Unzipped carbon nanotubes assisted 3D printable functionalized chitosan hydrogels for strain sensing applications

Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one co...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 265; no. Pt 2; p. 131025
Main Authors Patel, Dinesh K., Won, So-Yeon, Patil, Tejal V., Dutta, Sayan Deb, Lim, Ki-Taek, Han, Sung Soo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion. [Display omitted] •3D printable and biocompatible hydrogels of functionalized CS/f-CNTs were prepared.•The composite hydrogels exhibited improved mechanical strength and viscoelasticity.•The composite hydrogels showed increased adhesive strength (118.47 kPa).•Hydrogels exhibited real-time motion-sensing potential.•Hydrogels also showed multidimensional movement recognition ability.
AbstractList Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.
Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 10⁵ Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.
Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 10  Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.
Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion. [Display omitted] •3D printable and biocompatible hydrogels of functionalized CS/f-CNTs were prepared.•The composite hydrogels exhibited improved mechanical strength and viscoelasticity.•The composite hydrogels showed increased adhesive strength (118.47 kPa).•Hydrogels exhibited real-time motion-sensing potential.•Hydrogels also showed multidimensional movement recognition ability.
ArticleNumber 131025
Author Patel, Dinesh K.
Won, So-Yeon
Han, Sung Soo
Lim, Ki-Taek
Dutta, Sayan Deb
Patil, Tejal V.
Author_xml – sequence: 1
  givenname: Dinesh K.
  surname: Patel
  fullname: Patel, Dinesh K.
  organization: School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
– sequence: 2
  givenname: So-Yeon
  surname: Won
  fullname: Won, So-Yeon
  organization: School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
– sequence: 3
  givenname: Tejal V.
  surname: Patil
  fullname: Patil, Tejal V.
  organization: Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
– sequence: 4
  givenname: Sayan Deb
  surname: Dutta
  fullname: Dutta, Sayan Deb
  organization: Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
– sequence: 5
  givenname: Ki-Taek
  surname: Lim
  fullname: Lim, Ki-Taek
  email: ktlim@kangwon.ac.kr
  organization: Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
– sequence: 6
  givenname: Sung Soo
  surname: Han
  fullname: Han, Sung Soo
  email: sshan@yu.ac.kr
  organization: School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38513895$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u3CAURlGVqpmkfYWIZTeeggHbSF20Sn8SKVI3zRphfJ0w8oDDxZWSpy_uZDbdzAqJe85FfN8FOQsxACFXnG05482n3dbveh_31m1rVsstF5zV6g3Z8K7VFWNMnJEN45JXHRfsnFwg7spto3j3jpyLTnHRabUhT_fhxc8zDNTZ1MdAgw0xLz0gtYgec5mIb3ROPmTbT0DHJbjsY7CTf1mtR58j2kAfn4cUH2BCOsZEMSfrA0UI6MMDtfM8eWdXD9-Tt6OdED68npfk_sf339c31d2vn7fXX-8qJxnPldWaWeidVKyph25kutbOStVrDUK3oxJMNqMc6hFsXUasl1LzwradVJwrcUk-HvbOKT4tgNnsPTqYJhsgLmhEYdpGd0qeRGvdypIo79atV6_o0u9hMCWYvU3P5phoAT4fAJciYoLROJ___XyNZDKcmbVAszPHAs1aoDkUWPTmP_34wknxy0EsFcAfD8mg8xAcDD6By2aI_tSKv8Pruao
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_137841
crossref_primary_10_1016_j_ijbiomac_2025_140869
crossref_primary_10_1039_D4CS00220B
crossref_primary_10_1007_s10570_024_06237_5
crossref_primary_10_1016_j_cej_2025_161645
crossref_primary_10_3390_ma17205102
crossref_primary_10_1016_j_ijbiomac_2024_132374
Cites_doi 10.1021/acsapm.2c01488
10.3390/chemosensors11010039
10.1016/j.compositesb.2021.108965
10.1016/j.carbpol.2023.120963
10.1039/D0TB02929G
10.1021/acsapm.3c00356
10.1016/j.ijbiomac.2020.01.041
10.1016/j.ijbiomac.2020.07.246
10.1016/j.compscitech.2019.107701
10.1016/j.colsurfa.2023.132452
10.1016/j.cej.2019.05.043
10.1016/j.ijbiomac.2019.03.195
10.1016/j.carbpol.2022.119202
10.1016/j.ijbiomac.2020.12.145
10.1016/j.matdes.2021.109877
10.1016/j.ijbiomac.2020.04.049
10.1021/acs.jpcc.5b08136
10.1021/acsami.9b21659
10.1016/j.carbpol.2022.120427
10.1002/jbm.a.37179
10.1016/j.carbpol.2021.118026
10.1016/j.ijbiomac.2020.12.011
10.1016/j.carbpol.2021.118533
10.1016/j.carbpol.2020.115971
10.1016/j.ijbiomac.2011.12.032
10.1016/j.snb.2005.10.047
10.1016/j.ijbiomac.2021.08.057
10.1016/j.carbpol.2024.121960
10.1166/jbn.2015.1975
10.1016/j.carbpol.2022.119184
10.1021/acsami.3c03624
10.1039/D0BM00896F
10.1002/adfm.202214196
10.1038/s41427-022-00357-9
10.1016/j.cej.2021.131648
10.1021/acsnano.0c09577
10.1016/j.compositesa.2017.10.002
10.1021/acsami.6b10375
10.1002/adma.202102981
10.1002/adma.202203650
10.1039/D2TC02706B
10.1002/jbm.b.35133
10.1021/acsbiomaterials.7b00342
10.1021/acsanm.2c01777
10.1016/j.msec.2019.109861
10.1021/acsapm.2c02215
10.1016/j.cej.2020.124174
10.1016/j.carbpol.2021.118210
10.1039/D0RA09620B
10.1021/acsami.2c00713
10.1021/acsami.3c02105
10.1016/j.cej.2019.122832
10.1016/j.compositesb.2014.08.027
10.1039/D3QM00109A
10.1002/adhm.202002280
10.1002/smll.202101518
10.1021/acsami.1c03213
10.1016/j.cej.2021.131523
10.1016/j.carbpol.2017.02.027
10.1016/j.ijbiomac.2021.03.027
10.1021/acsnano.9b07874
10.1016/j.cej.2019.02.014
10.1016/j.cej.2020.126307
10.1016/j.carbpol.2022.120060
10.1016/j.carbpol.2022.119890
10.1016/j.ijbiomac.2023.127852
10.1016/j.carbpol.2020.116797
10.1039/C9TC02673H
10.1002/anbr.202200132
10.1016/j.carbpol.2017.03.064
10.1016/j.matt.2022.03.001
10.1016/j.carbpol.2022.119848
10.1016/j.msea.2011.05.028
10.1016/j.ijbiomac.2020.09.012
10.1002/adfm.202002041
10.3390/md13010141
10.1016/j.carbpol.2021.118753
10.1021/acs.chemrev.0c00015
10.1039/D1SM01655E
10.1016/j.ijbiomac.2021.09.093
10.1021/acsaelm.1c01212
10.1039/D2TA07447H
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier B.V.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2024.131025
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
ExternalDocumentID 38513895
10_1016_j_ijbiomac_2024_131025
S0141813024018300
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UHS
UNMZH
WUQ
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-a990aebc45062d8f0929ca45b99e397f53046f4d2fea229c0b449106278451153
IEDL.DBID .~1
ISSN 0141-8130
1879-0003
IngestDate Fri Jul 11 01:23:27 EDT 2025
Fri Jul 11 00:08:56 EDT 2025
Mon Jul 21 06:04:38 EDT 2025
Tue Jul 01 02:42:20 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Sat Apr 20 15:58:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Unzipped CNTs
Biocompatibility
Strain-sensing
Carboxymethyl chitosan
Adhesiveness
Language English
License Copyright © 2024. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-a990aebc45062d8f0929ca45b99e397f53046f4d2fea229c0b449106278451153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38513895
PQID 2974003185
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153769854
proquest_miscellaneous_2974003185
pubmed_primary_38513895
crossref_citationtrail_10_1016_j_ijbiomac_2024_131025
crossref_primary_10_1016_j_ijbiomac_2024_131025
elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2024_131025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of biological macromolecules
PublicationTitleAlternate Int J Biol Macromol
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ravanbakhsh, Bao, Latifi, Mongeau (bb0355) 2019; 103
Kang, Yun (bb0250) 2022; 284
Sun, Qin, Ye, Zhang, Yu, Wu, Li, Yao (bb0115) 2020; 382
Wang, Liu, Li, Li, Gu, Li, Zhang (bb0260) 2017; 103
Liu, Liu, Wu, Xu, Huang, Zhang, Liu, Shuai (bb0100) 2021; 191
Li, Li, Li, Yu, Song, Wang, Liu, Liu, Liu (bb0245) 2021; 18
Mohamed, Al-Harby, Almarshed (bb0365) 2019; 132
Fang, Chen, Yin, Sun, Li, Cheng (bb0135) 2019; 31
Zhou, Ramezani, Sun, Xie, Nie, Lv, Cai, Fu, He (bb0170) 2020; 8
Iftime, Morariu, Marin (bb0320) 2017; 165
Shen, Zhang, Zhang, Li, Zhou, Hu, Rong, Lu, Gu (bb0035) 2022; 34
Doshi, Repo, Heiskanen, Sirviö, Sillanpää (bb0205) 2017; 167
Zhao, Jiang, Zhang, Li, Guo, Hu (bb0125) 2022; 18
Zhang, Zhang, Zhao, Wang (bb0385) 2023; 5
Fang, Xu, Gao, Du, Du, Cheng, Wang (bb0080) 2021; 219
Yang, Zhou, Peng, Wang, Liu, Wang, Wu (bb0105) 2022; 276
Xu, Liang, You, Yang, Fen, Gao, Cui (bb0090) 2021; 189
Ganguly, Dutta, Randhawa, Patel, Patil, Lim (bb0190) 2023; 12
Kreller, Distler, Heid, Gerth, Detsch, Boccaccini (bb0175) 2021; 208
Patel, Dutta, Shin, Ganguly, Lim (bb0285) 2021; 11
Karimi, Khodadadi (bb0290) 2016; 8
Fernandes Queiroz, Melo, Sabry, Sassaki, Rocha (bb0200) 2014; 13
Liu, Ren, Liu, Zhao, Ling, Gu (bb0335) 2021; 13
Garnica-Palafox, Estrella-Monroy, Vázquez-Torres, Álvarez-Camacho, Castell-Rodríguez, Sánchez-Arévalo (bb0215) 2020; 236
Wang, Bai, Zheng, Yue, Hou, Cui, Su, Wei, Liu (bb0010) 2022; 7
Qu, Wang, Zhao, Huang, Wang, Shao, Wang, Dong (bb0065) 2021; 425
Liu, Garcia, Leahy, Song, Mullarkey, Fei, Dervan, Shvets, Stamenov, Wang, O’Brien, Coleman, Nicolosi (bb0280) 2023; 33
Sahoo, Vasudha, Muthuvijayan, Prasad (bb0045) 2022; 4
Patel, Ganguly, Hexiu, Dutta, Patil, Lim (bb0165) 2022; 284
Aztatzi-Pluma, Castrejón-González, Almendarez-Camarillo, Alvarado, Durán-Morales (bb0210) 2016; 120
Liu, Chen, Sun, Guo, Guo, Zhang, Tao, Yang, Tang (bb0400) 2022; 10
Zhang, Liang, Deng, Xu, Zhang, Guo, Zhang (bb0325) 2023; 15
Zhang, Lin, Zhang, Guo, Lu, Liu, Su, Ji, Wang (bb0070) 2022; 10
Lee, Gillispie, Prim, Lee (bb0295) 2020; 120
Chen, Tian, Liu, Cao, Li, Wang, Wu, Zhang (bb0305) 2019; 373
Wang, Dai, Hunter, Zhang, Yang, Chen, Zhang, He, Ni (bb0120) 2021; 268
Qu, Wang, Chen, Wu, Tang, Fan, Guo, Fan, Bin (bb0140) 2022; 427
Georgousis, Pandis, Kalamiotis, Georgiopoulos, Kyritsis, Kontou, Pissis, Micusik, Czanikova, Kulicek, Omastova (bb0150) 2015; 68
Patel, Senapati, Mourya, Singh, Aswal, Ray, Maiti (bb0255) 2017; 3
Li, Tian, Liang, Wu (bb0390) 2023; 7
Chen, Chen, Hedenqvist, Chen, Cai, Li, Liu, Fu (bb0005) 2021; 9
Dong, Feng, Liu, Li, Li, Liu, Shi, Chen, Zhang (bb0330) 2021; 179
Venkatesan, Ryu, Sudha, Kim (bb0225) 2012; 50
Menazea, Eid, Ahmed (bb0220) 2020; 147
Dutta, Hexiu, Patel, Ganguly, Lim (bb0300) 2021; 167
Choudhury (bb0315) 2020; 156
Sun, Cha, Bae, Hong, Kim, Kim, Lee, Lee (bb0270) 2011; 528
Wang, Zhang, Xu, Huang, Lu, Cui, Tan (bb0425) 2022; 295
Li, Gong, Han, Liu, Yang, Chen, Qian, Han (bb0380) 2022; 298
Ge, Lu, Qu, Zhao, Ren, Wang, Wang, Huang, Dong (bb0410) 2019; 14
Patel, Dutta, Hexiu, Ganguly, Lim (bb0185) 2020; 162
Li, Li, Yan, Wang (bb0435) 2023; 242
Ahuja, Ujjain, Urita, Furuse, Moriguchi, Kaneko (bb0145) 2020; 388
Patel, Dutta, Ganguly, Kim, Lim (bb0160) 2021; 109
Yan, Wan, Xu, Lu, Yang, Li, Lu, Wang, Wang (bb0110) 2023; 302
Raja (bb0075) 2020; 164
Ye, Ji, Liu, Tu, Kappl, Koynov, Vogt, Butt (bb0350) 2021; 33
Li, Chen, Han, Lu, Zhang, Miao (bb0370) 2024; 254
Suo, Wu, Wang, Xue, Gao, Shen (bb0230) 2022; 111
Correa, Grosskopf, Klich, Lopez Hernandez, Appel (bb0275) 2022; 5
Xie, Ou, Ning, Tuo, Zhang, Gao, Pan, Li, Gao (bb0415) 2024; 333
Zhang, Shen, Lan, Wu, Wang, Zhou (bb0420) 2022; 295
Lin, Zhang, Long, Yang, Huang, Deng, Zhang, Cai, Yang, Tan (bb0235) 2022; 5
Patel, Ganguly, Dutta, Patil, Lim (bb0085) 2022; 32
Zhou, Wang, Zhao, Tong, Jin, Zhang, Yu, Liu, Ma, Li, Chen (bb0030) 2021; 403
Wang, Song, Liu, Chan, Wang, Su, Li, Huang (bb0360) 2022; 14
Hardman, George Thuruthel, Iida (bb0395) 2022; 14
Du, Wang, Hsu, Uyama (bb0405) 2023; 15
Ding, Liang, Wang, Wang, Li, Sun (bb0430) 2020; 248
Olmos-Juste, Alonso-Lerma, Pérez-Jiménez, Gabilondo, Eceiza (bb0240) 2021; 264
Cheng, Zhang, Pan, Yang, Gong, Zhuo, Wang, Yuan, Gan, Hu, Ding, Chen, Zhang, Tian (bb0055) 2023; 5
Selvakumar, Jaganathan, Nando, Chattopadhyay (bb0345) 2015; 11
Silva, Lv, Yin, Jeerapan, Innocenzi, Soto, Ha, Wang (bb0025) 2020; 30
Park, Lee, Jang, Yun, Kim, Park (bb0020) 2021; 10
Wu, Xu, Zhao, Shi, Li, Cai, Ding, Qu (bb0095) 2023; 11
Patel, Patil, Ganguly, Dutta, Lim (bb0180) 2023; 315
Zhang, Zhou, Han, Zheng, Xu, Wang (bb0060) 2021; 15
Yang, Ding, Yang, Wang, Gu, Guan, Yu, Zhang, Zhang (bb0015) 2019; 7
Patel, Dutta, Ganguly, Lim (bb0195) 2021; 170
Feng, Hung, Yang, Liu (bb0130) 2019; 181
Ren, Ke, Ling, Zhao, Gu (bb0310) 2021; 273
Zhang, Liu, Duan, Gao (bb0050) 2019; 365
Song, Mou, Balakrishnan, Wang, Rajagopalan, Schreiner, Naik, Cohen-Karni, Halbreiner, Bettinger (bb0040) 2022; 3
Qin, Sun, Yu, Zhang, Wu, Yao, Liu, Yao, Li (bb0155) 2020; 12
Spinks, Shin, Wallace, Whitten, Kim, Kim (bb0265) 2006; 115
Park, Lee, Kim, Hwang, Seo (bb0340) 2022; 4
Han, Li, Chen, Lu, Liu (bb0375) 2023; 678
Menazea (10.1016/j.ijbiomac.2024.131025_bb0220) 2020; 147
Yang (10.1016/j.ijbiomac.2024.131025_bb0015) 2019; 7
Fang (10.1016/j.ijbiomac.2024.131025_bb0080) 2021; 219
Wang (10.1016/j.ijbiomac.2024.131025_bb0260) 2017; 103
Liu (10.1016/j.ijbiomac.2024.131025_bb0335) 2021; 13
Zhang (10.1016/j.ijbiomac.2024.131025_bb0050) 2019; 365
Iftime (10.1016/j.ijbiomac.2024.131025_bb0320) 2017; 165
Li (10.1016/j.ijbiomac.2024.131025_bb0370) 2024; 254
Hardman (10.1016/j.ijbiomac.2024.131025_bb0395) 2022; 14
Silva (10.1016/j.ijbiomac.2024.131025_bb0025) 2020; 30
Liu (10.1016/j.ijbiomac.2024.131025_bb0100) 2021; 191
Selvakumar (10.1016/j.ijbiomac.2024.131025_bb0345) 2015; 11
Correa (10.1016/j.ijbiomac.2024.131025_bb0275) 2022; 5
Ahuja (10.1016/j.ijbiomac.2024.131025_bb0145) 2020; 388
Qu (10.1016/j.ijbiomac.2024.131025_bb0065) 2021; 425
Georgousis (10.1016/j.ijbiomac.2024.131025_bb0150) 2015; 68
Sahoo (10.1016/j.ijbiomac.2024.131025_bb0045) 2022; 4
Zhang (10.1016/j.ijbiomac.2024.131025_bb0385) 2023; 5
Dong (10.1016/j.ijbiomac.2024.131025_bb0330) 2021; 179
Sun (10.1016/j.ijbiomac.2024.131025_bb0270) 2011; 528
Zhang (10.1016/j.ijbiomac.2024.131025_bb0060) 2021; 15
Patel (10.1016/j.ijbiomac.2024.131025_bb0255) 2017; 3
Song (10.1016/j.ijbiomac.2024.131025_bb0040) 2022; 3
Mohamed (10.1016/j.ijbiomac.2024.131025_bb0365) 2019; 132
Yang (10.1016/j.ijbiomac.2024.131025_bb0105) 2022; 276
Patel (10.1016/j.ijbiomac.2024.131025_bb0195) 2021; 170
Olmos-Juste (10.1016/j.ijbiomac.2024.131025_bb0240) 2021; 264
Qu (10.1016/j.ijbiomac.2024.131025_bb0140) 2022; 427
Suo (10.1016/j.ijbiomac.2024.131025_bb0230) 2022; 111
Fernandes Queiroz (10.1016/j.ijbiomac.2024.131025_bb0200) 2014; 13
Han (10.1016/j.ijbiomac.2024.131025_bb0375) 2023; 678
Ye (10.1016/j.ijbiomac.2024.131025_bb0350) 2021; 33
Patel (10.1016/j.ijbiomac.2024.131025_bb0185) 2020; 162
Ganguly (10.1016/j.ijbiomac.2024.131025_bb0190) 2023; 12
Chen (10.1016/j.ijbiomac.2024.131025_bb0305) 2019; 373
Patel (10.1016/j.ijbiomac.2024.131025_bb0160) 2021; 109
Patel (10.1016/j.ijbiomac.2024.131025_bb0165) 2022; 284
Zhao (10.1016/j.ijbiomac.2024.131025_bb0125) 2022; 18
Wu (10.1016/j.ijbiomac.2024.131025_bb0095) 2023; 11
Fang (10.1016/j.ijbiomac.2024.131025_bb0135) 2019; 31
Yan (10.1016/j.ijbiomac.2024.131025_bb0110) 2023; 302
Spinks (10.1016/j.ijbiomac.2024.131025_bb0265) 2006; 115
Lin (10.1016/j.ijbiomac.2024.131025_bb0235) 2022; 5
Park (10.1016/j.ijbiomac.2024.131025_bb0340) 2022; 4
Zhou (10.1016/j.ijbiomac.2024.131025_bb0170) 2020; 8
Dutta (10.1016/j.ijbiomac.2024.131025_bb0300) 2021; 167
Qin (10.1016/j.ijbiomac.2024.131025_bb0155) 2020; 12
Wang (10.1016/j.ijbiomac.2024.131025_bb0360) 2022; 14
Patel (10.1016/j.ijbiomac.2024.131025_bb0180) 2023; 315
Garnica-Palafox (10.1016/j.ijbiomac.2024.131025_bb0215) 2020; 236
Patel (10.1016/j.ijbiomac.2024.131025_bb0085) 2022; 32
Ren (10.1016/j.ijbiomac.2024.131025_bb0310) 2021; 273
Zhang (10.1016/j.ijbiomac.2024.131025_bb0070) 2022; 10
Zhang (10.1016/j.ijbiomac.2024.131025_bb0325) 2023; 15
Liu (10.1016/j.ijbiomac.2024.131025_bb0280) 2023; 33
Kang (10.1016/j.ijbiomac.2024.131025_bb0250) 2022; 284
Du (10.1016/j.ijbiomac.2024.131025_bb0405) 2023; 15
Park (10.1016/j.ijbiomac.2024.131025_bb0020) 2021; 10
Patel (10.1016/j.ijbiomac.2024.131025_bb0285) 2021; 11
Xu (10.1016/j.ijbiomac.2024.131025_bb0090) 2021; 189
Wang (10.1016/j.ijbiomac.2024.131025_bb0120) 2021; 268
Shen (10.1016/j.ijbiomac.2024.131025_bb0035) 2022; 34
Ge (10.1016/j.ijbiomac.2024.131025_bb0410) 2019; 14
Choudhury (10.1016/j.ijbiomac.2024.131025_bb0315) 2020; 156
Venkatesan (10.1016/j.ijbiomac.2024.131025_bb0225) 2012; 50
Karimi (10.1016/j.ijbiomac.2024.131025_bb0290) 2016; 8
Li (10.1016/j.ijbiomac.2024.131025_bb0435) 2023; 242
Raja (10.1016/j.ijbiomac.2024.131025_bb0075) 2020; 164
Liu (10.1016/j.ijbiomac.2024.131025_bb0400) 2022; 10
Zhang (10.1016/j.ijbiomac.2024.131025_bb0420) 2022; 295
Sun (10.1016/j.ijbiomac.2024.131025_bb0115) 2020; 382
Doshi (10.1016/j.ijbiomac.2024.131025_bb0205) 2017; 167
Xie (10.1016/j.ijbiomac.2024.131025_bb0415) 2024; 333
Zhou (10.1016/j.ijbiomac.2024.131025_bb0030) 2021; 403
Cheng (10.1016/j.ijbiomac.2024.131025_bb0055) 2023; 5
Li (10.1016/j.ijbiomac.2024.131025_bb0245) 2021; 18
Lee (10.1016/j.ijbiomac.2024.131025_bb0295) 2020; 120
Li (10.1016/j.ijbiomac.2024.131025_bb0390) 2023; 7
Kreller (10.1016/j.ijbiomac.2024.131025_bb0175) 2021; 208
Ding (10.1016/j.ijbiomac.2024.131025_bb0430) 2020; 248
Chen (10.1016/j.ijbiomac.2024.131025_bb0005) 2021; 9
Feng (10.1016/j.ijbiomac.2024.131025_bb0130) 2019; 181
Aztatzi-Pluma (10.1016/j.ijbiomac.2024.131025_bb0210) 2016; 120
Li (10.1016/j.ijbiomac.2024.131025_bb0380) 2022; 298
Wang (10.1016/j.ijbiomac.2024.131025_bb0010) 2022; 7
Ravanbakhsh (10.1016/j.ijbiomac.2024.131025_bb0355) 2019; 103
Wang (10.1016/j.ijbiomac.2024.131025_bb0425) 2022; 295
References_xml – volume: 34
  year: 2022
  ident: bb0035
  article-title: High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines
  publication-title: Adv. Mater.
– volume: 8
  start-page: 5020
  year: 2020
  end-page: 5028
  ident: bb0170
  article-title: 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents
  publication-title: Biomater. Sci.
– volume: 298
  year: 2022
  ident: bb0380
  article-title: Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors
  publication-title: Carbohydr. Polym.
– volume: 3
  year: 2022
  ident: bb0040
  article-title: Hysteresis-free and high-sensitivity strain sensing of ionically conductive hydrogels
  publication-title: Adv. NanoBiomed Res.
– volume: 5
  start-page: 10409
  year: 2022
  end-page: 10420
  ident: bb0235
  article-title: Temperature-sensitive hydrogels containing carboxylated chitosan-modified carbon nanotubes for controlled drug release
  publication-title: ACS Appl. Nano Mater.
– volume: 30
  year: 2020
  ident: bb0025
  article-title: Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices
  publication-title: Adv. Funct. Mater.
– volume: 191
  start-page: 344
  year: 2021
  end-page: 358
  ident: bb0100
  article-title: NIR as a “trigger switch” for rapid phase change, on-demand release, and photothermal synergistic antibacterial treatment with chitosan-based temperature-sensitive hydrogel
  publication-title: Int. J. Biol. Macromol.
– volume: 8
  start-page: 27254
  year: 2016
  end-page: 27263
  ident: bb0290
  article-title: Mechanically robust 3D nanostructure chitosan-based hydrogels with autonomic self-healing properties
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 29902
  year: 2023
  end-page: 29913
  ident: bb0325
  article-title: Adhesive ion-conducting hydrogel strain sensor with high sensitivity, long-term stability, and extreme temperature tolerance
  publication-title: ACS Appl. Mater. Interfaces
– volume: 284
  year: 2022
  ident: bb0165
  article-title: Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing
  publication-title: Carbohydr. Polym.
– volume: 14
  start-page: 14596
  year: 2022
  end-page: 14606
  ident: bb0360
  article-title: Motion detecting, temperature alarming, and wireless wearable bioelectronics based on intrinsically antibacterial conductive hydrogels
  publication-title: ACS Appl. Mater. Interfaces
– volume: 33
  year: 2021
  ident: bb0350
  article-title: Carbon nanotube–hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1449
  year: 2022
  end-page: 1468
  ident: bb0340
  article-title: Functional bioelectronic materials for long-term biocompatibility and functionality
  publication-title: ACS Appl. Electron. Mater.
– volume: 7
  start-page: 2925
  year: 2023
  end-page: 2957
  ident: bb0390
  article-title: Functional conductive hydrogels: from performance to flexible sensor applications
  publication-title: Mater. Chem. Front.
– volume: 242
  year: 2023
  ident: bb0435
  article-title: Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor
  publication-title: Int. J. Biol. Macromol.
– volume: 18
  start-page: 1201
  year: 2022
  end-page: 1208
  ident: bb0125
  article-title: Graphene oxide-based composite organohydrogels with high strength and low temperature resistance for strain sensors
  publication-title: Soft Matter
– volume: 284
  year: 2022
  ident: bb0250
  article-title: Chitosan-reinforced PHB hydrogel and aerogel monoliths fabricated by phase separation with the solvent-exchange method
  publication-title: Carbohydr. Polym.
– volume: 208
  year: 2021
  ident: bb0175
  article-title: Physico-chemical modification of gelatine for the improvement of 3D printability of oxidized alginate-gelatine hydrogels towards cartilage tissue engineering
  publication-title: Mater. Des.
– volume: 5
  start-page: 1816
  year: 2022
  end-page: 1838
  ident: bb0275
  article-title: Injectable liposome-based supramolecular hydrogels for the programmable release of multiple protein drugs
  publication-title: Matter
– volume: 388
  year: 2020
  ident: bb0145
  article-title: Chemically and mechanically robust SWCNT based strain sensor with monotonous piezoresistive response for infrastructure monitoring
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2021
  ident: bb0020
  article-title: Liquid metal-based soft electronics for wearable healthcare
  publication-title: Adv. Healthc. Mater.
– volume: 13
  start-page: 141
  year: 2014
  end-page: 158
  ident: bb0200
  article-title: Does the use of chitosan contribute to oxalate kidney stone formation?
  publication-title: Mar. Drugs
– volume: 12
  start-page: 4944
  year: 2020
  end-page: 4953
  ident: bb0155
  article-title: Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 109
  start-page: 1869
  year: 2021
  end-page: 1880
  ident: bb0160
  article-title: Enhanced osteogenic potential of unzipped carbon nanotubes for tissue engineering
  publication-title: J. Biomed. Mater. Res. A
– volume: 219
  year: 2021
  ident: bb0080
  article-title: Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor
  publication-title: Compos. Part B Eng.
– volume: 295
  year: 2022
  ident: bb0425
  article-title: Chitosan-driven biocompatible hydrogel based on water-soluble polypyrrole for stable human-machine interfaces
  publication-title: Carbohydr. Polym.
– volume: 248
  year: 2020
  ident: bb0430
  article-title: A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor
  publication-title: Carbohydr. Polym.
– volume: 9
  start-page: 2561
  year: 2021
  end-page: 2583
  ident: bb0005
  article-title: Multifunctional conductive hydrogels and their applications as smart wearable devices
  publication-title: J. Mater. Chem. B
– volume: 111
  start-page: 73
  year: 2022
  end-page: 84
  ident: bb0230
  article-title: The improvement of periodontal tissue regeneration using a 3D -printed carbon nanotube/chitosan/sodium alginate composite scaffold
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 10
  start-page: 14288
  year: 2022
  end-page: 14295
  ident: bb0070
  article-title: 3D printable conductive ionic hydrogels with self-adhesion performance for strain sensing
  publication-title: J. Mater. Chem. C
– volume: 268
  year: 2021
  ident: bb0120
  article-title: A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications
  publication-title: Carbohydr. Polym.
– volume: 103
  year: 2019
  ident: bb0355
  article-title: Carbon nanotube composite hydrogels for vocal fold tissue engineering: biocompatibility, rheology, and porosity
  publication-title: Mater. Sci. Eng. C
– volume: 3
  start-page: 3351
  year: 2017
  end-page: 3363
  ident: bb0255
  article-title: Functionalized graphene tagged polyurethanes for corrosion inhibitor and sustained drug delivery
  publication-title: ACS Biomater. Sci. Eng.
– volume: 115
  start-page: 678
  year: 2006
  end-page: 684
  ident: bb0265
  article-title: Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion
  publication-title: Sensors Actuators B Chem.
– volume: 528
  start-page: 6636
  year: 2011
  end-page: 6641
  ident: bb0270
  article-title: Mechanical properties of multilayered chitosan/CNT nanocomposite films
  publication-title: Mater. Sci. Eng. A
– volume: 165
  start-page: 39
  year: 2017
  end-page: 50
  ident: bb0320
  article-title: Salicyl-imine-chitosan hydrogels: supramolecular architecturing as a crosslinking method toward multifunctional hydrogels
  publication-title: Carbohydr. Polym.
– volume: 68
  start-page: 162
  year: 2015
  end-page: 169
  ident: bb0150
  article-title: Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement
  publication-title: Compos. Part B Eng.
– volume: 120
  start-page: 10834
  year: 2020
  end-page: 10886
  ident: bb0295
  article-title: Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks
  publication-title: Chem. Rev.
– volume: 179
  start-page: 398
  year: 2021
  end-page: 406
  ident: bb0330
  article-title: Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications
  publication-title: Int. J. Biol. Macromol.
– volume: 15
  start-page: 1785
  year: 2021
  end-page: 1794
  ident: bb0060
  article-title: Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors
  publication-title: ACS Nano
– volume: 382
  year: 2020
  ident: bb0115
  article-title: Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness
  publication-title: Chem. Eng. J.
– volume: 373
  start-page: 413
  year: 2019
  end-page: 424
  ident: bb0305
  article-title: Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 14612
  year: 2021
  end-page: 14622
  ident: bb0335
  article-title: Multifunctional self-healing dual network hydrogels constructed via host–guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions
  publication-title: ACS Appl. Mater. Interfaces
– volume: 276
  year: 2022
  ident: bb0105
  article-title: Robust, anti-freezing and conductive bonding of chitosan-based double-network hydrogels for stable-performance flexible electronic
  publication-title: Carbohydr. Polym.
– volume: 147
  start-page: 194
  year: 2020
  end-page: 199
  ident: bb0220
  article-title: Synthesis, characterization, and evaluation of antimicrobial activity of novel Chitosan/Tigecycline composite
  publication-title: Int. J. Biol. Macromol.
– volume: 50
  start-page: 393
  year: 2012
  end-page: 402
  ident: bb0225
  article-title: Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 15
  start-page: 23711
  year: 2023
  end-page: 23724
  ident: bb0405
  article-title: Bio-inspired homogeneous conductive hydrogel with flexibility and adhesiveness for information transmission and sign language recognition
  publication-title: ACS Appl. Mater. Interfaces
– volume: 333
  year: 2024
  ident: bb0415
  article-title: Dual–network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high–performance triboelectric nanogenerators
  publication-title: Carbohydr. Polym.
– volume: 11
  start-page: 291
  year: 2015
  end-page: 305
  ident: bb0345
  article-title: Synthesis and characterization of novel polycarbonate based polyurethane/polymer wrapped hydroxyapatite nanocomposites: mechanical properties, osteoconductivity and biocompatibility
  publication-title: J. Biomed. Nanotechnol.
– volume: 162
  start-page: 1429
  year: 2020
  end-page: 1441
  ident: bb0185
  article-title: Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 403
  year: 2021
  ident: bb0030
  article-title: Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers
  publication-title: Chem. Eng. J.
– volume: 254
  year: 2024
  ident: bb0370
  article-title: Lignosulfonate sodium assisted PEDOT-based all-gel supercapacitors with enhanced supercapacitance and wide temperature tolerance
  publication-title: Int. J. Biol. Macromol.
– volume: 4
  start-page: 9176
  year: 2022
  end-page: 9185
  ident: bb0045
  article-title: Chitosan-based self-healable and adhesive hydrogels for flexible strain sensor application
  publication-title: ACS Appl. Polym. Mater.
– volume: 427
  year: 2022
  ident: bb0140
  article-title: A thermally-electrically double-responsive polycaprolactone – thermoplastic polyurethane/multi-walled carbon nanotube fiber assisted with highly effective shape memory and strain sensing performance
  publication-title: Chem. Eng. J.
– volume: 678
  year: 2023
  ident: bb0375
  article-title: Improved capacitive performance of polypyrrole-based composite hydrogel for flexible self-powered sensing system
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 32
  year: 2022
  ident: bb0085
  article-title: Multifunctional hydrogels of polyvinyl alcohol/polydopamine functionalized with carbon nanomaterials as flexible sensors
  publication-title: Mater. Today Commun.
– volume: 11
  year: 2023
  ident: bb0095
  article-title: Recent advances in chitosan-based hydrogels for flexible wearable sensors
  publication-title: Chemosensors
– volume: 14
  start-page: 218
  year: 2019
  end-page: 228
  ident: bb0410
  article-title: Muscle-inspired self-healing hydrogels for strain and temperature sensor
  publication-title: ACS Nano
– volume: 132
  start-page: 416
  year: 2019
  end-page: 428
  ident: bb0365
  article-title: Synthesis and characterization of novel trimellitic anhydride isothiocyanate-cross linked chitosan hydrogels modified with multi-walled carbon nanotubes for enhancement of antimicrobial activity
  publication-title: Int. J. Biol. Macromol.
– volume: 5
  start-page: 4146
  year: 2023
  end-page: 4158
  ident: bb0055
  article-title: Poly(vinyl alcohol), tannic acid, and silver-based hydrogel strain sensors with “fish scale-like” surfaces
  publication-title: ACS Appl. Polym. Mater.
– volume: 10
  start-page: 25564
  year: 2022
  end-page: 25574
  ident: bb0400
  article-title: Stretchable strain sensor of composite hydrogels with high fatigue resistance and low hysteresis
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 7466
  year: 2021
  end-page: 7478
  ident: bb0285
  article-title: Fabrication and characterization of 3D printable nanocellulose-based hydrogels for tissue engineering
  publication-title: RSC Adv.
– volume: 365
  start-page: 10
  year: 2019
  end-page: 19
  ident: bb0050
  article-title: Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels
  publication-title: Chem. Eng. J.
– volume: 236
  year: 2020
  ident: bb0215
  article-title: Influence of multi-walled carbon nanotubes on the physico-chemical and biological responses of chitosan-based hybrid hydrogels
  publication-title: Carbohydr. Polym.
– volume: 164
  start-page: 4231
  year: 2020
  end-page: 4244
  ident: bb0075
  article-title: Recent development in chitosan-based electrochemical sensors and its sensing application
  publication-title: Int. J. Biol. Macromol.
– volume: 156
  start-page: 591
  year: 2020
  end-page: 597
  ident: bb0315
  article-title: pH mediated rheological modulation of chitosan hydrogels
  publication-title: Int. J. Biol. Macromol.
– volume: 167
  start-page: 644
  year: 2021
  end-page: 658
  ident: bb0300
  article-title: 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 7
  year: 2022
  ident: bb0010
  article-title: Engineered gelatin-based conductive hydrogels for flexible wearable electronic devices: fundamentals and recent advances
  publication-title: J. Sci. Adv. Mater. Devices
– volume: 295
  year: 2022
  ident: bb0420
  article-title: Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors
  publication-title: Carbohydr. Polym.
– volume: 7
  start-page: 9481
  year: 2019
  end-page: 9486
  ident: bb0015
  article-title: Highly stretchable electrochromic hydrogels for use in wearable electronic devices
  publication-title: J. Mater. Chem. C
– volume: 302
  year: 2023
  ident: bb0110
  article-title: Ionic crosslinking of alginate/carboxymethyl chitosan fluorescent hydrogel for bacterial detection and sterilization
  publication-title: Carbohydr. Polym.
– volume: 167
  start-page: 326
  year: 2017
  end-page: 336
  ident: bb0205
  article-title: Effectiveness of N,O-carboxymethyl chitosan on destabilization of Marine Diesel, Diesel and Marine-2T oil for oil spill treatment
  publication-title: Carbohydr. Polym.
– volume: 33
  start-page: 2214196
  year: 2023
  ident: bb0280
  article-title: 3D printing of multifunctional conductive polymer composite hydrogels
  publication-title: Adv. Funct. Mater.
– volume: 18
  year: 2021
  ident: bb0245
  article-title: Development of conductive hydrogels for fabricating flexible strain sensors
  publication-title: Small
– volume: 103
  start-page: 106
  year: 2017
  end-page: 112
  ident: bb0260
  article-title: Property improvements of CNT films induced by wet-stretching and tension-heating post treatments
  publication-title: Compos. A: Appl. Sci. Manuf.
– volume: 31
  year: 2019
  ident: bb0135
  article-title: The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 181
  year: 2019
  ident: bb0130
  article-title: High-strength and physical cross-linked nanocomposite hydrogel with clay nanotubes for strain sensor and dye adsorption application
  publication-title: Compos. Sci. Technol.
– volume: 315
  year: 2023
  ident: bb0180
  article-title: Nanocellulose-assisted 3D-printable, transparent, bio-adhesive, conductive, and biocompatible hydrogels as sensors and moist electric generators
  publication-title: Carbohydr. Polym.
– volume: 120
  start-page: 2371
  year: 2016
  end-page: 2378
  ident: bb0210
  article-title: Study of the molecular interactions between functionalized carbon nanotubes and chitosan
  publication-title: J. Phys. Chem. C
– volume: 170
  start-page: 178
  year: 2021
  end-page: 188
  ident: bb0195
  article-title: Multifunctional bioactive chitosan/cellulose nanocrystal scaffolds eradicate bacterial growth and sustain drug delivery
  publication-title: Int. J. Biol. Macromol.
– volume: 273
  year: 2021
  ident: bb0310
  article-title: Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor
  publication-title: Carbohydr. Polym.
– volume: 5
  start-page: 2628
  year: 2023
  end-page: 2638
  ident: bb0385
  article-title: High-sensitivity composite dual-network hydrogel strain sensor and its application in intelligent recognition and motion monitoring
  publication-title: ACS Appl. Polym. Mater.
– volume: 264
  year: 2021
  ident: bb0240
  article-title: 3D printed alginate-cellulose nanofibers based patches for local curcumin administration
  publication-title: Carbohydr. Polym.
– volume: 425
  year: 2021
  ident: bb0065
  article-title: Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor
  publication-title: Chem. Eng. J.
– volume: 12
  year: 2023
  ident: bb0190
  article-title: Transcriptomic changes toward osteogenic differentiation of mesenchymal stem cells on 3D-printed GelMA/CNC hydrogel under pulsatile pressure environment
  publication-title: Adv. Healthc. Mater.
– volume: 189
  start-page: 316
  year: 2021
  end-page: 323
  ident: bb0090
  article-title: Temperature-sensitive poly(N-isopropylacrylamide)-chitosan hydrogel for fluorescence sensors in living cells and its antibacterial application
  publication-title: Int. J. Biol. Macromol.
– volume: 14
  year: 2022
  ident: bb0395
  article-title: Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications
  publication-title: NPG Asia Mater.
– volume: 4
  start-page: 9176
  issue: 12
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0045
  article-title: Chitosan-based self-healable and adhesive hydrogels for flexible strain sensor application
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.2c01488
– volume: 11
  issue: 1
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0095
  article-title: Recent advances in chitosan-based hydrogels for flexible wearable sensors
  publication-title: Chemosensors
  doi: 10.3390/chemosensors11010039
– volume: 219
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0080
  article-title: Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2021.108965
– volume: 315
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0180
  article-title: Nanocellulose-assisted 3D-printable, transparent, bio-adhesive, conductive, and biocompatible hydrogels as sensors and moist electric generators
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2023.120963
– volume: 9
  start-page: 2561
  issue: 11
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0005
  article-title: Multifunctional conductive hydrogels and their applications as smart wearable devices
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB02929G
– volume: 5
  start-page: 4146
  issue: 6
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0055
  article-title: Poly(vinyl alcohol), tannic acid, and silver-based hydrogel strain sensors with “fish scale-like” surfaces
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.3c00356
– volume: 147
  start-page: 194
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0220
  article-title: Synthesis, characterization, and evaluation of antimicrobial activity of novel Chitosan/Tigecycline composite
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.01.041
– volume: 162
  start-page: 1429
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0185
  article-title: Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.07.246
– volume: 181
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.131025_bb0130
  article-title: High-strength and physical cross-linked nanocomposite hydrogel with clay nanotubes for strain sensor and dye adsorption application
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107701
– volume: 678
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0375
  article-title: Improved capacitive performance of polypyrrole-based composite hydrogel for flexible self-powered sensing system
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2023.132452
– volume: 12
  issue: 11
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0190
  article-title: Transcriptomic changes toward osteogenic differentiation of mesenchymal stem cells on 3D-printed GelMA/CNC hydrogel under pulsatile pressure environment
  publication-title: Adv. Healthc. Mater.
– volume: 373
  start-page: 413
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.131025_bb0305
  article-title: Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.043
– volume: 132
  start-page: 416
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.131025_bb0365
  article-title: Synthesis and characterization of novel trimellitic anhydride isothiocyanate-cross linked chitosan hydrogels modified with multi-walled carbon nanotubes for enhancement of antimicrobial activity
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.03.195
– volume: 284
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0165
  article-title: Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.119202
– volume: 170
  start-page: 178
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0195
  article-title: Multifunctional bioactive chitosan/cellulose nanocrystal scaffolds eradicate bacterial growth and sustain drug delivery
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.12.145
– volume: 208
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0175
  article-title: Physico-chemical modification of gelatine for the improvement of 3D printability of oxidized alginate-gelatine hydrogels towards cartilage tissue engineering
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109877
– volume: 156
  start-page: 591
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0315
  article-title: pH mediated rheological modulation of chitosan hydrogels
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.04.049
– volume: 120
  start-page: 2371
  issue: 4
  year: 2016
  ident: 10.1016/j.ijbiomac.2024.131025_bb0210
  article-title: Study of the molecular interactions between functionalized carbon nanotubes and chitosan
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b08136
– volume: 12
  start-page: 4944
  issue: 4
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0155
  article-title: Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21659
– volume: 302
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0110
  article-title: Ionic crosslinking of alginate/carboxymethyl chitosan fluorescent hydrogel for bacterial detection and sterilization
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.120427
– volume: 109
  start-page: 1869
  issue: 10
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0160
  article-title: Enhanced osteogenic potential of unzipped carbon nanotubes for tissue engineering
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.37179
– volume: 264
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0240
  article-title: 3D printed alginate-cellulose nanofibers based patches for local curcumin administration
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118026
– volume: 167
  start-page: 644
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0300
  article-title: 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.12.011
– volume: 273
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0310
  article-title: Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118533
– volume: 236
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0215
  article-title: Influence of multi-walled carbon nanotubes on the physico-chemical and biological responses of chitosan-based hybrid hydrogels
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.115971
– volume: 50
  start-page: 393
  issue: 2
  year: 2012
  ident: 10.1016/j.ijbiomac.2024.131025_bb0225
  article-title: Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2011.12.032
– volume: 115
  start-page: 678
  issue: 2
  year: 2006
  ident: 10.1016/j.ijbiomac.2024.131025_bb0265
  article-title: Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2005.10.047
– volume: 189
  start-page: 316
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0090
  article-title: Temperature-sensitive poly(N-isopropylacrylamide)-chitosan hydrogel for fluorescence sensors in living cells and its antibacterial application
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.08.057
– volume: 7
  issue: 3
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0010
  article-title: Engineered gelatin-based conductive hydrogels for flexible wearable electronic devices: fundamentals and recent advances
  publication-title: J. Sci. Adv. Mater. Devices
– volume: 333
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.131025_bb0415
  article-title: Dual–network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high–performance triboelectric nanogenerators
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2024.121960
– volume: 11
  start-page: 291
  issue: 2
  year: 2015
  ident: 10.1016/j.ijbiomac.2024.131025_bb0345
  article-title: Synthesis and characterization of novel polycarbonate based polyurethane/polymer wrapped hydroxyapatite nanocomposites: mechanical properties, osteoconductivity and biocompatibility
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2015.1975
– volume: 284
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0250
  article-title: Chitosan-reinforced PHB hydrogel and aerogel monoliths fabricated by phase separation with the solvent-exchange method
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.119184
– volume: 15
  start-page: 29902
  issue: 25
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0325
  article-title: Adhesive ion-conducting hydrogel strain sensor with high sensitivity, long-term stability, and extreme temperature tolerance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c03624
– volume: 8
  start-page: 5020
  issue: 18
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0170
  article-title: 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM00896F
– volume: 33
  start-page: 2214196
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0280
  article-title: 3D printing of multifunctional conductive polymer composite hydrogels
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214196
– volume: 14
  issue: 1
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0395
  article-title: Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-022-00357-9
– volume: 427
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0140
  article-title: A thermally-electrically double-responsive polycaprolactone – thermoplastic polyurethane/multi-walled carbon nanotube fiber assisted with highly effective shape memory and strain sensing performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131648
– volume: 15
  start-page: 1785
  issue: 1
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0060
  article-title: Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09577
– volume: 103
  start-page: 106
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.131025_bb0260
  article-title: Property improvements of CNT films induced by wet-stretching and tension-heating post treatments
  publication-title: Compos. A: Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2017.10.002
– volume: 8
  start-page: 27254
  issue: 40
  year: 2016
  ident: 10.1016/j.ijbiomac.2024.131025_bb0290
  article-title: Mechanically robust 3D nanostructure chitosan-based hydrogels with autonomic self-healing properties
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10375
– volume: 33
  issue: 41
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0350
  article-title: Carbon nanotube–hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102981
– volume: 242
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0435
  article-title: Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor
  publication-title: Int. J. Biol. Macromol.
– volume: 34
  issue: 32
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0035
  article-title: High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203650
– volume: 10
  start-page: 14288
  issue: 38
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0070
  article-title: 3D printable conductive ionic hydrogels with self-adhesion performance for strain sensing
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D2TC02706B
– volume: 111
  start-page: 73
  issue: 1
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0230
  article-title: The improvement of periodontal tissue regeneration using a 3D -printed carbon nanotube/chitosan/sodium alginate composite scaffold
  publication-title: J Biomed Mater Res B Appl Biomater
  doi: 10.1002/jbm.b.35133
– volume: 3
  start-page: 3351
  issue: 12
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.131025_bb0255
  article-title: Functionalized graphene tagged polyurethanes for corrosion inhibitor and sustained drug delivery
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b00342
– volume: 5
  start-page: 10409
  issue: 8
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0235
  article-title: Temperature-sensitive hydrogels containing carboxylated chitosan-modified carbon nanotubes for controlled drug release
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c01777
– volume: 103
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.131025_bb0355
  article-title: Carbon nanotube composite hydrogels for vocal fold tissue engineering: biocompatibility, rheology, and porosity
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.109861
– volume: 5
  start-page: 2628
  issue: 4
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0385
  article-title: High-sensitivity composite dual-network hydrogel strain sensor and its application in intelligent recognition and motion monitoring
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.2c02215
– volume: 388
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0145
  article-title: Chemically and mechanically robust SWCNT based strain sensor with monotonous piezoresistive response for infrastructure monitoring
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124174
– volume: 268
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0120
  article-title: A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118210
– volume: 11
  start-page: 7466
  issue: 13
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0285
  article-title: Fabrication and characterization of 3D printable nanocellulose-based hydrogels for tissue engineering
  publication-title: RSC Adv.
  doi: 10.1039/D0RA09620B
– volume: 14
  start-page: 14596
  issue: 12
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0360
  article-title: Motion detecting, temperature alarming, and wireless wearable bioelectronics based on intrinsically antibacterial conductive hydrogels
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c00713
– volume: 15
  start-page: 23711
  issue: 19
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0405
  article-title: Bio-inspired homogeneous conductive hydrogel with flexibility and adhesiveness for information transmission and sign language recognition
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c02105
– volume: 382
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0115
  article-title: Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122832
– volume: 31
  issue: 9
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.131025_bb0135
  article-title: The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 68
  start-page: 162
  year: 2015
  ident: 10.1016/j.ijbiomac.2024.131025_bb0150
  article-title: Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2014.08.027
– volume: 7
  start-page: 2925
  issue: 15
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.131025_bb0390
  article-title: Functional conductive hydrogels: from performance to flexible sensor applications
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00109A
– volume: 10
  issue: 17
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0020
  article-title: Liquid metal-based soft electronics for wearable healthcare
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202002280
– volume: 18
  issue: 5
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0245
  article-title: Development of conductive hydrogels for fabricating flexible strain sensors
  publication-title: Small
  doi: 10.1002/smll.202101518
– volume: 13
  start-page: 14612
  issue: 12
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0335
  article-title: Multifunctional self-healing dual network hydrogels constructed via host–guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c03213
– volume: 425
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0065
  article-title: Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131523
– volume: 165
  start-page: 39
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.131025_bb0320
  article-title: Salicyl-imine-chitosan hydrogels: supramolecular architecturing as a crosslinking method toward multifunctional hydrogels
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.02.027
– volume: 179
  start-page: 398
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0330
  article-title: Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.03.027
– volume: 14
  start-page: 218
  issue: 1
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.131025_bb0410
  article-title: Muscle-inspired self-healing hydrogels for strain and temperature sensor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07874
– volume: 365
  start-page: 10
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.131025_bb0050
  article-title: Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.014
– volume: 32
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0085
  article-title: Multifunctional hydrogels of polyvinyl alcohol/polydopamine functionalized with carbon nanomaterials as flexible sensors
  publication-title: Mater. Today Commun.
– volume: 403
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0030
  article-title: Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126307
– volume: 298
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0380
  article-title: Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.120060
– volume: 295
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0425
  article-title: Chitosan-driven biocompatible hydrogel based on water-soluble polypyrrole for stable human-machine interfaces
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.119890
– volume: 254
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.131025_bb0370
  article-title: Lignosulfonate sodium assisted PEDOT-based all-gel supercapacitors with enhanced supercapacitance and wide temperature tolerance
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.127852
– volume: 248
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0430
  article-title: A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116797
– volume: 7
  start-page: 9481
  issue: 31
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.131025_bb0015
  article-title: Highly stretchable electrochromic hydrogels for use in wearable electronic devices
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC02673H
– volume: 3
  issue: 2
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0040
  article-title: Hysteresis-free and high-sensitivity strain sensing of ionically conductive hydrogels
  publication-title: Adv. NanoBiomed Res.
  doi: 10.1002/anbr.202200132
– volume: 167
  start-page: 326
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.131025_bb0205
  article-title: Effectiveness of N,O-carboxymethyl chitosan on destabilization of Marine Diesel, Diesel and Marine-2T oil for oil spill treatment
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.03.064
– volume: 5
  start-page: 1816
  issue: 6
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0275
  article-title: Injectable liposome-based supramolecular hydrogels for the programmable release of multiple protein drugs
  publication-title: Matter
  doi: 10.1016/j.matt.2022.03.001
– volume: 295
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0420
  article-title: Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.119848
– volume: 528
  start-page: 6636
  issue: 21
  year: 2011
  ident: 10.1016/j.ijbiomac.2024.131025_bb0270
  article-title: Mechanical properties of multilayered chitosan/CNT nanocomposite films
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2011.05.028
– volume: 164
  start-page: 4231
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0075
  article-title: Recent development in chitosan-based electrochemical sensors and its sensing application
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.09.012
– volume: 30
  issue: 30
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0025
  article-title: Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002041
– volume: 13
  start-page: 141
  issue: 1
  year: 2014
  ident: 10.1016/j.ijbiomac.2024.131025_bb0200
  article-title: Does the use of chitosan contribute to oxalate kidney stone formation?
  publication-title: Mar. Drugs
  doi: 10.3390/md13010141
– volume: 276
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0105
  article-title: Robust, anti-freezing and conductive bonding of chitosan-based double-network hydrogels for stable-performance flexible electronic
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118753
– volume: 120
  start-page: 10834
  issue: 19
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.131025_bb0295
  article-title: Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00015
– volume: 18
  start-page: 1201
  issue: 6
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0125
  article-title: Graphene oxide-based composite organohydrogels with high strength and low temperature resistance for strain sensors
  publication-title: Soft Matter
  doi: 10.1039/D1SM01655E
– volume: 191
  start-page: 344
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.131025_bb0100
  article-title: NIR as a “trigger switch” for rapid phase change, on-demand release, and photothermal synergistic antibacterial treatment with chitosan-based temperature-sensitive hydrogel
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.09.093
– volume: 4
  start-page: 1449
  issue: 4
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0340
  article-title: Functional bioelectronic materials for long-term biocompatibility and functionality
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.1c01212
– volume: 10
  start-page: 25564
  issue: 48
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.131025_bb0400
  article-title: Stretchable strain sensor of composite hydrogels with high fatigue resistance and low hysteresis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA07447H
SSID ssj0006518
Score 2.448528
Snippet Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 131025
SubjectTerms Adhesiveness
antibacterial properties
Biocompatibility
carbon nanotubes
Carboxymethyl chitosan
chitosan
Escherichia coli
fibroblasts
glass
health services
humans
hydrogels
plastics
skin (animal)
storage modulus
Strain-sensing
Unzipped CNTs
Title Unzipped carbon nanotubes assisted 3D printable functionalized chitosan hydrogels for strain sensing applications
URI https://dx.doi.org/10.1016/j.ijbiomac.2024.131025
https://www.ncbi.nlm.nih.gov/pubmed/38513895
https://www.proquest.com/docview/2974003185
https://www.proquest.com/docview/3153769854
Volume 265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoAL4s3yqIzENbteP7LJsVqoFhA9sVJv1jh22qyQs2yyB3rob-9MHqVIQA8ck3ikkWcy89nzYux9roV2IQuJLAUk2hTzxAmQSRkEpCosyiLQfcfX03S11p_PzNkBW461MJRWOdj-3qZ31np4Mxt2c7atqhmlJaF7UtSkC_VS0Lld6wVp-fTqV5pHaro7Plqc0OpbVcKbabWhInegVoZST-cIdWhk9p8d1N8AaOeITh6xhwOC5Mc9k4_ZQYhP2P3lOLjtKfuxjpfVdhs8L2Dn6sgjxLrdu9BwRMokVs_VB043ei0VTnHybf2VYHVJVBf4lzcQ-cVPv6vPkTeOyJY33TQJ3lDGezzntyPfz9j65OO35SoZJiskBW5WmwD6IAiu0Eak0melQJBUgDYuzwMClNJQvLTUXpYBJH4STmvEFSlFKRGhGfWcHcY6hpeMLzKlUi9BKO-0Tx0UALBQ4DPphRfZhJlxO20xtB0nfr_bMb9sY0cxWBKD7cUwYbMbum3feONOinyUlv1NhSx6hztp343itSgtCppADPW-sRIPXJ3l-8caNaemOHlm9IS96HXjhmeFkBZBoXn1H9y9Zg_oqU8YesMO290-vEUs1LqjTtmP2L3jT19Wp9dDPAqu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXBOW1PIqR4Jhdrx_Z5MABtVRb-jh1pd6MHTttVpWzbLJC7aF_qn-QmTxKkYAeUK-xLY08k5nP8yTkQyqZtD7xEc-ZiaTKxpFlhke5ZyYWfpJnHv0dh0fxdCa_nqiTNXLd18JgWmWn-1ud3mjr7suou83RoihGmJYE5klgky6QS8a6zMp9f_ED3m3Vp70dYPJHzne_HG9Po260QJTB7joyoISNt5lULOYuyRmghMxIZdPUg4XOFQYMc-l47g2HJWalBMMaY5gOIAqOigC9_0CCusCxCcOrX3klsWqcikhdhOTdKkueD4s5VtUb7J3I5XAM2ApndP_ZIv4N8TaWb_cxedRBVvq5vZUnZM2HTbKx3U-Ke0q-z8JlsVh4RzOztGWgwYSyXllfUYDmKEeOih2KLsQaK7UoGtPWB1lc4qkzUCuVCfTswi3LU6CNApSmVTO-glaYYh9O6e1Q-zMyu5f7fk7WQxn8S0IniRCx44YJZ6WLrcmMMRNhXMIdcywZENVfp866PudI77nuE9rmumeDRjbolg0DMro5t2g7fdx5Iu25pX-TWQ3m6M6z73v2auAWRmlM8OWq0hxeeI2q_cceMcYuPGmi5IC8aGXjhmYBGBpQqHr1H9S9IxvT48MDfbB3tP-aPMSVNlvpDVmvlyv_FoBYbbcawafk233_aT8BQzhENg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unzipped+carbon+nanotubes+assisted+3D+printable+functionalized+chitosan+hydrogels+for+strain+sensing+applications&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Patel%2C+Dinesh+K&rft.au=Won%2C+So-Yeon&rft.au=Patil%2C+Tejal+V&rft.au=Dutta%2C+Sayan+Deb&rft.date=2024-04-01&rft.issn=1879-0003&rft.eissn=1879-0003&rft.volume=265&rft.issue=Pt+2&rft.spage=131025&rft_id=info:doi/10.1016%2Fj.ijbiomac.2024.131025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon