Mechanical properties and numerical modeling of Fabric Reinforced Cementitious Matrix (FRCM) systems for strengthening of masonry structures

The behavior of single bricks and small masonry pillars strengthened by means of fabric reinforced cementitious matrix systems made with glass-fiber grids is discussed both from an experimental and numerical standpoint. A standard Push–pull double lap test is performed on three different series of e...

Full description

Saved in:
Bibliographic Details
Published inComposite structures Vol. 107; pp. 711 - 725
Main Authors Carozzi, Francesca Giulia, Milani, Gabriele, Poggi, Carlo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The behavior of single bricks and small masonry pillars strengthened by means of fabric reinforced cementitious matrix systems made with glass-fiber grids is discussed both from an experimental and numerical standpoint. A standard Push–pull double lap test is performed on three different series of experimental set-ups for reinforced single bricks and on masonry pillars, evaluating the role played by the anchorage length on the overall behavior of the strengthened system. Standard Italian bricks with very good mechanical properties are used, in order to evaluate the ultimate strength of the grid for delamination within the mortar. The masonry pillar is built with 3 bricks spaced out by two thick mortar joints. When dealing with the single bricks, three different anchorage lengths were tested, equal to 5, 10 and 15cm, in order to evaluate the reduction of the ultimate strength induced by an insufficient anchorage. To suitably interpret experimental results, both a newly developed analytical–numerical approach and a recently presented 3D FEM model were utilized to have an insight into experimental results. In the analytical–numerical approach only the glass-fiber grid was considered and modeled by means of 1D Finite Elements interacting with the surrounding mortar by means of interfaces exhibiting a non-linear stress–slip behavior deduced from experimental data. The 3D model uses 8-noded rigid elements interconnected by inelastic interfaces exhibiting softening. The incremental non-linear problem is solved by means of a robust Sequential Quadratic Programming routine already tested on medium and large scale examples with softening materials. The grid is modeled through non-linear truss elements, interacting with surrounding mortar by means of non-linear interfacial tangential stresses. Stress–slip behavior of the interface between the mortar and the textile is deduced through ad hoc experimentation conducted on a mortar specimen reinforced with a single yarn and subjected to a standard tensile test. Good agreement was found between experimental evidences and numerical simulations, meaning that the combined approach proposed may be considered as reference for design considerations.
AbstractList The behavior of single bricks and small masonry pillars strengthened by means of fabric reinforced cementitious matrix systems made with glass-fiber grids is discussed both from an experimental and numerical standpoint. A standard Push–pull double lap test is performed on three different series of experimental set-ups for reinforced single bricks and on masonry pillars, evaluating the role played by the anchorage length on the overall behavior of the strengthened system. Standard Italian bricks with very good mechanical properties are used, in order to evaluate the ultimate strength of the grid for delamination within the mortar. The masonry pillar is built with 3 bricks spaced out by two thick mortar joints. When dealing with the single bricks, three different anchorage lengths were tested, equal to 5, 10 and 15cm, in order to evaluate the reduction of the ultimate strength induced by an insufficient anchorage. To suitably interpret experimental results, both a newly developed analytical–numerical approach and a recently presented 3D FEM model were utilized to have an insight into experimental results. In the analytical–numerical approach only the glass-fiber grid was considered and modeled by means of 1D Finite Elements interacting with the surrounding mortar by means of interfaces exhibiting a non-linear stress–slip behavior deduced from experimental data. The 3D model uses 8-noded rigid elements interconnected by inelastic interfaces exhibiting softening. The incremental non-linear problem is solved by means of a robust Sequential Quadratic Programming routine already tested on medium and large scale examples with softening materials. The grid is modeled through non-linear truss elements, interacting with surrounding mortar by means of non-linear interfacial tangential stresses. Stress–slip behavior of the interface between the mortar and the textile is deduced through ad hoc experimentation conducted on a mortar specimen reinforced with a single yarn and subjected to a standard tensile test. Good agreement was found between experimental evidences and numerical simulations, meaning that the combined approach proposed may be considered as reference for design considerations.
The behavior of single bricks and small masonry pillars strengthened by means of fabric reinforced cementitious matrix systems made with glass-fiber grids is discussed both from an experimental and numerical standpoint. A standard Push-pull double lap test is performed on three different series of experimental set-ups for reinforced single bricks and on masonry pillars, evaluating the role played by the anchorage length on the overall behavior of the strengthened system. Standard Italian bricks with very good mechanical properties are used, in order to evaluate the ultimate strength of the grid for delamination within the mortar. The masonry pillar is built with 3 bricks spaced out by two thick mortar joints. When dealing with the single bricks, three different anchorage lengths were tested, equal to 5, 10 and 15cm, in order to evaluate the reduction of the ultimate strength induced by an insufficient anchorage. To suitably interpret experimental results, both a newly developed analytical-numerical approach and a recently presented 3D FEM model were utilized to have an insight into experimental results. In the analytical-numerical approach only the glass-fiber grid was considered and modeled by means of 1D Finite Elements interacting with the surrounding mortar by means of interfaces exhibiting a non-linear stress-slip behavior deduced from experimental data. The 3D model uses 8-noded rigid elements interconnected by inelastic interfaces exhibiting softening. The incremental non-linear problem is solved by means of a robust Sequential Quadratic Programming routine already tested on medium and large scale examples with softening materials. The grid is modeled through non-linear truss elements, interacting with surrounding mortar by means of non-linear interfacial tangential stresses. Stress-slip behavior of the interface between the mortar and the textile is deduced through ad hoc experimentation conducted on a mortar specimen reinforced with a single yarn and subjected to a standard tensile test. Good agreement was found between experimental evidences and numerical simulations, meaning that the combined approach proposed may be considered as reference for design considerations.
Author Milani, Gabriele
Poggi, Carlo
Carozzi, Francesca Giulia
Author_xml – sequence: 1
  givenname: Francesca Giulia
  surname: Carozzi
  fullname: Carozzi, Francesca Giulia
– sequence: 2
  givenname: Gabriele
  surname: Milani
  fullname: Milani, Gabriele
  email: gabriele.milani@polimi.it
– sequence: 3
  givenname: Carlo
  surname: Poggi
  fullname: Poggi, Carlo
BookMark eNqFUUFu2zAQJIoUqOPmDzymB6lLUaapY2PUbYEYBYLkTFDUMqEhkQ5JBfEf-ujQdYAee1pgdnYws3NJLnzwSAhlUDNg4uu-NmE6pBxnk-sGGK9B1tCID2TB5LqrGMjVBVkUhFeyafgncpnSHgBky9iC_NmhedLeGT3SQwwHjNlhotoP1M8Txr-LKQw4Ov9Ig6Vb3ReQ3qHzNkSDA93ghD677MKc6E7n6F7p9fZus_tC0zFlnBItTFoson_MT-jflSadgo9HevY-R0yfyUerx4RX73NJHrbf7zc_q9vfP35tvt1WpgWWK22FYG1jeGtlz_q1BSkGECvT86EDqcXQaIEojRh4j0Jo5OUOusauOyuY5EtyfdYtiZ9nTFlNLhkcR-2xhFBMyJUE3nZtocoz1cSQUkSrDtFNOh4VA3UqQO3VvwLUqQAFUp3evSQ351MsUV4cRpWMQ19e5iIW7hDc_0XeAFPmmds
CitedBy_id crossref_primary_10_1016_j_compstruct_2017_06_023
crossref_primary_10_1016_j_compstruct_2014_02_004
crossref_primary_10_1016_j_engstruct_2023_117099
crossref_primary_10_1016_j_conbuildmat_2019_117105
crossref_primary_10_1002_suco_201900374
crossref_primary_10_1016_j_compositesb_2014_10_056
crossref_primary_10_1061__ASCE_CC_1943_5614_0001240
crossref_primary_10_1016_j_compositesb_2023_110983
crossref_primary_10_1016_j_compstruct_2018_11_054
crossref_primary_10_1016_j_compstruct_2020_113404
crossref_primary_10_3390_ma15155125
crossref_primary_10_1016_j_compositesb_2017_11_014
crossref_primary_10_3390_fib7120103
crossref_primary_10_1002_suco_201800243
crossref_primary_10_1016_j_conbuildmat_2019_117061
crossref_primary_10_4028_www_scientific_net_KEM_817_472
crossref_primary_10_3390_su11184866
crossref_primary_10_1061__ASCE_ST_1943_541X_0003020
crossref_primary_10_1080_13632469_2022_2104960
crossref_primary_10_1088_1757_899X_1242_1_012035
crossref_primary_10_1016_j_conbuildmat_2022_128521
crossref_primary_10_1061__ASCE_CC_1943_5614_0001250
crossref_primary_10_1016_j_compstruct_2024_118037
crossref_primary_10_1617_s11527_017_1033_7
crossref_primary_10_4028_p_z5k66l
crossref_primary_10_1016_j_engstruct_2021_111895
crossref_primary_10_1016_j_compositesb_2023_110735
crossref_primary_10_1177_10812865221108372
crossref_primary_10_1016_j_compositesb_2017_05_048
crossref_primary_10_1016_j_compositesb_2017_03_016
crossref_primary_10_1007_s10518_014_9684_z
crossref_primary_10_1016_j_conbuildmat_2020_118560
crossref_primary_10_4028_www_scientific_net_KEM_624_3
crossref_primary_10_1016_j_compstruct_2015_12_028
crossref_primary_10_1016_j_conbuildmat_2017_04_051
crossref_primary_10_1016_j_compositesb_2020_108322
crossref_primary_10_1016_j_compstruct_2015_08_094
crossref_primary_10_3390_buildings13061524
crossref_primary_10_1007_s41024_019_0046_8
crossref_primary_10_1016_j_conbuildmat_2023_132732
crossref_primary_10_1016_j_istruc_2019_10_006
crossref_primary_10_1061__ASCE_CC_1943_5614_0000733
crossref_primary_10_1016_j_conbuildmat_2014_08_006
crossref_primary_10_1016_j_conbuildmat_2023_132185
crossref_primary_10_12989_cac_2016_18_2_279
crossref_primary_10_1016_j_matdes_2016_08_034
crossref_primary_10_1016_j_jobe_2023_106766
crossref_primary_10_3390_ma16031011
crossref_primary_10_1016_j_compstruct_2016_04_030
crossref_primary_10_3390_fib11060053
crossref_primary_10_1016_j_conbuildmat_2017_12_215
crossref_primary_10_3390_polym14010176
crossref_primary_10_1016_j_compositesb_2017_12_052
crossref_primary_10_1016_j_conbuildmat_2022_129039
crossref_primary_10_1016_j_compositesb_2018_12_111
crossref_primary_10_1016_j_compositesb_2019_107302
crossref_primary_10_1016_j_conbuildmat_2019_117617
crossref_primary_10_3390_ma15217438
crossref_primary_10_1016_j_conbuildmat_2020_119157
crossref_primary_10_1016_j_compositesb_2018_08_076
crossref_primary_10_1016_j_conbuildmat_2019_117788
crossref_primary_10_1061__ASCE_SC_1943_5576_0000676
crossref_primary_10_1016_j_compositesb_2017_12_025
crossref_primary_10_1186_s40069_018_0296_x
crossref_primary_10_1520_JTE20200656
crossref_primary_10_1016_j_conbuildmat_2019_05_179
crossref_primary_10_1061__ASCE_CC_1943_5614_0000991
crossref_primary_10_3390_buildings12060840
crossref_primary_10_1016_j_compstruct_2014_09_033
crossref_primary_10_1016_j_compositesb_2015_09_005
crossref_primary_10_1016_j_conbuildmat_2018_03_041
crossref_primary_10_1061__ASCE_CC_1943_5614_0000598
crossref_primary_10_1016_j_compositesb_2016_05_063
crossref_primary_10_1016_j_dibe_2023_100152
crossref_primary_10_1061__ASCE_AE_1943_5568_0000518
crossref_primary_10_4028_www_scientific_net_KEM_817_275
crossref_primary_10_1177_10775463231187456
crossref_primary_10_1016_j_conbuildmat_2018_04_081
crossref_primary_10_1016_j_compositesb_2014_09_011
crossref_primary_10_1016_j_conbuildmat_2017_12_234
crossref_primary_10_1016_j_compositesb_2014_10_025
crossref_primary_10_1016_j_conbuildmat_2015_04_014
crossref_primary_10_1016_j_conbuildmat_2019_03_059
crossref_primary_10_1016_j_compositesb_2016_02_005
crossref_primary_10_1061_JMCEE7_MTENG_15116
crossref_primary_10_1016_j_conbuildmat_2024_134904
crossref_primary_10_1016_j_compositesb_2017_03_052
crossref_primary_10_1016_j_engstruct_2023_116637
crossref_primary_10_1617_s11527_014_0360_1
crossref_primary_10_1016_j_istruc_2024_106474
crossref_primary_10_1016_j_compositesb_2016_09_094
crossref_primary_10_1016_j_compstruct_2020_113065
crossref_primary_10_1016_j_conbuildmat_2014_04_070
crossref_primary_10_1016_j_compstruct_2024_118361
crossref_primary_10_1016_j_istruc_2022_06_035
crossref_primary_10_3390_ma14227021
crossref_primary_10_1016_j_compositesb_2016_02_038
crossref_primary_10_1061__ASCE_CC_1943_5614_0001223
crossref_primary_10_1007_s10518_021_01129_6
crossref_primary_10_1016_j_compstruct_2017_02_026
crossref_primary_10_1016_j_jcomc_2020_100078
crossref_primary_10_1016_j_conbuildmat_2020_119517
crossref_primary_10_1016_j_compstruct_2019_111315
crossref_primary_10_1002_dama_201500647
crossref_primary_10_1016_j_compositesb_2017_06_018
crossref_primary_10_1016_j_compositesb_2014_10_039
crossref_primary_10_3389_fbuil_2020_00051
crossref_primary_10_1016_j_conbuildmat_2017_01_124
crossref_primary_10_1016_j_compstruct_2015_06_057
crossref_primary_10_1016_j_compstruct_2016_09_027
crossref_primary_10_1016_j_conbuildmat_2018_08_039
crossref_primary_10_1016_j_compstruct_2024_118136
crossref_primary_10_1016_j_conbuildmat_2019_117539
crossref_primary_10_1016_j_prostr_2018_11_059
crossref_primary_10_1617_s11527_017_1036_4
crossref_primary_10_3390_buildings12112040
crossref_primary_10_3390_ma14133626
crossref_primary_10_1007_s10518_019_00701_5
crossref_primary_10_1016_j_cemconcomp_2018_06_012
crossref_primary_10_1016_j_compositesb_2018_03_010
crossref_primary_10_3390_cryst10100928
crossref_primary_10_1016_j_engstruct_2015_02_032
crossref_primary_10_1016_j_compstruct_2020_113000
crossref_primary_10_1016_j_istruc_2024_106530
crossref_primary_10_1016_j_conbuildmat_2023_132376
crossref_primary_10_1617_s11527_017_1070_2
crossref_primary_10_1061__ASCE_EM_1943_7889_0001375
crossref_primary_10_3389_fbuil_2020_00060
crossref_primary_10_1080_13632469_2019_1577763
crossref_primary_10_1016_j_engstruct_2016_12_029
Cites_doi 10.1016/j.compstruct.2013.03.002
10.1016/j.compositesb.2012.02.012
10.1016/j.engstruct.2012.05.022
10.1016/S0950-0618(02)00014-4
10.1016/0045-7825(79)90029-X
10.1617/s11527-012-9883-5
10.1016/j.compstruct.2009.09.037
10.1016/j.conbuildmat.2010.12.063
10.1016/j.compositesb.2012.03.011
10.1016/0029-5493(78)90217-0
10.1016/j.compstruct.2011.07.008
10.1016/j.ijsolstr.2011.12.001
10.1016/j.compstruc.2012.07.008
10.1016/S0266-3538(98)00017-7
10.1016/j.cemconcomp.2008.08.004
10.1016/j.compstruct.2009.09.029
10.1007/BF02134214
10.1016/0045-7949(94)00510-A
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
7SR
8FD
H8D
JG9
L7M
DOI 10.1016/j.compstruct.2013.08.026
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1085
EndPage 725
ExternalDocumentID 10_1016_j_compstruct_2013_08_026
S0263822313004236
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SMS
SPC
SPCBC
SSM
SST
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
8FD
H8D
JG9
L7M
ID FETCH-LOGICAL-c401t-af66142c34f8b1b7f086d065cb3d908a6d2a6ee8c6d3be66ae3401092f79f6183
IEDL.DBID AIKHN
ISSN 0263-8223
IngestDate Sat Oct 26 00:13:28 EDT 2024
Thu Sep 26 16:28:18 EDT 2024
Fri Feb 23 02:21:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords GF grid strengthening
Fabric Reinforced Cementitious Matrix FRCM
Debonding
Masonry
Non-linear behavior
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-af66142c34f8b1b7f086d065cb3d908a6d2a6ee8c6d3be66ae3401092f79f6183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://re.public.polimi.it/bitstream/11311/765310/3/Mechanical%20properties%20of%20FRCM_11311-765310_Poggi.pdf
PQID 1685803494
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1685803494
crossref_primary_10_1016_j_compstruct_2013_08_026
elsevier_sciencedirect_doi_10_1016_j_compstruct_2013_08_026
PublicationCentury 2000
PublicationDate January 2014
2014-01-00
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationTitle Composite structures
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Milani, Lourenço (b0105) 2012; 110–111
D’Ambrisi, Focacci, Caporale (b0065) 2013; 107
Prochazka, Sejnoha (b0080) 1995; 55
Capurso, Maier (b0130) 1966; 5
Hartig F, Jesse U, Haußler-Combe U. Evaluation of experimental setups for determining the tensile strength of textile reinforced concrete. In: International RILEM conference on material science – MATSCI; 2010. p. 117–27.
Valluzzi (b0095) 2012; 45
EN 1015-11. Methods of test for mortar for masonry – determination of flexural and compressive strength of hardened mortar; 1999.
Schwegler G. Masonry construction strengthened with composites in seismically endangered zone. In: Proc 10th European conference on earthquake engineering; 1994. p. 2299–303.
Nanni (b0050) 2012; 34
Milani, Milani, Tralli (b0010) 2010; 92
Saadmantesh (b0030) 1991; 91
Hartig, Haußler-Combe, Schicktanz (b0085) 2008; 30
Corradi, Borri, Vignoli (b0005) 2002; 16
Carozzi G, Colombi P, Di Feo C, Montalbano A, Poggi C. The use of GFRP grids for structural rehabilitation of masonry elements. In: Proc CICE 2012, the 6th international conference on FRP composites in civil engineering, Rome, Italy, 13–15 June, 2012.
EN ISO 10618/2005. Carbon fibre – determination of tensile properties of resin-impregnated yarn; 2005.
Triantafillou TC. A new generation of composite materials as alternative to fiber reinforced polymers for strengthening and seismic retrofitting of structures. In: Nicolais L, Meo M, Milella E, editors, Proc composite materials. A vision for the future. Springer-Verlag London Limited; 2011.
Capozucca (b0075) 2010; 92
D’Ambrisi, Feo, Focacci (b0055) 2012; 44
Milani, Tralli (b0110) 2012; 49
Grierson, Franchi, De Donato, Corradi (b0125) 1979; 17–18
Capozucca (b0100) 2013; 44
Eshani MR. Strengthening of earthquake damaged masonry structures with composite materials. In Proc nonmetallic (FRP) reinforcement for concrete structures. Proceedings of the second international RILEM, symposium FRPRCS-2; 1997. p. 681–7.
Ombres (b0070) 2011; 94
Ghiassi, Marcari, Oliveira, Lourenço (b0015) 2012; 43
Triantafillou (b0035) 1998; 58
Kawai (b0135) 1978; 48
De Caso, Basalo, Matta, Nanni (b0045) 2012; 32
Valluzzi (10.1016/j.compstruct.2013.08.026_b0095) 2012; 45
10.1016/j.compstruct.2013.08.026_b0090
Milani (10.1016/j.compstruct.2013.08.026_b0110) 2012; 49
Hartig (10.1016/j.compstruct.2013.08.026_b0085) 2008; 30
Prochazka (10.1016/j.compstruct.2013.08.026_b0080) 1995; 55
Triantafillou (10.1016/j.compstruct.2013.08.026_b0035) 1998; 58
Saadmantesh (10.1016/j.compstruct.2013.08.026_b0030) 1991; 91
10.1016/j.compstruct.2013.08.026_b0115
De Caso (10.1016/j.compstruct.2013.08.026_b0045) 2012; 32
Grierson (10.1016/j.compstruct.2013.08.026_b0125) 1979; 17–18
Ghiassi (10.1016/j.compstruct.2013.08.026_b0015) 2012; 43
10.1016/j.compstruct.2013.08.026_b0060
Ombres (10.1016/j.compstruct.2013.08.026_b0070) 2011; 94
Kawai (10.1016/j.compstruct.2013.08.026_b0135) 1978; 48
D’Ambrisi (10.1016/j.compstruct.2013.08.026_b0055) 2012; 44
Capozucca (10.1016/j.compstruct.2013.08.026_b0075) 2010; 92
Capozucca (10.1016/j.compstruct.2013.08.026_b0100) 2013; 44
Corradi (10.1016/j.compstruct.2013.08.026_b0005) 2002; 16
Milani (10.1016/j.compstruct.2013.08.026_b0010) 2010; 92
Capurso (10.1016/j.compstruct.2013.08.026_b0130) 1966; 5
Nanni (10.1016/j.compstruct.2013.08.026_b0050) 2012; 34
10.1016/j.compstruct.2013.08.026_b0025
D’Ambrisi (10.1016/j.compstruct.2013.08.026_b0065) 2013; 107
Milani (10.1016/j.compstruct.2013.08.026_b0105) 2012; 110–111
10.1016/j.compstruct.2013.08.026_b0120
10.1016/j.compstruct.2013.08.026_b0020
10.1016/j.compstruct.2013.08.026_b0040
References_xml – volume: 34
  start-page: 43
  year: 2012
  end-page: 49
  ident: b0050
  article-title: FRCM strengthening – a new tool in the concrete and masonry repair toolbox
  publication-title: Concr Int Des Constr
  contributor:
    fullname: Nanni
– volume: 107
  start-page: 193
  year: 2013
  end-page: 204
  ident: b0065
  article-title: Strengthening of masonry-unreinforced concrete railway bridges with PBP-FRCM materials
  publication-title: Compos Struct
  contributor:
    fullname: Caporale
– volume: 58
  start-page: 1285
  year: 1998
  end-page: 1295
  ident: b0035
  article-title: Composites: a new possibility for the shear strengthening of concrete, masonry and wood
  publication-title: Compos Sci Technol
  contributor:
    fullname: Triantafillou
– volume: 55
  start-page: 249
  year: 1995
  end-page: 260
  ident: b0080
  article-title: Development of debond region of lag model
  publication-title: Comput Struct
  contributor:
    fullname: Sejnoha
– volume: 92
  start-page: 891
  year: 2010
  end-page: 903
  ident: b0075
  article-title: Experimental FRP/SRP historic masonry delamination
  publication-title: Compos Struct
  contributor:
    fullname: Capozucca
– volume: 44
  start-page: 524
  year: 2012
  end-page: 532
  ident: b0055
  article-title: Experimental analysis on bond between PBO-FRCM strengthening materials and concrete
  publication-title: Compos B Eng
  contributor:
    fullname: Focacci
– volume: 43
  start-page: 210
  year: 2012
  end-page: 220
  ident: b0015
  article-title: Numerical analysis of bond behavior between masonry bricks and composite materials
  publication-title: Eng Struct
  contributor:
    fullname: Lourenço
– volume: 30
  start-page: 898
  year: 2008
  end-page: 906
  ident: b0085
  article-title: Influence of bond properties on the tensile behaviour of textile reinforced concrete
  publication-title: Cement Concr Compos
  contributor:
    fullname: Schicktanz
– volume: 92
  start-page: 918
  year: 2010
  end-page: 935
  ident: b0010
  article-title: Approximate limit analysis of full scale FRP-reinforced masonry buildings through a 3D homogenized FE package
  publication-title: Compos Struct
  contributor:
    fullname: Tralli
– volume: 16
  start-page: 229
  year: 2002
  end-page: 239
  ident: b0005
  article-title: Strengthening techniques tested on masonry structures struck by the Umbria–Marche earthquake of 1997–1998
  publication-title: Constr Build Mater
  contributor:
    fullname: Vignoli
– volume: 44
  start-page: 639
  year: 2013
  end-page: 649
  ident: b0100
  article-title: Effects of mortar layers in the delamination of GFRP bonded to historic masonry
  publication-title: Compos B Eng
  contributor:
    fullname: Capozucca
– volume: 91
  start-page: 346
  year: 1991
  end-page: 354
  ident: b0030
  article-title: Fiber composites of new and existing structures
  publication-title: ACI Struct J
  contributor:
    fullname: Saadmantesh
– volume: 5
  start-page: 107
  year: 1966
  end-page: 116
  ident: b0130
  article-title: Incremental elastoplastic analysis and quadratic optimization
  publication-title: Meccanica
  contributor:
    fullname: Maier
– volume: 48
  start-page: 207
  year: 1978
  end-page: 229
  ident: b0135
  article-title: New discrete models and their application to seismic response analysis of structures
  publication-title: Nucl Eng Des
  contributor:
    fullname: Kawai
– volume: 49
  start-page: 808
  year: 2012
  end-page: 834
  ident: b0110
  article-title: A simple meso-macro model based on SQP for the non-linear analysis of masonry double curvature structures
  publication-title: Int J Solids Struct
  contributor:
    fullname: Tralli
– volume: 32
  start-page: 55
  year: 2012
  end-page: 65
  ident: b0045
  article-title: Fiber reinforced cement-based composite system for concrete confinement
  publication-title: Constr Build Mater
  contributor:
    fullname: Nanni
– volume: 45
  start-page: 1761
  year: 2012
  end-page: 1791
  ident: b0095
  article-title: Round Robin Test for composite-to-brick shear bond characterization
  publication-title: Mater Struct
  contributor:
    fullname: Valluzzi
– volume: 17–18
  start-page: 497
  year: 1979
  end-page: 518
  ident: b0125
  article-title: Mathematical programming and nonlinear finite element analysis
  publication-title: Comput Methods Appl Mech Eng
  contributor:
    fullname: Corradi
– volume: 94
  start-page: 143
  year: 2011
  end-page: 155
  ident: b0070
  article-title: Flexural analysis of reinforced concrete beams strengthened with a cement based high strength composite material
  publication-title: Compos Struct
  contributor:
    fullname: Ombres
– volume: 110–111
  start-page: 133
  year: 2012
  end-page: 150
  ident: b0105
  article-title: 3D non-linear behavior of masonry arch bridges
  publication-title: Comput Struct
  contributor:
    fullname: Lourenço
– volume: 107
  start-page: 193
  year: 2013
  ident: 10.1016/j.compstruct.2013.08.026_b0065
  article-title: Strengthening of masonry-unreinforced concrete railway bridges with PBP-FRCM materials
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.03.002
  contributor:
    fullname: D’Ambrisi
– volume: 44
  start-page: 639
  issue: 1
  year: 2013
  ident: 10.1016/j.compstruct.2013.08.026_b0100
  article-title: Effects of mortar layers in the delamination of GFRP bonded to historic masonry
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2012.02.012
  contributor:
    fullname: Capozucca
– volume: 43
  start-page: 210
  year: 2012
  ident: 10.1016/j.compstruct.2013.08.026_b0015
  article-title: Numerical analysis of bond behavior between masonry bricks and composite materials
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.05.022
  contributor:
    fullname: Ghiassi
– volume: 16
  start-page: 229
  year: 2002
  ident: 10.1016/j.compstruct.2013.08.026_b0005
  article-title: Strengthening techniques tested on masonry structures struck by the Umbria–Marche earthquake of 1997–1998
  publication-title: Constr Build Mater
  doi: 10.1016/S0950-0618(02)00014-4
  contributor:
    fullname: Corradi
– volume: 17–18
  start-page: 497
  issue: PART 2
  year: 1979
  ident: 10.1016/j.compstruct.2013.08.026_b0125
  article-title: Mathematical programming and nonlinear finite element analysis
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(79)90029-X
  contributor:
    fullname: Grierson
– ident: 10.1016/j.compstruct.2013.08.026_b0020
– volume: 45
  start-page: 1761
  issue: 12
  year: 2012
  ident: 10.1016/j.compstruct.2013.08.026_b0095
  article-title: Round Robin Test for composite-to-brick shear bond characterization
  publication-title: Mater Struct
  doi: 10.1617/s11527-012-9883-5
  contributor:
    fullname: Valluzzi
– ident: 10.1016/j.compstruct.2013.08.026_b0060
– volume: 92
  start-page: 918
  year: 2010
  ident: 10.1016/j.compstruct.2013.08.026_b0010
  article-title: Approximate limit analysis of full scale FRP-reinforced masonry buildings through a 3D homogenized FE package
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2009.09.037
  contributor:
    fullname: Milani
– volume: 32
  start-page: 55
  year: 2012
  ident: 10.1016/j.compstruct.2013.08.026_b0045
  article-title: Fiber reinforced cement-based composite system for concrete confinement
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2010.12.063
  contributor:
    fullname: De Caso
– ident: 10.1016/j.compstruct.2013.08.026_b0090
– volume: 91
  start-page: 346
  issue: 3
  year: 1991
  ident: 10.1016/j.compstruct.2013.08.026_b0030
  article-title: Fiber composites of new and existing structures
  publication-title: ACI Struct J
  contributor:
    fullname: Saadmantesh
– volume: 44
  start-page: 524
  issue: 1
  year: 2012
  ident: 10.1016/j.compstruct.2013.08.026_b0055
  article-title: Experimental analysis on bond between PBO-FRCM strengthening materials and concrete
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2012.03.011
  contributor:
    fullname: D’Ambrisi
– volume: 48
  start-page: 207
  year: 1978
  ident: 10.1016/j.compstruct.2013.08.026_b0135
  article-title: New discrete models and their application to seismic response analysis of structures
  publication-title: Nucl Eng Des
  doi: 10.1016/0029-5493(78)90217-0
  contributor:
    fullname: Kawai
– ident: 10.1016/j.compstruct.2013.08.026_b0025
– volume: 34
  start-page: 43
  issue: 4
  year: 2012
  ident: 10.1016/j.compstruct.2013.08.026_b0050
  article-title: FRCM strengthening – a new tool in the concrete and masonry repair toolbox
  publication-title: Concr Int Des Constr
  contributor:
    fullname: Nanni
– volume: 94
  start-page: 143
  issue: 1
  year: 2011
  ident: 10.1016/j.compstruct.2013.08.026_b0070
  article-title: Flexural analysis of reinforced concrete beams strengthened with a cement based high strength composite material
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2011.07.008
  contributor:
    fullname: Ombres
– ident: 10.1016/j.compstruct.2013.08.026_b0040
– ident: 10.1016/j.compstruct.2013.08.026_b0115
– volume: 49
  start-page: 808
  issue: 5
  year: 2012
  ident: 10.1016/j.compstruct.2013.08.026_b0110
  article-title: A simple meso-macro model based on SQP for the non-linear analysis of masonry double curvature structures
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2011.12.001
  contributor:
    fullname: Milani
– volume: 110–111
  start-page: 133
  year: 2012
  ident: 10.1016/j.compstruct.2013.08.026_b0105
  article-title: 3D non-linear behavior of masonry arch bridges
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.07.008
  contributor:
    fullname: Milani
– ident: 10.1016/j.compstruct.2013.08.026_b0120
– volume: 58
  start-page: 1285
  year: 1998
  ident: 10.1016/j.compstruct.2013.08.026_b0035
  article-title: Composites: a new possibility for the shear strengthening of concrete, masonry and wood
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(98)00017-7
  contributor:
    fullname: Triantafillou
– volume: 30
  start-page: 898
  issue: 10
  year: 2008
  ident: 10.1016/j.compstruct.2013.08.026_b0085
  article-title: Influence of bond properties on the tensile behaviour of textile reinforced concrete
  publication-title: Cement Concr Compos
  doi: 10.1016/j.cemconcomp.2008.08.004
  contributor:
    fullname: Hartig
– volume: 92
  start-page: 891
  year: 2010
  ident: 10.1016/j.compstruct.2013.08.026_b0075
  article-title: Experimental FRP/SRP historic masonry delamination
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2009.09.029
  contributor:
    fullname: Capozucca
– volume: 5
  start-page: 107
  issue: 2
  year: 1966
  ident: 10.1016/j.compstruct.2013.08.026_b0130
  article-title: Incremental elastoplastic analysis and quadratic optimization
  publication-title: Meccanica
  doi: 10.1007/BF02134214
  contributor:
    fullname: Capurso
– volume: 55
  start-page: 249
  issue: 2
  year: 1995
  ident: 10.1016/j.compstruct.2013.08.026_b0080
  article-title: Development of debond region of lag model
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(94)00510-A
  contributor:
    fullname: Prochazka
SSID ssj0008411
Score 2.5319235
Snippet The behavior of single bricks and small masonry pillars strengthened by means of fabric reinforced cementitious matrix systems made with glass-fiber grids is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 711
SubjectTerms Anchorages
Bricks
Debonding
Fabric Reinforced Cementitious Matrix FRCM
GF grid strengthening
Masonry
Mathematical analysis
Mathematical models
Mortars
Non-linear behavior
Nonlinearity
Ultimate tensile strength
Title Mechanical properties and numerical modeling of Fabric Reinforced Cementitious Matrix (FRCM) systems for strengthening of masonry structures
URI https://dx.doi.org/10.1016/j.compstruct.2013.08.026
https://search.proquest.com/docview/1685803494
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60XvQgPrE-SgQPeljrPpqmeCrFUpV6qAreQrJJpKJrsS3oxV_gj3Zms-sLD4LHDck-ZrLzyMx8A7CnExRyJkwDgwohSLRSAfohKboqXLvQtNKmogLn_gXvXSdnN42bGeiUtTCUVlnIfi_Tc2ldjNQLatZHw2H9Er2HGNVbTAEZNAr4LMyhOopEBebap-e9iw-BLJK8DS_ND2hBkdDj07woc9tDtVKeV5zjeRLSwu9a6oe8zpVQdwkWC-uRtf0LLsOMzVZg4Qum4Cq89S0V8xLt2YhO2p8IMpWpzLBs6sMz9yzvf4PT2aNjXaVxkA1sjqGKBGGd_MiQcrmmY9YnDP9ntt8ddPoHzAM_jxnOZFRmkt0SekJxpweFxvvTC_MfOkVHfg2uuydXnV5QtFwIUnS0JoFypK-jNE6c0KFuOvR4DFopqY5N60gobiLFrRUpN7G2nCsbJxRci1yz5TiKh3WoZI-Z3QCGvtyRs44LYRpJZLW2kUttJISmohRuqxCWJJYjj6why5SzO_nJFklskdQrM-JVOC55Ib_tEokK4A-rd0v2SfyJKDKiMouklCGh8OdIPZv_esIWzONV4o9otqGCE-wOGi0TXYPZw9ewVmzNd3S08Y4
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADYhU7RuIAh6jNUjcRJxQRtUB6KEXqzbJjGxVBqLpI8A98NDNxwiYOSFwTO8uMPYtn5g0hJzIAIafczFGgEJxACuGAH5KBq8KkcVWUtQQWOKdd1r4LrgbNwRyJq1oYTKssZb-V6YW0Lq_US2rWR8Nh_Ra8Bx_Um48BGTAK2DxZAGsggt25cNG5bnc_BHIYFG14cbyDE8qEHpvmhZnbFqoV87z8As8TkRZ-11I_5HWhhJJVslJaj_TCfuAamdP5Oln-gim4Qd5SjcW8SHs6wpP2MUKmUpErms9seOaRFv1vYDh9NjQREi7Sni4wVIEgNC6ODDGXazahKWL4v9DTpBenZ9QCP08ojKRYZpLfI3pC-aQnAcb7-JXaH52BI79J7pLLftx2ypYLTgaO1tQRBvW1l_mBCaUrWwY8HgVWSiZ9FTVCwZQnmNZhxpQvNWNC-wEG1zzTigwD8bBFavlzrrcJBV-uYbRhYaiagael1J7JtBeGEotSmN4hbkViPrLIGrxKOXvgn2zhyBaOvTI9tkPOK17wb6uEgwL4w-zjin0cNhFGRkSugZTcRRT-Aqln919vOCKL7X56w2863es9sgR3Antcs09qMFgfgAEzlYflAn0HTPXzgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+properties+and+numerical+modeling+of+Fabric+Reinforced+Cementitious+Matrix+%28FRCM%29+systems+for+strengthening+of+masonry+structures&rft.jtitle=Composite+structures&rft.au=Carozzi%2C+Francesca+Giulia&rft.au=Milani%2C+Gabriele&rft.au=Poggi%2C+Carlo&rft.date=2014-01-01&rft.issn=0263-8223&rft.volume=107&rft.spage=711&rft.epage=725&rft_id=info:doi/10.1016%2Fj.compstruct.2013.08.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruct_2013_08_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon