim to control and subsequently identify the relationship between the process inputs and outputs so that a process engineer can more accurately predict how the process output shall perform based on the system inputs. Factors such as cost reduction, automatic process control or simply process prediction may be the defining factors in establishing prediction models.
In this paper the authors use as a case study the manufacture of hard disc drives, from the developing of the read–write head to the recording media and the overall construction of the hard disc drive with its controlling mechanisms. Each of these stages are separate and complex-processing elements and integral to the functionality of the end product. In addition each of these stages of manufacturing may take days or weeks to complete and be processed in separate facilities and/or countries.
This paper reports on the application of intelligent system techniques to improve the downstream performance prediction within this manufacturing environment. The application is guided by a six-sigma methodology to obtain improved performance. The results highlight that significant downstream prediction accuracy can be obtained using this hybrid approach. |
---|---|
AbstractList | Intelligent techniques have been applied in a range of industrial environments [Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in manufacturing: current developments and future prospects. Integrated Manuf Syst 2000;11(4):218–38; Stephanopoulos G, Han C. Intelligent systems in process engineering: a review. Comput Chem Eng, 1996;20 (6–7):743–91; Johnston AB, Maguire LP, McGinnity TM. Using business improvement techniques to inform the optimisation of production cycle time: an industrial case study. Proceedings of the IEEE SMC UK-RI Chapter conference 2004 on intelligent cybernetic systems. September 7–8, 2004 ISSN:1744–9189; Proudlove NC, Vadera S, Kobbacy KAH. Intelligent management systems in operations: A review. J Oper Res Soc, 1998;49(7):682–99] although their implementation is not the first choice of many process engineers. In contrast process engineers in a diverse range of manufacturing environments regularly deploy business improvement techniques, such as the six-sigma methodology. Such techniques aim to control and subsequently identify the relationship between the process inputs and outputs so that a process engineer can more accurately predict how the process output shall perform based on the system inputs. Factors such as cost reduction, automatic process control or simply process prediction may be the defining factors in establishing prediction models.
In this paper the authors use as a case study the manufacture of hard disc drives, from the developing of the read–write head to the recording media and the overall construction of the hard disc drive with its controlling mechanisms. Each of these stages are separate and complex-processing elements and integral to the functionality of the end product. In addition each of these stages of manufacturing may take days or weeks to complete and be processed in separate facilities and/or countries.
This paper reports on the application of intelligent system techniques to improve the downstream performance prediction within this manufacturing environment. The application is guided by a six-sigma methodology to obtain improved performance. The results highlight that significant downstream prediction accuracy can be obtained using this hybrid approach. Intelligent techniques have been applied in a range of industrial environments [Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in manufacturing: current developments and future prospects. Integrated Manuf Syst 2000;11(4):218-38; Stephanopoulos G, Han C. Intelligent systems in process engineering: a review. Comput Chem Eng, 1996;20 (6-7):743-91; Johnston AB, Maguire LP, McGinnity TM. Using business improvement techniques to inform the optimisation of production cycle time: an industrial case study. Proceedings of the IEEE SMC UK-RI Chapter conference 2004 on intelligent cybernetic systems. September 7-8, 2004 ISSN:1744-9189; Proudlove NC, Vadera S, Kobbacy KAH. Intelligent management systems in operations: A review. J Oper Res Soc, 1998;49(7):682-99] although their implementation is not the first choice of many process engineers. In contrast process engineers in a diverse range of manufacturing environments regularly deploy business improvement techniques, such as the six-sigma methodology. Such techniques aim to control and subsequently identify the relationship between the process inputs and outputs so that a process engineer can more accurately predict how the process output shall perform based on the system inputs. Factors such as cost reduction, automatic process control or simply process prediction may be the defining factors in establishing prediction models. In this paper the authors use as a case study the manufacture of hard disc drives, from the developing of the read-write head to the recording media and the overall construction of the hard disc drive with its controlling mechanisms. Each of these stages are separate and complex-processing elements and integral to the functionality of the end product. In addition each of these stages of manufacturing may take days or weeks to complete and be processed in separate facilities and/or countries. This paper reports on the application of intelligent system techniques to improve the downstream performance prediction within this manufacturing environment. The application is guided by a six-sigma methodology to obtain improved performance. The results highlight that significant downstream prediction accuracy can be obtained using this hybrid approach. |
Author | McGinnity, T.M. Johnston, A.B. Maguire, L.P. |
Author_xml | – sequence: 1 givenname: A.B. surname: Johnston fullname: Johnston, A.B. email: Adrian.B.Johnston@Seagate.com organization: Seagate Technology, 1 Disc Drive, Springtown, Derry BT48 0BF, Northern Ireland – sequence: 2 givenname: L.P. surname: Maguire fullname: Maguire, L.P. organization: Intelligent Systems Engineering Laboratory, School of Computing and Intelligent Systems Faculty of Engineering, University of Ulster, Magee campus, Northland Road, Derry BT48 7JL, Northern Ireland – sequence: 3 givenname: T.M. surname: McGinnity fullname: McGinnity, T.M. organization: Intelligent Systems Engineering Laboratory, School of Computing and Intelligent Systems Faculty of Engineering, University of Ulster, Magee campus, Northland Road, Derry BT48 7JL, Northern Ireland |
BookMark | eNp9kEtP3DAUha2KSh2gf4CVV-yS-hEnjsQG0RcSEhtYW45zTT0d24PtMPDvcTSsWR3dq3Pu4ztFJyEGQOiCkpYS2v_Ytsk43zJCZEtYSyj5gjZUDmPDBB9O0IYMvG-E7MQ3dJrzlhDCOsE36PAzHkIuCbTHe0g2Jq-DAbxPMDtTXAy49rDGtb1YbcqSXHjC-S0X8HjJaxFgSXpXpRxi-p-xDjPO7rXJ7slr7Pw-xRfwEAouYP4F97xAPkdfrd5l-P6hZ-jx96-Hm7_N3f2f25vru8Z0hJZmYmYUvWCDtJYa0U3DQGfWsXkSBiYuqO01oxOnUnSz1kbKfhxGIwGkZbq3_AxdHufWI9a9RXmXDex2OkBcsuK8l3xkshrZ0WhSzDmBVfvkvE5vihK1MlZbtTJWK2NFmKqMa-jqGIL6wouDpLJxUPnNLoEpao7us_g7iiKLDQ |
CitedBy_id | crossref_primary_10_1108_IJLSS_12_2013_0059 crossref_primary_10_1080_2374068X_2016_1160601 crossref_primary_10_1080_09537287_2010_537286 crossref_primary_10_1016_j_asoc_2019_105683 crossref_primary_10_1016_j_compind_2019_103153 crossref_primary_10_1080_0951192X_2013_800231 crossref_primary_10_1080_14783363_2018_1520597 crossref_primary_10_1016_j_cie_2020_106972 crossref_primary_10_1016_j_measurement_2017_10_048 crossref_primary_10_1155_2022_1949061 crossref_primary_10_1007_s10845_012_0676_z crossref_primary_10_1080_14783363_2011_637803 crossref_primary_10_1016_j_cie_2012_07_012 crossref_primary_10_1016_j_commatsci_2018_06_003 crossref_primary_10_1080_09537287_2023_2188496 |
Cites_doi | 10.1016/S0026-0576(01)80028-3 10.1023/A:1016064126976 10.1016/0098-1354(95)00194-8 10.1108/09576060010326221 10.1080/002075499191319 10.1080/0954412988154 10.1057/palgrave.jors.2600519 10.1016/S0169-2607(00)00095-X 10.1007/s00170-003-1721-z 10.1016/S0957-4174(99)00034-2 10.1007/s005210070013 10.1016/S0003-2670(03)00726-8 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Ltd |
Copyright_xml | – notice: 2008 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1016/j.rcim.2008.02.010 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1879-2537 |
EndPage | 521 |
ExternalDocumentID | 10_1016_j_rcim_2008_02_010 S0736584508000252 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c401t-b2c9565278ff1c54b771d242db5ceb351f6a21b31854daac886979c8ee8f2a6f3 |
IEDL.DBID | AIKHN |
ISSN | 0736-5845 |
IngestDate | Fri Oct 25 00:56:49 EDT 2024 Thu Sep 26 16:53:19 EDT 2024 Fri Feb 23 02:26:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Business improvements Manufacturing Neural networks Six sigma |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-b2c9565278ff1c54b771d242db5ceb351f6a21b31854daac886979c8ee8f2a6f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 33683928 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_33683928 crossref_primary_10_1016_j_rcim_2008_02_010 elsevier_sciencedirect_doi_10_1016_j_rcim_2008_02_010 |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Robotics and computer-integrated manufacturing |
PublicationYear | 2009 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Johnston AB, Maguire LP, McGinnity TM, Using business improvement techniques to inform the optimisation of production cycle time: an industrial case study. In: Proceedings of the IEEE SMC UK-RI Chapter conference 2004 on intelligent cybernetic systems, September 7–8, 2004, ISSN:1744–9189. Fu-Kwun, Timon, Eldon (bib8) 2004; 15 bib12 Metaxiotis, Askounis, Psarras (bib14) 2002; 13 Zhang, Peng, Chen (bib17) 1998; B54 Kiemele, Schmidt, Berdine (bib21) 2000 bib11 Ng (bib22) 1997 Meziane, Vadera, Kobbacy, Proudlove (bib1) 2000; 11 Chul, Overall, Tonidandel (bib25) 2001; 64 Montgomery, Runger (bib29) 2003 bib27 Kiemele, Schmidt, Berdine (bib30) 2000 Montgomery, Runger (bib31) 2003 Guh, Tannock, O’Brien (bib15) 1999; 17 Pande, Neuman, Cavanagh (bib10) 2002 Breyfogle (bib5) 1999 Ludwig, Sapozhnikova, Lunin, Rosenstiel (bib18) 2000; 9 Mallison JC, Magneto-resistive heads. Fundamentals and applications. Academic press, 1996. bib26 bib24 Chatterjee, Sorenson (bib7) 1998; 9 Flott (bib6) 2000; 98 Huang, Huang, Chang, Chang, Chung, Huang (bib13) 1999; 37 Stephanopoulos, Han (bib2) 1996; 20 bib19 Steckl, Corelli, McDonald (bib28) 1988 Tong, Tsung, Yen (bib9) 2004; 23 Proudlove, Vadera, Kobbacy (bib4) 1998; 49 Prasad, Khong (bib16) 2001; 118 Yang, Griffiths, Tate (bib23) 2003; 489 Metaxiotis (10.1016/j.rcim.2008.02.010_bib14) 2002; 13 Yang (10.1016/j.rcim.2008.02.010_bib23) 2003; 489 Chul (10.1016/j.rcim.2008.02.010_bib25) 2001; 64 Steckl (10.1016/j.rcim.2008.02.010_bib28) 1988 Stephanopoulos (10.1016/j.rcim.2008.02.010_bib2) 1996; 20 Guh (10.1016/j.rcim.2008.02.010_bib15) 1999; 17 Prasad (10.1016/j.rcim.2008.02.010_bib16) 2001; 118 Kiemele (10.1016/j.rcim.2008.02.010_bib30) 2000 Tong (10.1016/j.rcim.2008.02.010_bib9) 2004; 23 Zhang (10.1016/j.rcim.2008.02.010_bib17) 1998; B54 Huang (10.1016/j.rcim.2008.02.010_bib13) 1999; 37 Montgomery (10.1016/j.rcim.2008.02.010_bib29) 2003 Chatterjee (10.1016/j.rcim.2008.02.010_bib7) 1998; 9 Montgomery (10.1016/j.rcim.2008.02.010_bib31) 2003 Pande (10.1016/j.rcim.2008.02.010_bib10) 2002 10.1016/j.rcim.2008.02.010_bib3 Ng (10.1016/j.rcim.2008.02.010_bib22) 1997 Proudlove (10.1016/j.rcim.2008.02.010_bib4) 1998; 49 Meziane (10.1016/j.rcim.2008.02.010_bib1) 2000; 11 Flott (10.1016/j.rcim.2008.02.010_bib6) 2000; 98 Fu-Kwun (10.1016/j.rcim.2008.02.010_bib8) 2004; 15 Kiemele (10.1016/j.rcim.2008.02.010_bib21) 2000 Breyfogle (10.1016/j.rcim.2008.02.010_bib5) 1999 Ludwig (10.1016/j.rcim.2008.02.010_bib18) 2000; 9 10.1016/j.rcim.2008.02.010_bib20 |
References_xml | – volume: 98 start-page: 43 year: 2000 end-page: 48 ident: bib6 article-title: Six sigma controversy publication-title: Met Finish contributor: fullname: Flott – ident: bib19 – volume: 489 start-page: 125 year: 2003 end-page: 136 ident: bib23 article-title: Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase fourier transform infrared spectra publication-title: Anal Chim Acta contributor: fullname: Tate – year: 1997 ident: bib22 article-title: Application of neural networks to adaptive control of nonlinear systems contributor: fullname: Ng – ident: bib11 – year: 2003 ident: bib29 article-title: Applied statistics and probability for engineers contributor: fullname: Runger – volume: 9 start-page: 202 year: 2000 end-page: 210 ident: bib18 article-title: Error classification and yield prediction of chips in semiconductor industry applications publication-title: Neural Comput Appl contributor: fullname: Rosenstiel – ident: bib26 – volume: 17 start-page: 195 year: 1999 end-page: 212 ident: bib15 article-title: IntelliSPC: a hybrid intelligent tool for the on-line economical statistical process control publication-title: Expert Syst Appl contributor: fullname: O’Brien – volume: 64 start-page: 121 year: 2001 end-page: 124 ident: bib25 article-title: Sample size and power calculations in repeated measurement analysis publication-title: Comput Methods Programs Biomed contributor: fullname: Tonidandel – ident: bib24 – volume: 118 start-page: 110 year: 2001 end-page: 116 ident: bib16 article-title: Development of a hybrid neural network system for prediction of process parameters in injection moulding publication-title: J Mater Process Technol contributor: fullname: Khong – year: 2000 ident: bib21 article-title: Basic statistics. Tools for continuous improvement contributor: fullname: Berdine – year: 1988 ident: bib28 article-title: Emerging technologies for in-situ processing contributor: fullname: McDonald – volume: 23 start-page: 523 year: 2004 end-page: 531 ident: bib9 article-title: A DMAIC approach to printed circuit board quality improvement publication-title: J Adv Manuf Technol contributor: fullname: Yen – year: 1999 ident: bib5 article-title: Implementing six sigma: smarter solutions using statistical methods contributor: fullname: Breyfogle – volume: 37 start-page: 1387 year: 1999 end-page: 1402 ident: bib13 article-title: The construction of production performance prediction system for semiconductor manufacturing with artificial neural networks publication-title: J Prod Res contributor: fullname: Huang – ident: bib12 – volume: B54 start-page: 149 year: 1998 end-page: 152 ident: bib17 article-title: Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors publication-title: Mater Sci Eng contributor: fullname: Chen – volume: 49 start-page: 682 year: 1998 end-page: 699 ident: bib4 article-title: Intelligent management systems in operations: a review publication-title: J Oper Res Soc contributor: fullname: Kobbacy – volume: 20 start-page: 743 year: 1996 end-page: 791 ident: bib2 article-title: Intelligent systems in process engineering: a review publication-title: Comput Chem Eng contributor: fullname: Han – year: 2002 ident: bib10 article-title: The six sigma way. An implementation guide for process improvement teams contributor: fullname: Cavanagh – volume: 9 start-page: 681 year: 1998 end-page: 687 ident: bib7 article-title: A pareto-like effect in regression? publication-title: Total Qual Manage contributor: fullname: Sorenson – volume: 13 start-page: 253 year: 2002 end-page: 260 ident: bib14 article-title: Expert systems in production planning and scheduling publication-title: J Intell Manuf contributor: fullname: Psarras – ident: bib27 – year: 2003 ident: bib31 article-title: Applied statistics and probability for engineers contributor: fullname: Runger – year: 2000 ident: bib30 article-title: Basic statistics. Tools for continuous improvement contributor: fullname: Berdine – volume: 11 start-page: 218 year: 2000 end-page: 238 ident: bib1 article-title: Intelligent systems in manufacturing: current developments and future prospects publication-title: Integrated Manuf Syst contributor: fullname: Proudlove – volume: 15 start-page: 217 year: 2004 end-page: 1229 ident: bib8 article-title: Applying six-sigma to supplier development publication-title: Total Quality Manage contributor: fullname: Eldon – year: 2000 ident: 10.1016/j.rcim.2008.02.010_bib30 contributor: fullname: Kiemele – volume: 98 start-page: 43 issue: 12 year: 2000 ident: 10.1016/j.rcim.2008.02.010_bib6 article-title: Six sigma controversy publication-title: Met Finish doi: 10.1016/S0026-0576(01)80028-3 contributor: fullname: Flott – volume: 13 start-page: 253 year: 2002 ident: 10.1016/j.rcim.2008.02.010_bib14 article-title: Expert systems in production planning and scheduling publication-title: J Intell Manuf doi: 10.1023/A:1016064126976 contributor: fullname: Metaxiotis – year: 2000 ident: 10.1016/j.rcim.2008.02.010_bib21 contributor: fullname: Kiemele – ident: 10.1016/j.rcim.2008.02.010_bib3 – volume: 20 start-page: 743 issue: 6-7 year: 1996 ident: 10.1016/j.rcim.2008.02.010_bib2 article-title: Intelligent systems in process engineering: a review publication-title: Comput Chem Eng doi: 10.1016/0098-1354(95)00194-8 contributor: fullname: Stephanopoulos – year: 2002 ident: 10.1016/j.rcim.2008.02.010_bib10 contributor: fullname: Pande – volume: 11 start-page: 218 issue: 4 year: 2000 ident: 10.1016/j.rcim.2008.02.010_bib1 article-title: Intelligent systems in manufacturing: current developments and future prospects publication-title: Integrated Manuf Syst doi: 10.1108/09576060010326221 contributor: fullname: Meziane – volume: 37 start-page: 1387 issue: 60 year: 1999 ident: 10.1016/j.rcim.2008.02.010_bib13 article-title: The construction of production performance prediction system for semiconductor manufacturing with artificial neural networks publication-title: J Prod Res doi: 10.1080/002075499191319 contributor: fullname: Huang – volume: B54 start-page: 149 year: 1998 ident: 10.1016/j.rcim.2008.02.010_bib17 article-title: Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors publication-title: Mater Sci Eng contributor: fullname: Zhang – year: 1997 ident: 10.1016/j.rcim.2008.02.010_bib22 contributor: fullname: Ng – volume: 9 start-page: 681 issue: 8 year: 1998 ident: 10.1016/j.rcim.2008.02.010_bib7 article-title: A pareto-like effect in regression? publication-title: Total Qual Manage doi: 10.1080/0954412988154 contributor: fullname: Chatterjee – volume: 118 start-page: 110 year: 2001 ident: 10.1016/j.rcim.2008.02.010_bib16 article-title: Development of a hybrid neural network system for prediction of process parameters in injection moulding publication-title: J Mater Process Technol contributor: fullname: Prasad – volume: 49 start-page: 682 issue: 7 year: 1998 ident: 10.1016/j.rcim.2008.02.010_bib4 article-title: Intelligent management systems in operations: a review publication-title: J Oper Res Soc doi: 10.1057/palgrave.jors.2600519 contributor: fullname: Proudlove – volume: 64 start-page: 121 year: 2001 ident: 10.1016/j.rcim.2008.02.010_bib25 article-title: Sample size and power calculations in repeated measurement analysis publication-title: Comput Methods Programs Biomed doi: 10.1016/S0169-2607(00)00095-X contributor: fullname: Chul – volume: 23 start-page: 523 year: 2004 ident: 10.1016/j.rcim.2008.02.010_bib9 article-title: A DMAIC approach to printed circuit board quality improvement publication-title: J Adv Manuf Technol doi: 10.1007/s00170-003-1721-z contributor: fullname: Tong – year: 2003 ident: 10.1016/j.rcim.2008.02.010_bib31 contributor: fullname: Montgomery – volume: 17 start-page: 195 issue: 3 year: 1999 ident: 10.1016/j.rcim.2008.02.010_bib15 article-title: IntelliSPC: a hybrid intelligent tool for the on-line economical statistical process control publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(99)00034-2 contributor: fullname: Guh – year: 1988 ident: 10.1016/j.rcim.2008.02.010_bib28 contributor: fullname: Steckl – volume: 9 start-page: 202 year: 2000 ident: 10.1016/j.rcim.2008.02.010_bib18 article-title: Error classification and yield prediction of chips in semiconductor industry applications publication-title: Neural Comput Appl doi: 10.1007/s005210070013 contributor: fullname: Ludwig – volume: 489 start-page: 125 year: 2003 ident: 10.1016/j.rcim.2008.02.010_bib23 article-title: Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase fourier transform infrared spectra publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(03)00726-8 contributor: fullname: Yang – year: 1999 ident: 10.1016/j.rcim.2008.02.010_bib5 contributor: fullname: Breyfogle – volume: 15 start-page: 217 issue: 9–10 year: 2004 ident: 10.1016/j.rcim.2008.02.010_bib8 article-title: Applying six-sigma to supplier development publication-title: Total Quality Manage contributor: fullname: Fu-Kwun – ident: 10.1016/j.rcim.2008.02.010_bib20 – year: 2003 ident: 10.1016/j.rcim.2008.02.010_bib29 contributor: fullname: Montgomery |
SSID | ssj0002453 |
Score | 1.9819294 |
Snippet | Intelligent techniques have been applied in a range of industrial environments [Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 513 |
SubjectTerms | Business improvements Manufacturing Neural networks Six sigma |
Title | Downstream performance prediction for a manufacturing system using neural networks and six-sigma improvement techniques |
URI | https://dx.doi.org/10.1016/j.rcim.2008.02.010 https://search.proquest.com/docview/33683928 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5Be4EDC11WwC7FB24otLHjxD2iAipPrZZF4hY5jo2C1FA1reDEb9-ZxGEfWu1hj7FiJ_KMv288nhkDHA6lzHIqPih0mAXRKDSBds4GLkoMPiAjG3IN3NzGk_vo8kE-rMC4zYWhsEqP_Q2m12jtWwZ-NgezohjcoXISfUqyeZC5EYe7SEdcdaB7cnE1uX0HZB41xSjx_YA6-NyZJsxrboqpD6nkx0NKpP07P_2B1DX9nG_Chrcb2Unza1uwYssefGjvZGB-ifZg_ZcCgx_h5ZScxxRMPmWznykCbDan8xmSCcM2phk2LynHoU5aZE15Z0Yx8Y-MKl7il8smXrxiusxZVbwGVfE41ayonRK1j5G914OttuH-_Oz7eBL4qxYCgxusRZBxgxslyRPlXGhklCVJmCN755k0uN2WoYs1DzNKtY5yrY1S8SgZGWWtclzHTnyCTvlc2h1gzkjBhbU6ljpy3CotrRiJTJihcjLPd-GoneB01lTUSNtQs6eUxOGvxuQpimMXZCuD9De9SBHy_9nvoBVYiguGTkF0aZ-XVSpETEah2vvPkT_DWnOiRJ6YL9BZzJd2Hw2TRdaH1eO3sI_qN_52_bXv1fAHC6LoHw |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGICBN6K86oENhTZ2nKQjKqAChQWQ2CzHsVGQmlZNK5j47dwlDgWEGBhj2UnkO9-dz993JuS4I0SSYvFBrvzEC7q-9pS1xrNBpOEBPLLG1MDtXdh_DK6fxFOD9GouDMIqne2vbHpprV1L281me5xl7XtQTnSfAmMe8NxghxcDjI9BqU_f5zgPFlSlKKG3h90dc6YCeU10NnSASnbaQRrt797ph50unc_lOll1USM9q35sgzRMvknW6hsZqFugm2TlS3nBLfJ6jqljhJIP6XhOEKDjCZ7OoEQotFFFoXmGDIeSskir4s4UEfHPFOtdwpfzCi1eUJWntMjevCJ7HiqalSmJMsNIP6vBFtvk8fLiodf33EULnobt1dRLmIZtkmBRbK2vRZBEkZ-C704ToWGzLXwbKuYnSLQOUqV0HIfdqKtjY2LLVGj5DlnIR7nZJdRqwRk3RoVCBZaZWAnDuzzhuhNbkaZNclJPsBxX9TRkDTR7kSgOdzEmkyCOJhG1DOQ3rZBg8P8c16oFJmG54BmIys1oVkjOQwwJ471_vrlFlvoPtwM5uLq72SfL1dkS5mQOyMJ0MjOHEKJMk6NSBT8A7SjnYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Downstream+performance+prediction+for+a+manufacturing+system+using+neural+networks+and+six-sigma+improvement+techniques&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Johnston%2C+A+B&rft.au=Maguire%2C+L+P&rft.au=McGinnity%2C+T+M&rft.date=2009-06-01&rft.issn=0736-5845&rft.volume=25&rft.issue=3&rft.spage=513&rft.epage=521&rft_id=info:doi/10.1016%2Fj.rcim.2008.02.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon |