ADAM15 Supports Prostate Cancer Metastasis by Modulating Tumor Cell–Endothelial Cell Interaction

Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 68; no. 4; pp. 1092 - 1099
Main Authors Najy, Abdo J., Day, Kathleen C., Day, Mark L.
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.02.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins αv integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer. [Cancer Res 2008;68(4):1092–9]
AbstractList Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer.Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer.
Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha sub(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer. [Cancer Res 2008; 68(4):1092-9]
Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer.
Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins αv integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer. [Cancer Res 2008;68(4):1092–9]
Author Day, Mark L.
Najy, Abdo J.
Day, Kathleen C.
Author_xml – sequence: 1
  givenname: Abdo J.
  surname: Najy
  fullname: Najy, Abdo J.
– sequence: 2
  givenname: Kathleen C.
  surname: Day
  fullname: Day, Kathleen C.
– sequence: 3
  givenname: Mark L.
  surname: Day
  fullname: Day, Mark L.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20165857$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18281484$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQxi3Uim4LjwDyBW4pnsSuHXFapX-o1AUkytmyvRMwysaL7Rx64x14Q56kDl32wKE9jWb0-2ZG33dMDsYwIiGvgJ0CCPWOMaYqwWV92i0_VkxWNW_qZ2QBolGV5FwckMWeOSLHKf0orQAmnpMjULUCrviC2OX5cgWCfpm22xBzop9jSNlkpJ0ZHUa6wmzKIPlE7R1dhfU0mOzHb_R22oRIOxyGP79-X4zrkL_j4M3wd0Svx4zRuOzD-IIc9mZI-HJXT8jXy4vb7kN18-nqulveVI4zyJWFxtai5Qxb1hrRKmAKeyetFX1tm7VDhZYbyx2IHjiCa5mTvEUuOPYIzQl5-7B3G8PPCVPWG59cecaMGKakJWtYK6V8EqyZKjubswK-3oGT3eBab6PfmHin_9lXgDc7wCRnhj4Wz3zaczWDM6HEfPH9A-eKuylir50vJhdzcjR-0MD0HKqeA9NzYLqEqpnUc6hFLf5T7x95VHcPI7Slbg
CODEN CNREA8
CitedBy_id crossref_primary_10_1158_1541_7786_MCR_16_0447
crossref_primary_10_1158_0008_5472_CAN_08_2976
crossref_primary_10_1002_jcb_22317
crossref_primary_10_1038_s41388_023_02650_5
crossref_primary_10_1002_ijc_33808
crossref_primary_10_1016_j_bbcan_2010_02_002
crossref_primary_10_1111_his_12922
crossref_primary_10_1093_glycob_cwn070
crossref_primary_10_1111_j_1600_0625_2012_01490_x
crossref_primary_10_4199_C00025ED1V01Y201101ISP013
crossref_primary_10_1016_j_neo_2017_01_005
crossref_primary_10_1186_1476_4598_13_24
crossref_primary_10_1002_ijc_34695
crossref_primary_10_1016_j_ab_2016_09_010
crossref_primary_10_1016_j_brainres_2010_02_049
crossref_primary_10_1016_j_cca_2009_01_007
crossref_primary_10_1016_j_cytogfr_2008_11_005
crossref_primary_10_5483_BMBRep_2015_48_5_161
crossref_primary_10_1016_j_bbamcr_2008_05_016
crossref_primary_10_1586_erm_09_73
crossref_primary_10_1593_neo_81544
crossref_primary_10_3390_molecules181215019
crossref_primary_10_1371_journal_pone_0003535
crossref_primary_10_3892_or_2015_4203
crossref_primary_10_1002_cncr_24513
crossref_primary_10_1016_j_joca_2017_02_791
crossref_primary_10_1155_2008_183516
crossref_primary_10_1158_1541_7786_MCR_12_0071
crossref_primary_10_1038_pcan_2015_9
crossref_primary_10_4049_jimmunol_1201630
crossref_primary_10_1155_2017_9621724
crossref_primary_10_1016_j_freeradbiomed_2018_09_004
crossref_primary_10_1074_jbc_M801329200
crossref_primary_10_1016_j_bbrc_2013_05_037
crossref_primary_10_1186_s13059_016_1024_y
crossref_primary_10_3390_ijms241310904
crossref_primary_10_2217_14796694_4_3_351
crossref_primary_10_3390_cancers13205158
crossref_primary_10_3390_toxins2102411
crossref_primary_10_1093_cvr_cvq060
crossref_primary_10_1371_journal_pone_0110286
crossref_primary_10_1371_journal_pone_0150138
crossref_primary_10_1096_fj_11_201681
crossref_primary_10_1016_j_neo_2024_101036
crossref_primary_10_3390_ijms24010386
crossref_primary_10_1158_0008_5472_CAN_10_2301
crossref_primary_10_1007_s11523_013_0268_7
crossref_primary_10_1152_ajplung_00133_2012
crossref_primary_10_1161_HYPERTENSIONAHA_122_17963
crossref_primary_10_1007_s00345_009_0374_4
crossref_primary_10_3390_ijms22073608
crossref_primary_10_1042_BJ20082127
crossref_primary_10_1161_ATVBAHA_112_252205
crossref_primary_10_1002_ijc_25891
crossref_primary_10_1371_journal_pone_0203847
crossref_primary_10_1016_j_ctrv_2008_03_012
crossref_primary_10_18632_oncotarget_717
crossref_primary_10_1158_1078_0432_CCR_08_1585
crossref_primary_10_1016_j_cellsig_2011_10_004
crossref_primary_10_1002_jcb_22087
crossref_primary_10_1016_j_imlet_2014_08_008
crossref_primary_10_1007_s10585_010_9344_x
crossref_primary_10_1016_j_ocarto_2020_100128
crossref_primary_10_1186_s13000_020_00967_3
crossref_primary_10_1371_journal_pone_0020628
Cites_doi 10.1158/0008-5472.CAN-05-2020
10.1006/excr.2001.5353
10.1038/nrm1004
10.1038/labinvest.3780096
10.1128/MCB.23.16.5614-5624.2003
10.1023/A:1009206817829
10.1016/S0303-7207(00)00305-1
10.1074/jbc.M409565200
10.1158/0008-5472.CAN-04-2442
10.1006/bbrc.1997.6714
10.1126/science.282.5392.1281
10.1002/jcb.10550
10.1016/j.pharmthera.2006.02.009
10.4161/cbt.2.6.531
10.1038/sj.onc.1209327
10.1002/(SICI)1096-9896(200002)190:3<310::AID-PATH525>3.0.CO;2-P
10.1101/gad.1039703
10.1158/0008-5472.CAN-05-1293
10.1073/pnas.232688199
10.1016/S0002-9440(10)65177-2
10.1186/1476-4598-6-18
10.1593/neo.05682
10.1042/bst0311203
10.1242/jcs.112.4.579
10.1016/j.ceb.2003.08.001
10.1074/jbc.M200988200
10.1161/01.ATV.15.8.1229
10.1016/j.ejca.2006.01.004
10.1002/jcb.10664
10.1016/S0168-9525(99)01926-5
10.1158/0008-5472.CAN-05-1063
10.1038/sj.onc.1206757
10.1002/cyto.1131
10.1038/ncb0402-e83
10.1158/0008-5472.CAN-04-0389
10.1158/0008-5472.CAN-03-3272
10.1038/sj.onc.1209536
10.1074/jbc.273.13.7345
10.1038/nrc865
10.1016/S0002-9440(10)65403-X
10.1038/sj.emboj.7600548
10.1002/ijc.22219
10.1016/S1476-5586(03)80054-4
10.1083/jcb.135.6.1643
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U9
H94
7X8
DOI 10.1158/0008-5472.CAN-07-2432
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Oncogenes and Growth Factors Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 1099
ExternalDocumentID 18281484
20165857
10_1158_0008_5472_CAN_07_2432
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007315
– fundername: NIDDK NIH HHS
  grantid: R01 DK56137
GroupedDBID ---
-ET
.55
18M
29B
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
8WZ
A6W
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
MVM
OHT
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
XJT
YKV
YZZ
ZCG
.GJ
ADNWM
D0S
IQODW
J5H
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VXZ
7TO
7U9
H94
7X8
ID FETCH-LOGICAL-c401t-b13b25940e909a598108efc7bb5f2b3dce8eb4ab4c15f14e1c90c749e454efe13
ISSN 0008-5472
1538-7445
IngestDate Thu Jul 10 23:41:46 EDT 2025
Fri Jul 11 12:41:27 EDT 2025
Wed Feb 19 02:43:45 EST 2025
Mon Jul 21 09:11:11 EDT 2025
Tue Jul 01 03:44:31 EDT 2025
Thu Apr 24 22:53:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Endothelial cell
Urinary system disease
Prostate disease
Prostate metastasis
Cell cell interaction
Malignant tumor
Male genital diseases
Prostate cancer
Tumor cell
Cancer
Endothelium
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-b13b25940e909a598108efc7bb5f2b3dce8eb4ab4c15f14e1c90c749e454efe13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18281484
PQID 20845436
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_70309777
proquest_miscellaneous_20845436
pubmed_primary_18281484
pascalfrancis_primary_20165857
crossref_citationtrail_10_1158_0008_5472_CAN_07_2432
crossref_primary_10_1158_0008_5472_CAN_07_2432
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-15
PublicationDateYYYYMMDD 2008-02-15
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-15
  day: 15
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2008
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061700275663800_B20
2022061700275663800_B42
2022061700275663800_B21
2022061700275663800_B43
2022061700275663800_B22
2022061700275663800_B44
2022061700275663800_B23
2022061700275663800_B45
2022061700275663800_B40
2022061700275663800_B41
2022061700275663800_B3
2022061700275663800_B28
2022061700275663800_B2
2022061700275663800_B29
2022061700275663800_B5
2022061700275663800_B4
2022061700275663800_B24
2022061700275663800_B25
2022061700275663800_B1
2022061700275663800_B26
2022061700275663800_B27
2022061700275663800_B7
2022061700275663800_B6
2022061700275663800_B9
2022061700275663800_B8
2022061700275663800_B31
2022061700275663800_B10
2022061700275663800_B32
2022061700275663800_B11
2022061700275663800_B33
2022061700275663800_B12
2022061700275663800_B34
2022061700275663800_B30
2022061700275663800_B17
2022061700275663800_B39
2022061700275663800_B18
2022061700275663800_B19
2022061700275663800_B13
2022061700275663800_B35
2022061700275663800_B14
2022061700275663800_B36
2022061700275663800_B15
2022061700275663800_B37
2022061700275663800_B16
2022061700275663800_B38
18518760 - Future Oncol. 2008 Jun;4(3):351-4
References_xml – ident: 2022061700275663800_B28
  doi: 10.1158/0008-5472.CAN-05-2020
– ident: 2022061700275663800_B31
  doi: 10.1006/excr.2001.5353
– ident: 2022061700275663800_B33
  doi: 10.1038/nrm1004
– ident: 2022061700275663800_B22
  doi: 10.1038/labinvest.3780096
– ident: 2022061700275663800_B19
  doi: 10.1128/MCB.23.16.5614-5624.2003
– ident: 2022061700275663800_B37
  doi: 10.1023/A:1009206817829
– ident: 2022061700275663800_B11
  doi: 10.1016/S0303-7207(00)00305-1
– ident: 2022061700275663800_B14
  doi: 10.1074/jbc.M409565200
– ident: 2022061700275663800_B1
  doi: 10.1158/0008-5472.CAN-04-2442
– ident: 2022061700275663800_B15
  doi: 10.1006/bbrc.1997.6714
– ident: 2022061700275663800_B5
  doi: 10.1126/science.282.5392.1281
– ident: 2022061700275663800_B10
  doi: 10.1002/jcb.10550
– ident: 2022061700275663800_B8
  doi: 10.1016/j.pharmthera.2006.02.009
– ident: 2022061700275663800_B26
  doi: 10.4161/cbt.2.6.531
– ident: 2022061700275663800_B34
  doi: 10.1038/sj.onc.1209327
– ident: 2022061700275663800_B29
  doi: 10.1002/(SICI)1096-9896(200002)190:3<310::AID-PATH525>3.0.CO;2-P
– ident: 2022061700275663800_B4
  doi: 10.1101/gad.1039703
– ident: 2022061700275663800_B30
  doi: 10.1158/0008-5472.CAN-05-1293
– ident: 2022061700275663800_B27
  doi: 10.1073/pnas.232688199
– ident: 2022061700275663800_B43
  doi: 10.1016/S0002-9440(10)65177-2
– ident: 2022061700275663800_B35
  doi: 10.1186/1476-4598-6-18
– ident: 2022061700275663800_B25
  doi: 10.1593/neo.05682
– ident: 2022061700275663800_B7
  doi: 10.1042/bst0311203
– ident: 2022061700275663800_B20
  doi: 10.1242/jcs.112.4.579
– ident: 2022061700275663800_B40
– ident: 2022061700275663800_B6
  doi: 10.1016/j.ceb.2003.08.001
– ident: 2022061700275663800_B39
  doi: 10.1074/jbc.M200988200
– ident: 2022061700275663800_B17
  doi: 10.1161/01.ATV.15.8.1229
– ident: 2022061700275663800_B3
  doi: 10.1016/j.ejca.2006.01.004
– ident: 2022061700275663800_B41
  doi: 10.1002/jcb.10664
– ident: 2022061700275663800_B12
  doi: 10.1016/S0168-9525(99)01926-5
– ident: 2022061700275663800_B16
  doi: 10.1158/0008-5472.CAN-05-1063
– ident: 2022061700275663800_B2
  doi: 10.1038/sj.onc.1206757
– ident: 2022061700275663800_B23
  doi: 10.1002/cyto.1131
– ident: 2022061700275663800_B32
  doi: 10.1038/ncb0402-e83
– ident: 2022061700275663800_B42
  doi: 10.1158/0008-5472.CAN-04-0389
– ident: 2022061700275663800_B38
  doi: 10.1158/0008-5472.CAN-03-3272
– ident: 2022061700275663800_B36
  doi: 10.1038/sj.onc.1209536
– ident: 2022061700275663800_B21
  doi: 10.1074/jbc.273.13.7345
– ident: 2022061700275663800_B18
  doi: 10.1038/nrc865
– ident: 2022061700275663800_B13
  doi: 10.1016/S0002-9440(10)65403-X
– ident: 2022061700275663800_B44
  doi: 10.1038/sj.emboj.7600548
– ident: 2022061700275663800_B45
  doi: 10.1002/ijc.22219
– ident: 2022061700275663800_B24
  doi: 10.1016/S1476-5586(03)80054-4
– ident: 2022061700275663800_B9
  doi: 10.1083/jcb.135.6.1643
– reference: 18518760 - Future Oncol. 2008 Jun;4(3):351-4
SSID ssj0005105
Score 2.2220109
Snippet Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1092
SubjectTerms ADAM Proteins - biosynthesis
ADAM Proteins - genetics
ADAM Proteins - physiology
Animals
Antineoplastic agents
Biological and medical sciences
Bone Neoplasms - secondary
Cell Adhesion - physiology
Cell Communication - physiology
Cell Movement - physiology
Endothelial Cells - metabolism
Endothelial Cells - pathology
Gynecology. Andrology. Obstetrics
Humans
Hyaluronan Receptors - metabolism
Male
Male genital diseases
Matrix Metalloproteinase 9 - metabolism
Medical sciences
Membrane Proteins - biosynthesis
Membrane Proteins - genetics
Membrane Proteins - physiology
Mice
Mice, SCID
Neoplasm Metastasis
Nephrology. Urinary tract diseases
Pharmacology. Drug treatments
Prostatic Neoplasms - genetics
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
RNA, Small Interfering - genetics
Tumors
Tumors of the urinary system
Urinary tract. Prostate gland
Title ADAM15 Supports Prostate Cancer Metastasis by Modulating Tumor Cell–Endothelial Cell Interaction
URI https://www.ncbi.nlm.nih.gov/pubmed/18281484
https://www.proquest.com/docview/20845436
https://www.proquest.com/docview/70309777
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbpFkqhlL6bPrY69LY4tWzJlo8m27K0JFDYhT3VlWSZpSROyOOw_fWdkezY2W7o42KCXk78fZrMjGdGhLznLLKRSm2QWV6hgZIEmbEssCXGFCqgjEJ_x2SanF3wz5ficjD41ota2m70yPy8Na_kf1CFNsAVs2T_AdndotAAnwFfuALCcP0rjPPTfMLEyXq79I7_JaZwgPKIoVzGrvB4aAUNWHMEtMz5onRndWF-1Ha-WJ2g0z6wdYlJWDP0nGODKyCx8ukOfc117JdsigNdube_PozDiZnZbNRzKkzVDwderstF9-LpVF33Azg6B23TgXlDTRZE64eQGLrsMzFHtpOdKffVIVvhmsgeiXhPUrLQn4H3uwgX0sc8ykDwNBqN8yn6UiMe740HJJZzhytYSJL5iqg3a2e3XXfI3QjMCJSDX7521eRRuWyyuuCuH269J1aVbVbZU10eLNUadlHljz85bJ84PeX8EXnYGBg092x5TAa2fkLuTZoQiqfkuycNbUlDW9JQTxrakYbqa9qRhjrS0JukcQ20R5pn5OLTx_PxWdAcsxEYMK43gWaxBiOYhzYLMyUyyUJpK5NqLapIx6Wx0mquNDdMVIxbZrLQpBw2t-C2six-To7qRW1fEsoTzUDlL4UVFRcx11IliYk0L8HKr1g1JLx9goVpatDjUSizwtmiQmIshCwQgwIwKMK0QAyGZLSbtvRFWP404XgPnt2sCLP3pEiH5F2LVwHyFJ-Uqu1iu4YREn5XnBwegf-RYDXBGi880N13aojy6mDPa3K_2ztvyNFmtbVvQavd6GNHzV85e5yO
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADAM15+supports+prostate+cancer+metastasis+by+modulating+tumor+cell-endothelial+cell+interaction&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Najy%2C+Abdo+J&rft.au=Day%2C+Kathleen+C&rft.au=Day%2C+Mark+L&rft.date=2008-02-15&rft.eissn=1538-7445&rft.volume=68&rft.issue=4&rft.spage=1092&rft_id=info:doi/10.1158%2F0008-5472.CAN-07-2432&rft_id=info%3Apmid%2F18281484&rft.externalDocID=18281484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon