Nucleation and growth phenomena in chemically vapor-deposited diamond coatings
The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is the main subject of this paper. The plasma is excited in a hydrogen-rich methane and hydrogen mixture with a substrate temperature of approximately 1000 °C. High chemical reactivity of the...
Saved in:
Published in | Surface & coatings technology Vol. 36; no. 1; pp. 283 - 293 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.1988
|
Online Access | Get full text |
Cover
Loading…
Abstract | The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is the main subject of this paper. The plasma is excited in a hydrogen-rich methane and hydrogen mixture with a substrate temperature of approximately 1000 °C. High chemical reactivity of the plasma limits the application of the CVD process to certain substrates. Autoepitaxy of diamond on diamond substrates has already been demonstrated, but nucleation of diamond on non-diamond substrates creates many conceptual and practical problems. Experimental observations of the nucleation of diamond on various substrates are presented and discussed.
Several phenomena are connected with the growth mechanism of diamond: competition in nucleation between diamond and graphite, surface activity of the species, adsorption and desorption of hydrogen on the diamond surface and surface reconstruction. In turn, a collective interaction between the plasma, the growing surface and the bulk substrate is expected to be responsible for the observed maximum growth rate at approximately 1000 °C and the narrowing of the other process parameters. These delicately balanced interactions provide conditions for growing relatively perfect crystalline diamond films.
The other issue is how to achieve a high growth rate of diamond. One approach is by a catalytic growth mechanism in which an intermediary role is played by some atoms such as boron, silicon, titanium and others. Growth of diamond films on titanium substrates may reach rates of up to 20 μm h
-1. |
---|---|
AbstractList | The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is the main subject of this paper. The plasma is excited in a hydrogen-rich methane and hydrogen mixture with a substrate temperature of approximately 1000 °C. High chemical reactivity of the plasma limits the application of the CVD process to certain substrates. Autoepitaxy of diamond on diamond substrates has already been demonstrated, but nucleation of diamond on non-diamond substrates creates many conceptual and practical problems. Experimental observations of the nucleation of diamond on various substrates are presented and discussed.
Several phenomena are connected with the growth mechanism of diamond: competition in nucleation between diamond and graphite, surface activity of the species, adsorption and desorption of hydrogen on the diamond surface and surface reconstruction. In turn, a collective interaction between the plasma, the growing surface and the bulk substrate is expected to be responsible for the observed maximum growth rate at approximately 1000 °C and the narrowing of the other process parameters. These delicately balanced interactions provide conditions for growing relatively perfect crystalline diamond films.
The other issue is how to achieve a high growth rate of diamond. One approach is by a catalytic growth mechanism in which an intermediary role is played by some atoms such as boron, silicon, titanium and others. Growth of diamond films on titanium substrates may reach rates of up to 20 μm h
-1. The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is discussed. The plasma is excited in a hydrogen-rich methane and H mixture with a substrate temperature of approx 1000 deg C. High chemical reactivity of the plasma limits the application of the CVD process to certain substrates. Autoepitaxy of diamond on diamond substrates has already been demonstrated, but nucleation of diamond on non-diamond substrates creates many conceptual and practical problems. Experimental observations of the nucleation of diamond on various substrates (Ti, Au, Ag, Cu) are presented and discussed. Several phenomena are connected with the growth mechanism of diamond: competition in nucleation between diamond and graphite, surface activity of the species, adsorption and desorption of H on the diamond surface and surface reconstruction. In turn, a collective interaction between the plasma, the growing surface and the bulk substrate is expected to be responsible for the observed maximum growth rate at approx 1000 deg C and the narrowing of the other process parameters. These delicately balanced interactions provide conditions for growing relatively perfect crystalline diamond films. The other issue is how to achieve a high growth rate of diamond. One approach is by a catalytic growth mechanism in which an intermediary role is played by some atoms such as boron, Si, Ti and others. Growth of diamond films on Ti substrates may reach rates of up to 20 mu m h exp --1 . 30 ref.--AA |
Author | Badzian, T. Badzian, A.R. |
Author_xml | – sequence: 1 givenname: A.R. surname: Badzian fullname: Badzian, A.R. – sequence: 2 givenname: T. surname: Badzian fullname: Badzian, T. |
BookMark | eNqFkDtPwzAUhS1UJErhHzBkQjAEbOdhmwEJVbwkBAvMlrGvW6PEDnZa1H9PQhEDA0x3Od_Rud8-mvjgAaEjgs8IJvU5phXLuWD0hPNTgUnFc7qDpoQzkRdFySZo-hPZQ_spvWGMCRPlFD0-rnQDqnfBZ8qbbBHDR7_MuiX40IJXmfOZXkLrtGqaTbZWXYi5gS4k14PJjFNtGDAdhgq_SAdo16omweH3naGXm-vn-V3-8HR7P796yHWJSZ8rW9laG8UsrXFtClC1IQKUJcLUQGsDluDXQghrC25qTekwlxkrKqbFK6uKGTre9nYxvK8g9bJ1SUPTKA9hlSQth18rPgbLbVDHkFIEK7voWhU3kmA5ypOjGTmakZzLL3mSDtjFL0y7_stSH5Vr_oMvtzAMBtYOokzagddgXATdSxPc3wWfsi2MEw |
CitedBy_id | crossref_primary_10_1016_0022_4596_91_90056_N crossref_primary_10_1063_1_364053 crossref_primary_10_1103_PhysRevB_43_1678 crossref_primary_10_1063_1_370955 crossref_primary_10_1016_S0925_9635_02_00138_3 crossref_primary_10_1002_pssa_2211320202 crossref_primary_10_1007_BF00626719 crossref_primary_10_1016_0040_6090_93_90654_8 crossref_primary_10_1557_JMR_1989_0659 crossref_primary_10_1016_0169_4332_93_90239_8 crossref_primary_10_1016_0921_5107_92_90088_Q crossref_primary_10_1016_j_tsf_2005_10_047 crossref_primary_10_1016_0925_9635_93_90021_S crossref_primary_10_1016_0925_9635_92_90125_8 crossref_primary_10_1016_S0040_6090_01_01262_7 crossref_primary_10_1016_S0925_9635_99_00016_3 crossref_primary_10_1557_JMR_1994_2164 crossref_primary_10_1063_1_350892 crossref_primary_10_1103_PhysRevB_45_11067 crossref_primary_10_1016_0257_8972_92_90122_Q crossref_primary_10_1007_BF00356418 crossref_primary_10_1143_JJAP_35_2255 crossref_primary_10_1021_jp984797g crossref_primary_10_1007_BF00322227 crossref_primary_10_1016_0921_5107_95_01244_3 crossref_primary_10_1016_0169_4332_94_90288_7 crossref_primary_10_1111_j_1151_2916_2003_tb03369_x crossref_primary_10_1016_0043_1648_92_90287_I crossref_primary_10_1016_0925_9635_96_00297_2 crossref_primary_10_1016_j_diamond_2005_02_008 crossref_primary_10_1016_j_jcrysgro_2006_06_040 crossref_primary_10_1111_j_1151_2916_1992_tb04411_x crossref_primary_10_1016_S0925_9635_96_00636_X crossref_primary_10_1016_S0925_9635_98_00311_2 crossref_primary_10_1016_0167_577X_93_90003_G crossref_primary_10_1109_27_61496 crossref_primary_10_1016_0257_8972_92_90113_O crossref_primary_10_1126_science_247_4943_688 crossref_primary_10_1557_JMR_1993_2858 crossref_primary_10_1016_S0925_9635_96_00646_2 crossref_primary_10_1063_1_355692 |
Cites_doi | 10.1021/ja00279a019 10.1016/0025-5408(88)90161-4 10.1116/1.571782 10.1016/0039-6028(86)90665-5 10.1007/978-1-4613-1035-8_13 10.1016/0025-5408(88)90013-X 10.1016/0039-6028(66)90004-5 10.1007/BF00542075 10.1103/PhysRevLett.51.118 10.1063/1.98080 10.1143/JJAP.26.L527 10.1016/0022-0248(87)90090-X 10.1557/JMR.1988.0133 10.1143/JJAP.26.L1032 10.1016/0022-0248(81)90197-4 10.1016/0040-6090(87)90233-1 10.1007/BF00720043 10.1063/1.99435 10.1063/1.1662389 10.1016/0022-0248(83)90411-6 10.1143/JJAP.21.L183 |
ContentType | Journal Article |
Copyright | 1988 |
Copyright_xml | – notice: 1988 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/0257-8972(88)90158-2 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3347 |
EndPage | 293 |
ExternalDocumentID | 10_1016_0257_8972_88_90158_2 0257897288901582 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HX~ HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c401t-af5f6cda7f2606d3ea6d19eaf19d6e26def10b399ff38d6c220177df957c9b753 |
ISSN | 0257-8972 |
IngestDate | Fri Jul 11 12:29:05 EDT 2025 Thu Apr 24 22:57:54 EDT 2025 Tue Jul 01 04:24:57 EDT 2025 Fri Feb 23 02:16:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c401t-af5f6cda7f2606d3ea6d19eaf19d6e26def10b399ff38d6c220177df957c9b753 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 24897585 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_24897585 crossref_primary_10_1016_0257_8972_88_90158_2 crossref_citationtrail_10_1016_0257_8972_88_90158_2 elsevier_sciencedirect_doi_10_1016_0257_8972_88_90158_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1988-12-01 |
PublicationDateYYYYMMDD | 1988-12-01 |
PublicationDate_xml | – month: 12 year: 1988 text: 1988-12-01 day: 01 |
PublicationDecade | 1980 |
PublicationTitle | Surface & coatings technology |
PublicationYear | 1988 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Eversole (BIB4) 1962 Tsuda, Nakajima, Oikawa (BIB10) 1987; 26 Spitsyn (BIB12) 1972 Matsumoto, Sato, Kamo, Setaka (BIB15) 1982; 21 Williams, Glass, Davis, Kobashi, Kawate (BIB22) April 5 – 9, 1988 Fedoseev, Derjaguin, Varshavskaja, Semienova Tjan-Shanskaja (BIB24) 1984 Kawarda, Mar, Hiraki (BIB18) 1987; 26 Lander, Morrison (BIB5) 1966; 4 Kurihara, Sasaki, Kawaradi, Koshino (BIB28) 1988; 52 Matsumoto (BIB17) 1985; 4 Matsumoto, Matsui (BIB25) 1983; 18 Suzuki, Sawabe, Yasuda, Inuzuka (BIB19) 1987; 50 Badzian (BIB21) 1988; 31 Anthony (BIB30) November 30 – December 5, 1987 Waclawski, Pierce, Swanson, Celotta (BIB6) 1982; 21 Bachmann, Drawl, Knight, Weimer, Messier (BIB23) April 5 – 9, 1988 Badzian, Badzian, Roy, Messier, Spear (BIB8) 1988; 23 Nakazawa, Kanazawa, Kamo, Osumi (BIB20) 1987; 151 Pate (BIB7) 1986; 165 Kamo, Sato, Matsumoto, Setaka (BIB16) 1983; 62 Frenklach, Spear (BIB11) 1988; 3 Derjaguin, Fedoseev (BIB1) 1977 Tsuda, Nakajima, Oikawa (BIB9) 1986; 108 Spitsyn (BIB14) April 5 – 9, 1988 Poferl, Gardner, Angus (BIB29) 1972; 44 Mitura (BIB26) 1987; 80 Vidali, Cole, Weinberg, Steele (BIB3) 1983; 51 Spitsyn, Bouilov, Derjaguin (BIB13) 1981; 52 Matsumoto, Hino, Kobayashi (BIB27) 1987; 51 Badzian, DeVries (BIB2) 1988; 23 Kawarda (10.1016/0257-8972(88)90158-2_BIB18) 1987; 26 Fedoseev (10.1016/0257-8972(88)90158-2_BIB24) 1984 Waclawski (10.1016/0257-8972(88)90158-2_BIB6) 1982; 21 Anthony (10.1016/0257-8972(88)90158-2_BIB30) 1987 Vidali (10.1016/0257-8972(88)90158-2_BIB3) 1983; 51 Poferl (10.1016/0257-8972(88)90158-2_BIB29) 1972; 44 Badzian (10.1016/0257-8972(88)90158-2_BIB2) 1988; 23 Badzian (10.1016/0257-8972(88)90158-2_BIB8) 1988; 23 Matsumoto (10.1016/0257-8972(88)90158-2_BIB25) 1983; 18 Derjaguin (10.1016/0257-8972(88)90158-2_BIB1) 1977 Nakazawa (10.1016/0257-8972(88)90158-2_BIB20) 1987; 151 Bachmann (10.1016/0257-8972(88)90158-2_BIB23) 1988 Eversole (10.1016/0257-8972(88)90158-2_BIB4) 1962 Tsuda (10.1016/0257-8972(88)90158-2_BIB9) 1986; 108 Badzian (10.1016/0257-8972(88)90158-2_BIB21) 1988; 31 Matsumoto (10.1016/0257-8972(88)90158-2_BIB17) 1985; 4 Lander (10.1016/0257-8972(88)90158-2_BIB5) 1966; 4 Pate (10.1016/0257-8972(88)90158-2_BIB7) 1986; 165 Tsuda (10.1016/0257-8972(88)90158-2_BIB10) 1987; 26 Kurihara (10.1016/0257-8972(88)90158-2_BIB28) 1988; 52 Spitsyn (10.1016/0257-8972(88)90158-2_BIB12) 1972 Frenklach (10.1016/0257-8972(88)90158-2_BIB11) 1988; 3 Williams (10.1016/0257-8972(88)90158-2_BIB22) 1988 Kamo (10.1016/0257-8972(88)90158-2_BIB16) 1983; 62 Matsumoto (10.1016/0257-8972(88)90158-2_BIB27) 1987; 51 Matsumoto (10.1016/0257-8972(88)90158-2_BIB15) 1982; 21 Suzuki (10.1016/0257-8972(88)90158-2_BIB19) 1987; 50 Mitura (10.1016/0257-8972(88)90158-2_BIB26) 1987; 80 Spitsyn (10.1016/0257-8972(88)90158-2_BIB13) 1981; 52 Spitsyn (10.1016/0257-8972(88)90158-2_BIB14) 1988 |
References_xml | – start-page: 59 year: April 5 – 9, 1988 ident: BIB22 article-title: Materials Research Society Spring Meet. – volume: 108 start-page: 5780 year: 1986 ident: BIB9 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 118 year: 1983 ident: BIB3 publication-title: Phys. Rev. Lett. – start-page: 99 year: April 5 – 9, 1988 ident: BIB23 article-title: Materials Research Society Spring Meet. – volume: 18 start-page: 1785 year: 1983 ident: BIB25 publication-title: J. Mater. Sci. – year: November 30 – December 5, 1987 ident: BIB30 article-title: Symposium N, Materials Research Society, Fall Meet. – volume: 62 start-page: 642 year: 1983 ident: BIB16 publication-title: J. Cryst. Growth – volume: 23 start-page: 531 year: 1988 ident: BIB8 publication-title: Mater. Res. Bull. – volume: 50 start-page: 728 year: 1987 ident: BIB19 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 600 year: 1985 ident: BIB17 publication-title: J. Mater. Sci. Lett. – volume: 21 start-page: 368 year: 1982 ident: BIB6 publication-title: J. Vac. Sci. Technol. – volume: 44 start-page: 1428 year: 1972 ident: BIB29 publication-title: J. Appl. Phys. – volume: 26 start-page: L527 year: 1987 end-page: L529 ident: BIB10 publication-title: Jpn. J. Appl. Phys. – year: 1962 ident: BIB4 article-title: Synthesis of diamond – volume: 52 start-page: 219 year: 1981 ident: BIB13 publication-title: J. Cryst. Growth – volume: 31 start-page: 113 year: 1988 ident: BIB21 publication-title: Adv. X-Ray Anal. – year: April 5 – 9, 1988 ident: BIB14 article-title: Materials Research Society Spring Meet. – volume: 26 start-page: L1032 year: 1987 end-page: L1034 ident: BIB18 publication-title: Jpn. J. Appl. Phys. – volume: 165 start-page: 83 year: 1986 ident: BIB7 publication-title: Surf. Sci. – volume: 151 start-page: 199 year: 1987 ident: BIB20 publication-title: Thin Solid Films – volume: 4 start-page: 241 year: 1966 ident: BIB5 publication-title: Surf. Sci. – year: 1984 ident: BIB24 article-title: Crystallization of Diamond – volume: 52 start-page: 437 year: 1988 ident: BIB28 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 133 year: 1988 ident: BIB11 publication-title: J. Mater. Res. – start-page: 97 year: 1972 ident: BIB12 article-title: Proc. 4th U.S.S.R. Conf. on Crystal Growth – volume: 21 start-page: L183 year: 1982 ident: BIB15 publication-title: Jpn. J. Appl. Phys. – volume: 51 start-page: 137 year: 1987 ident: BIB27 publication-title: Appl. Phys. Lett. – volume: 80 start-page: 417 year: 1987 ident: BIB26 publication-title: J. Cryst. Growth – year: 1977 ident: BIB1 article-title: Growth of Diamond and Graphite from Gas Phase – volume: 23 start-page: 385 year: 1988 ident: BIB2 publication-title: Mater. Res. Bull. – year: 1984 ident: 10.1016/0257-8972(88)90158-2_BIB24 – year: 1977 ident: 10.1016/0257-8972(88)90158-2_BIB1 – volume: 108 start-page: 5780 year: 1986 ident: 10.1016/0257-8972(88)90158-2_BIB9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00279a019 – volume: 23 start-page: 531 issue: 4 year: 1988 ident: 10.1016/0257-8972(88)90158-2_BIB8 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(88)90161-4 – volume: 21 start-page: 368 year: 1982 ident: 10.1016/0257-8972(88)90158-2_BIB6 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.571782 – volume: 165 start-page: 83 year: 1986 ident: 10.1016/0257-8972(88)90158-2_BIB7 publication-title: Surf. Sci. doi: 10.1016/0039-6028(86)90665-5 – start-page: 97 year: 1972 ident: 10.1016/0257-8972(88)90158-2_BIB12 article-title: Proc. 4th U.S.S.R. Conf. on Crystal Growth – volume: 31 start-page: 113 year: 1988 ident: 10.1016/0257-8972(88)90158-2_BIB21 publication-title: Adv. X-Ray Anal. doi: 10.1007/978-1-4613-1035-8_13 – year: 1988 ident: 10.1016/0257-8972(88)90158-2_BIB14 article-title: Materials Research Society Spring Meet. – volume: 23 start-page: 385 issue: 3 year: 1988 ident: 10.1016/0257-8972(88)90158-2_BIB2 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(88)90013-X – volume: 4 start-page: 241 year: 1966 ident: 10.1016/0257-8972(88)90158-2_BIB5 publication-title: Surf. Sci. doi: 10.1016/0039-6028(66)90004-5 – volume: 18 start-page: 1785 year: 1983 ident: 10.1016/0257-8972(88)90158-2_BIB25 publication-title: J. Mater. Sci. doi: 10.1007/BF00542075 – volume: 51 start-page: 118 year: 1983 ident: 10.1016/0257-8972(88)90158-2_BIB3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.118 – volume: 51 start-page: 137 year: 1987 ident: 10.1016/0257-8972(88)90158-2_BIB27 publication-title: Appl. Phys. Lett. – volume: 50 start-page: 728 year: 1987 ident: 10.1016/0257-8972(88)90158-2_BIB19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.98080 – start-page: 59 year: 1988 ident: 10.1016/0257-8972(88)90158-2_BIB22 article-title: Materials Research Society Spring Meet. – start-page: 99 year: 1988 ident: 10.1016/0257-8972(88)90158-2_BIB23 article-title: Materials Research Society Spring Meet. – volume: 26 start-page: L527 year: 1987 ident: 10.1016/0257-8972(88)90158-2_BIB10 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.26.L527 – year: 1987 ident: 10.1016/0257-8972(88)90158-2_BIB30 article-title: Symposium N, Materials Research Society, Fall Meet. – volume: 80 start-page: 417 year: 1987 ident: 10.1016/0257-8972(88)90158-2_BIB26 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(87)90090-X – year: 1962 ident: 10.1016/0257-8972(88)90158-2_BIB4 – volume: 3 start-page: 133 year: 1988 ident: 10.1016/0257-8972(88)90158-2_BIB11 publication-title: J. Mater. Res. doi: 10.1557/JMR.1988.0133 – volume: 26 start-page: L1032 year: 1987 ident: 10.1016/0257-8972(88)90158-2_BIB18 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.26.L1032 – volume: 52 start-page: 219 year: 1981 ident: 10.1016/0257-8972(88)90158-2_BIB13 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(81)90197-4 – volume: 151 start-page: 199 year: 1987 ident: 10.1016/0257-8972(88)90158-2_BIB20 publication-title: Thin Solid Films doi: 10.1016/0040-6090(87)90233-1 – volume: 4 start-page: 600 year: 1985 ident: 10.1016/0257-8972(88)90158-2_BIB17 publication-title: J. Mater. Sci. Lett. doi: 10.1007/BF00720043 – volume: 52 start-page: 437 year: 1988 ident: 10.1016/0257-8972(88)90158-2_BIB28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.99435 – volume: 44 start-page: 1428 year: 1972 ident: 10.1016/0257-8972(88)90158-2_BIB29 publication-title: J. Appl. Phys. doi: 10.1063/1.1662389 – volume: 62 start-page: 642 year: 1983 ident: 10.1016/0257-8972(88)90158-2_BIB16 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(83)90411-6 – volume: 21 start-page: L183 year: 1982 ident: 10.1016/0257-8972(88)90158-2_BIB15 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.21.L183 |
SSID | ssj0001794 |
Score | 1.4764154 |
Snippet | The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is the main subject of this paper. The plasma is... The deposition of crystalline diamond coatings by microwave plasma-assisted chemical vapor deposition (CVD) is discussed. The plasma is excited in a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 283 |
Title | Nucleation and growth phenomena in chemically vapor-deposited diamond coatings |
URI | https://dx.doi.org/10.1016/0257-8972(88)90158-2 https://www.proquest.com/docview/24897585 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9gAcKiggytMHkEArh02y8eO4VKCKij1UW9Gb5fhRikq2KikS_fWMYzthu0WFXqLIcRyt5_N4vlnPDEKveF1ZZakmwglGpk5UpK6MJYVyU2AbQlfcBwp_ntPdg-mnw-pwqNnaRZe0daYvrowruYlUoQ3k6qNk_0Oy_aDQAPcgX7iChOH6TzKe-2TEQYLe_30ElLr9OvantnxeBeV9GTomBDj5Nf6pwNYmxnbntMDOBGR8X3ZRbart_eXfUoDImVPadsBIz8ftmhv-vTIXx8GFOsv2syuaF9ngV8gFzOzqGY31gJdOJ8EKJ1yEajuZDTqTM0HKMiTOTEo1ZDVZAU_UkKFuTdxsi1AecU2PB5dC_zUwtjl_7XfOvOIxXHI1S7bv6nty3vWBTXmjAOJQjNDGbG__y16_O3sF1Pnd4tApnDKn7_q2N5y_jZ_6m7lyaePurJHFPbQZaQSeBUzcR7dss4Vu76TqfVvo7h-JJh-g-YAUDEjBASm4Rwo-bvCAFHwJKTgiBSckPEQHHz8sdnZJrKRBNPDnlihXOaqNYg7oKzWlVdTkwiqXC0NtQY11-aQGW9W5khuqCzALGTOwcpkWNTDaR2jULBv7GGFTVpbVxh9YKKbcKeDrbKKA2DqgGsWEbaMyTZjUMc28r3ZyItN5Qj_N0k-z5Fx20yyLbUT6t05DmpVr-rMkCxlNxWACSkDQNW--TKKTIBL_95hq7PL8h4SfIzx7fnLjsZ-iO8NKeoZG7dm5fQ42a1u_iDD8DSvdkIc |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleation+and+growth+phenomena+in+chemically+vapor-deposited+diamond+coatings&rft.jtitle=Surface+%26+coatings+technology&rft.au=Badzian%2C+A.R.&rft.au=Badzian%2C+T.&rft.date=1988-12-01&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=36&rft.issue=1&rft.spage=283&rft.epage=293&rft_id=info:doi/10.1016%2F0257-8972%2888%2990158-2&rft.externalDocID=0257897288901582 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |