Unzipped carbon nanotubes assisted 3D printable functionalized chitosan hydrogels for strain sensing applications
Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one co...
Saved in:
Published in | International journal of biological macromolecules Vol. 265; no. Pt 2; p. 131025 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers.
The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.
[Display omitted]
•3D printable and biocompatible hydrogels of functionalized CS/f-CNTs were prepared.•The composite hydrogels exhibited improved mechanical strength and viscoelasticity.•The composite hydrogels showed increased adhesive strength (118.47 kPa).•Hydrogels exhibited real-time motion-sensing potential.•Hydrogels also showed multidimensional movement recognition ability. |
---|---|
AbstractList | Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion. Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 10⁵ Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion. Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 10 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion. Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion. [Display omitted] •3D printable and biocompatible hydrogels of functionalized CS/f-CNTs were prepared.•The composite hydrogels exhibited improved mechanical strength and viscoelasticity.•The composite hydrogels showed increased adhesive strength (118.47 kPa).•Hydrogels exhibited real-time motion-sensing potential.•Hydrogels also showed multidimensional movement recognition ability. |
ArticleNumber | 131025 |
Author | Patel, Dinesh K. Won, So-Yeon Han, Sung Soo Lim, Ki-Taek Dutta, Sayan Deb Patil, Tejal V. |
Author_xml | – sequence: 1 givenname: Dinesh K. surname: Patel fullname: Patel, Dinesh K. organization: School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea – sequence: 2 givenname: So-Yeon surname: Won fullname: Won, So-Yeon organization: School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea – sequence: 3 givenname: Tejal V. surname: Patil fullname: Patil, Tejal V. organization: Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea – sequence: 4 givenname: Sayan Deb surname: Dutta fullname: Dutta, Sayan Deb organization: Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea – sequence: 5 givenname: Ki-Taek surname: Lim fullname: Lim, Ki-Taek email: ktlim@kangwon.ac.kr organization: Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea – sequence: 6 givenname: Sung Soo surname: Han fullname: Han, Sung Soo email: sshan@yu.ac.kr organization: School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38513895$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u3CAURlGVqpmkfYWIZTeeggHbSF20Sn8SKVI3zRphfJ0w8oDDxZWSpy_uZDbdzAqJe85FfN8FOQsxACFXnG05482n3dbveh_31m1rVsstF5zV6g3Z8K7VFWNMnJEN45JXHRfsnFwg7spto3j3jpyLTnHRabUhT_fhxc8zDNTZ1MdAgw0xLz0gtYgec5mIb3ROPmTbT0DHJbjsY7CTf1mtR58j2kAfn4cUH2BCOsZEMSfrA0UI6MMDtfM8eWdXD9-Tt6OdED68npfk_sf339c31d2vn7fXX-8qJxnPldWaWeidVKyph25kutbOStVrDUK3oxJMNqMc6hFsXUasl1LzwradVJwrcUk-HvbOKT4tgNnsPTqYJhsgLmhEYdpGd0qeRGvdypIo79atV6_o0u9hMCWYvU3P5phoAT4fAJciYoLROJ___XyNZDKcmbVAszPHAs1aoDkUWPTmP_34wknxy0EsFcAfD8mg8xAcDD6By2aI_tSKv8Pruao |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_137841 crossref_primary_10_1016_j_ijbiomac_2025_140869 crossref_primary_10_1039_D4CS00220B crossref_primary_10_1007_s10570_024_06237_5 crossref_primary_10_1016_j_cej_2025_161645 crossref_primary_10_3390_ma17205102 crossref_primary_10_1016_j_ijbiomac_2024_132374 |
Cites_doi | 10.1021/acsapm.2c01488 10.3390/chemosensors11010039 10.1016/j.compositesb.2021.108965 10.1016/j.carbpol.2023.120963 10.1039/D0TB02929G 10.1021/acsapm.3c00356 10.1016/j.ijbiomac.2020.01.041 10.1016/j.ijbiomac.2020.07.246 10.1016/j.compscitech.2019.107701 10.1016/j.colsurfa.2023.132452 10.1016/j.cej.2019.05.043 10.1016/j.ijbiomac.2019.03.195 10.1016/j.carbpol.2022.119202 10.1016/j.ijbiomac.2020.12.145 10.1016/j.matdes.2021.109877 10.1016/j.ijbiomac.2020.04.049 10.1021/acs.jpcc.5b08136 10.1021/acsami.9b21659 10.1016/j.carbpol.2022.120427 10.1002/jbm.a.37179 10.1016/j.carbpol.2021.118026 10.1016/j.ijbiomac.2020.12.011 10.1016/j.carbpol.2021.118533 10.1016/j.carbpol.2020.115971 10.1016/j.ijbiomac.2011.12.032 10.1016/j.snb.2005.10.047 10.1016/j.ijbiomac.2021.08.057 10.1016/j.carbpol.2024.121960 10.1166/jbn.2015.1975 10.1016/j.carbpol.2022.119184 10.1021/acsami.3c03624 10.1039/D0BM00896F 10.1002/adfm.202214196 10.1038/s41427-022-00357-9 10.1016/j.cej.2021.131648 10.1021/acsnano.0c09577 10.1016/j.compositesa.2017.10.002 10.1021/acsami.6b10375 10.1002/adma.202102981 10.1002/adma.202203650 10.1039/D2TC02706B 10.1002/jbm.b.35133 10.1021/acsbiomaterials.7b00342 10.1021/acsanm.2c01777 10.1016/j.msec.2019.109861 10.1021/acsapm.2c02215 10.1016/j.cej.2020.124174 10.1016/j.carbpol.2021.118210 10.1039/D0RA09620B 10.1021/acsami.2c00713 10.1021/acsami.3c02105 10.1016/j.cej.2019.122832 10.1016/j.compositesb.2014.08.027 10.1039/D3QM00109A 10.1002/adhm.202002280 10.1002/smll.202101518 10.1021/acsami.1c03213 10.1016/j.cej.2021.131523 10.1016/j.carbpol.2017.02.027 10.1016/j.ijbiomac.2021.03.027 10.1021/acsnano.9b07874 10.1016/j.cej.2019.02.014 10.1016/j.cej.2020.126307 10.1016/j.carbpol.2022.120060 10.1016/j.carbpol.2022.119890 10.1016/j.ijbiomac.2023.127852 10.1016/j.carbpol.2020.116797 10.1039/C9TC02673H 10.1002/anbr.202200132 10.1016/j.carbpol.2017.03.064 10.1016/j.matt.2022.03.001 10.1016/j.carbpol.2022.119848 10.1016/j.msea.2011.05.028 10.1016/j.ijbiomac.2020.09.012 10.1002/adfm.202002041 10.3390/md13010141 10.1016/j.carbpol.2021.118753 10.1021/acs.chemrev.0c00015 10.1039/D1SM01655E 10.1016/j.ijbiomac.2021.09.093 10.1021/acsaelm.1c01212 10.1039/D2TA07447H |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier B.V. |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ijbiomac.2024.131025 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-0003 |
ExternalDocumentID | 38513895 10_1016_j_ijbiomac_2024_131025 S0141813024018300 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UHS UNMZH WUQ ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c401t-a990aebc45062d8f0929ca45b99e397f53046f4d2fea229c0b449106278451153 |
IEDL.DBID | .~1 |
ISSN | 0141-8130 1879-0003 |
IngestDate | Fri Jul 11 01:23:27 EDT 2025 Fri Jul 11 00:08:56 EDT 2025 Mon Jul 21 06:04:38 EDT 2025 Tue Jul 01 02:42:20 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Sat Apr 20 15:58:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | Unzipped CNTs Biocompatibility Strain-sensing Carboxymethyl chitosan Adhesiveness |
Language | English |
License | Copyright © 2024. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-a990aebc45062d8f0929ca45b99e397f53046f4d2fea229c0b449106278451153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38513895 |
PQID | 2974003185 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153769854 proquest_miscellaneous_2974003185 pubmed_primary_38513895 crossref_citationtrail_10_1016_j_ijbiomac_2024_131025 crossref_primary_10_1016_j_ijbiomac_2024_131025 elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2024_131025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of biological macromolecules |
PublicationTitleAlternate | Int J Biol Macromol |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ravanbakhsh, Bao, Latifi, Mongeau (bb0355) 2019; 103 Kang, Yun (bb0250) 2022; 284 Sun, Qin, Ye, Zhang, Yu, Wu, Li, Yao (bb0115) 2020; 382 Wang, Liu, Li, Li, Gu, Li, Zhang (bb0260) 2017; 103 Liu, Liu, Wu, Xu, Huang, Zhang, Liu, Shuai (bb0100) 2021; 191 Li, Li, Li, Yu, Song, Wang, Liu, Liu, Liu (bb0245) 2021; 18 Mohamed, Al-Harby, Almarshed (bb0365) 2019; 132 Fang, Chen, Yin, Sun, Li, Cheng (bb0135) 2019; 31 Zhou, Ramezani, Sun, Xie, Nie, Lv, Cai, Fu, He (bb0170) 2020; 8 Iftime, Morariu, Marin (bb0320) 2017; 165 Shen, Zhang, Zhang, Li, Zhou, Hu, Rong, Lu, Gu (bb0035) 2022; 34 Doshi, Repo, Heiskanen, Sirviö, Sillanpää (bb0205) 2017; 167 Zhao, Jiang, Zhang, Li, Guo, Hu (bb0125) 2022; 18 Zhang, Zhang, Zhao, Wang (bb0385) 2023; 5 Fang, Xu, Gao, Du, Du, Cheng, Wang (bb0080) 2021; 219 Yang, Zhou, Peng, Wang, Liu, Wang, Wu (bb0105) 2022; 276 Xu, Liang, You, Yang, Fen, Gao, Cui (bb0090) 2021; 189 Ganguly, Dutta, Randhawa, Patel, Patil, Lim (bb0190) 2023; 12 Kreller, Distler, Heid, Gerth, Detsch, Boccaccini (bb0175) 2021; 208 Patel, Dutta, Shin, Ganguly, Lim (bb0285) 2021; 11 Karimi, Khodadadi (bb0290) 2016; 8 Fernandes Queiroz, Melo, Sabry, Sassaki, Rocha (bb0200) 2014; 13 Liu, Ren, Liu, Zhao, Ling, Gu (bb0335) 2021; 13 Garnica-Palafox, Estrella-Monroy, Vázquez-Torres, Álvarez-Camacho, Castell-Rodríguez, Sánchez-Arévalo (bb0215) 2020; 236 Wang, Bai, Zheng, Yue, Hou, Cui, Su, Wei, Liu (bb0010) 2022; 7 Qu, Wang, Zhao, Huang, Wang, Shao, Wang, Dong (bb0065) 2021; 425 Liu, Garcia, Leahy, Song, Mullarkey, Fei, Dervan, Shvets, Stamenov, Wang, O’Brien, Coleman, Nicolosi (bb0280) 2023; 33 Sahoo, Vasudha, Muthuvijayan, Prasad (bb0045) 2022; 4 Patel, Ganguly, Hexiu, Dutta, Patil, Lim (bb0165) 2022; 284 Aztatzi-Pluma, Castrejón-González, Almendarez-Camarillo, Alvarado, Durán-Morales (bb0210) 2016; 120 Liu, Chen, Sun, Guo, Guo, Zhang, Tao, Yang, Tang (bb0400) 2022; 10 Zhang, Liang, Deng, Xu, Zhang, Guo, Zhang (bb0325) 2023; 15 Zhang, Lin, Zhang, Guo, Lu, Liu, Su, Ji, Wang (bb0070) 2022; 10 Lee, Gillispie, Prim, Lee (bb0295) 2020; 120 Chen, Tian, Liu, Cao, Li, Wang, Wu, Zhang (bb0305) 2019; 373 Wang, Dai, Hunter, Zhang, Yang, Chen, Zhang, He, Ni (bb0120) 2021; 268 Qu, Wang, Chen, Wu, Tang, Fan, Guo, Fan, Bin (bb0140) 2022; 427 Georgousis, Pandis, Kalamiotis, Georgiopoulos, Kyritsis, Kontou, Pissis, Micusik, Czanikova, Kulicek, Omastova (bb0150) 2015; 68 Patel, Senapati, Mourya, Singh, Aswal, Ray, Maiti (bb0255) 2017; 3 Li, Tian, Liang, Wu (bb0390) 2023; 7 Chen, Chen, Hedenqvist, Chen, Cai, Li, Liu, Fu (bb0005) 2021; 9 Dong, Feng, Liu, Li, Li, Liu, Shi, Chen, Zhang (bb0330) 2021; 179 Venkatesan, Ryu, Sudha, Kim (bb0225) 2012; 50 Menazea, Eid, Ahmed (bb0220) 2020; 147 Dutta, Hexiu, Patel, Ganguly, Lim (bb0300) 2021; 167 Choudhury (bb0315) 2020; 156 Sun, Cha, Bae, Hong, Kim, Kim, Lee, Lee (bb0270) 2011; 528 Wang, Zhang, Xu, Huang, Lu, Cui, Tan (bb0425) 2022; 295 Li, Gong, Han, Liu, Yang, Chen, Qian, Han (bb0380) 2022; 298 Ge, Lu, Qu, Zhao, Ren, Wang, Wang, Huang, Dong (bb0410) 2019; 14 Patel, Dutta, Hexiu, Ganguly, Lim (bb0185) 2020; 162 Li, Li, Yan, Wang (bb0435) 2023; 242 Ahuja, Ujjain, Urita, Furuse, Moriguchi, Kaneko (bb0145) 2020; 388 Patel, Dutta, Ganguly, Kim, Lim (bb0160) 2021; 109 Yan, Wan, Xu, Lu, Yang, Li, Lu, Wang, Wang (bb0110) 2023; 302 Raja (bb0075) 2020; 164 Ye, Ji, Liu, Tu, Kappl, Koynov, Vogt, Butt (bb0350) 2021; 33 Li, Chen, Han, Lu, Zhang, Miao (bb0370) 2024; 254 Suo, Wu, Wang, Xue, Gao, Shen (bb0230) 2022; 111 Correa, Grosskopf, Klich, Lopez Hernandez, Appel (bb0275) 2022; 5 Xie, Ou, Ning, Tuo, Zhang, Gao, Pan, Li, Gao (bb0415) 2024; 333 Zhang, Shen, Lan, Wu, Wang, Zhou (bb0420) 2022; 295 Lin, Zhang, Long, Yang, Huang, Deng, Zhang, Cai, Yang, Tan (bb0235) 2022; 5 Patel, Ganguly, Dutta, Patil, Lim (bb0085) 2022; 32 Zhou, Wang, Zhao, Tong, Jin, Zhang, Yu, Liu, Ma, Li, Chen (bb0030) 2021; 403 Wang, Song, Liu, Chan, Wang, Su, Li, Huang (bb0360) 2022; 14 Hardman, George Thuruthel, Iida (bb0395) 2022; 14 Du, Wang, Hsu, Uyama (bb0405) 2023; 15 Ding, Liang, Wang, Wang, Li, Sun (bb0430) 2020; 248 Olmos-Juste, Alonso-Lerma, Pérez-Jiménez, Gabilondo, Eceiza (bb0240) 2021; 264 Cheng, Zhang, Pan, Yang, Gong, Zhuo, Wang, Yuan, Gan, Hu, Ding, Chen, Zhang, Tian (bb0055) 2023; 5 Selvakumar, Jaganathan, Nando, Chattopadhyay (bb0345) 2015; 11 Silva, Lv, Yin, Jeerapan, Innocenzi, Soto, Ha, Wang (bb0025) 2020; 30 Park, Lee, Jang, Yun, Kim, Park (bb0020) 2021; 10 Wu, Xu, Zhao, Shi, Li, Cai, Ding, Qu (bb0095) 2023; 11 Patel, Patil, Ganguly, Dutta, Lim (bb0180) 2023; 315 Zhang, Zhou, Han, Zheng, Xu, Wang (bb0060) 2021; 15 Yang, Ding, Yang, Wang, Gu, Guan, Yu, Zhang, Zhang (bb0015) 2019; 7 Patel, Dutta, Ganguly, Lim (bb0195) 2021; 170 Feng, Hung, Yang, Liu (bb0130) 2019; 181 Ren, Ke, Ling, Zhao, Gu (bb0310) 2021; 273 Zhang, Liu, Duan, Gao (bb0050) 2019; 365 Song, Mou, Balakrishnan, Wang, Rajagopalan, Schreiner, Naik, Cohen-Karni, Halbreiner, Bettinger (bb0040) 2022; 3 Qin, Sun, Yu, Zhang, Wu, Yao, Liu, Yao, Li (bb0155) 2020; 12 Spinks, Shin, Wallace, Whitten, Kim, Kim (bb0265) 2006; 115 Park, Lee, Kim, Hwang, Seo (bb0340) 2022; 4 Han, Li, Chen, Lu, Liu (bb0375) 2023; 678 Menazea (10.1016/j.ijbiomac.2024.131025_bb0220) 2020; 147 Yang (10.1016/j.ijbiomac.2024.131025_bb0015) 2019; 7 Fang (10.1016/j.ijbiomac.2024.131025_bb0080) 2021; 219 Wang (10.1016/j.ijbiomac.2024.131025_bb0260) 2017; 103 Liu (10.1016/j.ijbiomac.2024.131025_bb0335) 2021; 13 Zhang (10.1016/j.ijbiomac.2024.131025_bb0050) 2019; 365 Iftime (10.1016/j.ijbiomac.2024.131025_bb0320) 2017; 165 Li (10.1016/j.ijbiomac.2024.131025_bb0370) 2024; 254 Hardman (10.1016/j.ijbiomac.2024.131025_bb0395) 2022; 14 Silva (10.1016/j.ijbiomac.2024.131025_bb0025) 2020; 30 Liu (10.1016/j.ijbiomac.2024.131025_bb0100) 2021; 191 Selvakumar (10.1016/j.ijbiomac.2024.131025_bb0345) 2015; 11 Correa (10.1016/j.ijbiomac.2024.131025_bb0275) 2022; 5 Ahuja (10.1016/j.ijbiomac.2024.131025_bb0145) 2020; 388 Qu (10.1016/j.ijbiomac.2024.131025_bb0065) 2021; 425 Georgousis (10.1016/j.ijbiomac.2024.131025_bb0150) 2015; 68 Sahoo (10.1016/j.ijbiomac.2024.131025_bb0045) 2022; 4 Zhang (10.1016/j.ijbiomac.2024.131025_bb0385) 2023; 5 Dong (10.1016/j.ijbiomac.2024.131025_bb0330) 2021; 179 Sun (10.1016/j.ijbiomac.2024.131025_bb0270) 2011; 528 Zhang (10.1016/j.ijbiomac.2024.131025_bb0060) 2021; 15 Patel (10.1016/j.ijbiomac.2024.131025_bb0255) 2017; 3 Song (10.1016/j.ijbiomac.2024.131025_bb0040) 2022; 3 Mohamed (10.1016/j.ijbiomac.2024.131025_bb0365) 2019; 132 Yang (10.1016/j.ijbiomac.2024.131025_bb0105) 2022; 276 Patel (10.1016/j.ijbiomac.2024.131025_bb0195) 2021; 170 Olmos-Juste (10.1016/j.ijbiomac.2024.131025_bb0240) 2021; 264 Qu (10.1016/j.ijbiomac.2024.131025_bb0140) 2022; 427 Suo (10.1016/j.ijbiomac.2024.131025_bb0230) 2022; 111 Fernandes Queiroz (10.1016/j.ijbiomac.2024.131025_bb0200) 2014; 13 Han (10.1016/j.ijbiomac.2024.131025_bb0375) 2023; 678 Ye (10.1016/j.ijbiomac.2024.131025_bb0350) 2021; 33 Patel (10.1016/j.ijbiomac.2024.131025_bb0185) 2020; 162 Ganguly (10.1016/j.ijbiomac.2024.131025_bb0190) 2023; 12 Chen (10.1016/j.ijbiomac.2024.131025_bb0305) 2019; 373 Patel (10.1016/j.ijbiomac.2024.131025_bb0160) 2021; 109 Patel (10.1016/j.ijbiomac.2024.131025_bb0165) 2022; 284 Zhao (10.1016/j.ijbiomac.2024.131025_bb0125) 2022; 18 Wu (10.1016/j.ijbiomac.2024.131025_bb0095) 2023; 11 Fang (10.1016/j.ijbiomac.2024.131025_bb0135) 2019; 31 Yan (10.1016/j.ijbiomac.2024.131025_bb0110) 2023; 302 Spinks (10.1016/j.ijbiomac.2024.131025_bb0265) 2006; 115 Lin (10.1016/j.ijbiomac.2024.131025_bb0235) 2022; 5 Park (10.1016/j.ijbiomac.2024.131025_bb0340) 2022; 4 Zhou (10.1016/j.ijbiomac.2024.131025_bb0170) 2020; 8 Dutta (10.1016/j.ijbiomac.2024.131025_bb0300) 2021; 167 Qin (10.1016/j.ijbiomac.2024.131025_bb0155) 2020; 12 Wang (10.1016/j.ijbiomac.2024.131025_bb0360) 2022; 14 Patel (10.1016/j.ijbiomac.2024.131025_bb0180) 2023; 315 Garnica-Palafox (10.1016/j.ijbiomac.2024.131025_bb0215) 2020; 236 Patel (10.1016/j.ijbiomac.2024.131025_bb0085) 2022; 32 Ren (10.1016/j.ijbiomac.2024.131025_bb0310) 2021; 273 Zhang (10.1016/j.ijbiomac.2024.131025_bb0070) 2022; 10 Zhang (10.1016/j.ijbiomac.2024.131025_bb0325) 2023; 15 Liu (10.1016/j.ijbiomac.2024.131025_bb0280) 2023; 33 Kang (10.1016/j.ijbiomac.2024.131025_bb0250) 2022; 284 Du (10.1016/j.ijbiomac.2024.131025_bb0405) 2023; 15 Park (10.1016/j.ijbiomac.2024.131025_bb0020) 2021; 10 Patel (10.1016/j.ijbiomac.2024.131025_bb0285) 2021; 11 Xu (10.1016/j.ijbiomac.2024.131025_bb0090) 2021; 189 Wang (10.1016/j.ijbiomac.2024.131025_bb0120) 2021; 268 Shen (10.1016/j.ijbiomac.2024.131025_bb0035) 2022; 34 Ge (10.1016/j.ijbiomac.2024.131025_bb0410) 2019; 14 Choudhury (10.1016/j.ijbiomac.2024.131025_bb0315) 2020; 156 Venkatesan (10.1016/j.ijbiomac.2024.131025_bb0225) 2012; 50 Karimi (10.1016/j.ijbiomac.2024.131025_bb0290) 2016; 8 Li (10.1016/j.ijbiomac.2024.131025_bb0435) 2023; 242 Raja (10.1016/j.ijbiomac.2024.131025_bb0075) 2020; 164 Liu (10.1016/j.ijbiomac.2024.131025_bb0400) 2022; 10 Zhang (10.1016/j.ijbiomac.2024.131025_bb0420) 2022; 295 Sun (10.1016/j.ijbiomac.2024.131025_bb0115) 2020; 382 Doshi (10.1016/j.ijbiomac.2024.131025_bb0205) 2017; 167 Xie (10.1016/j.ijbiomac.2024.131025_bb0415) 2024; 333 Zhou (10.1016/j.ijbiomac.2024.131025_bb0030) 2021; 403 Cheng (10.1016/j.ijbiomac.2024.131025_bb0055) 2023; 5 Li (10.1016/j.ijbiomac.2024.131025_bb0245) 2021; 18 Lee (10.1016/j.ijbiomac.2024.131025_bb0295) 2020; 120 Li (10.1016/j.ijbiomac.2024.131025_bb0390) 2023; 7 Kreller (10.1016/j.ijbiomac.2024.131025_bb0175) 2021; 208 Ding (10.1016/j.ijbiomac.2024.131025_bb0430) 2020; 248 Chen (10.1016/j.ijbiomac.2024.131025_bb0005) 2021; 9 Feng (10.1016/j.ijbiomac.2024.131025_bb0130) 2019; 181 Aztatzi-Pluma (10.1016/j.ijbiomac.2024.131025_bb0210) 2016; 120 Li (10.1016/j.ijbiomac.2024.131025_bb0380) 2022; 298 Wang (10.1016/j.ijbiomac.2024.131025_bb0010) 2022; 7 Ravanbakhsh (10.1016/j.ijbiomac.2024.131025_bb0355) 2019; 103 Wang (10.1016/j.ijbiomac.2024.131025_bb0425) 2022; 295 |
References_xml | – volume: 34 year: 2022 ident: bb0035 article-title: High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines publication-title: Adv. Mater. – volume: 8 start-page: 5020 year: 2020 end-page: 5028 ident: bb0170 article-title: 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents publication-title: Biomater. Sci. – volume: 298 year: 2022 ident: bb0380 article-title: Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors publication-title: Carbohydr. Polym. – volume: 3 year: 2022 ident: bb0040 article-title: Hysteresis-free and high-sensitivity strain sensing of ionically conductive hydrogels publication-title: Adv. NanoBiomed Res. – volume: 5 start-page: 10409 year: 2022 end-page: 10420 ident: bb0235 article-title: Temperature-sensitive hydrogels containing carboxylated chitosan-modified carbon nanotubes for controlled drug release publication-title: ACS Appl. Nano Mater. – volume: 30 year: 2020 ident: bb0025 article-title: Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices publication-title: Adv. Funct. Mater. – volume: 191 start-page: 344 year: 2021 end-page: 358 ident: bb0100 article-title: NIR as a “trigger switch” for rapid phase change, on-demand release, and photothermal synergistic antibacterial treatment with chitosan-based temperature-sensitive hydrogel publication-title: Int. J. Biol. Macromol. – volume: 8 start-page: 27254 year: 2016 end-page: 27263 ident: bb0290 article-title: Mechanically robust 3D nanostructure chitosan-based hydrogels with autonomic self-healing properties publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 29902 year: 2023 end-page: 29913 ident: bb0325 article-title: Adhesive ion-conducting hydrogel strain sensor with high sensitivity, long-term stability, and extreme temperature tolerance publication-title: ACS Appl. Mater. Interfaces – volume: 284 year: 2022 ident: bb0165 article-title: Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing publication-title: Carbohydr. Polym. – volume: 14 start-page: 14596 year: 2022 end-page: 14606 ident: bb0360 article-title: Motion detecting, temperature alarming, and wireless wearable bioelectronics based on intrinsically antibacterial conductive hydrogels publication-title: ACS Appl. Mater. Interfaces – volume: 33 year: 2021 ident: bb0350 article-title: Carbon nanotube–hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity publication-title: Adv. Mater. – volume: 4 start-page: 1449 year: 2022 end-page: 1468 ident: bb0340 article-title: Functional bioelectronic materials for long-term biocompatibility and functionality publication-title: ACS Appl. Electron. Mater. – volume: 7 start-page: 2925 year: 2023 end-page: 2957 ident: bb0390 article-title: Functional conductive hydrogels: from performance to flexible sensor applications publication-title: Mater. Chem. Front. – volume: 242 year: 2023 ident: bb0435 article-title: Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor publication-title: Int. J. Biol. Macromol. – volume: 18 start-page: 1201 year: 2022 end-page: 1208 ident: bb0125 article-title: Graphene oxide-based composite organohydrogels with high strength and low temperature resistance for strain sensors publication-title: Soft Matter – volume: 284 year: 2022 ident: bb0250 article-title: Chitosan-reinforced PHB hydrogel and aerogel monoliths fabricated by phase separation with the solvent-exchange method publication-title: Carbohydr. Polym. – volume: 208 year: 2021 ident: bb0175 article-title: Physico-chemical modification of gelatine for the improvement of 3D printability of oxidized alginate-gelatine hydrogels towards cartilage tissue engineering publication-title: Mater. Des. – volume: 5 start-page: 1816 year: 2022 end-page: 1838 ident: bb0275 article-title: Injectable liposome-based supramolecular hydrogels for the programmable release of multiple protein drugs publication-title: Matter – volume: 388 year: 2020 ident: bb0145 article-title: Chemically and mechanically robust SWCNT based strain sensor with monotonous piezoresistive response for infrastructure monitoring publication-title: Chem. Eng. J. – volume: 10 year: 2021 ident: bb0020 article-title: Liquid metal-based soft electronics for wearable healthcare publication-title: Adv. Healthc. Mater. – volume: 13 start-page: 141 year: 2014 end-page: 158 ident: bb0200 article-title: Does the use of chitosan contribute to oxalate kidney stone formation? publication-title: Mar. Drugs – volume: 12 start-page: 4944 year: 2020 end-page: 4953 ident: bb0155 article-title: Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors publication-title: ACS Appl. Mater. Interfaces – volume: 109 start-page: 1869 year: 2021 end-page: 1880 ident: bb0160 article-title: Enhanced osteogenic potential of unzipped carbon nanotubes for tissue engineering publication-title: J. Biomed. Mater. Res. A – volume: 219 year: 2021 ident: bb0080 article-title: Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor publication-title: Compos. Part B Eng. – volume: 295 year: 2022 ident: bb0425 article-title: Chitosan-driven biocompatible hydrogel based on water-soluble polypyrrole for stable human-machine interfaces publication-title: Carbohydr. Polym. – volume: 248 year: 2020 ident: bb0430 article-title: A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor publication-title: Carbohydr. Polym. – volume: 9 start-page: 2561 year: 2021 end-page: 2583 ident: bb0005 article-title: Multifunctional conductive hydrogels and their applications as smart wearable devices publication-title: J. Mater. Chem. B – volume: 111 start-page: 73 year: 2022 end-page: 84 ident: bb0230 article-title: The improvement of periodontal tissue regeneration using a 3D -printed carbon nanotube/chitosan/sodium alginate composite scaffold publication-title: J Biomed Mater Res B Appl Biomater – volume: 10 start-page: 14288 year: 2022 end-page: 14295 ident: bb0070 article-title: 3D printable conductive ionic hydrogels with self-adhesion performance for strain sensing publication-title: J. Mater. Chem. C – volume: 268 year: 2021 ident: bb0120 article-title: A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications publication-title: Carbohydr. Polym. – volume: 103 year: 2019 ident: bb0355 article-title: Carbon nanotube composite hydrogels for vocal fold tissue engineering: biocompatibility, rheology, and porosity publication-title: Mater. Sci. Eng. C – volume: 3 start-page: 3351 year: 2017 end-page: 3363 ident: bb0255 article-title: Functionalized graphene tagged polyurethanes for corrosion inhibitor and sustained drug delivery publication-title: ACS Biomater. Sci. Eng. – volume: 115 start-page: 678 year: 2006 end-page: 684 ident: bb0265 article-title: Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion publication-title: Sensors Actuators B Chem. – volume: 528 start-page: 6636 year: 2011 end-page: 6641 ident: bb0270 article-title: Mechanical properties of multilayered chitosan/CNT nanocomposite films publication-title: Mater. Sci. Eng. A – volume: 165 start-page: 39 year: 2017 end-page: 50 ident: bb0320 article-title: Salicyl-imine-chitosan hydrogels: supramolecular architecturing as a crosslinking method toward multifunctional hydrogels publication-title: Carbohydr. Polym. – volume: 68 start-page: 162 year: 2015 end-page: 169 ident: bb0150 article-title: Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement publication-title: Compos. Part B Eng. – volume: 120 start-page: 10834 year: 2020 end-page: 10886 ident: bb0295 article-title: Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks publication-title: Chem. Rev. – volume: 179 start-page: 398 year: 2021 end-page: 406 ident: bb0330 article-title: Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications publication-title: Int. J. Biol. Macromol. – volume: 15 start-page: 1785 year: 2021 end-page: 1794 ident: bb0060 article-title: Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors publication-title: ACS Nano – volume: 382 year: 2020 ident: bb0115 article-title: Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness publication-title: Chem. Eng. J. – volume: 373 start-page: 413 year: 2019 end-page: 424 ident: bb0305 article-title: Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing publication-title: Chem. Eng. J. – volume: 13 start-page: 14612 year: 2021 end-page: 14622 ident: bb0335 article-title: Multifunctional self-healing dual network hydrogels constructed via host–guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions publication-title: ACS Appl. Mater. Interfaces – volume: 276 year: 2022 ident: bb0105 article-title: Robust, anti-freezing and conductive bonding of chitosan-based double-network hydrogels for stable-performance flexible electronic publication-title: Carbohydr. Polym. – volume: 147 start-page: 194 year: 2020 end-page: 199 ident: bb0220 article-title: Synthesis, characterization, and evaluation of antimicrobial activity of novel Chitosan/Tigecycline composite publication-title: Int. J. Biol. Macromol. – volume: 50 start-page: 393 year: 2012 end-page: 402 ident: bb0225 article-title: Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 15 start-page: 23711 year: 2023 end-page: 23724 ident: bb0405 article-title: Bio-inspired homogeneous conductive hydrogel with flexibility and adhesiveness for information transmission and sign language recognition publication-title: ACS Appl. Mater. Interfaces – volume: 333 year: 2024 ident: bb0415 article-title: Dual–network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high–performance triboelectric nanogenerators publication-title: Carbohydr. Polym. – volume: 11 start-page: 291 year: 2015 end-page: 305 ident: bb0345 article-title: Synthesis and characterization of novel polycarbonate based polyurethane/polymer wrapped hydroxyapatite nanocomposites: mechanical properties, osteoconductivity and biocompatibility publication-title: J. Biomed. Nanotechnol. – volume: 162 start-page: 1429 year: 2020 end-page: 1441 ident: bb0185 article-title: Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 403 year: 2021 ident: bb0030 article-title: Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers publication-title: Chem. Eng. J. – volume: 254 year: 2024 ident: bb0370 article-title: Lignosulfonate sodium assisted PEDOT-based all-gel supercapacitors with enhanced supercapacitance and wide temperature tolerance publication-title: Int. J. Biol. Macromol. – volume: 4 start-page: 9176 year: 2022 end-page: 9185 ident: bb0045 article-title: Chitosan-based self-healable and adhesive hydrogels for flexible strain sensor application publication-title: ACS Appl. Polym. Mater. – volume: 427 year: 2022 ident: bb0140 article-title: A thermally-electrically double-responsive polycaprolactone – thermoplastic polyurethane/multi-walled carbon nanotube fiber assisted with highly effective shape memory and strain sensing performance publication-title: Chem. Eng. J. – volume: 678 year: 2023 ident: bb0375 article-title: Improved capacitive performance of polypyrrole-based composite hydrogel for flexible self-powered sensing system publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 32 year: 2022 ident: bb0085 article-title: Multifunctional hydrogels of polyvinyl alcohol/polydopamine functionalized with carbon nanomaterials as flexible sensors publication-title: Mater. Today Commun. – volume: 11 year: 2023 ident: bb0095 article-title: Recent advances in chitosan-based hydrogels for flexible wearable sensors publication-title: Chemosensors – volume: 14 start-page: 218 year: 2019 end-page: 228 ident: bb0410 article-title: Muscle-inspired self-healing hydrogels for strain and temperature sensor publication-title: ACS Nano – volume: 132 start-page: 416 year: 2019 end-page: 428 ident: bb0365 article-title: Synthesis and characterization of novel trimellitic anhydride isothiocyanate-cross linked chitosan hydrogels modified with multi-walled carbon nanotubes for enhancement of antimicrobial activity publication-title: Int. J. Biol. Macromol. – volume: 5 start-page: 4146 year: 2023 end-page: 4158 ident: bb0055 article-title: Poly(vinyl alcohol), tannic acid, and silver-based hydrogel strain sensors with “fish scale-like” surfaces publication-title: ACS Appl. Polym. Mater. – volume: 10 start-page: 25564 year: 2022 end-page: 25574 ident: bb0400 article-title: Stretchable strain sensor of composite hydrogels with high fatigue resistance and low hysteresis publication-title: J. Mater. Chem. A – volume: 11 start-page: 7466 year: 2021 end-page: 7478 ident: bb0285 article-title: Fabrication and characterization of 3D printable nanocellulose-based hydrogels for tissue engineering publication-title: RSC Adv. – volume: 365 start-page: 10 year: 2019 end-page: 19 ident: bb0050 article-title: Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels publication-title: Chem. Eng. J. – volume: 236 year: 2020 ident: bb0215 article-title: Influence of multi-walled carbon nanotubes on the physico-chemical and biological responses of chitosan-based hybrid hydrogels publication-title: Carbohydr. Polym. – volume: 164 start-page: 4231 year: 2020 end-page: 4244 ident: bb0075 article-title: Recent development in chitosan-based electrochemical sensors and its sensing application publication-title: Int. J. Biol. Macromol. – volume: 156 start-page: 591 year: 2020 end-page: 597 ident: bb0315 article-title: pH mediated rheological modulation of chitosan hydrogels publication-title: Int. J. Biol. Macromol. – volume: 167 start-page: 644 year: 2021 end-page: 658 ident: bb0300 article-title: 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 7 year: 2022 ident: bb0010 article-title: Engineered gelatin-based conductive hydrogels for flexible wearable electronic devices: fundamentals and recent advances publication-title: J. Sci. Adv. Mater. Devices – volume: 295 year: 2022 ident: bb0420 article-title: Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors publication-title: Carbohydr. Polym. – volume: 7 start-page: 9481 year: 2019 end-page: 9486 ident: bb0015 article-title: Highly stretchable electrochromic hydrogels for use in wearable electronic devices publication-title: J. Mater. Chem. C – volume: 302 year: 2023 ident: bb0110 article-title: Ionic crosslinking of alginate/carboxymethyl chitosan fluorescent hydrogel for bacterial detection and sterilization publication-title: Carbohydr. Polym. – volume: 167 start-page: 326 year: 2017 end-page: 336 ident: bb0205 article-title: Effectiveness of N,O-carboxymethyl chitosan on destabilization of Marine Diesel, Diesel and Marine-2T oil for oil spill treatment publication-title: Carbohydr. Polym. – volume: 33 start-page: 2214196 year: 2023 ident: bb0280 article-title: 3D printing of multifunctional conductive polymer composite hydrogels publication-title: Adv. Funct. Mater. – volume: 18 year: 2021 ident: bb0245 article-title: Development of conductive hydrogels for fabricating flexible strain sensors publication-title: Small – volume: 103 start-page: 106 year: 2017 end-page: 112 ident: bb0260 article-title: Property improvements of CNT films induced by wet-stretching and tension-heating post treatments publication-title: Compos. A: Appl. Sci. Manuf. – volume: 31 year: 2019 ident: bb0135 article-title: The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries publication-title: Adv. Mater. – volume: 181 year: 2019 ident: bb0130 article-title: High-strength and physical cross-linked nanocomposite hydrogel with clay nanotubes for strain sensor and dye adsorption application publication-title: Compos. Sci. Technol. – volume: 315 year: 2023 ident: bb0180 article-title: Nanocellulose-assisted 3D-printable, transparent, bio-adhesive, conductive, and biocompatible hydrogels as sensors and moist electric generators publication-title: Carbohydr. Polym. – volume: 120 start-page: 2371 year: 2016 end-page: 2378 ident: bb0210 article-title: Study of the molecular interactions between functionalized carbon nanotubes and chitosan publication-title: J. Phys. Chem. C – volume: 170 start-page: 178 year: 2021 end-page: 188 ident: bb0195 article-title: Multifunctional bioactive chitosan/cellulose nanocrystal scaffolds eradicate bacterial growth and sustain drug delivery publication-title: Int. J. Biol. Macromol. – volume: 273 year: 2021 ident: bb0310 article-title: Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor publication-title: Carbohydr. Polym. – volume: 5 start-page: 2628 year: 2023 end-page: 2638 ident: bb0385 article-title: High-sensitivity composite dual-network hydrogel strain sensor and its application in intelligent recognition and motion monitoring publication-title: ACS Appl. Polym. Mater. – volume: 264 year: 2021 ident: bb0240 article-title: 3D printed alginate-cellulose nanofibers based patches for local curcumin administration publication-title: Carbohydr. Polym. – volume: 425 year: 2021 ident: bb0065 article-title: Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor publication-title: Chem. Eng. J. – volume: 12 year: 2023 ident: bb0190 article-title: Transcriptomic changes toward osteogenic differentiation of mesenchymal stem cells on 3D-printed GelMA/CNC hydrogel under pulsatile pressure environment publication-title: Adv. Healthc. Mater. – volume: 189 start-page: 316 year: 2021 end-page: 323 ident: bb0090 article-title: Temperature-sensitive poly(N-isopropylacrylamide)-chitosan hydrogel for fluorescence sensors in living cells and its antibacterial application publication-title: Int. J. Biol. Macromol. – volume: 14 year: 2022 ident: bb0395 article-title: Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications publication-title: NPG Asia Mater. – volume: 4 start-page: 9176 issue: 12 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0045 article-title: Chitosan-based self-healable and adhesive hydrogels for flexible strain sensor application publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.2c01488 – volume: 11 issue: 1 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0095 article-title: Recent advances in chitosan-based hydrogels for flexible wearable sensors publication-title: Chemosensors doi: 10.3390/chemosensors11010039 – volume: 219 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0080 article-title: Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2021.108965 – volume: 315 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0180 article-title: Nanocellulose-assisted 3D-printable, transparent, bio-adhesive, conductive, and biocompatible hydrogels as sensors and moist electric generators publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2023.120963 – volume: 9 start-page: 2561 issue: 11 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0005 article-title: Multifunctional conductive hydrogels and their applications as smart wearable devices publication-title: J. Mater. Chem. B doi: 10.1039/D0TB02929G – volume: 5 start-page: 4146 issue: 6 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0055 article-title: Poly(vinyl alcohol), tannic acid, and silver-based hydrogel strain sensors with “fish scale-like” surfaces publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.3c00356 – volume: 147 start-page: 194 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0220 article-title: Synthesis, characterization, and evaluation of antimicrobial activity of novel Chitosan/Tigecycline composite publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.01.041 – volume: 162 start-page: 1429 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0185 article-title: Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.07.246 – volume: 181 year: 2019 ident: 10.1016/j.ijbiomac.2024.131025_bb0130 article-title: High-strength and physical cross-linked nanocomposite hydrogel with clay nanotubes for strain sensor and dye adsorption application publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107701 – volume: 678 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0375 article-title: Improved capacitive performance of polypyrrole-based composite hydrogel for flexible self-powered sensing system publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2023.132452 – volume: 12 issue: 11 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0190 article-title: Transcriptomic changes toward osteogenic differentiation of mesenchymal stem cells on 3D-printed GelMA/CNC hydrogel under pulsatile pressure environment publication-title: Adv. Healthc. Mater. – volume: 373 start-page: 413 year: 2019 ident: 10.1016/j.ijbiomac.2024.131025_bb0305 article-title: Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.043 – volume: 132 start-page: 416 year: 2019 ident: 10.1016/j.ijbiomac.2024.131025_bb0365 article-title: Synthesis and characterization of novel trimellitic anhydride isothiocyanate-cross linked chitosan hydrogels modified with multi-walled carbon nanotubes for enhancement of antimicrobial activity publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.03.195 – volume: 284 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0165 article-title: Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.119202 – volume: 170 start-page: 178 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0195 article-title: Multifunctional bioactive chitosan/cellulose nanocrystal scaffolds eradicate bacterial growth and sustain drug delivery publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.12.145 – volume: 208 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0175 article-title: Physico-chemical modification of gelatine for the improvement of 3D printability of oxidized alginate-gelatine hydrogels towards cartilage tissue engineering publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109877 – volume: 156 start-page: 591 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0315 article-title: pH mediated rheological modulation of chitosan hydrogels publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.04.049 – volume: 120 start-page: 2371 issue: 4 year: 2016 ident: 10.1016/j.ijbiomac.2024.131025_bb0210 article-title: Study of the molecular interactions between functionalized carbon nanotubes and chitosan publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b08136 – volume: 12 start-page: 4944 issue: 4 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0155 article-title: Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21659 – volume: 302 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0110 article-title: Ionic crosslinking of alginate/carboxymethyl chitosan fluorescent hydrogel for bacterial detection and sterilization publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.120427 – volume: 109 start-page: 1869 issue: 10 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0160 article-title: Enhanced osteogenic potential of unzipped carbon nanotubes for tissue engineering publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.37179 – volume: 264 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0240 article-title: 3D printed alginate-cellulose nanofibers based patches for local curcumin administration publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118026 – volume: 167 start-page: 644 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0300 article-title: 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.12.011 – volume: 273 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0310 article-title: Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118533 – volume: 236 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0215 article-title: Influence of multi-walled carbon nanotubes on the physico-chemical and biological responses of chitosan-based hybrid hydrogels publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.115971 – volume: 50 start-page: 393 issue: 2 year: 2012 ident: 10.1016/j.ijbiomac.2024.131025_bb0225 article-title: Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2011.12.032 – volume: 115 start-page: 678 issue: 2 year: 2006 ident: 10.1016/j.ijbiomac.2024.131025_bb0265 article-title: Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2005.10.047 – volume: 189 start-page: 316 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0090 article-title: Temperature-sensitive poly(N-isopropylacrylamide)-chitosan hydrogel for fluorescence sensors in living cells and its antibacterial application publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.08.057 – volume: 7 issue: 3 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0010 article-title: Engineered gelatin-based conductive hydrogels for flexible wearable electronic devices: fundamentals and recent advances publication-title: J. Sci. Adv. Mater. Devices – volume: 333 year: 2024 ident: 10.1016/j.ijbiomac.2024.131025_bb0415 article-title: Dual–network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high–performance triboelectric nanogenerators publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2024.121960 – volume: 11 start-page: 291 issue: 2 year: 2015 ident: 10.1016/j.ijbiomac.2024.131025_bb0345 article-title: Synthesis and characterization of novel polycarbonate based polyurethane/polymer wrapped hydroxyapatite nanocomposites: mechanical properties, osteoconductivity and biocompatibility publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2015.1975 – volume: 284 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0250 article-title: Chitosan-reinforced PHB hydrogel and aerogel monoliths fabricated by phase separation with the solvent-exchange method publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.119184 – volume: 15 start-page: 29902 issue: 25 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0325 article-title: Adhesive ion-conducting hydrogel strain sensor with high sensitivity, long-term stability, and extreme temperature tolerance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c03624 – volume: 8 start-page: 5020 issue: 18 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0170 article-title: 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents publication-title: Biomater. Sci. doi: 10.1039/D0BM00896F – volume: 33 start-page: 2214196 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0280 article-title: 3D printing of multifunctional conductive polymer composite hydrogels publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214196 – volume: 14 issue: 1 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0395 article-title: Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications publication-title: NPG Asia Mater. doi: 10.1038/s41427-022-00357-9 – volume: 427 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0140 article-title: A thermally-electrically double-responsive polycaprolactone – thermoplastic polyurethane/multi-walled carbon nanotube fiber assisted with highly effective shape memory and strain sensing performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131648 – volume: 15 start-page: 1785 issue: 1 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0060 article-title: Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors publication-title: ACS Nano doi: 10.1021/acsnano.0c09577 – volume: 103 start-page: 106 year: 2017 ident: 10.1016/j.ijbiomac.2024.131025_bb0260 article-title: Property improvements of CNT films induced by wet-stretching and tension-heating post treatments publication-title: Compos. A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2017.10.002 – volume: 8 start-page: 27254 issue: 40 year: 2016 ident: 10.1016/j.ijbiomac.2024.131025_bb0290 article-title: Mechanically robust 3D nanostructure chitosan-based hydrogels with autonomic self-healing properties publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10375 – volume: 33 issue: 41 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0350 article-title: Carbon nanotube–hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity publication-title: Adv. Mater. doi: 10.1002/adma.202102981 – volume: 242 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0435 article-title: Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor publication-title: Int. J. Biol. Macromol. – volume: 34 issue: 32 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0035 article-title: High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines publication-title: Adv. Mater. doi: 10.1002/adma.202203650 – volume: 10 start-page: 14288 issue: 38 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0070 article-title: 3D printable conductive ionic hydrogels with self-adhesion performance for strain sensing publication-title: J. Mater. Chem. C doi: 10.1039/D2TC02706B – volume: 111 start-page: 73 issue: 1 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0230 article-title: The improvement of periodontal tissue regeneration using a 3D -printed carbon nanotube/chitosan/sodium alginate composite scaffold publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.35133 – volume: 3 start-page: 3351 issue: 12 year: 2017 ident: 10.1016/j.ijbiomac.2024.131025_bb0255 article-title: Functionalized graphene tagged polyurethanes for corrosion inhibitor and sustained drug delivery publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00342 – volume: 5 start-page: 10409 issue: 8 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0235 article-title: Temperature-sensitive hydrogels containing carboxylated chitosan-modified carbon nanotubes for controlled drug release publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c01777 – volume: 103 year: 2019 ident: 10.1016/j.ijbiomac.2024.131025_bb0355 article-title: Carbon nanotube composite hydrogels for vocal fold tissue engineering: biocompatibility, rheology, and porosity publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.109861 – volume: 5 start-page: 2628 issue: 4 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0385 article-title: High-sensitivity composite dual-network hydrogel strain sensor and its application in intelligent recognition and motion monitoring publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.2c02215 – volume: 388 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0145 article-title: Chemically and mechanically robust SWCNT based strain sensor with monotonous piezoresistive response for infrastructure monitoring publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124174 – volume: 268 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0120 article-title: A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118210 – volume: 11 start-page: 7466 issue: 13 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0285 article-title: Fabrication and characterization of 3D printable nanocellulose-based hydrogels for tissue engineering publication-title: RSC Adv. doi: 10.1039/D0RA09620B – volume: 14 start-page: 14596 issue: 12 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0360 article-title: Motion detecting, temperature alarming, and wireless wearable bioelectronics based on intrinsically antibacterial conductive hydrogels publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c00713 – volume: 15 start-page: 23711 issue: 19 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0405 article-title: Bio-inspired homogeneous conductive hydrogel with flexibility and adhesiveness for information transmission and sign language recognition publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c02105 – volume: 382 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0115 article-title: Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122832 – volume: 31 issue: 9 year: 2019 ident: 10.1016/j.ijbiomac.2024.131025_bb0135 article-title: The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries publication-title: Adv. Mater. – volume: 68 start-page: 162 year: 2015 ident: 10.1016/j.ijbiomac.2024.131025_bb0150 article-title: Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2014.08.027 – volume: 7 start-page: 2925 issue: 15 year: 2023 ident: 10.1016/j.ijbiomac.2024.131025_bb0390 article-title: Functional conductive hydrogels: from performance to flexible sensor applications publication-title: Mater. Chem. Front. doi: 10.1039/D3QM00109A – volume: 10 issue: 17 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0020 article-title: Liquid metal-based soft electronics for wearable healthcare publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202002280 – volume: 18 issue: 5 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0245 article-title: Development of conductive hydrogels for fabricating flexible strain sensors publication-title: Small doi: 10.1002/smll.202101518 – volume: 13 start-page: 14612 issue: 12 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0335 article-title: Multifunctional self-healing dual network hydrogels constructed via host–guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c03213 – volume: 425 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0065 article-title: Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131523 – volume: 165 start-page: 39 year: 2017 ident: 10.1016/j.ijbiomac.2024.131025_bb0320 article-title: Salicyl-imine-chitosan hydrogels: supramolecular architecturing as a crosslinking method toward multifunctional hydrogels publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.02.027 – volume: 179 start-page: 398 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0330 article-title: Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.03.027 – volume: 14 start-page: 218 issue: 1 year: 2019 ident: 10.1016/j.ijbiomac.2024.131025_bb0410 article-title: Muscle-inspired self-healing hydrogels for strain and temperature sensor publication-title: ACS Nano doi: 10.1021/acsnano.9b07874 – volume: 365 start-page: 10 year: 2019 ident: 10.1016/j.ijbiomac.2024.131025_bb0050 article-title: Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.014 – volume: 32 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0085 article-title: Multifunctional hydrogels of polyvinyl alcohol/polydopamine functionalized with carbon nanomaterials as flexible sensors publication-title: Mater. Today Commun. – volume: 403 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0030 article-title: Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126307 – volume: 298 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0380 article-title: Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.120060 – volume: 295 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0425 article-title: Chitosan-driven biocompatible hydrogel based on water-soluble polypyrrole for stable human-machine interfaces publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.119890 – volume: 254 year: 2024 ident: 10.1016/j.ijbiomac.2024.131025_bb0370 article-title: Lignosulfonate sodium assisted PEDOT-based all-gel supercapacitors with enhanced supercapacitance and wide temperature tolerance publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.127852 – volume: 248 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0430 article-title: A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116797 – volume: 7 start-page: 9481 issue: 31 year: 2019 ident: 10.1016/j.ijbiomac.2024.131025_bb0015 article-title: Highly stretchable electrochromic hydrogels for use in wearable electronic devices publication-title: J. Mater. Chem. C doi: 10.1039/C9TC02673H – volume: 3 issue: 2 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0040 article-title: Hysteresis-free and high-sensitivity strain sensing of ionically conductive hydrogels publication-title: Adv. NanoBiomed Res. doi: 10.1002/anbr.202200132 – volume: 167 start-page: 326 year: 2017 ident: 10.1016/j.ijbiomac.2024.131025_bb0205 article-title: Effectiveness of N,O-carboxymethyl chitosan on destabilization of Marine Diesel, Diesel and Marine-2T oil for oil spill treatment publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.03.064 – volume: 5 start-page: 1816 issue: 6 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0275 article-title: Injectable liposome-based supramolecular hydrogels for the programmable release of multiple protein drugs publication-title: Matter doi: 10.1016/j.matt.2022.03.001 – volume: 295 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0420 article-title: Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.119848 – volume: 528 start-page: 6636 issue: 21 year: 2011 ident: 10.1016/j.ijbiomac.2024.131025_bb0270 article-title: Mechanical properties of multilayered chitosan/CNT nanocomposite films publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.05.028 – volume: 164 start-page: 4231 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0075 article-title: Recent development in chitosan-based electrochemical sensors and its sensing application publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.09.012 – volume: 30 issue: 30 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0025 article-title: Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002041 – volume: 13 start-page: 141 issue: 1 year: 2014 ident: 10.1016/j.ijbiomac.2024.131025_bb0200 article-title: Does the use of chitosan contribute to oxalate kidney stone formation? publication-title: Mar. Drugs doi: 10.3390/md13010141 – volume: 276 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0105 article-title: Robust, anti-freezing and conductive bonding of chitosan-based double-network hydrogels for stable-performance flexible electronic publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118753 – volume: 120 start-page: 10834 issue: 19 year: 2020 ident: 10.1016/j.ijbiomac.2024.131025_bb0295 article-title: Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00015 – volume: 18 start-page: 1201 issue: 6 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0125 article-title: Graphene oxide-based composite organohydrogels with high strength and low temperature resistance for strain sensors publication-title: Soft Matter doi: 10.1039/D1SM01655E – volume: 191 start-page: 344 year: 2021 ident: 10.1016/j.ijbiomac.2024.131025_bb0100 article-title: NIR as a “trigger switch” for rapid phase change, on-demand release, and photothermal synergistic antibacterial treatment with chitosan-based temperature-sensitive hydrogel publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.09.093 – volume: 4 start-page: 1449 issue: 4 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0340 article-title: Functional bioelectronic materials for long-term biocompatibility and functionality publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.1c01212 – volume: 10 start-page: 25564 issue: 48 year: 2022 ident: 10.1016/j.ijbiomac.2024.131025_bb0400 article-title: Stretchable strain sensor of composite hydrogels with high fatigue resistance and low hysteresis publication-title: J. Mater. Chem. A doi: 10.1039/D2TA07447H |
SSID | ssj0006518 |
Score | 2.448528 |
Snippet | Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 131025 |
SubjectTerms | Adhesiveness antibacterial properties Biocompatibility carbon nanotubes Carboxymethyl chitosan chitosan Escherichia coli fibroblasts glass health services humans hydrogels plastics skin (animal) storage modulus Strain-sensing Unzipped CNTs |
Title | Unzipped carbon nanotubes assisted 3D printable functionalized chitosan hydrogels for strain sensing applications |
URI | https://dx.doi.org/10.1016/j.ijbiomac.2024.131025 https://www.ncbi.nlm.nih.gov/pubmed/38513895 https://www.proquest.com/docview/2974003185 https://www.proquest.com/docview/3153769854 |
Volume | 265 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoAL4s3yqIzENbteP7LJsVqoFhA9sVJv1jh22qyQs2yyB3rob-9MHqVIQA8ck3ikkWcy89nzYux9roV2IQuJLAUk2hTzxAmQSRkEpCosyiLQfcfX03S11p_PzNkBW461MJRWOdj-3qZ31np4Mxt2c7atqhmlJaF7UtSkC_VS0Lld6wVp-fTqV5pHaro7Plqc0OpbVcKbabWhInegVoZST-cIdWhk9p8d1N8AaOeITh6xhwOC5Mc9k4_ZQYhP2P3lOLjtKfuxjpfVdhs8L2Dn6sgjxLrdu9BwRMokVs_VB043ei0VTnHybf2VYHVJVBf4lzcQ-cVPv6vPkTeOyJY33TQJ3lDGezzntyPfz9j65OO35SoZJiskBW5WmwD6IAiu0Eak0melQJBUgDYuzwMClNJQvLTUXpYBJH4STmvEFSlFKRGhGfWcHcY6hpeMLzKlUi9BKO-0Tx0UALBQ4DPphRfZhJlxO20xtB0nfr_bMb9sY0cxWBKD7cUwYbMbum3feONOinyUlv1NhSx6hztp343itSgtCppADPW-sRIPXJ3l-8caNaemOHlm9IS96HXjhmeFkBZBoXn1H9y9Zg_oqU8YesMO290-vEUs1LqjTtmP2L3jT19Wp9dDPAqu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXBOW1PIqR4Jhdrx_Z5MABtVRb-jh1pd6MHTttVpWzbLJC7aF_qn-QmTxKkYAeUK-xLY08k5nP8yTkQyqZtD7xEc-ZiaTKxpFlhke5ZyYWfpJnHv0dh0fxdCa_nqiTNXLd18JgWmWn-1ud3mjr7suou83RoihGmJYE5klgky6QS8a6zMp9f_ED3m3Vp70dYPJHzne_HG9Po260QJTB7joyoISNt5lULOYuyRmghMxIZdPUg4XOFQYMc-l47g2HJWalBMMaY5gOIAqOigC9_0CCusCxCcOrX3klsWqcikhdhOTdKkueD4s5VtUb7J3I5XAM2ApndP_ZIv4N8TaWb_cxedRBVvq5vZUnZM2HTbKx3U-Ke0q-z8JlsVh4RzOztGWgwYSyXllfUYDmKEeOih2KLsQaK7UoGtPWB1lc4qkzUCuVCfTswi3LU6CNApSmVTO-glaYYh9O6e1Q-zMyu5f7fk7WQxn8S0IniRCx44YJZ6WLrcmMMRNhXMIdcywZENVfp866PudI77nuE9rmumeDRjbolg0DMro5t2g7fdx5Iu25pX-TWQ3m6M6z73v2auAWRmlM8OWq0hxeeI2q_cceMcYuPGmi5IC8aGXjhmYBGBpQqHr1H9S9IxvT48MDfbB3tP-aPMSVNlvpDVmvlyv_FoBYbbcawafk233_aT8BQzhENg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unzipped+carbon+nanotubes+assisted+3D+printable+functionalized+chitosan+hydrogels+for+strain+sensing+applications&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Patel%2C+Dinesh+K&rft.au=Won%2C+So-Yeon&rft.au=Patil%2C+Tejal+V&rft.au=Dutta%2C+Sayan+Deb&rft.date=2024-04-01&rft.issn=1879-0003&rft.eissn=1879-0003&rft.volume=265&rft.issue=Pt+2&rft.spage=131025&rft_id=info:doi/10.1016%2Fj.ijbiomac.2024.131025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |