ADAM15 Supports Prostate Cancer Metastasis by Modulating Tumor Cell–Endothelial Cell Interaction
Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 68; no. 4; pp. 1092 - 1099 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
15.02.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins αv integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer. [Cancer Res 2008;68(4):1092–9] |
---|---|
AbstractList | Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer.Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer. Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha sub(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer. [Cancer Res 2008; 68(4):1092-9] Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer. Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins αv integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer. [Cancer Res 2008;68(4):1092–9] |
Author | Day, Mark L. Najy, Abdo J. Day, Kathleen C. |
Author_xml | – sequence: 1 givenname: Abdo J. surname: Najy fullname: Najy, Abdo J. – sequence: 2 givenname: Kathleen C. surname: Day fullname: Day, Kathleen C. – sequence: 3 givenname: Mark L. surname: Day fullname: Day, Mark L. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20165857$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18281484$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQxi3Uim4LjwDyBW4pnsSuHXFapX-o1AUkytmyvRMwysaL7Rx64x14Q56kDl32wKE9jWb0-2ZG33dMDsYwIiGvgJ0CCPWOMaYqwWV92i0_VkxWNW_qZ2QBolGV5FwckMWeOSLHKf0orQAmnpMjULUCrviC2OX5cgWCfpm22xBzop9jSNlkpJ0ZHUa6wmzKIPlE7R1dhfU0mOzHb_R22oRIOxyGP79-X4zrkL_j4M3wd0Svx4zRuOzD-IIc9mZI-HJXT8jXy4vb7kN18-nqulveVI4zyJWFxtai5Qxb1hrRKmAKeyetFX1tm7VDhZYbyx2IHjiCa5mTvEUuOPYIzQl5-7B3G8PPCVPWG59cecaMGKakJWtYK6V8EqyZKjubswK-3oGT3eBab6PfmHin_9lXgDc7wCRnhj4Wz3zaczWDM6HEfPH9A-eKuylir50vJhdzcjR-0MD0HKqeA9NzYLqEqpnUc6hFLf5T7x95VHcPI7Slbg |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1158_1541_7786_MCR_16_0447 crossref_primary_10_1158_0008_5472_CAN_08_2976 crossref_primary_10_1002_jcb_22317 crossref_primary_10_1038_s41388_023_02650_5 crossref_primary_10_1002_ijc_33808 crossref_primary_10_1016_j_bbcan_2010_02_002 crossref_primary_10_1111_his_12922 crossref_primary_10_1093_glycob_cwn070 crossref_primary_10_1111_j_1600_0625_2012_01490_x crossref_primary_10_4199_C00025ED1V01Y201101ISP013 crossref_primary_10_1016_j_neo_2017_01_005 crossref_primary_10_1186_1476_4598_13_24 crossref_primary_10_1002_ijc_34695 crossref_primary_10_1016_j_ab_2016_09_010 crossref_primary_10_1016_j_brainres_2010_02_049 crossref_primary_10_1016_j_cca_2009_01_007 crossref_primary_10_1016_j_cytogfr_2008_11_005 crossref_primary_10_5483_BMBRep_2015_48_5_161 crossref_primary_10_1016_j_bbamcr_2008_05_016 crossref_primary_10_1586_erm_09_73 crossref_primary_10_1593_neo_81544 crossref_primary_10_3390_molecules181215019 crossref_primary_10_1371_journal_pone_0003535 crossref_primary_10_3892_or_2015_4203 crossref_primary_10_1002_cncr_24513 crossref_primary_10_1016_j_joca_2017_02_791 crossref_primary_10_1155_2008_183516 crossref_primary_10_1158_1541_7786_MCR_12_0071 crossref_primary_10_1038_pcan_2015_9 crossref_primary_10_4049_jimmunol_1201630 crossref_primary_10_1155_2017_9621724 crossref_primary_10_1016_j_freeradbiomed_2018_09_004 crossref_primary_10_1074_jbc_M801329200 crossref_primary_10_1016_j_bbrc_2013_05_037 crossref_primary_10_1186_s13059_016_1024_y crossref_primary_10_3390_ijms241310904 crossref_primary_10_2217_14796694_4_3_351 crossref_primary_10_3390_cancers13205158 crossref_primary_10_3390_toxins2102411 crossref_primary_10_1093_cvr_cvq060 crossref_primary_10_1371_journal_pone_0110286 crossref_primary_10_1371_journal_pone_0150138 crossref_primary_10_1096_fj_11_201681 crossref_primary_10_1016_j_neo_2024_101036 crossref_primary_10_3390_ijms24010386 crossref_primary_10_1158_0008_5472_CAN_10_2301 crossref_primary_10_1007_s11523_013_0268_7 crossref_primary_10_1152_ajplung_00133_2012 crossref_primary_10_1161_HYPERTENSIONAHA_122_17963 crossref_primary_10_1007_s00345_009_0374_4 crossref_primary_10_3390_ijms22073608 crossref_primary_10_1042_BJ20082127 crossref_primary_10_1161_ATVBAHA_112_252205 crossref_primary_10_1002_ijc_25891 crossref_primary_10_1371_journal_pone_0203847 crossref_primary_10_1016_j_ctrv_2008_03_012 crossref_primary_10_18632_oncotarget_717 crossref_primary_10_1158_1078_0432_CCR_08_1585 crossref_primary_10_1016_j_cellsig_2011_10_004 crossref_primary_10_1002_jcb_22087 crossref_primary_10_1016_j_imlet_2014_08_008 crossref_primary_10_1007_s10585_010_9344_x crossref_primary_10_1016_j_ocarto_2020_100128 crossref_primary_10_1186_s13000_020_00967_3 crossref_primary_10_1371_journal_pone_0020628 |
Cites_doi | 10.1158/0008-5472.CAN-05-2020 10.1006/excr.2001.5353 10.1038/nrm1004 10.1038/labinvest.3780096 10.1128/MCB.23.16.5614-5624.2003 10.1023/A:1009206817829 10.1016/S0303-7207(00)00305-1 10.1074/jbc.M409565200 10.1158/0008-5472.CAN-04-2442 10.1006/bbrc.1997.6714 10.1126/science.282.5392.1281 10.1002/jcb.10550 10.1016/j.pharmthera.2006.02.009 10.4161/cbt.2.6.531 10.1038/sj.onc.1209327 10.1002/(SICI)1096-9896(200002)190:3<310::AID-PATH525>3.0.CO;2-P 10.1101/gad.1039703 10.1158/0008-5472.CAN-05-1293 10.1073/pnas.232688199 10.1016/S0002-9440(10)65177-2 10.1186/1476-4598-6-18 10.1593/neo.05682 10.1042/bst0311203 10.1242/jcs.112.4.579 10.1016/j.ceb.2003.08.001 10.1074/jbc.M200988200 10.1161/01.ATV.15.8.1229 10.1016/j.ejca.2006.01.004 10.1002/jcb.10664 10.1016/S0168-9525(99)01926-5 10.1158/0008-5472.CAN-05-1063 10.1038/sj.onc.1206757 10.1002/cyto.1131 10.1038/ncb0402-e83 10.1158/0008-5472.CAN-04-0389 10.1158/0008-5472.CAN-03-3272 10.1038/sj.onc.1209536 10.1074/jbc.273.13.7345 10.1038/nrc865 10.1016/S0002-9440(10)65403-X 10.1038/sj.emboj.7600548 10.1002/ijc.22219 10.1016/S1476-5586(03)80054-4 10.1083/jcb.135.6.1643 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TO 7U9 H94 7X8 |
DOI | 10.1158/0008-5472.CAN-07-2432 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Oncogenes and Growth Factors Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 1099 |
ExternalDocumentID | 18281484 20165857 10_1158_0008_5472_CAN_07_2432 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM007315 – fundername: NIDDK NIH HHS grantid: R01 DK56137 |
GroupedDBID | --- -ET .55 18M 29B 2WC 34G 39C 3O- 53G 5GY 5RE 5VS 6J9 8WZ A6W AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW AENEX AETEA AFFNX AFHIN AFOSN AFRAH AFUMD AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO MVM OHT OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 UDS VH1 W2D W8F WH7 WHG WOQ X7M XJT YKV YZZ ZCG .GJ ADNWM D0S IQODW J5H ZGI CGR CUY CVF ECM EIF NPM RHF VXZ 7TO 7U9 H94 7X8 |
ID | FETCH-LOGICAL-c401t-b13b25940e909a598108efc7bb5f2b3dce8eb4ab4c15f14e1c90c749e454efe13 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Jul 10 23:41:46 EDT 2025 Fri Jul 11 12:41:27 EDT 2025 Wed Feb 19 02:43:45 EST 2025 Mon Jul 21 09:11:11 EDT 2025 Tue Jul 01 03:44:31 EDT 2025 Thu Apr 24 22:53:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Endothelial cell Urinary system disease Prostate disease Prostate metastasis Cell cell interaction Malignant tumor Male genital diseases Prostate cancer Tumor cell Cancer Endothelium |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c401t-b13b25940e909a598108efc7bb5f2b3dce8eb4ab4c15f14e1c90c749e454efe13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18281484 |
PQID | 20845436 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_70309777 proquest_miscellaneous_20845436 pubmed_primary_18281484 pascalfrancis_primary_20165857 crossref_citationtrail_10_1158_0008_5472_CAN_07_2432 crossref_primary_10_1158_0008_5472_CAN_07_2432 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-02-15 |
PublicationDateYYYYMMDD | 2008-02-15 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2008 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061700275663800_B20 2022061700275663800_B42 2022061700275663800_B21 2022061700275663800_B43 2022061700275663800_B22 2022061700275663800_B44 2022061700275663800_B23 2022061700275663800_B45 2022061700275663800_B40 2022061700275663800_B41 2022061700275663800_B3 2022061700275663800_B28 2022061700275663800_B2 2022061700275663800_B29 2022061700275663800_B5 2022061700275663800_B4 2022061700275663800_B24 2022061700275663800_B25 2022061700275663800_B1 2022061700275663800_B26 2022061700275663800_B27 2022061700275663800_B7 2022061700275663800_B6 2022061700275663800_B9 2022061700275663800_B8 2022061700275663800_B31 2022061700275663800_B10 2022061700275663800_B32 2022061700275663800_B11 2022061700275663800_B33 2022061700275663800_B12 2022061700275663800_B34 2022061700275663800_B30 2022061700275663800_B17 2022061700275663800_B39 2022061700275663800_B18 2022061700275663800_B19 2022061700275663800_B13 2022061700275663800_B35 2022061700275663800_B14 2022061700275663800_B36 2022061700275663800_B15 2022061700275663800_B37 2022061700275663800_B16 2022061700275663800_B38 18518760 - Future Oncol. 2008 Jun;4(3):351-4 |
References_xml | – ident: 2022061700275663800_B28 doi: 10.1158/0008-5472.CAN-05-2020 – ident: 2022061700275663800_B31 doi: 10.1006/excr.2001.5353 – ident: 2022061700275663800_B33 doi: 10.1038/nrm1004 – ident: 2022061700275663800_B22 doi: 10.1038/labinvest.3780096 – ident: 2022061700275663800_B19 doi: 10.1128/MCB.23.16.5614-5624.2003 – ident: 2022061700275663800_B37 doi: 10.1023/A:1009206817829 – ident: 2022061700275663800_B11 doi: 10.1016/S0303-7207(00)00305-1 – ident: 2022061700275663800_B14 doi: 10.1074/jbc.M409565200 – ident: 2022061700275663800_B1 doi: 10.1158/0008-5472.CAN-04-2442 – ident: 2022061700275663800_B15 doi: 10.1006/bbrc.1997.6714 – ident: 2022061700275663800_B5 doi: 10.1126/science.282.5392.1281 – ident: 2022061700275663800_B10 doi: 10.1002/jcb.10550 – ident: 2022061700275663800_B8 doi: 10.1016/j.pharmthera.2006.02.009 – ident: 2022061700275663800_B26 doi: 10.4161/cbt.2.6.531 – ident: 2022061700275663800_B34 doi: 10.1038/sj.onc.1209327 – ident: 2022061700275663800_B29 doi: 10.1002/(SICI)1096-9896(200002)190:3<310::AID-PATH525>3.0.CO;2-P – ident: 2022061700275663800_B4 doi: 10.1101/gad.1039703 – ident: 2022061700275663800_B30 doi: 10.1158/0008-5472.CAN-05-1293 – ident: 2022061700275663800_B27 doi: 10.1073/pnas.232688199 – ident: 2022061700275663800_B43 doi: 10.1016/S0002-9440(10)65177-2 – ident: 2022061700275663800_B35 doi: 10.1186/1476-4598-6-18 – ident: 2022061700275663800_B25 doi: 10.1593/neo.05682 – ident: 2022061700275663800_B7 doi: 10.1042/bst0311203 – ident: 2022061700275663800_B20 doi: 10.1242/jcs.112.4.579 – ident: 2022061700275663800_B40 – ident: 2022061700275663800_B6 doi: 10.1016/j.ceb.2003.08.001 – ident: 2022061700275663800_B39 doi: 10.1074/jbc.M200988200 – ident: 2022061700275663800_B17 doi: 10.1161/01.ATV.15.8.1229 – ident: 2022061700275663800_B3 doi: 10.1016/j.ejca.2006.01.004 – ident: 2022061700275663800_B41 doi: 10.1002/jcb.10664 – ident: 2022061700275663800_B12 doi: 10.1016/S0168-9525(99)01926-5 – ident: 2022061700275663800_B16 doi: 10.1158/0008-5472.CAN-05-1063 – ident: 2022061700275663800_B2 doi: 10.1038/sj.onc.1206757 – ident: 2022061700275663800_B23 doi: 10.1002/cyto.1131 – ident: 2022061700275663800_B32 doi: 10.1038/ncb0402-e83 – ident: 2022061700275663800_B42 doi: 10.1158/0008-5472.CAN-04-0389 – ident: 2022061700275663800_B38 doi: 10.1158/0008-5472.CAN-03-3272 – ident: 2022061700275663800_B36 doi: 10.1038/sj.onc.1209536 – ident: 2022061700275663800_B21 doi: 10.1074/jbc.273.13.7345 – ident: 2022061700275663800_B18 doi: 10.1038/nrc865 – ident: 2022061700275663800_B13 doi: 10.1016/S0002-9440(10)65403-X – ident: 2022061700275663800_B44 doi: 10.1038/sj.emboj.7600548 – ident: 2022061700275663800_B45 doi: 10.1002/ijc.22219 – ident: 2022061700275663800_B24 doi: 10.1016/S1476-5586(03)80054-4 – ident: 2022061700275663800_B9 doi: 10.1083/jcb.135.6.1643 – reference: 18518760 - Future Oncol. 2008 Jun;4(3):351-4 |
SSID | ssj0005105 |
Score | 2.2220109 |
Snippet | Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1092 |
SubjectTerms | ADAM Proteins - biosynthesis ADAM Proteins - genetics ADAM Proteins - physiology Animals Antineoplastic agents Biological and medical sciences Bone Neoplasms - secondary Cell Adhesion - physiology Cell Communication - physiology Cell Movement - physiology Endothelial Cells - metabolism Endothelial Cells - pathology Gynecology. Andrology. Obstetrics Humans Hyaluronan Receptors - metabolism Male Male genital diseases Matrix Metalloproteinase 9 - metabolism Medical sciences Membrane Proteins - biosynthesis Membrane Proteins - genetics Membrane Proteins - physiology Mice Mice, SCID Neoplasm Metastasis Nephrology. Urinary tract diseases Pharmacology. Drug treatments Prostatic Neoplasms - genetics Prostatic Neoplasms - metabolism Prostatic Neoplasms - pathology RNA, Small Interfering - genetics Tumors Tumors of the urinary system Urinary tract. Prostate gland |
Title | ADAM15 Supports Prostate Cancer Metastasis by Modulating Tumor Cell–Endothelial Cell Interaction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18281484 https://www.proquest.com/docview/20845436 https://www.proquest.com/docview/70309777 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbpFkqhlL6bPrY69LY4tWzJlo8m27K0JFDYhT3VlWSZpSROyOOw_fWdkezY2W7o42KCXk78fZrMjGdGhLznLLKRSm2QWV6hgZIEmbEssCXGFCqgjEJ_x2SanF3wz5ficjD41ota2m70yPy8Na_kf1CFNsAVs2T_AdndotAAnwFfuALCcP0rjPPTfMLEyXq79I7_JaZwgPKIoVzGrvB4aAUNWHMEtMz5onRndWF-1Ha-WJ2g0z6wdYlJWDP0nGODKyCx8ukOfc117JdsigNdube_PozDiZnZbNRzKkzVDwderstF9-LpVF33Azg6B23TgXlDTRZE64eQGLrsMzFHtpOdKffVIVvhmsgeiXhPUrLQn4H3uwgX0sc8ykDwNBqN8yn6UiMe740HJJZzhytYSJL5iqg3a2e3XXfI3QjMCJSDX7521eRRuWyyuuCuH269J1aVbVbZU10eLNUadlHljz85bJ84PeX8EXnYGBg092x5TAa2fkLuTZoQiqfkuycNbUlDW9JQTxrakYbqa9qRhjrS0JukcQ20R5pn5OLTx_PxWdAcsxEYMK43gWaxBiOYhzYLMyUyyUJpK5NqLapIx6Wx0mquNDdMVIxbZrLQpBw2t-C2six-To7qRW1fEsoTzUDlL4UVFRcx11IliYk0L8HKr1g1JLx9goVpatDjUSizwtmiQmIshCwQgwIwKMK0QAyGZLSbtvRFWP404XgPnt2sCLP3pEiH5F2LVwHyFJ-Uqu1iu4YREn5XnBwegf-RYDXBGi880N13aojy6mDPa3K_2ztvyNFmtbVvQavd6GNHzV85e5yO |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADAM15+supports+prostate+cancer+metastasis+by+modulating+tumor+cell-endothelial+cell+interaction&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Najy%2C+Abdo+J&rft.au=Day%2C+Kathleen+C&rft.au=Day%2C+Mark+L&rft.date=2008-02-15&rft.eissn=1538-7445&rft.volume=68&rft.issue=4&rft.spage=1092&rft_id=info:doi/10.1158%2F0008-5472.CAN-07-2432&rft_id=info%3Apmid%2F18281484&rft.externalDocID=18281484 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |