Nucleation and growth phenomena in chemically vapor-deposited diamond coatings

The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is the main subject of this paper. The plasma is excited in a hydrogen-rich methane and hydrogen mixture with a substrate temperature of approximately 1000 °C. High chemical reactivity of the...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 36; no. 1; pp. 283 - 293
Main Authors Badzian, A.R., Badzian, T.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.1988
Online AccessGet full text

Cover

Loading…
Abstract The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is the main subject of this paper. The plasma is excited in a hydrogen-rich methane and hydrogen mixture with a substrate temperature of approximately 1000 °C. High chemical reactivity of the plasma limits the application of the CVD process to certain substrates. Autoepitaxy of diamond on diamond substrates has already been demonstrated, but nucleation of diamond on non-diamond substrates creates many conceptual and practical problems. Experimental observations of the nucleation of diamond on various substrates are presented and discussed. Several phenomena are connected with the growth mechanism of diamond: competition in nucleation between diamond and graphite, surface activity of the species, adsorption and desorption of hydrogen on the diamond surface and surface reconstruction. In turn, a collective interaction between the plasma, the growing surface and the bulk substrate is expected to be responsible for the observed maximum growth rate at approximately 1000 °C and the narrowing of the other process parameters. These delicately balanced interactions provide conditions for growing relatively perfect crystalline diamond films. The other issue is how to achieve a high growth rate of diamond. One approach is by a catalytic growth mechanism in which an intermediary role is played by some atoms such as boron, silicon, titanium and others. Growth of diamond films on titanium substrates may reach rates of up to 20 μm h -1.
AbstractList The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is the main subject of this paper. The plasma is excited in a hydrogen-rich methane and hydrogen mixture with a substrate temperature of approximately 1000 °C. High chemical reactivity of the plasma limits the application of the CVD process to certain substrates. Autoepitaxy of diamond on diamond substrates has already been demonstrated, but nucleation of diamond on non-diamond substrates creates many conceptual and practical problems. Experimental observations of the nucleation of diamond on various substrates are presented and discussed. Several phenomena are connected with the growth mechanism of diamond: competition in nucleation between diamond and graphite, surface activity of the species, adsorption and desorption of hydrogen on the diamond surface and surface reconstruction. In turn, a collective interaction between the plasma, the growing surface and the bulk substrate is expected to be responsible for the observed maximum growth rate at approximately 1000 °C and the narrowing of the other process parameters. These delicately balanced interactions provide conditions for growing relatively perfect crystalline diamond films. The other issue is how to achieve a high growth rate of diamond. One approach is by a catalytic growth mechanism in which an intermediary role is played by some atoms such as boron, silicon, titanium and others. Growth of diamond films on titanium substrates may reach rates of up to 20 μm h -1.
The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is discussed. The plasma is excited in a hydrogen-rich methane and H mixture with a substrate temperature of approx 1000 deg C. High chemical reactivity of the plasma limits the application of the CVD process to certain substrates. Autoepitaxy of diamond on diamond substrates has already been demonstrated, but nucleation of diamond on non-diamond substrates creates many conceptual and practical problems. Experimental observations of the nucleation of diamond on various substrates (Ti, Au, Ag, Cu) are presented and discussed. Several phenomena are connected with the growth mechanism of diamond: competition in nucleation between diamond and graphite, surface activity of the species, adsorption and desorption of H on the diamond surface and surface reconstruction. In turn, a collective interaction between the plasma, the growing surface and the bulk substrate is expected to be responsible for the observed maximum growth rate at approx 1000 deg C and the narrowing of the other process parameters. These delicately balanced interactions provide conditions for growing relatively perfect crystalline diamond films. The other issue is how to achieve a high growth rate of diamond. One approach is by a catalytic growth mechanism in which an intermediary role is played by some atoms such as boron, Si, Ti and others. Growth of diamond films on Ti substrates may reach rates of up to 20 mu m h exp --1 . 30 ref.--AA
Author Badzian, T.
Badzian, A.R.
Author_xml – sequence: 1
  givenname: A.R.
  surname: Badzian
  fullname: Badzian, A.R.
– sequence: 2
  givenname: T.
  surname: Badzian
  fullname: Badzian, T.
BookMark eNqFkDtPwzAUhS1UJErhHzBkQjAEbOdhmwEJVbwkBAvMlrGvW6PEDnZa1H9PQhEDA0x3Od_Rud8-mvjgAaEjgs8IJvU5phXLuWD0hPNTgUnFc7qDpoQzkRdFySZo-hPZQ_spvWGMCRPlFD0-rnQDqnfBZ8qbbBHDR7_MuiX40IJXmfOZXkLrtGqaTbZWXYi5gS4k14PJjFNtGDAdhgq_SAdo16omweH3naGXm-vn-V3-8HR7P796yHWJSZ8rW9laG8UsrXFtClC1IQKUJcLUQGsDluDXQghrC25qTekwlxkrKqbFK6uKGTre9nYxvK8g9bJ1SUPTKA9hlSQth18rPgbLbVDHkFIEK7voWhU3kmA5ypOjGTmakZzLL3mSDtjFL0y7_stSH5Vr_oMvtzAMBtYOokzagddgXATdSxPc3wWfsi2MEw
CitedBy_id crossref_primary_10_1016_0022_4596_91_90056_N
crossref_primary_10_1063_1_364053
crossref_primary_10_1103_PhysRevB_43_1678
crossref_primary_10_1063_1_370955
crossref_primary_10_1016_S0925_9635_02_00138_3
crossref_primary_10_1002_pssa_2211320202
crossref_primary_10_1007_BF00626719
crossref_primary_10_1016_0040_6090_93_90654_8
crossref_primary_10_1557_JMR_1989_0659
crossref_primary_10_1016_0169_4332_93_90239_8
crossref_primary_10_1016_0921_5107_92_90088_Q
crossref_primary_10_1016_j_tsf_2005_10_047
crossref_primary_10_1016_0925_9635_93_90021_S
crossref_primary_10_1016_0925_9635_92_90125_8
crossref_primary_10_1016_S0040_6090_01_01262_7
crossref_primary_10_1016_S0925_9635_99_00016_3
crossref_primary_10_1557_JMR_1994_2164
crossref_primary_10_1063_1_350892
crossref_primary_10_1103_PhysRevB_45_11067
crossref_primary_10_1016_0257_8972_92_90122_Q
crossref_primary_10_1007_BF00356418
crossref_primary_10_1143_JJAP_35_2255
crossref_primary_10_1021_jp984797g
crossref_primary_10_1007_BF00322227
crossref_primary_10_1016_0921_5107_95_01244_3
crossref_primary_10_1016_0169_4332_94_90288_7
crossref_primary_10_1111_j_1151_2916_2003_tb03369_x
crossref_primary_10_1016_0043_1648_92_90287_I
crossref_primary_10_1016_0925_9635_96_00297_2
crossref_primary_10_1016_j_diamond_2005_02_008
crossref_primary_10_1016_j_jcrysgro_2006_06_040
crossref_primary_10_1111_j_1151_2916_1992_tb04411_x
crossref_primary_10_1016_S0925_9635_96_00636_X
crossref_primary_10_1016_S0925_9635_98_00311_2
crossref_primary_10_1016_0167_577X_93_90003_G
crossref_primary_10_1109_27_61496
crossref_primary_10_1016_0257_8972_92_90113_O
crossref_primary_10_1126_science_247_4943_688
crossref_primary_10_1557_JMR_1993_2858
crossref_primary_10_1016_S0925_9635_96_00646_2
crossref_primary_10_1063_1_355692
Cites_doi 10.1021/ja00279a019
10.1016/0025-5408(88)90161-4
10.1116/1.571782
10.1016/0039-6028(86)90665-5
10.1007/978-1-4613-1035-8_13
10.1016/0025-5408(88)90013-X
10.1016/0039-6028(66)90004-5
10.1007/BF00542075
10.1103/PhysRevLett.51.118
10.1063/1.98080
10.1143/JJAP.26.L527
10.1016/0022-0248(87)90090-X
10.1557/JMR.1988.0133
10.1143/JJAP.26.L1032
10.1016/0022-0248(81)90197-4
10.1016/0040-6090(87)90233-1
10.1007/BF00720043
10.1063/1.99435
10.1063/1.1662389
10.1016/0022-0248(83)90411-6
10.1143/JJAP.21.L183
ContentType Journal Article
Copyright 1988
Copyright_xml – notice: 1988
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/0257-8972(88)90158-2
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
EndPage 293
ExternalDocumentID 10_1016_0257_8972_88_90158_2
0257897288901582
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HX~
HZ~
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8BQ
8FD
JG9
ID FETCH-LOGICAL-c401t-af5f6cda7f2606d3ea6d19eaf19d6e26def10b399ff38d6c220177df957c9b753
ISSN 0257-8972
IngestDate Fri Jul 11 12:29:05 EDT 2025
Thu Apr 24 22:57:54 EDT 2025
Tue Jul 01 04:24:57 EDT 2025
Fri Feb 23 02:16:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-af5f6cda7f2606d3ea6d19eaf19d6e26def10b399ff38d6c220177df957c9b753
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 24897585
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_24897585
crossref_primary_10_1016_0257_8972_88_90158_2
crossref_citationtrail_10_1016_0257_8972_88_90158_2
elsevier_sciencedirect_doi_10_1016_0257_8972_88_90158_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1988-12-01
PublicationDateYYYYMMDD 1988-12-01
PublicationDate_xml – month: 12
  year: 1988
  text: 1988-12-01
  day: 01
PublicationDecade 1980
PublicationTitle Surface & coatings technology
PublicationYear 1988
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Eversole (BIB4) 1962
Tsuda, Nakajima, Oikawa (BIB10) 1987; 26
Spitsyn (BIB12) 1972
Matsumoto, Sato, Kamo, Setaka (BIB15) 1982; 21
Williams, Glass, Davis, Kobashi, Kawate (BIB22) April 5 – 9, 1988
Fedoseev, Derjaguin, Varshavskaja, Semienova Tjan-Shanskaja (BIB24) 1984
Kawarda, Mar, Hiraki (BIB18) 1987; 26
Lander, Morrison (BIB5) 1966; 4
Kurihara, Sasaki, Kawaradi, Koshino (BIB28) 1988; 52
Matsumoto (BIB17) 1985; 4
Matsumoto, Matsui (BIB25) 1983; 18
Suzuki, Sawabe, Yasuda, Inuzuka (BIB19) 1987; 50
Badzian (BIB21) 1988; 31
Anthony (BIB30) November 30 – December 5, 1987
Waclawski, Pierce, Swanson, Celotta (BIB6) 1982; 21
Bachmann, Drawl, Knight, Weimer, Messier (BIB23) April 5 – 9, 1988
Badzian, Badzian, Roy, Messier, Spear (BIB8) 1988; 23
Nakazawa, Kanazawa, Kamo, Osumi (BIB20) 1987; 151
Pate (BIB7) 1986; 165
Kamo, Sato, Matsumoto, Setaka (BIB16) 1983; 62
Frenklach, Spear (BIB11) 1988; 3
Derjaguin, Fedoseev (BIB1) 1977
Tsuda, Nakajima, Oikawa (BIB9) 1986; 108
Spitsyn (BIB14) April 5 – 9, 1988
Poferl, Gardner, Angus (BIB29) 1972; 44
Mitura (BIB26) 1987; 80
Vidali, Cole, Weinberg, Steele (BIB3) 1983; 51
Spitsyn, Bouilov, Derjaguin (BIB13) 1981; 52
Matsumoto, Hino, Kobayashi (BIB27) 1987; 51
Badzian, DeVries (BIB2) 1988; 23
Kawarda (10.1016/0257-8972(88)90158-2_BIB18) 1987; 26
Fedoseev (10.1016/0257-8972(88)90158-2_BIB24) 1984
Waclawski (10.1016/0257-8972(88)90158-2_BIB6) 1982; 21
Anthony (10.1016/0257-8972(88)90158-2_BIB30) 1987
Vidali (10.1016/0257-8972(88)90158-2_BIB3) 1983; 51
Poferl (10.1016/0257-8972(88)90158-2_BIB29) 1972; 44
Badzian (10.1016/0257-8972(88)90158-2_BIB2) 1988; 23
Badzian (10.1016/0257-8972(88)90158-2_BIB8) 1988; 23
Matsumoto (10.1016/0257-8972(88)90158-2_BIB25) 1983; 18
Derjaguin (10.1016/0257-8972(88)90158-2_BIB1) 1977
Nakazawa (10.1016/0257-8972(88)90158-2_BIB20) 1987; 151
Bachmann (10.1016/0257-8972(88)90158-2_BIB23) 1988
Eversole (10.1016/0257-8972(88)90158-2_BIB4) 1962
Tsuda (10.1016/0257-8972(88)90158-2_BIB9) 1986; 108
Badzian (10.1016/0257-8972(88)90158-2_BIB21) 1988; 31
Matsumoto (10.1016/0257-8972(88)90158-2_BIB17) 1985; 4
Lander (10.1016/0257-8972(88)90158-2_BIB5) 1966; 4
Pate (10.1016/0257-8972(88)90158-2_BIB7) 1986; 165
Tsuda (10.1016/0257-8972(88)90158-2_BIB10) 1987; 26
Kurihara (10.1016/0257-8972(88)90158-2_BIB28) 1988; 52
Spitsyn (10.1016/0257-8972(88)90158-2_BIB12) 1972
Frenklach (10.1016/0257-8972(88)90158-2_BIB11) 1988; 3
Williams (10.1016/0257-8972(88)90158-2_BIB22) 1988
Kamo (10.1016/0257-8972(88)90158-2_BIB16) 1983; 62
Matsumoto (10.1016/0257-8972(88)90158-2_BIB27) 1987; 51
Matsumoto (10.1016/0257-8972(88)90158-2_BIB15) 1982; 21
Suzuki (10.1016/0257-8972(88)90158-2_BIB19) 1987; 50
Mitura (10.1016/0257-8972(88)90158-2_BIB26) 1987; 80
Spitsyn (10.1016/0257-8972(88)90158-2_BIB13) 1981; 52
Spitsyn (10.1016/0257-8972(88)90158-2_BIB14) 1988
References_xml – start-page: 59
  year: April 5 – 9, 1988
  ident: BIB22
  article-title: Materials Research Society Spring Meet.
– volume: 108
  start-page: 5780
  year: 1986
  ident: BIB9
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 118
  year: 1983
  ident: BIB3
  publication-title: Phys. Rev. Lett.
– start-page: 99
  year: April 5 – 9, 1988
  ident: BIB23
  article-title: Materials Research Society Spring Meet.
– volume: 18
  start-page: 1785
  year: 1983
  ident: BIB25
  publication-title: J. Mater. Sci.
– year: November 30 – December 5, 1987
  ident: BIB30
  article-title: Symposium N, Materials Research Society, Fall Meet.
– volume: 62
  start-page: 642
  year: 1983
  ident: BIB16
  publication-title: J. Cryst. Growth
– volume: 23
  start-page: 531
  year: 1988
  ident: BIB8
  publication-title: Mater. Res. Bull.
– volume: 50
  start-page: 728
  year: 1987
  ident: BIB19
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 600
  year: 1985
  ident: BIB17
  publication-title: J. Mater. Sci. Lett.
– volume: 21
  start-page: 368
  year: 1982
  ident: BIB6
  publication-title: J. Vac. Sci. Technol.
– volume: 44
  start-page: 1428
  year: 1972
  ident: BIB29
  publication-title: J. Appl. Phys.
– volume: 26
  start-page: L527
  year: 1987
  end-page: L529
  ident: BIB10
  publication-title: Jpn. J. Appl. Phys.
– year: 1962
  ident: BIB4
  article-title: Synthesis of diamond
– volume: 52
  start-page: 219
  year: 1981
  ident: BIB13
  publication-title: J. Cryst. Growth
– volume: 31
  start-page: 113
  year: 1988
  ident: BIB21
  publication-title: Adv. X-Ray Anal.
– year: April 5 – 9, 1988
  ident: BIB14
  article-title: Materials Research Society Spring Meet.
– volume: 26
  start-page: L1032
  year: 1987
  end-page: L1034
  ident: BIB18
  publication-title: Jpn. J. Appl. Phys.
– volume: 165
  start-page: 83
  year: 1986
  ident: BIB7
  publication-title: Surf. Sci.
– volume: 151
  start-page: 199
  year: 1987
  ident: BIB20
  publication-title: Thin Solid Films
– volume: 4
  start-page: 241
  year: 1966
  ident: BIB5
  publication-title: Surf. Sci.
– year: 1984
  ident: BIB24
  article-title: Crystallization of Diamond
– volume: 52
  start-page: 437
  year: 1988
  ident: BIB28
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 133
  year: 1988
  ident: BIB11
  publication-title: J. Mater. Res.
– start-page: 97
  year: 1972
  ident: BIB12
  article-title: Proc. 4th U.S.S.R. Conf. on Crystal Growth
– volume: 21
  start-page: L183
  year: 1982
  ident: BIB15
  publication-title: Jpn. J. Appl. Phys.
– volume: 51
  start-page: 137
  year: 1987
  ident: BIB27
  publication-title: Appl. Phys. Lett.
– volume: 80
  start-page: 417
  year: 1987
  ident: BIB26
  publication-title: J. Cryst. Growth
– year: 1977
  ident: BIB1
  article-title: Growth of Diamond and Graphite from Gas Phase
– volume: 23
  start-page: 385
  year: 1988
  ident: BIB2
  publication-title: Mater. Res. Bull.
– year: 1984
  ident: 10.1016/0257-8972(88)90158-2_BIB24
– year: 1977
  ident: 10.1016/0257-8972(88)90158-2_BIB1
– volume: 108
  start-page: 5780
  year: 1986
  ident: 10.1016/0257-8972(88)90158-2_BIB9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00279a019
– volume: 23
  start-page: 531
  issue: 4
  year: 1988
  ident: 10.1016/0257-8972(88)90158-2_BIB8
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(88)90161-4
– volume: 21
  start-page: 368
  year: 1982
  ident: 10.1016/0257-8972(88)90158-2_BIB6
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.571782
– volume: 165
  start-page: 83
  year: 1986
  ident: 10.1016/0257-8972(88)90158-2_BIB7
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(86)90665-5
– start-page: 97
  year: 1972
  ident: 10.1016/0257-8972(88)90158-2_BIB12
  article-title: Proc. 4th U.S.S.R. Conf. on Crystal Growth
– volume: 31
  start-page: 113
  year: 1988
  ident: 10.1016/0257-8972(88)90158-2_BIB21
  publication-title: Adv. X-Ray Anal.
  doi: 10.1007/978-1-4613-1035-8_13
– year: 1988
  ident: 10.1016/0257-8972(88)90158-2_BIB14
  article-title: Materials Research Society Spring Meet.
– volume: 23
  start-page: 385
  issue: 3
  year: 1988
  ident: 10.1016/0257-8972(88)90158-2_BIB2
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(88)90013-X
– volume: 4
  start-page: 241
  year: 1966
  ident: 10.1016/0257-8972(88)90158-2_BIB5
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(66)90004-5
– volume: 18
  start-page: 1785
  year: 1983
  ident: 10.1016/0257-8972(88)90158-2_BIB25
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00542075
– volume: 51
  start-page: 118
  year: 1983
  ident: 10.1016/0257-8972(88)90158-2_BIB3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.118
– volume: 51
  start-page: 137
  year: 1987
  ident: 10.1016/0257-8972(88)90158-2_BIB27
  publication-title: Appl. Phys. Lett.
– volume: 50
  start-page: 728
  year: 1987
  ident: 10.1016/0257-8972(88)90158-2_BIB19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.98080
– start-page: 59
  year: 1988
  ident: 10.1016/0257-8972(88)90158-2_BIB22
  article-title: Materials Research Society Spring Meet.
– start-page: 99
  year: 1988
  ident: 10.1016/0257-8972(88)90158-2_BIB23
  article-title: Materials Research Society Spring Meet.
– volume: 26
  start-page: L527
  year: 1987
  ident: 10.1016/0257-8972(88)90158-2_BIB10
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.26.L527
– year: 1987
  ident: 10.1016/0257-8972(88)90158-2_BIB30
  article-title: Symposium N, Materials Research Society, Fall Meet.
– volume: 80
  start-page: 417
  year: 1987
  ident: 10.1016/0257-8972(88)90158-2_BIB26
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(87)90090-X
– year: 1962
  ident: 10.1016/0257-8972(88)90158-2_BIB4
– volume: 3
  start-page: 133
  year: 1988
  ident: 10.1016/0257-8972(88)90158-2_BIB11
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1988.0133
– volume: 26
  start-page: L1032
  year: 1987
  ident: 10.1016/0257-8972(88)90158-2_BIB18
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.26.L1032
– volume: 52
  start-page: 219
  year: 1981
  ident: 10.1016/0257-8972(88)90158-2_BIB13
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(81)90197-4
– volume: 151
  start-page: 199
  year: 1987
  ident: 10.1016/0257-8972(88)90158-2_BIB20
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(87)90233-1
– volume: 4
  start-page: 600
  year: 1985
  ident: 10.1016/0257-8972(88)90158-2_BIB17
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1007/BF00720043
– volume: 52
  start-page: 437
  year: 1988
  ident: 10.1016/0257-8972(88)90158-2_BIB28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.99435
– volume: 44
  start-page: 1428
  year: 1972
  ident: 10.1016/0257-8972(88)90158-2_BIB29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1662389
– volume: 62
  start-page: 642
  year: 1983
  ident: 10.1016/0257-8972(88)90158-2_BIB16
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(83)90411-6
– volume: 21
  start-page: L183
  year: 1982
  ident: 10.1016/0257-8972(88)90158-2_BIB15
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.21.L183
SSID ssj0001794
Score 1.4764154
Snippet The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is the main subject of this paper. The plasma is...
The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is discussed. The plasma is excited in a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 283
Title Nucleation and growth phenomena in chemically vapor-deposited diamond coatings
URI https://dx.doi.org/10.1016/0257-8972(88)90158-2
https://www.proquest.com/docview/24897585
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9gAcKiggytMHkEArh02y8eO4VKCKij1UW9Gb5fhRikq2KikS_fWMYzthu0WFXqLIcRyt5_N4vlnPDEKveF1ZZakmwglGpk5UpK6MJYVyU2AbQlfcBwp_ntPdg-mnw-pwqNnaRZe0daYvrowruYlUoQ3k6qNk_0Oy_aDQAPcgX7iChOH6TzKe-2TEQYLe_30ElLr9OvantnxeBeV9GTomBDj5Nf6pwNYmxnbntMDOBGR8X3ZRbart_eXfUoDImVPadsBIz8ftmhv-vTIXx8GFOsv2syuaF9ngV8gFzOzqGY31gJdOJ8EKJ1yEajuZDTqTM0HKMiTOTEo1ZDVZAU_UkKFuTdxsi1AecU2PB5dC_zUwtjl_7XfOvOIxXHI1S7bv6nty3vWBTXmjAOJQjNDGbG__y16_O3sF1Pnd4tApnDKn7_q2N5y_jZ_6m7lyaePurJHFPbQZaQSeBUzcR7dss4Vu76TqfVvo7h-JJh-g-YAUDEjBASm4Rwo-bvCAFHwJKTgiBSckPEQHHz8sdnZJrKRBNPDnlihXOaqNYg7oKzWlVdTkwiqXC0NtQY11-aQGW9W5khuqCzALGTOwcpkWNTDaR2jULBv7GGFTVpbVxh9YKKbcKeDrbKKA2DqgGsWEbaMyTZjUMc28r3ZyItN5Qj_N0k-z5Fx20yyLbUT6t05DmpVr-rMkCxlNxWACSkDQNW--TKKTIBL_95hq7PL8h4SfIzx7fnLjsZ-iO8NKeoZG7dm5fQ42a1u_iDD8DSvdkIc
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleation+and+growth+phenomena+in+chemically+vapor-deposited+diamond+coatings&rft.jtitle=Surface+%26+coatings+technology&rft.au=Badzian%2C+A.R.&rft.au=Badzian%2C+T.&rft.date=1988-12-01&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=36&rft.issue=1&rft.spage=283&rft.epage=293&rft_id=info:doi/10.1016%2F0257-8972%2888%2990158-2&rft.externalDocID=0257897288901582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon