Mechanical properties and numerical modeling of Fabric Reinforced Cementitious Matrix (FRCM) systems for strengthening of masonry structures
The behavior of single bricks and small masonry pillars strengthened by means of fabric reinforced cementitious matrix systems made with glass-fiber grids is discussed both from an experimental and numerical standpoint. A standard Push–pull double lap test is performed on three different series of e...
Saved in:
Published in | Composite structures Vol. 107; pp. 711 - 725 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The behavior of single bricks and small masonry pillars strengthened by means of fabric reinforced cementitious matrix systems made with glass-fiber grids is discussed both from an experimental and numerical standpoint.
A standard Push–pull double lap test is performed on three different series of experimental set-ups for reinforced single bricks and on masonry pillars, evaluating the role played by the anchorage length on the overall behavior of the strengthened system.
Standard Italian bricks with very good mechanical properties are used, in order to evaluate the ultimate strength of the grid for delamination within the mortar. The masonry pillar is built with 3 bricks spaced out by two thick mortar joints. When dealing with the single bricks, three different anchorage lengths were tested, equal to 5, 10 and 15cm, in order to evaluate the reduction of the ultimate strength induced by an insufficient anchorage.
To suitably interpret experimental results, both a newly developed analytical–numerical approach and a recently presented 3D FEM model were utilized to have an insight into experimental results.
In the analytical–numerical approach only the glass-fiber grid was considered and modeled by means of 1D Finite Elements interacting with the surrounding mortar by means of interfaces exhibiting a non-linear stress–slip behavior deduced from experimental data.
The 3D model uses 8-noded rigid elements interconnected by inelastic interfaces exhibiting softening. The incremental non-linear problem is solved by means of a robust Sequential Quadratic Programming routine already tested on medium and large scale examples with softening materials. The grid is modeled through non-linear truss elements, interacting with surrounding mortar by means of non-linear interfacial tangential stresses. Stress–slip behavior of the interface between the mortar and the textile is deduced through ad hoc experimentation conducted on a mortar specimen reinforced with a single yarn and subjected to a standard tensile test.
Good agreement was found between experimental evidences and numerical simulations, meaning that the combined approach proposed may be considered as reference for design considerations. |
---|---|
AbstractList | The behavior of single bricks and small masonry pillars strengthened by means of fabric reinforced cementitious matrix systems made with glass-fiber grids is discussed both from an experimental and numerical standpoint.
A standard Push–pull double lap test is performed on three different series of experimental set-ups for reinforced single bricks and on masonry pillars, evaluating the role played by the anchorage length on the overall behavior of the strengthened system.
Standard Italian bricks with very good mechanical properties are used, in order to evaluate the ultimate strength of the grid for delamination within the mortar. The masonry pillar is built with 3 bricks spaced out by two thick mortar joints. When dealing with the single bricks, three different anchorage lengths were tested, equal to 5, 10 and 15cm, in order to evaluate the reduction of the ultimate strength induced by an insufficient anchorage.
To suitably interpret experimental results, both a newly developed analytical–numerical approach and a recently presented 3D FEM model were utilized to have an insight into experimental results.
In the analytical–numerical approach only the glass-fiber grid was considered and modeled by means of 1D Finite Elements interacting with the surrounding mortar by means of interfaces exhibiting a non-linear stress–slip behavior deduced from experimental data.
The 3D model uses 8-noded rigid elements interconnected by inelastic interfaces exhibiting softening. The incremental non-linear problem is solved by means of a robust Sequential Quadratic Programming routine already tested on medium and large scale examples with softening materials. The grid is modeled through non-linear truss elements, interacting with surrounding mortar by means of non-linear interfacial tangential stresses. Stress–slip behavior of the interface between the mortar and the textile is deduced through ad hoc experimentation conducted on a mortar specimen reinforced with a single yarn and subjected to a standard tensile test.
Good agreement was found between experimental evidences and numerical simulations, meaning that the combined approach proposed may be considered as reference for design considerations. The behavior of single bricks and small masonry pillars strengthened by means of fabric reinforced cementitious matrix systems made with glass-fiber grids is discussed both from an experimental and numerical standpoint. A standard Push-pull double lap test is performed on three different series of experimental set-ups for reinforced single bricks and on masonry pillars, evaluating the role played by the anchorage length on the overall behavior of the strengthened system. Standard Italian bricks with very good mechanical properties are used, in order to evaluate the ultimate strength of the grid for delamination within the mortar. The masonry pillar is built with 3 bricks spaced out by two thick mortar joints. When dealing with the single bricks, three different anchorage lengths were tested, equal to 5, 10 and 15cm, in order to evaluate the reduction of the ultimate strength induced by an insufficient anchorage. To suitably interpret experimental results, both a newly developed analytical-numerical approach and a recently presented 3D FEM model were utilized to have an insight into experimental results. In the analytical-numerical approach only the glass-fiber grid was considered and modeled by means of 1D Finite Elements interacting with the surrounding mortar by means of interfaces exhibiting a non-linear stress-slip behavior deduced from experimental data. The 3D model uses 8-noded rigid elements interconnected by inelastic interfaces exhibiting softening. The incremental non-linear problem is solved by means of a robust Sequential Quadratic Programming routine already tested on medium and large scale examples with softening materials. The grid is modeled through non-linear truss elements, interacting with surrounding mortar by means of non-linear interfacial tangential stresses. Stress-slip behavior of the interface between the mortar and the textile is deduced through ad hoc experimentation conducted on a mortar specimen reinforced with a single yarn and subjected to a standard tensile test. Good agreement was found between experimental evidences and numerical simulations, meaning that the combined approach proposed may be considered as reference for design considerations. |
Author | Milani, Gabriele Poggi, Carlo Carozzi, Francesca Giulia |
Author_xml | – sequence: 1 givenname: Francesca Giulia surname: Carozzi fullname: Carozzi, Francesca Giulia – sequence: 2 givenname: Gabriele surname: Milani fullname: Milani, Gabriele email: gabriele.milani@polimi.it – sequence: 3 givenname: Carlo surname: Poggi fullname: Poggi, Carlo |
BookMark | eNqFUUFu2zAQJIoUqOPmDzymB6lLUaapY2PUbYEYBYLkTFDUMqEhkQ5JBfEf-ujQdYAee1pgdnYws3NJLnzwSAhlUDNg4uu-NmE6pBxnk-sGGK9B1tCID2TB5LqrGMjVBVkUhFeyafgncpnSHgBky9iC_NmhedLeGT3SQwwHjNlhotoP1M8Txr-LKQw4Ov9Ig6Vb3ReQ3qHzNkSDA93ghD677MKc6E7n6F7p9fZus_tC0zFlnBItTFoson_MT-jflSadgo9HevY-R0yfyUerx4RX73NJHrbf7zc_q9vfP35tvt1WpgWWK22FYG1jeGtlz_q1BSkGECvT86EDqcXQaIEojRh4j0Jo5OUOusauOyuY5EtyfdYtiZ9nTFlNLhkcR-2xhFBMyJUE3nZtocoz1cSQUkSrDtFNOh4VA3UqQO3VvwLUqQAFUp3evSQ351MsUV4cRpWMQ19e5iIW7hDc_0XeAFPmmds |
CitedBy_id | crossref_primary_10_1016_j_compstruct_2017_06_023 crossref_primary_10_1016_j_compstruct_2014_02_004 crossref_primary_10_1016_j_engstruct_2023_117099 crossref_primary_10_1016_j_conbuildmat_2019_117105 crossref_primary_10_1002_suco_201900374 crossref_primary_10_1016_j_compositesb_2014_10_056 crossref_primary_10_1061__ASCE_CC_1943_5614_0001240 crossref_primary_10_1016_j_compositesb_2023_110983 crossref_primary_10_1016_j_compstruct_2018_11_054 crossref_primary_10_1016_j_compstruct_2020_113404 crossref_primary_10_3390_ma15155125 crossref_primary_10_1016_j_compositesb_2017_11_014 crossref_primary_10_3390_fib7120103 crossref_primary_10_1002_suco_201800243 crossref_primary_10_1016_j_conbuildmat_2019_117061 crossref_primary_10_4028_www_scientific_net_KEM_817_472 crossref_primary_10_3390_su11184866 crossref_primary_10_1061__ASCE_ST_1943_541X_0003020 crossref_primary_10_1080_13632469_2022_2104960 crossref_primary_10_1088_1757_899X_1242_1_012035 crossref_primary_10_1016_j_conbuildmat_2022_128521 crossref_primary_10_1061__ASCE_CC_1943_5614_0001250 crossref_primary_10_1016_j_compstruct_2024_118037 crossref_primary_10_1617_s11527_017_1033_7 crossref_primary_10_4028_p_z5k66l crossref_primary_10_1016_j_engstruct_2021_111895 crossref_primary_10_1016_j_compositesb_2023_110735 crossref_primary_10_1177_10812865221108372 crossref_primary_10_1016_j_compositesb_2017_05_048 crossref_primary_10_1016_j_compositesb_2017_03_016 crossref_primary_10_1007_s10518_014_9684_z crossref_primary_10_1016_j_conbuildmat_2020_118560 crossref_primary_10_4028_www_scientific_net_KEM_624_3 crossref_primary_10_1016_j_compstruct_2015_12_028 crossref_primary_10_1016_j_conbuildmat_2017_04_051 crossref_primary_10_1016_j_compositesb_2020_108322 crossref_primary_10_1016_j_compstruct_2015_08_094 crossref_primary_10_3390_buildings13061524 crossref_primary_10_1007_s41024_019_0046_8 crossref_primary_10_1016_j_conbuildmat_2023_132732 crossref_primary_10_1016_j_istruc_2019_10_006 crossref_primary_10_1061__ASCE_CC_1943_5614_0000733 crossref_primary_10_1016_j_conbuildmat_2014_08_006 crossref_primary_10_1016_j_conbuildmat_2023_132185 crossref_primary_10_12989_cac_2016_18_2_279 crossref_primary_10_1016_j_matdes_2016_08_034 crossref_primary_10_1016_j_jobe_2023_106766 crossref_primary_10_3390_ma16031011 crossref_primary_10_1016_j_compstruct_2016_04_030 crossref_primary_10_3390_fib11060053 crossref_primary_10_1016_j_conbuildmat_2017_12_215 crossref_primary_10_3390_polym14010176 crossref_primary_10_1016_j_compositesb_2017_12_052 crossref_primary_10_1016_j_conbuildmat_2022_129039 crossref_primary_10_1016_j_compositesb_2018_12_111 crossref_primary_10_1016_j_compositesb_2019_107302 crossref_primary_10_1016_j_conbuildmat_2019_117617 crossref_primary_10_3390_ma15217438 crossref_primary_10_1016_j_conbuildmat_2020_119157 crossref_primary_10_1016_j_compositesb_2018_08_076 crossref_primary_10_1016_j_conbuildmat_2019_117788 crossref_primary_10_1061__ASCE_SC_1943_5576_0000676 crossref_primary_10_1016_j_compositesb_2017_12_025 crossref_primary_10_1186_s40069_018_0296_x crossref_primary_10_1520_JTE20200656 crossref_primary_10_1016_j_conbuildmat_2019_05_179 crossref_primary_10_1061__ASCE_CC_1943_5614_0000991 crossref_primary_10_3390_buildings12060840 crossref_primary_10_1016_j_compstruct_2014_09_033 crossref_primary_10_1016_j_compositesb_2015_09_005 crossref_primary_10_1016_j_conbuildmat_2018_03_041 crossref_primary_10_1061__ASCE_CC_1943_5614_0000598 crossref_primary_10_1016_j_compositesb_2016_05_063 crossref_primary_10_1016_j_dibe_2023_100152 crossref_primary_10_1061__ASCE_AE_1943_5568_0000518 crossref_primary_10_4028_www_scientific_net_KEM_817_275 crossref_primary_10_1177_10775463231187456 crossref_primary_10_1016_j_conbuildmat_2018_04_081 crossref_primary_10_1016_j_compositesb_2014_09_011 crossref_primary_10_1016_j_conbuildmat_2017_12_234 crossref_primary_10_1016_j_compositesb_2014_10_025 crossref_primary_10_1016_j_conbuildmat_2015_04_014 crossref_primary_10_1016_j_conbuildmat_2019_03_059 crossref_primary_10_1016_j_compositesb_2016_02_005 crossref_primary_10_1061_JMCEE7_MTENG_15116 crossref_primary_10_1016_j_conbuildmat_2024_134904 crossref_primary_10_1016_j_compositesb_2017_03_052 crossref_primary_10_1016_j_engstruct_2023_116637 crossref_primary_10_1617_s11527_014_0360_1 crossref_primary_10_1016_j_istruc_2024_106474 crossref_primary_10_1016_j_compositesb_2016_09_094 crossref_primary_10_1016_j_compstruct_2020_113065 crossref_primary_10_1016_j_conbuildmat_2014_04_070 crossref_primary_10_1016_j_compstruct_2024_118361 crossref_primary_10_1016_j_istruc_2022_06_035 crossref_primary_10_3390_ma14227021 crossref_primary_10_1016_j_compositesb_2016_02_038 crossref_primary_10_1061__ASCE_CC_1943_5614_0001223 crossref_primary_10_1007_s10518_021_01129_6 crossref_primary_10_1016_j_compstruct_2017_02_026 crossref_primary_10_1016_j_jcomc_2020_100078 crossref_primary_10_1016_j_conbuildmat_2020_119517 crossref_primary_10_1016_j_compstruct_2019_111315 crossref_primary_10_1002_dama_201500647 crossref_primary_10_1016_j_compositesb_2017_06_018 crossref_primary_10_1016_j_compositesb_2014_10_039 crossref_primary_10_3389_fbuil_2020_00051 crossref_primary_10_1016_j_conbuildmat_2017_01_124 crossref_primary_10_1016_j_compstruct_2015_06_057 crossref_primary_10_1016_j_compstruct_2016_09_027 crossref_primary_10_1016_j_conbuildmat_2018_08_039 crossref_primary_10_1016_j_compstruct_2024_118136 crossref_primary_10_1016_j_conbuildmat_2019_117539 crossref_primary_10_1016_j_prostr_2018_11_059 crossref_primary_10_1617_s11527_017_1036_4 crossref_primary_10_3390_buildings12112040 crossref_primary_10_3390_ma14133626 crossref_primary_10_1007_s10518_019_00701_5 crossref_primary_10_1016_j_cemconcomp_2018_06_012 crossref_primary_10_1016_j_compositesb_2018_03_010 crossref_primary_10_3390_cryst10100928 crossref_primary_10_1016_j_engstruct_2015_02_032 crossref_primary_10_1016_j_compstruct_2020_113000 crossref_primary_10_1016_j_istruc_2024_106530 crossref_primary_10_1016_j_conbuildmat_2023_132376 crossref_primary_10_1617_s11527_017_1070_2 crossref_primary_10_1061__ASCE_EM_1943_7889_0001375 crossref_primary_10_3389_fbuil_2020_00060 crossref_primary_10_1080_13632469_2019_1577763 crossref_primary_10_1016_j_engstruct_2016_12_029 |
Cites_doi | 10.1016/j.compstruct.2013.03.002 10.1016/j.compositesb.2012.02.012 10.1016/j.engstruct.2012.05.022 10.1016/S0950-0618(02)00014-4 10.1016/0045-7825(79)90029-X 10.1617/s11527-012-9883-5 10.1016/j.compstruct.2009.09.037 10.1016/j.conbuildmat.2010.12.063 10.1016/j.compositesb.2012.03.011 10.1016/0029-5493(78)90217-0 10.1016/j.compstruct.2011.07.008 10.1016/j.ijsolstr.2011.12.001 10.1016/j.compstruc.2012.07.008 10.1016/S0266-3538(98)00017-7 10.1016/j.cemconcomp.2008.08.004 10.1016/j.compstruct.2009.09.029 10.1007/BF02134214 10.1016/0045-7949(94)00510-A |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 8FD H8D JG9 L7M |
DOI | 10.1016/j.compstruct.2013.08.026 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1085 |
EndPage | 725 |
ExternalDocumentID | 10_1016_j_compstruct_2013_08_026 S0263822313004236 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SMS SPC SPCBC SSM SST SSZ T5K WUQ XPP ZMT ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SR 8FD H8D JG9 L7M |
ID | FETCH-LOGICAL-c401t-af66142c34f8b1b7f086d065cb3d908a6d2a6ee8c6d3be66ae3401092f79f6183 |
IEDL.DBID | AIKHN |
ISSN | 0263-8223 |
IngestDate | Sat Oct 26 00:13:28 EDT 2024 Thu Sep 26 16:28:18 EDT 2024 Fri Feb 23 02:21:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GF grid strengthening Fabric Reinforced Cementitious Matrix FRCM Debonding Masonry Non-linear behavior |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-af66142c34f8b1b7f086d065cb3d908a6d2a6ee8c6d3be66ae3401092f79f6183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://re.public.polimi.it/bitstream/11311/765310/3/Mechanical%20properties%20of%20FRCM_11311-765310_Poggi.pdf |
PQID | 1685803494 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1685803494 crossref_primary_10_1016_j_compstruct_2013_08_026 elsevier_sciencedirect_doi_10_1016_j_compstruct_2013_08_026 |
PublicationCentury | 2000 |
PublicationDate | January 2014 2014-01-00 20140101 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationTitle | Composite structures |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Milani, Lourenço (b0105) 2012; 110–111 D’Ambrisi, Focacci, Caporale (b0065) 2013; 107 Prochazka, Sejnoha (b0080) 1995; 55 Capurso, Maier (b0130) 1966; 5 Hartig F, Jesse U, Haußler-Combe U. Evaluation of experimental setups for determining the tensile strength of textile reinforced concrete. In: International RILEM conference on material science – MATSCI; 2010. p. 117–27. Valluzzi (b0095) 2012; 45 EN 1015-11. Methods of test for mortar for masonry – determination of flexural and compressive strength of hardened mortar; 1999. Schwegler G. Masonry construction strengthened with composites in seismically endangered zone. In: Proc 10th European conference on earthquake engineering; 1994. p. 2299–303. Nanni (b0050) 2012; 34 Milani, Milani, Tralli (b0010) 2010; 92 Saadmantesh (b0030) 1991; 91 Hartig, Haußler-Combe, Schicktanz (b0085) 2008; 30 Corradi, Borri, Vignoli (b0005) 2002; 16 Carozzi G, Colombi P, Di Feo C, Montalbano A, Poggi C. The use of GFRP grids for structural rehabilitation of masonry elements. In: Proc CICE 2012, the 6th international conference on FRP composites in civil engineering, Rome, Italy, 13–15 June, 2012. EN ISO 10618/2005. Carbon fibre – determination of tensile properties of resin-impregnated yarn; 2005. Triantafillou TC. A new generation of composite materials as alternative to fiber reinforced polymers for strengthening and seismic retrofitting of structures. In: Nicolais L, Meo M, Milella E, editors, Proc composite materials. A vision for the future. Springer-Verlag London Limited; 2011. Capozucca (b0075) 2010; 92 D’Ambrisi, Feo, Focacci (b0055) 2012; 44 Milani, Tralli (b0110) 2012; 49 Grierson, Franchi, De Donato, Corradi (b0125) 1979; 17–18 Capozucca (b0100) 2013; 44 Eshani MR. Strengthening of earthquake damaged masonry structures with composite materials. In Proc nonmetallic (FRP) reinforcement for concrete structures. Proceedings of the second international RILEM, symposium FRPRCS-2; 1997. p. 681–7. Ombres (b0070) 2011; 94 Ghiassi, Marcari, Oliveira, Lourenço (b0015) 2012; 43 Triantafillou (b0035) 1998; 58 Kawai (b0135) 1978; 48 De Caso, Basalo, Matta, Nanni (b0045) 2012; 32 Valluzzi (10.1016/j.compstruct.2013.08.026_b0095) 2012; 45 10.1016/j.compstruct.2013.08.026_b0090 Milani (10.1016/j.compstruct.2013.08.026_b0110) 2012; 49 Hartig (10.1016/j.compstruct.2013.08.026_b0085) 2008; 30 Prochazka (10.1016/j.compstruct.2013.08.026_b0080) 1995; 55 Triantafillou (10.1016/j.compstruct.2013.08.026_b0035) 1998; 58 Saadmantesh (10.1016/j.compstruct.2013.08.026_b0030) 1991; 91 10.1016/j.compstruct.2013.08.026_b0115 De Caso (10.1016/j.compstruct.2013.08.026_b0045) 2012; 32 Grierson (10.1016/j.compstruct.2013.08.026_b0125) 1979; 17–18 Ghiassi (10.1016/j.compstruct.2013.08.026_b0015) 2012; 43 10.1016/j.compstruct.2013.08.026_b0060 Ombres (10.1016/j.compstruct.2013.08.026_b0070) 2011; 94 Kawai (10.1016/j.compstruct.2013.08.026_b0135) 1978; 48 D’Ambrisi (10.1016/j.compstruct.2013.08.026_b0055) 2012; 44 Capozucca (10.1016/j.compstruct.2013.08.026_b0075) 2010; 92 Capozucca (10.1016/j.compstruct.2013.08.026_b0100) 2013; 44 Corradi (10.1016/j.compstruct.2013.08.026_b0005) 2002; 16 Milani (10.1016/j.compstruct.2013.08.026_b0010) 2010; 92 Capurso (10.1016/j.compstruct.2013.08.026_b0130) 1966; 5 Nanni (10.1016/j.compstruct.2013.08.026_b0050) 2012; 34 10.1016/j.compstruct.2013.08.026_b0025 D’Ambrisi (10.1016/j.compstruct.2013.08.026_b0065) 2013; 107 Milani (10.1016/j.compstruct.2013.08.026_b0105) 2012; 110–111 10.1016/j.compstruct.2013.08.026_b0120 10.1016/j.compstruct.2013.08.026_b0020 10.1016/j.compstruct.2013.08.026_b0040 |
References_xml | – volume: 34 start-page: 43 year: 2012 end-page: 49 ident: b0050 article-title: FRCM strengthening – a new tool in the concrete and masonry repair toolbox publication-title: Concr Int Des Constr contributor: fullname: Nanni – volume: 107 start-page: 193 year: 2013 end-page: 204 ident: b0065 article-title: Strengthening of masonry-unreinforced concrete railway bridges with PBP-FRCM materials publication-title: Compos Struct contributor: fullname: Caporale – volume: 58 start-page: 1285 year: 1998 end-page: 1295 ident: b0035 article-title: Composites: a new possibility for the shear strengthening of concrete, masonry and wood publication-title: Compos Sci Technol contributor: fullname: Triantafillou – volume: 55 start-page: 249 year: 1995 end-page: 260 ident: b0080 article-title: Development of debond region of lag model publication-title: Comput Struct contributor: fullname: Sejnoha – volume: 92 start-page: 891 year: 2010 end-page: 903 ident: b0075 article-title: Experimental FRP/SRP historic masonry delamination publication-title: Compos Struct contributor: fullname: Capozucca – volume: 44 start-page: 524 year: 2012 end-page: 532 ident: b0055 article-title: Experimental analysis on bond between PBO-FRCM strengthening materials and concrete publication-title: Compos B Eng contributor: fullname: Focacci – volume: 43 start-page: 210 year: 2012 end-page: 220 ident: b0015 article-title: Numerical analysis of bond behavior between masonry bricks and composite materials publication-title: Eng Struct contributor: fullname: Lourenço – volume: 30 start-page: 898 year: 2008 end-page: 906 ident: b0085 article-title: Influence of bond properties on the tensile behaviour of textile reinforced concrete publication-title: Cement Concr Compos contributor: fullname: Schicktanz – volume: 92 start-page: 918 year: 2010 end-page: 935 ident: b0010 article-title: Approximate limit analysis of full scale FRP-reinforced masonry buildings through a 3D homogenized FE package publication-title: Compos Struct contributor: fullname: Tralli – volume: 16 start-page: 229 year: 2002 end-page: 239 ident: b0005 article-title: Strengthening techniques tested on masonry structures struck by the Umbria–Marche earthquake of 1997–1998 publication-title: Constr Build Mater contributor: fullname: Vignoli – volume: 44 start-page: 639 year: 2013 end-page: 649 ident: b0100 article-title: Effects of mortar layers in the delamination of GFRP bonded to historic masonry publication-title: Compos B Eng contributor: fullname: Capozucca – volume: 91 start-page: 346 year: 1991 end-page: 354 ident: b0030 article-title: Fiber composites of new and existing structures publication-title: ACI Struct J contributor: fullname: Saadmantesh – volume: 5 start-page: 107 year: 1966 end-page: 116 ident: b0130 article-title: Incremental elastoplastic analysis and quadratic optimization publication-title: Meccanica contributor: fullname: Maier – volume: 48 start-page: 207 year: 1978 end-page: 229 ident: b0135 article-title: New discrete models and their application to seismic response analysis of structures publication-title: Nucl Eng Des contributor: fullname: Kawai – volume: 49 start-page: 808 year: 2012 end-page: 834 ident: b0110 article-title: A simple meso-macro model based on SQP for the non-linear analysis of masonry double curvature structures publication-title: Int J Solids Struct contributor: fullname: Tralli – volume: 32 start-page: 55 year: 2012 end-page: 65 ident: b0045 article-title: Fiber reinforced cement-based composite system for concrete confinement publication-title: Constr Build Mater contributor: fullname: Nanni – volume: 45 start-page: 1761 year: 2012 end-page: 1791 ident: b0095 article-title: Round Robin Test for composite-to-brick shear bond characterization publication-title: Mater Struct contributor: fullname: Valluzzi – volume: 17–18 start-page: 497 year: 1979 end-page: 518 ident: b0125 article-title: Mathematical programming and nonlinear finite element analysis publication-title: Comput Methods Appl Mech Eng contributor: fullname: Corradi – volume: 94 start-page: 143 year: 2011 end-page: 155 ident: b0070 article-title: Flexural analysis of reinforced concrete beams strengthened with a cement based high strength composite material publication-title: Compos Struct contributor: fullname: Ombres – volume: 110–111 start-page: 133 year: 2012 end-page: 150 ident: b0105 article-title: 3D non-linear behavior of masonry arch bridges publication-title: Comput Struct contributor: fullname: Lourenço – volume: 107 start-page: 193 year: 2013 ident: 10.1016/j.compstruct.2013.08.026_b0065 article-title: Strengthening of masonry-unreinforced concrete railway bridges with PBP-FRCM materials publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.03.002 contributor: fullname: D’Ambrisi – volume: 44 start-page: 639 issue: 1 year: 2013 ident: 10.1016/j.compstruct.2013.08.026_b0100 article-title: Effects of mortar layers in the delamination of GFRP bonded to historic masonry publication-title: Compos B Eng doi: 10.1016/j.compositesb.2012.02.012 contributor: fullname: Capozucca – volume: 43 start-page: 210 year: 2012 ident: 10.1016/j.compstruct.2013.08.026_b0015 article-title: Numerical analysis of bond behavior between masonry bricks and composite materials publication-title: Eng Struct doi: 10.1016/j.engstruct.2012.05.022 contributor: fullname: Ghiassi – volume: 16 start-page: 229 year: 2002 ident: 10.1016/j.compstruct.2013.08.026_b0005 article-title: Strengthening techniques tested on masonry structures struck by the Umbria–Marche earthquake of 1997–1998 publication-title: Constr Build Mater doi: 10.1016/S0950-0618(02)00014-4 contributor: fullname: Corradi – volume: 17–18 start-page: 497 issue: PART 2 year: 1979 ident: 10.1016/j.compstruct.2013.08.026_b0125 article-title: Mathematical programming and nonlinear finite element analysis publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(79)90029-X contributor: fullname: Grierson – ident: 10.1016/j.compstruct.2013.08.026_b0020 – volume: 45 start-page: 1761 issue: 12 year: 2012 ident: 10.1016/j.compstruct.2013.08.026_b0095 article-title: Round Robin Test for composite-to-brick shear bond characterization publication-title: Mater Struct doi: 10.1617/s11527-012-9883-5 contributor: fullname: Valluzzi – ident: 10.1016/j.compstruct.2013.08.026_b0060 – volume: 92 start-page: 918 year: 2010 ident: 10.1016/j.compstruct.2013.08.026_b0010 article-title: Approximate limit analysis of full scale FRP-reinforced masonry buildings through a 3D homogenized FE package publication-title: Compos Struct doi: 10.1016/j.compstruct.2009.09.037 contributor: fullname: Milani – volume: 32 start-page: 55 year: 2012 ident: 10.1016/j.compstruct.2013.08.026_b0045 article-title: Fiber reinforced cement-based composite system for concrete confinement publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2010.12.063 contributor: fullname: De Caso – ident: 10.1016/j.compstruct.2013.08.026_b0090 – volume: 91 start-page: 346 issue: 3 year: 1991 ident: 10.1016/j.compstruct.2013.08.026_b0030 article-title: Fiber composites of new and existing structures publication-title: ACI Struct J contributor: fullname: Saadmantesh – volume: 44 start-page: 524 issue: 1 year: 2012 ident: 10.1016/j.compstruct.2013.08.026_b0055 article-title: Experimental analysis on bond between PBO-FRCM strengthening materials and concrete publication-title: Compos B Eng doi: 10.1016/j.compositesb.2012.03.011 contributor: fullname: D’Ambrisi – volume: 48 start-page: 207 year: 1978 ident: 10.1016/j.compstruct.2013.08.026_b0135 article-title: New discrete models and their application to seismic response analysis of structures publication-title: Nucl Eng Des doi: 10.1016/0029-5493(78)90217-0 contributor: fullname: Kawai – ident: 10.1016/j.compstruct.2013.08.026_b0025 – volume: 34 start-page: 43 issue: 4 year: 2012 ident: 10.1016/j.compstruct.2013.08.026_b0050 article-title: FRCM strengthening – a new tool in the concrete and masonry repair toolbox publication-title: Concr Int Des Constr contributor: fullname: Nanni – volume: 94 start-page: 143 issue: 1 year: 2011 ident: 10.1016/j.compstruct.2013.08.026_b0070 article-title: Flexural analysis of reinforced concrete beams strengthened with a cement based high strength composite material publication-title: Compos Struct doi: 10.1016/j.compstruct.2011.07.008 contributor: fullname: Ombres – ident: 10.1016/j.compstruct.2013.08.026_b0040 – ident: 10.1016/j.compstruct.2013.08.026_b0115 – volume: 49 start-page: 808 issue: 5 year: 2012 ident: 10.1016/j.compstruct.2013.08.026_b0110 article-title: A simple meso-macro model based on SQP for the non-linear analysis of masonry double curvature structures publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2011.12.001 contributor: fullname: Milani – volume: 110–111 start-page: 133 year: 2012 ident: 10.1016/j.compstruct.2013.08.026_b0105 article-title: 3D non-linear behavior of masonry arch bridges publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.07.008 contributor: fullname: Milani – ident: 10.1016/j.compstruct.2013.08.026_b0120 – volume: 58 start-page: 1285 year: 1998 ident: 10.1016/j.compstruct.2013.08.026_b0035 article-title: Composites: a new possibility for the shear strengthening of concrete, masonry and wood publication-title: Compos Sci Technol doi: 10.1016/S0266-3538(98)00017-7 contributor: fullname: Triantafillou – volume: 30 start-page: 898 issue: 10 year: 2008 ident: 10.1016/j.compstruct.2013.08.026_b0085 article-title: Influence of bond properties on the tensile behaviour of textile reinforced concrete publication-title: Cement Concr Compos doi: 10.1016/j.cemconcomp.2008.08.004 contributor: fullname: Hartig – volume: 92 start-page: 891 year: 2010 ident: 10.1016/j.compstruct.2013.08.026_b0075 article-title: Experimental FRP/SRP historic masonry delamination publication-title: Compos Struct doi: 10.1016/j.compstruct.2009.09.029 contributor: fullname: Capozucca – volume: 5 start-page: 107 issue: 2 year: 1966 ident: 10.1016/j.compstruct.2013.08.026_b0130 article-title: Incremental elastoplastic analysis and quadratic optimization publication-title: Meccanica doi: 10.1007/BF02134214 contributor: fullname: Capurso – volume: 55 start-page: 249 issue: 2 year: 1995 ident: 10.1016/j.compstruct.2013.08.026_b0080 article-title: Development of debond region of lag model publication-title: Comput Struct doi: 10.1016/0045-7949(94)00510-A contributor: fullname: Prochazka |
SSID | ssj0008411 |
Score | 2.5319235 |
Snippet | The behavior of single bricks and small masonry pillars strengthened by means of fabric reinforced cementitious matrix systems made with glass-fiber grids is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 711 |
SubjectTerms | Anchorages Bricks Debonding Fabric Reinforced Cementitious Matrix FRCM GF grid strengthening Masonry Mathematical analysis Mathematical models Mortars Non-linear behavior Nonlinearity Ultimate tensile strength |
Title | Mechanical properties and numerical modeling of Fabric Reinforced Cementitious Matrix (FRCM) systems for strengthening of masonry structures |
URI | https://dx.doi.org/10.1016/j.compstruct.2013.08.026 https://search.proquest.com/docview/1685803494 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60XvQgPrE-SgQPeljrPpqmeCrFUpV6qAreQrJJpKJrsS3oxV_gj3Zms-sLD4LHDck-ZrLzyMx8A7CnExRyJkwDgwohSLRSAfohKboqXLvQtNKmogLn_gXvXSdnN42bGeiUtTCUVlnIfi_Tc2ldjNQLatZHw2H9Er2HGNVbTAEZNAr4LMyhOopEBebap-e9iw-BLJK8DS_ND2hBkdDj07woc9tDtVKeV5zjeRLSwu9a6oe8zpVQdwkWC-uRtf0LLsOMzVZg4Qum4Cq89S0V8xLt2YhO2p8IMpWpzLBs6sMz9yzvf4PT2aNjXaVxkA1sjqGKBGGd_MiQcrmmY9YnDP9ntt8ddPoHzAM_jxnOZFRmkt0SekJxpweFxvvTC_MfOkVHfg2uuydXnV5QtFwIUnS0JoFypK-jNE6c0KFuOvR4DFopqY5N60gobiLFrRUpN7G2nCsbJxRci1yz5TiKh3WoZI-Z3QCGvtyRs44LYRpJZLW2kUttJISmohRuqxCWJJYjj6why5SzO_nJFklskdQrM-JVOC55Ib_tEokK4A-rd0v2SfyJKDKiMouklCGh8OdIPZv_esIWzONV4o9otqGCE-wOGi0TXYPZw9ewVmzNd3S08Y4 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADYhU7RuIAh6jNUjcRJxQRtUB6KEXqzbJjGxVBqLpI8A98NDNxwiYOSFwTO8uMPYtn5g0hJzIAIafczFGgEJxACuGAH5KBq8KkcVWUtQQWOKdd1r4LrgbNwRyJq1oYTKssZb-V6YW0Lq_US2rWR8Nh_Ra8Bx_Um48BGTAK2DxZAGsggt25cNG5bnc_BHIYFG14cbyDE8qEHpvmhZnbFqoV87z8As8TkRZ-11I_5HWhhJJVslJaj_TCfuAamdP5Oln-gim4Qd5SjcW8SHs6wpP2MUKmUpErms9seOaRFv1vYDh9NjQREi7Sni4wVIEgNC6ODDGXazahKWL4v9DTpBenZ9QCP08ojKRYZpLfI3pC-aQnAcb7-JXaH52BI79J7pLLftx2ypYLTgaO1tQRBvW1l_mBCaUrWwY8HgVWSiZ9FTVCwZQnmNZhxpQvNWNC-wEG1zzTigwD8bBFavlzrrcJBV-uYbRhYaiagael1J7JtBeGEotSmN4hbkViPrLIGrxKOXvgn2zhyBaOvTI9tkPOK17wb6uEgwL4w-zjin0cNhFGRkSugZTcRRT-Aqln919vOCKL7X56w2863es9sgR3Antcs09qMFgfgAEzlYflAn0HTPXzgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+properties+and+numerical+modeling+of+Fabric+Reinforced+Cementitious+Matrix+%28FRCM%29+systems+for+strengthening+of+masonry+structures&rft.jtitle=Composite+structures&rft.au=Carozzi%2C+Francesca+Giulia&rft.au=Milani%2C+Gabriele&rft.au=Poggi%2C+Carlo&rft.date=2014-01-01&rft.issn=0263-8223&rft.volume=107&rft.spage=711&rft.epage=725&rft_id=info:doi/10.1016%2Fj.compstruct.2013.08.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruct_2013_08_026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon |