Biochar-based materials in environmental pollutant elimination, H2 production and CO2 capture applications

Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this review article, biochar and biochar-based materials in the removal of environmental pollutants, hydrogen generation and carbon dioxide capture...

Full description

Saved in:
Bibliographic Details
Published inBiochar (Online) Vol. 5; no. 1; pp. 1 - 24
Main Authors Fang, Lin, Huang, Tao, Lu, Hua, Wu, Xi-Lin, Chen, Zhongshan, Yang, Hui, Wang, Suhua, Tang, Zhenwu, Li, Zhuang, Hu, Baowei, Wang, Xiangke
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 20.07.2023
Springer
Subjects
Online AccessGet full text
ISSN2524-7867
2524-7867
DOI10.1007/s42773-023-00237-7

Cover

Loading…
Abstract Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this review article, biochar and biochar-based materials in the removal of environmental pollutants, hydrogen generation and carbon dioxide capture were summarized and compared. The interaction mechanisms were discussed from the experimental results and characterization analysis. The high porous structures, active surface sites, (co)doping of single metals/nonmetals, and incorporation of metal oxides or other materials improved the high activity of biochar-based materials in their applications. However, there are still some challenges such as: (1) the fact that H 2 generation with high selectivity or the produced syngas to meet the real application requirement in industrial is the main challenge in H 2 production; (2) the fact that the selective capture of CO 2 with high stability, high adsorption capacity and recyclability at low-cost should be considered and focused on; (3) the sorption-(photo)degradation of the organic chemicals; and (4) the fact that the sorption-reduction-extraction/solidification of metals/radionuclides are efficient methods for the elimination of environmental pollutants. In the end, the perspectives, challenges and possible techniques for biochar-based materials’ real application in future were described. Graphical Abstract Highlights Biochar-based composites exhibited high degradation abilities for organic pollutants. Biochar-based materials showed high removal/immobilization efficiency of metals through sorption-reduction. Biochar and biochar-based materials could generate H 2 with high efficiency. Biochar-based materials can capture and separate CO 2 from complex systems with high selectivity.
AbstractList Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this review article, biochar and biochar-based materials in the removal of environmental pollutants, hydrogen generation and carbon dioxide capture were summarized and compared. The interaction mechanisms were discussed from the experimental results and characterization analysis. The high porous structures, active surface sites, (co)doping of single metals/nonmetals, and incorporation of metal oxides or other materials improved the high activity of biochar-based materials in their applications. However, there are still some challenges such as: (1) the fact that H 2 generation with high selectivity or the produced syngas to meet the real application requirement in industrial is the main challenge in H 2 production; (2) the fact that the selective capture of CO 2 with high stability, high adsorption capacity and recyclability at low-cost should be considered and focused on; (3) the sorption-(photo)degradation of the organic chemicals; and (4) the fact that the sorption-reduction-extraction/solidification of metals/radionuclides are efficient methods for the elimination of environmental pollutants. In the end, the perspectives, challenges and possible techniques for biochar-based materials’ real application in future were described. Graphical Abstract
Abstract Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this review article, biochar and biochar-based materials in the removal of environmental pollutants, hydrogen generation and carbon dioxide capture were summarized and compared. The interaction mechanisms were discussed from the experimental results and characterization analysis. The high porous structures, active surface sites, (co)doping of single metals/nonmetals, and incorporation of metal oxides or other materials improved the high activity of biochar-based materials in their applications. However, there are still some challenges such as: (1) the fact that H2 generation with high selectivity or the produced syngas to meet the real application requirement in industrial is the main challenge in H2 production; (2) the fact that the selective capture of CO2 with high stability, high adsorption capacity and recyclability at low-cost should be considered and focused on; (3) the sorption-(photo)degradation of the organic chemicals; and (4) the fact that the sorption-reduction-extraction/solidification of metals/radionuclides are efficient methods for the elimination of environmental pollutants. In the end, the perspectives, challenges and possible techniques for biochar-based materials’ real application in future were described. Graphical Abstract
Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this review article, biochar and biochar-based materials in the removal of environmental pollutants, hydrogen generation and carbon dioxide capture were summarized and compared. The interaction mechanisms were discussed from the experimental results and characterization analysis. The high porous structures, active surface sites, (co)doping of single metals/nonmetals, and incorporation of metal oxides or other materials improved the high activity of biochar-based materials in their applications. However, there are still some challenges such as: (1) the fact that H 2 generation with high selectivity or the produced syngas to meet the real application requirement in industrial is the main challenge in H 2 production; (2) the fact that the selective capture of CO 2 with high stability, high adsorption capacity and recyclability at low-cost should be considered and focused on; (3) the sorption-(photo)degradation of the organic chemicals; and (4) the fact that the sorption-reduction-extraction/solidification of metals/radionuclides are efficient methods for the elimination of environmental pollutants. In the end, the perspectives, challenges and possible techniques for biochar-based materials’ real application in future were described. Graphical Abstract Highlights Biochar-based composites exhibited high degradation abilities for organic pollutants. Biochar-based materials showed high removal/immobilization efficiency of metals through sorption-reduction. Biochar and biochar-based materials could generate H 2 with high efficiency. Biochar-based materials can capture and separate CO 2 from complex systems with high selectivity.
ArticleNumber 42
Author Wang, Xiangke
Chen, Zhongshan
Wu, Xi-Lin
Wang, Suhua
Hu, Baowei
Li, Zhuang
Lu, Hua
Huang, Tao
Fang, Lin
Tang, Zhenwu
Yang, Hui
Author_xml – sequence: 1
  givenname: Lin
  surname: Fang
  fullname: Fang, Lin
  organization: School of Life Science, Shaoxing University
– sequence: 2
  givenname: Tao
  surname: Huang
  fullname: Huang, Tao
  organization: School of Materials Engineering, Changshu Institute of Technology
– sequence: 3
  givenname: Hua
  surname: Lu
  fullname: Lu, Hua
  organization: School of Life Science, Shaoxing University, Shaoxing Sanhe Testing Technology Co., LTD
– sequence: 4
  givenname: Xi-Lin
  surname: Wu
  fullname: Wu, Xi-Lin
  email: dbwxl@zjnu.cn
  organization: College of Geography and Environmental Science, Zhejiang Normal University
– sequence: 5
  givenname: Zhongshan
  surname: Chen
  fullname: Chen, Zhongshan
  organization: College of Environmental Science and Engineering, North China Electric Power University
– sequence: 6
  givenname: Hui
  surname: Yang
  fullname: Yang, Hui
  organization: College of Environmental Science and Engineering, North China Electric Power University
– sequence: 7
  givenname: Suhua
  surname: Wang
  fullname: Wang, Suhua
  organization: School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology
– sequence: 8
  givenname: Zhenwu
  surname: Tang
  fullname: Tang, Zhenwu
  organization: College of Life and Environmental Sciences, Minzu University of China
– sequence: 9
  givenname: Zhuang
  surname: Li
  fullname: Li, Zhuang
  organization: College of Environmental Science and Engineering, North China Electric Power University
– sequence: 10
  givenname: Baowei
  surname: Hu
  fullname: Hu, Baowei
  email: hbw@usx.edu.cn
  organization: School of Life Science, Shaoxing University
– sequence: 11
  givenname: Xiangke
  orcidid: 0000-0002-3352-1617
  surname: Wang
  fullname: Wang, Xiangke
  email: xkwang@ncepu.edu.cn
  organization: School of Life Science, Shaoxing University, College of Environmental Science and Engineering, North China Electric Power University
BookMark eNp9UU1vGyEQRVUqNXXyB3riB2RbYFnYPbZWviRLvjRnNAuzKdYaVoAr9d8X24lU9eDDMDPovQcz7zO5CjEgIV84-8oZ09-yFFq3DRM16qEb_YFci07IRvdKX_1TfyK3Oe9YRXWcq3a4JrsfPtpfkJoRMjq6h4LJw5ypDxTDb59i2GMoMNMlzvOhQCgUZ7_3AYqP4Y4-Cbqk6A722FIIjq63glpYyiEhhWWZvT1B8w35OFVlvH3LK_LycP9z_dRsto_P6--bxkrGSzPYrkWGFpWdHAgQdhgnpWWn-kGCauXI-mGSVjELohfo2loqHDhO3Vjnalfk-azrIuzMkvwe0h8TwZvTRUyvBlLxdkaDPeeOaWcHqeQo63O1l86xDoaun6aq1Z-1bIo5J5yM9eU0TkngZ8OZOVpgzhaYun1zssDoShX_Ud-_cpHUnkm5gsMrJrOLhxTqui6x_gIdo5y-
CitedBy_id crossref_primary_10_1007_s42773_025_00439_1
crossref_primary_10_1016_j_jaap_2024_106622
crossref_primary_10_1007_s13399_023_05018_7
crossref_primary_10_1073_pnas_2304552120
crossref_primary_10_1016_j_mtchem_2024_102383
crossref_primary_10_1080_10643389_2023_2274259
crossref_primary_10_1007_s11356_023_30961_3
crossref_primary_10_1007_s11705_024_2466_5
crossref_primary_10_1016_j_apcatb_2023_123629
crossref_primary_10_1007_s44279_024_00033_2
crossref_primary_10_1016_j_est_2024_114613
crossref_primary_10_1002_adsu_202400431
crossref_primary_10_1007_s42773_024_00369_4
crossref_primary_10_1021_acsestwater_4c00344
crossref_primary_10_1515_ijmr_2023_0263
crossref_primary_10_1007_s42773_024_00304_7
crossref_primary_10_1007_s13399_024_05296_9
crossref_primary_10_1016_j_jallcom_2024_174378
crossref_primary_10_1016_j_jpcs_2024_111867
crossref_primary_10_1016_j_seppur_2023_124865
crossref_primary_10_1007_s13399_024_05989_1
crossref_primary_10_1016_j_jwpe_2024_106147
crossref_primary_10_1016_j_electacta_2024_143794
crossref_primary_10_1016_j_fuel_2025_134588
crossref_primary_10_1007_s11356_024_33959_7
crossref_primary_10_1016_j_carbon_2023_118584
crossref_primary_10_1007_s41207_024_00514_2
crossref_primary_10_1016_j_jece_2023_111257
crossref_primary_10_1016_j_ijggc_2024_104107
crossref_primary_10_1016_j_jallcom_2024_177908
crossref_primary_10_3390_molecules29010063
crossref_primary_10_1007_s13399_024_06435_y
crossref_primary_10_1016_j_hybadv_2023_100113
crossref_primary_10_1016_j_jece_2023_110955
crossref_primary_10_1016_j_jclepro_2025_145194
crossref_primary_10_1016_j_scitotenv_2023_166841
crossref_primary_10_1016_j_jcis_2024_07_024
crossref_primary_10_1007_s11270_024_06932_w
crossref_primary_10_1515_npprj_2023_0049
crossref_primary_10_1007_s11157_024_09700_8
crossref_primary_10_1007_s11869_025_01692_w
crossref_primary_10_1007_s11356_023_31268_z
crossref_primary_10_1016_j_dwt_2024_100542
crossref_primary_10_1007_s10098_024_02962_4
crossref_primary_10_1016_j_ijggc_2024_104156
crossref_primary_10_1021_acsestengg_4c00407
crossref_primary_10_1016_j_bbrep_2023_101601
crossref_primary_10_1016_j_jconhyd_2024_104412
crossref_primary_10_1039_D3CY01700A
crossref_primary_10_1039_D3TA03310D
crossref_primary_10_1016_j_ijhydene_2024_02_045
crossref_primary_10_1016_j_apsusc_2023_159048
crossref_primary_10_1016_j_jece_2024_114452
crossref_primary_10_1016_j_jtice_2024_105670
crossref_primary_10_1016_j_renene_2024_122287
crossref_primary_10_1021_acs_langmuir_3c02739
crossref_primary_10_1016_j_apcatb_2024_123898
crossref_primary_10_1515_ract_2024_0301
crossref_primary_10_1016_j_pmatsci_2024_101289
crossref_primary_10_1021_acs_est_3c09579
crossref_primary_10_1016_j_renene_2024_120777
crossref_primary_10_1007_s13201_024_02287_z
crossref_primary_10_1016_j_esi_2024_02_002
crossref_primary_10_1016_j_jenvman_2024_121160
crossref_primary_10_1039_D3MA00880K
crossref_primary_10_1016_j_seppur_2023_124937
crossref_primary_10_1021_acsomega_3c07200
crossref_primary_10_1007_s00289_025_05702_w
crossref_primary_10_1080_10643389_2023_2284646
crossref_primary_10_1007_s42773_024_00316_3
crossref_primary_10_1016_j_seppur_2023_126199
crossref_primary_10_1021_acssuschemeng_4c03359
crossref_primary_10_1016_j_seppur_2024_129320
crossref_primary_10_1080_15569543_2024_2309208
crossref_primary_10_1021_acsanm_4c02713
crossref_primary_10_1016_j_sajce_2024_04_004
Cites_doi 10.1016/j.watres.2017.02.063
10.1016/j.scitotenv.2023.161767
10.1016/j.jclepro.2022.133971
10.1016/j.scib.2022.02.012
10.1016/j.jhazmat.2019.121357
10.1016/j.scitotenv.2020.139750
10.1016/j.renene.2015.02.013
10.1016/j.scitotenv.2019.135763
10.1080/10643389.2020.1734433
10.1016/j.seppur.2022.121295
10.1007/s13762-015-0873-3
10.1016/j.envpol.2016.03.013
10.1016/j.jclepro.2020.122550
10.15244/pjoes/99837
10.1021/jacsau.2c00614
10.1016/j.biortech.2021.125086
10.1016/j.scib.2022.10.013
10.1038/s41467-023-36710-x
10.1016/j.psep.2017.02.010
10.1039/C7CS00543A
10.1021/acs.energyfuels.1c04372
10.1016/j.cclet.2022.03.001
10.1016/j.biombioe.2014.03.059
10.1016/j.envint.2019.105216
10.1016/j.apcatb.2020.119386
10.1016/j.jhazmat.2019.121147
10.1016/j.rser.2019.109582
10.1016/j.chemosphere.2021.130671
10.1016/j.scitotenv.2022.157955
10.1016/j.scitotenv.2018.02.091
10.1007/s42773-022-00157-y
10.1016/j.jes.2021.02.021
10.1016/j.jece.2020.104722
10.1016/j.biombioe.2022.106608
10.31635/ccschem.022.202201897
10.1016/j.biortech.2016.05.057
10.1016/j.energy.2022.123409
10.1016/j.jhazmat.2011.04.008
10.1039/C7RA09307A
10.1016/j.carbon.2016.06.010
10.1016/j.apcatb.2022.121343
10.1016/j.envpol.2017.09.051
10.1016/j.fuel.2021.121257
10.1016/j.scitotenv.2022.153054
10.1016/j.enchem.2022.100078
10.1016/j.jhazmat.2020.122255
10.1515/revce-2018-0003
10.1016/j.scitotenv.2017.09.171
10.1016/j.rser.2022.112413
10.1016/j.envres.2022.114093
10.1016/j.fuel.2021.120243
10.1016/j.seppur.2023.123615
10.1016/j.envres.2022.113954
10.1007/s42773-022-00146-1
10.1016/j.ijhydene.2017.06.171
10.1016/j.chemosphere.2019.01.161
10.1016/j.joei.2022.10.017
10.1021/acsami.2c14744
10.1007/s42773-021-00117-y
10.1016/j.fuel.2017.12.054
10.1016/j.cej.2015.08.037
10.1007/s11426-022-1358-1
10.1007/s44246-022-00005-5
10.1007/s12665-015-4116-1
10.1007/s44246-022-00007-3
10.1016/j.jphotochem.2022.114435
10.1021/es203439v
10.1021/acsomega.0c04820
10.1016/j.ibiod.2018.10.001
10.1016/j.scitotenv.2021.152280
10.1016/j.crgsc.2021.100055
10.1016/j.biombioe.2021.106014
10.1016/j.jenvman.2021.113644
10.1016/j.seppur.2022.120592
10.1016/j.seppur.2022.121912
10.1016/j.envres.2021.111026
10.3390/catal12020210
10.1002/jrs.4392
10.1016/j.joei.2022.10.009
10.1016/j.scitotenv.2023.163313
10.1016/j.cej.2022.135972
10.1007/s11356-017-8577-5
10.1016/j.biombioe.2015.11.002
10.1021/acs.est.2c03994
10.1016/j.orggeochem.2005.10.008
10.1016/j.jhazmat.2020.124961
10.1016/j.jhazmat.2020.123541
10.1016/j.jhazmat.2019.121371
10.1002/chem.201802096
10.1016/j.cej.2022.138804
10.1016/j.jclepro.2016.04.088
10.1016/j.ccr.2023.215097
10.1002/adfm.202204175
10.1007/s11356-020-07734-3
10.34133/2022/9790320
10.1007/s11705-022-2218-3
10.1016/j.fuel.2022.125572
10.1002/adma.201902868
10.1016/j.jece.2021.106869
10.1016/j.enchem.2023.100101
10.1016/j.watres.2020.116054
10.1016/j.jhazmat.2022.129691
10.1080/01932691.2012.704753
10.1016/j.apcatb.2022.122092
10.1016/j.jcou.2018.05.018
10.1002/advs.202201735
10.1016/j.jhazmat.2020.124052
10.1016/j.cej.2022.134743
10.1016/j.seppur.2022.122862
10.1016/j.apcatb.2010.07.024
10.1016/j.fuproc.2021.106903
10.1016/j.scitotenv.2022.156072
10.1002/adma.202106621
10.1039/D1NA00843A
10.1007/s11738-023-03520-z
10.1016/j.jes.2021.10.003
10.1016/j.jwpe.2019.101037
10.1016/j.fuel.2018.03.145
10.1007/s42773-019-00006-5
10.1016/j.jhazmat.2021.126128
10.1002/er.3297
10.1016/j.biortech.2010.08.067
10.1007/s10098-014-0730-y
10.1021/acs.chemrev.5b00195
10.1016/j.biortech.2018.09.046
10.1007/s42773-022-00173-y
10.1016/0016-2361(95)93465-P
10.1080/21622515.2019.1631393
10.1016/j.cej.2014.03.105
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s42773-023-00237-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2524-7867
EndPage 24
ExternalDocumentID oai_doaj_org_article_e811d07dc9464b4da211d4dd05a958ff
10_1007_s42773_023_00237_7
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 22276054
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Key Technologies Research and Development Program
  grantid: 2018YFC1900105
  funderid: http://dx.doi.org/10.13039/501100012165
GroupedDBID 0R~
AAHBH
AAHNG
AAJSJ
AAKKN
AAYZJ
ABDBF
ABECU
ABEEZ
ABFTV
ABKCH
ABMQK
ABTEG
ABTMW
ACACY
ACOKC
ACULB
ACZOJ
ADKNI
ADURQ
ADYFF
AFGXO
AFQWF
AGDGC
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AXYYD
C24
C6C
EBLON
EBS
FNLPD
GROUPED_DOAJ
M~E
NQJWS
OK1
RSV
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AASML
AAYXX
CITATION
ID FETCH-LOGICAL-c401t-9c53e0ece6cfda2a2c9bf67456894a634b089f4c60ca282ed3c606e91ef5b2513
IEDL.DBID C24
ISSN 2524-7867
IngestDate Wed Aug 27 01:04:41 EDT 2025
Tue Jul 01 03:16:38 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 21 02:42:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Interaction mechanism
Environmental pollutant elimination
production
H
capture
Biochar-based materials
CO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-9c53e0ece6cfda2a2c9bf67456894a634b089f4c60ca282ed3c606e91ef5b2513
ORCID 0000-0002-3352-1617
OpenAccessLink https://link.springer.com/10.1007/s42773-023-00237-7
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_e811d07dc9464b4da211d4dd05a958ff
crossref_citationtrail_10_1007_s42773_023_00237_7
crossref_primary_10_1007_s42773_023_00237_7
springer_journals_10_1007_s42773_023_00237_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-20
PublicationDateYYYYMMDD 2023-07-20
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-20
  day: 20
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Biochar (Online)
PublicationTitleAbbrev Biochar
PublicationYear 2023
Publisher Springer Nature Singapore
Springer
Publisher_xml – name: Springer Nature Singapore
– name: Springer
References Creamer, Gao, Wang (CR24) 2016; 283
Hu, Tang, Shen, Yao, Zhao, Wang (CR40) 2023; 322
Mohd, Ghani, Resitanim, Sanyang (CR73) 2013; 34
Liu, Ma, Zhuang, Hu, Chen, Liu, Wang (CR60) 2021; 51
Wang, Yi, Zhang, Su, Li, Zhang, Gao (CR99) 2020; 29
Lahijani, Mohammadi, Mohamed (CR50) 2018; 26
Su, Li, Jiang, Duan, Liu, Zhang (CR92) 2023; 45
Hao, Liu, Wu, Wang, Yang, Chen, Tang, Huang, Wang, Yang, Wang (CR38) 2023; 5
Cai, Zhang, Lv, Zhang, Gao, Fang, Kong, Liu, Tan, Hu, Wang (CR11) 2022; 310
Creamer, Gao, Zhang (CR23) 2014; 249
Sun, Feng, Zhang, Sun, Zhao, Zhang (CR94) 2022; 330
Benis, Damuchali, Soltan, McPhedran (CR6) 2020; 739
Singh, Yadav (CR87) 2021; 9
Zhang, Wang, Feng, Gao, Dong, Zhoa, Sun, Huang, Qin (CR122) 2022; 36
Muangrat, Onwudili, Williams (CR74) 2010; 100
Li, Ruan, Jalilov, Tarkunde, Fei, Tour (CR52) 2016; 107
Li, Huang, Liu, Chen, Yang, Wang (CR55) 2023; 314
Lu, Cai, Zhuang, Hu, Wang, Chen, Wang (CR69) 2022; 4
Chatterjee, Sajjadi, Mattern, Chen, Zubatiuk, Leszczynska, Leszczynski, Egiebor, Hammer (CR15) 2018; 225
Brewer, Chuang, Masiello, Gonnermann, Gao, Dugan, Driver, Panzacchi, Zygourakis, Davies (CR9) 2014; 66
Chen, Wang, Hao, Xie, Liu, Yang, Waterhouse, Wang, Ma (CR21) 2023; 14
Kim, Kim, Kim, Yoon, Yang, Ok, Owens, Kim (CR47) 2015; 74
Yang, Liu, Chen, Waterhouse, Ma, Wang (CR113) 2022; 65
Sharma, Melkania (CR85) 2017; 42
Chen, Chen, Lv (CR16) 2011; 102
Shahrak, Ghahramaninezhad, Eydifarash (CR84) 2017; 24
Rouhani, Morsali (CR80) 2018; 24
Salem, Gamal, Sharma, Hemeedi, Howari (CR82) 2021; 299
Elsamadony, Tawfik, Danial, Suzuki (CR30) 2015; 39
Huong, Jitae, Tahtamouni, Tri, Kim, Cho, Lee (CR42) 2020; 33
Zhang, Khan, Sun, Zhang, Taraqqi-A-Kamal, Zhang (CR120) 2020; 706
Zou, Wang, Qian, Huo, Kong, Wang, Dai, Wang, Zhang, Mateo, Ruan, Lei (CR130) 2022; 374
Liu, Ptacek, Wlowes, Finfrock, Liu (CR58) 2020; 134
Gu, Liu, Wang, Chen, Yang, Hu, Shen, Wang (CR33) 2022; 260
Liu, Ye, Xu, Wang (CR66) 2022; 247
Liu, Luo, Dong, Zhao, Xu, Abuelgasim, Abdalazeez, Wang, Chen, Tang (CR65) 2022; 300
Guillem-Navajas, Martin-Illan, Salagre, Michel, Rodriguez-San-Miguel, Zamora (CR34) 2022; 14
Zhang, Liu, Gao, Tan, Cai, Hu, Huang, Fang, Wang (CR121) 2022; 4
Jeyasubramanian, Thangagiri, Sakthivel, Raja, Seenivasan, Balinayagam, Madhavan, Devi, Rathika (CR44) 2021; 292
Liu, Pang, Liu, Li, Zhang, Mao, Qiu, Hu, Yang, Wang (CR61) 2021; 2
Niazi, Bibi, Shahid, Ok, Burton, Wang, Shaheen, Rinklebe, Luttge (CR76) 2018; 232
Maroušek (CR72) 2014; 16
Yao, Hu, Zou, Ji, Hu, Wang, Zhang, Yang, Shen, Tang, Zhang, Zhao, Wang (CR116) 2022; 56
Liu, Zhang, Ma, Wu, Wen, Ai, Sun, Jin, Wang, Wang (CR62) 2022; 33
Hitit, Hallenbeck (CR39) 2021; 147
Su, Liu, Cai, Ma, Jiang, Xing, Liang, Cai, Xia, Le, Sonne, Lam (CR90) 2020; 402
Zubbri, Mohamed, Kamiuchi, Mohammadi (CR132) 2020; 27
Somerville, Jahanshahi (CR88) 2015; 80
Cai, Chen, Wang, Chen, Hu, Shen, Wang (CR12) 2023; 38
Luo, Pang, Wang, Li, Wang, Lei, Huang, Yang (CR70) 2021; 108
Amikam, Fridman-Bishop, Gendel (CR5) 2020; 5
Li, Wang, Zhao, Chen, Chai, Alsaedi, Hayat, Wang (CR53) 2018; 47
Sajjadi, Zubatiuk, Leszczynska, Leszczynski, Chen (CR81) 2018; 35
Wang, Dissanayake, Sun, Tao, Han, An, Gu, Xia, Tian, Ok, Shang (CR100) 2021; 197
Hao, Chen, Liu, Liu, Zhang, Yang, Waterhouse, Wang, Ma (CR36) 2022; 4
Shafawi, Mohamed, Lahijani, Mohammadi (CR83) 2021; 9
Patel, Singhania, Pal, Chen, Pandey, Dong (CR77) 2022; 817
Shi, Yang, Liang, Li, Gan, Xiao, Hu (CR86) 2018; 628–629
Yuan, Wang, Deng, Suvarna, Wang, Zhang, Hamilton, Alahmed, Jamal, Park, Bi, Ok (CR118) 2022; 162
Dong, Ma, Li (CR29) 2011; 190
Chen, Gao, Li, Fang, Bolan, Bhatnagar, Gao, Hou, Wang, Song, Yang, Shaheen, Meng, Chen, Rinklebe, Wang (CR19) 2022; 1
Liu, Xie, Hao, Chen, Yang, Waterhouse, Ma, Wang (CR67) 2022; 9
Abdalazeez, Tianle, Cao, Wang, Abuelgasim, Liu (CR1) 2022; 105
Hao, Xie, Liu, Chen, Yang, Waterhouse, Ma, Wang (CR37) 2023; 3
Chen, Ma, Duan, Lang, Pan (CR17) 2020; 271
Dai, Zhang, Xing, Cui, Sun (CR25) 2019; 223
Zhang, Liu, Ma, Jia, Wen, Ai, Zhao, Fang, Hu, Wang (CR126) 2022; 32
Lyu, Xia, Tang, Zhang, Gao, Shen (CR71) 2020; 384
Zhang, Sun, Gao, Zhang, Han, Li, Fang, Cai, Hu, Tan, Wang (CR127) 2022; 2022
Sun, Sun, Feng, Zhao, Zhang, Zhang, Wu, Win (CR93) 2021; 221
Pointurier, Marie (CR78) 2013; 44
Brown, Kercher, Nguyen, Nagle, Ball (CR10) 2006; 37
Murugesan, Raja, Dutta, Moses, Anandharamakrishnan (CR75) 2022; 851
Xu, Kan, Zhao, Cao (CR108) 2016; 213
Bhavani, Kumar, Hussain, Aminabhavi, Park (CR7) 2022; 434
Farooq, Jang, Hoon, Jung, Hoon, Jeon, Park (CR31) 2021; 280
Wongrod, Simon, Hullebusch, Lens, Guibaud (CR104) 2018; 135
Li, Zhang, Mao, Wang, Shang (CR57) 2023; 880
Zhang, Sun, Xu, Wu (CR124) 2022; 166
Gasim, Choong, Koo, Low, Abdurahman, Ho, Mohamad, Suryawan, Lim, Oh (CR32) 2022; 12
Qiu, Liu, Ling, Cai, Yu, Wang, Fu, Hu, Wang (CR79) 2022; 4
Cao, Sun, Sun (CR13) 2017; 7
Cho, Tsang, Kim, Kwon, Kwon, Song (CR22) 2018; 270
Komkiene, Baltrenaite (CR48) 2016; 13
Li, Xiong, Wei, Qin, Lin (CR54) 2021; 3
Yang, Ye, Zhang, Zeng, Tan, Song, Zhang, Yang, Li, Chen (CR111) 2021; 404
Zahed, Salehi, Madadi, Hejabi (CR119) 2021; 2021
Bie, Zhu, Xu, Zhang, Yu (CR8) 2019; 31
Jiang, Luo, Niu, Xu, Gao, Gao, Gao, Luo, Liu (CR46) 2023; 451
Jia, Yu, Li, Qin, Guo, Zhang, Wang, Zhang, Fan, Jin (CR45) 2021; 323
Li, Liu, Zhao, Cai, Shen, Wang (CR56) 2023; 869
Liu, Ling, Cai, Xu, Su, Yu, Wu, Xu, Hu, Wang (CR64) 2022; 4
Zou, Qian, Wang, Mateo, Wang, Dai, Lin, Zhao, Huo, Wang, Zhang, Kong, Ruan, Lei (CR131) 2022; 441
Son, Poo, Chang, Chae (CR89) 2018; 615
Yan, Li, Zhang, Wang, Zhao, Wang (CR110) 2021; 303
Yu, Tang, Zhang, Wang, Qiu, Song, Fu, Hu, Wang (CR117) 2022; 811
Ahmed, Zhou, Ngo, Guo (CR3) 2016; 84
Tian, Wang, Liu, Ma (CR95) 2020; 183
Wang, Liu, Tian, Yang, Wang, Ma (CR101) 2021; 416
Yang, Liu, Hao, Xie, Wang, Tian, Waterhouse, Kruge, Telfer, Ma (CR112) 2021; 33
Weber, Quicker (CR103) 2018; 217
Liu, Zhang, Xu, Liu, Lv, Liu, Wang (CR59) 2020; 384
Vijayaraghavan (CR98) 2019; 8
Yang, Liu, Liu, Wang, Chen, Wang (CR114) 2023; 17
Zhao, Li, Ren, Chen, Wang (CR128) 2011; 45
Su, Zhao, Xing, Ma, Liu, Li, Zhang, Wu, Xia (CR91) 2022; 214
Igalavithana, Choi, Dissanayake, Shang, Wang, Yang, Kim, Tsang, Lee, Ok (CR43) 2020; 391
Ahmed, Zhou, Ngo, Guo, Chen (CR2) 2016; 214
Dessi, Lakaniemi, Lens (CR27) 2017; 115
Dissanayake, You, Igalavithana, Xia, Bhatnagar, Gupta, Kua, Kim, Kwon, Tsang, Ok (CR28) 2020; 119
Cao, Zhang, Xu, Xiang, Wang, Ding, Hong, Gao (CR14) 2022; 287
Alam, Alam, Khan, Haq, Ayaz, Jalal, Bhat (CR4) 2021; 173
Tran, Tomul, Ha, Nguyen, Lima, Le, Chang, Masindi, Woo (CR97) 2020; 394
Das, Bhattacharyya, Sarmah (CR26) 2016; 129
Lu, Low, Liu, Lua (CR68) 1995; 74
Hao, Chen, Yang, Waterhouse, Ma, Wang (CR35) 2022; 67
Li, Jiang, Yu (CR51) 2015; 115
Zhang, Cao, Wang, Xu, Gao (CR123) 2022; 295
Yao, Shen, Ji, Hu, Tang, Zhao, Wang (CR115) 2022; 67
Kumar, Singh, Mishra, Lo, Kumar (CR49) 2022; 214
Wu, Pei, Zhou, Liu, Cao (CR105) 2022; 838
Zhu, Liu, Jiang, Lin, Yang (CR129) 2022; 4
Xin, Liu, Ma, Gong, Ma, Yan, Chen, Ma, Zhang, Gao, Xin (CR107) 2021; 280
Xue, Wang, Yan, Peng, Wang, Xiao, Wang (CR109) 2021; 408
Chen, Chen, Xu, Xu, Zhang, Song, Tsang, Xu, Cao (CR20) 2022; 440
Liu, Xu, Buyong, Chay, Li, Cai, Hu, Zhu, Wang (CR63) 2022; 1
Wang, Li, Liu, Wang, Zhao, Cai, Li, Chen (CR102) 2023; 437
Wu, Xie, Liu, Li, Wang, Chen, Yang, Hu, Tang, Huang, Wang (CR106) 2023; 483
Zhang, Sun, He, Wu (CR125) 2022; 105
Huang, Song, Chen, Hu, Chen, Wang (CR41) 2019; 1
Tran, Wang, You, Chao (CR96) 2017; 107
Chen, He, Li, Yang, Liu, Wu, Liu, Hu, Wang (CR18) 2022; 122
L Jia (237_CR45) 2021; 323
H Sun (237_CR94) 2022; 330
R Muangrat (237_CR74) 2010; 100
B Chen (237_CR16) 2011; 102
H Chen (237_CR19) 2022; 1
G Zhao (237_CR128) 2011; 45
NA Zubbri (237_CR132) 2020; 27
AE Creamer (237_CR23) 2014; 249
PT Huong (237_CR42) 2020; 33
B Sajjadi (237_CR81) 2018; 35
L Yao (237_CR115) 2022; 67
IB Salem (237_CR82) 2021; 299
M Somerville (237_CR88) 2015; 80
X Yang (237_CR114) 2023; 17
S Wongrod (237_CR104) 2018; 135
X Liu (237_CR62) 2022; 33
DW Cho (237_CR22) 2018; 270
KZ Benis (237_CR6) 2020; 739
AE Creamer (237_CR24) 2016; 283
YP Wang (237_CR101) 2021; 416
Y Dai (237_CR25) 2019; 223
P Dessi (237_CR27) 2017; 115
J Li (237_CR56) 2023; 869
H Gu (237_CR33) 2022; 260
Y Li (237_CR55) 2023; 314
M Qiu (237_CR79) 2022; 4
ZS Chen (237_CR18) 2022; 122
PD Dissanayake (237_CR28) 2020; 119
Y Li (237_CR52) 2016; 107
HS Kim (237_CR47) 2015; 74
H Yang (237_CR113) 2022; 65
A Mohd (237_CR73) 2013; 34
AK Patel (237_CR77) 2022; 817
W Su (237_CR91) 2022; 214
R Zou (237_CR130) 2022; 374
N Liu (237_CR59) 2020; 384
EB Son (237_CR89) 2018; 615
H Wang (237_CR99) 2020; 29
ZX Liu (237_CR64) 2022; 4
Z Liu (237_CR63) 2022; 1
XL Liu (237_CR60) 2021; 51
AN Shafawi (237_CR83) 2021; 9
KH Xue (237_CR109) 2021; 408
HX Zhu (237_CR129) 2022; 4
P Lahijani (237_CR50) 2018; 26
NK Niazi (237_CR76) 2018; 232
Q Li (237_CR57) 2023; 880
HN Tran (237_CR97) 2020; 394
S Shi (237_CR86) 2018; 628–629
T Wang (237_CR100) 2021; 197
L Cao (237_CR14) 2022; 287
MF Gasim (237_CR32) 2022; 12
R Chatterjee (237_CR15) 2018; 225
JW Wu (237_CR105) 2022; 838
H Sun (237_CR93) 2021; 221
WJ Li (237_CR51) 2015; 115
I Alam (237_CR4) 2021; 173
X Zhang (237_CR123) 2022; 295
X Dong (237_CR29) 2011; 190
Y Zhang (237_CR122) 2022; 36
S Wang (237_CR102) 2023; 437
C Zhang (237_CR125) 2022; 105
X Cao (237_CR13) 2017; 7
P Liu (237_CR58) 2020; 134
A Guillem-Navajas (237_CR34) 2022; 14
X Yuan (237_CR118) 2022; 162
Y Yang (237_CR111) 2021; 404
YF Zhang (237_CR121) 2022; 4
H Yang (237_CR112) 2021; 33
M Hao (237_CR37) 2023; 3
F Rouhani (237_CR80) 2018; 24
G Amikam (237_CR5) 2020; 5
P Bhavani (237_CR7) 2022; 434
M Hao (237_CR35) 2022; 67
O Das (237_CR26) 2016; 129
K Zhang (237_CR120) 2020; 706
A Farooq (237_CR31) 2021; 280
YW Cai (237_CR12) 2023; 38
MN Shahrak (237_CR84) 2017; 24
C Zhang (237_CR124) 2022; 166
H Lyu (237_CR71) 2020; 384
K Vijayaraghavan (237_CR98) 2019; 8
M Elsamadony (237_CR30) 2015; 39
J Komkiene (237_CR48) 2016; 13
K Luo (237_CR70) 2021; 108
F Pointurier (237_CR78) 2013; 44
D Singh (237_CR87) 2021; 9
A Kumar (237_CR49) 2022; 214
Q Huang (237_CR41) 2019; 1
Y Wu (237_CR106) 2023; 483
MB Ahmed (237_CR3) 2016; 84
P Sharma (237_CR85) 2017; 42
YC Jiang (237_CR46) 2023; 451
J Li (237_CR53) 2018; 47
H Liu (237_CR66) 2022; 247
X Liu (237_CR67) 2022; 9
Y Su (237_CR92) 2023; 45
X Xu (237_CR108) 2016; 213
RA Brown (237_CR10) 2006; 37
P Murugesan (237_CR75) 2022; 851
M Chen (237_CR20) 2022; 440
SQ Tian (237_CR95) 2020; 183
ZY Hitit (237_CR39) 2021; 147
C Bie (237_CR8) 2019; 31
AD Igalavithana (237_CR43) 2020; 391
K Weber (237_CR103) 2018; 217
XL Liu (237_CR61) 2021; 2
S Xin (237_CR107) 2021; 280
L Yao (237_CR116) 2022; 56
A Abdalazeez (237_CR1) 2022; 105
M Hao (237_CR36) 2022; 4
Q Chen (237_CR17) 2020; 271
S Yu (237_CR117) 2022; 811
MB Ahmed (237_CR2) 2016; 214
MA Zahed (237_CR119) 2021; 2021
R Zou (237_CR131) 2022; 441
K Jeyasubramanian (237_CR44) 2021; 292
Y Lu (237_CR69) 2022; 4
YF Zhang (237_CR127) 2022; 2022
M Hao (237_CR38) 2023; 5
W Su (237_CR90) 2020; 402
C Liu (237_CR65) 2022; 300
Y Hu (237_CR40) 2023; 322
Z Chen (237_CR21) 2023; 14
S Zhang (237_CR126) 2022; 32
J Maroušek (237_CR72) 2014; 16
X Yan (237_CR110) 2021; 303
Y Cai (237_CR11) 2022; 310
Y Li (237_CR54) 2021; 3
HN Tran (237_CR96) 2017; 107
CE Brewer (237_CR9) 2014; 66
GQ Lu (237_CR68) 1995; 74
References_xml – volume: 115
  start-page: 120
  year: 2017
  end-page: 129
  ident: CR27
  article-title: Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 degrees C
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.02.063
– volume: 869
  year: 2023
  ident: CR56
  article-title: Piezoelectric materials and techniques for environmental pollution remediation
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.161767
– volume: 374
  year: 2022
  ident: CR130
  article-title: Catalytic co-pyrolysis of solid wastes (low-density polyethylene and lignocellulosic biomass) over microwave assisted biochar for bio-oil upgrading and hydrogen production
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.133971
– volume: 67
  start-page: 924
  year: 2022
  end-page: 932
  ident: CR35
  article-title: Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous TcO
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2022.02.012
– volume: 384
  year: 2020
  ident: CR71
  article-title: Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg and organic CH Hg
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121357
– volume: 739
  year: 2020
  ident: CR6
  article-title: Treatment of aqueous arsenic-a review of biochar modification methods
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.139750
– volume: 80
  start-page: 471
  year: 2015
  end-page: 478
  ident: CR88
  article-title: The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.02.013
– volume: 706
  year: 2020
  ident: CR120
  article-title: Simultaneous reduction of Cr(VI) and oxidation of organic pollutants by rice husk derived biochar and the interactive influences of coexisting Cr(VI)
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135763
– volume: 51
  start-page: 751
  year: 2021
  end-page: 790
  ident: CR60
  article-title: Recent developments of doped g-C N photocatalysts for the degradation of organic pollutants
  publication-title: Crit Rev Environ Sci Technol
  doi: 10.1080/10643389.2020.1734433
– volume: 295
  year: 2022
  ident: CR123
  article-title: Preparation and evaluation of fine-tuned micropore biochar by lignin impregnation for CO and VOCs adsorption
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.121295
– volume: 13
  start-page: 471
  year: 2016
  end-page: 482
  ident: CR48
  article-title: Biochar as adsorbent for removal of heavy metal ions [cadmium(II), copper(II), lead(II), zinc(II)] from aqueous phase
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-015-0873-3
– volume: 213
  start-page: 533
  year: 2016
  end-page: 540
  ident: CR108
  article-title: Chemical transformation of CO during its capture by waste biomass derived biochars
  publication-title: Environ Poll
  doi: 10.1016/j.envpol.2016.03.013
– volume: 271
  year: 2020
  ident: CR17
  article-title: Coupling adsorption and degradation in p-nitrophenol removal by biochars
  publication-title: J Clean Product
  doi: 10.1016/j.jclepro.2020.122550
– volume: 29
  start-page: 323
  year: 2020
  end-page: 330
  ident: CR99
  article-title: Biochar mitigates greenhouse gas emissions from an acidic tea soil
  publication-title: Pol J Environ Stud
  doi: 10.15244/pjoes/99837
– volume: 3
  start-page: 239
  year: 2023
  end-page: 251
  ident: CR37
  article-title: Modulating the uranium extraction performance of multivariate covalent organic frameworks through donor−acceptor linkers and amidoxime nanotraps
  publication-title: JACS Au
  doi: 10.1021/jacsau.2c00614
– volume: 323
  year: 2021
  ident: CR45
  article-title: Study on the Hg0 removal characteristics and synergistic mechanism of iron-based modified biochar doped with multiple metals
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.125086
– volume: 67
  start-page: 2154
  year: 2022
  end-page: 2157
  ident: CR115
  article-title: Cr(VI) detoxification and simultaneous selective recovery of Cr resource from wastewater via photo-chemical extraction using biomass
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2022.10.013
– volume: 14
  start-page: 1106
  year: 2023
  ident: CR21
  article-title: Tuning excited electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-36710-x
– volume: 107
  start-page: 168
  year: 2017
  end-page: 180
  ident: CR96
  article-title: Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of π–π interactions
  publication-title: Pro Saf Environ Prot
  doi: 10.1016/j.psep.2017.02.010
– volume: 47
  start-page: 2322
  year: 2018
  end-page: 2356
  ident: CR53
  article-title: Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions
  publication-title: Chem Soc Rev
  doi: 10.1039/C7CS00543A
– volume: 36
  start-page: 2945
  year: 2022
  end-page: 2970
  ident: CR122
  article-title: Functional biochar synergistic solid/liquid-phase CO capture: a review
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c04372
– volume: 33
  start-page: 3549
  year: 2022
  end-page: 3555
  ident: CR62
  article-title: Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2022.03.001
– volume: 66
  start-page: 176
  year: 2014
  end-page: 185
  ident: CR9
  article-title: New approaches to measuring biochar density and porosity
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.03.059
– volume: 134
  year: 2020
  ident: CR58
  article-title: Characterization of chromium species and distribution during Cr(VI) removal by biochar using confocal micro-X-ray fluorescence redox mapping and X-ray absorption spectroscopy
  publication-title: Environ Int
  doi: 10.1016/j.envint.2019.105216
– volume: 280
  year: 2021
  ident: CR107
  article-title: High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO for the degradation of tetracycline: economical synthesis, catalytic performance and mechanism
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2020.119386
– volume: 391
  year: 2020
  ident: CR43
  article-title: Gasification biochar from biowaste (food waste and wood waste) for effective CO adsorption
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121147
– volume: 119
  year: 2020
  ident: CR28
  article-title: Biochar-based adsorbents for carbon dioxide capture: a critical review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109582
– volume: 280
  year: 2021
  ident: CR31
  article-title: Catalytic steam gasification of food waste using Ni-loaded rice husk derived biochar for hydrogen production
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130671
– volume: 851
  year: 2022
  ident: CR75
  article-title: Food waste valorization via gasification—a review on emerging concepts, prospects and challenges
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.157955
– volume: 628–629
  start-page: 499
  year: 2018
  end-page: 508
  ident: CR86
  article-title: Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe O @SiO -NH particles
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.02.091
– volume: 4
  start-page: 32
  year: 2022
  ident: CR129
  article-title: Sorption kinetics of 1,3,5-trinitrobenzene to biochars produced at various temperatures
  publication-title: Biochar
  doi: 10.1007/s42773-022-00157-y
– volume: 108
  start-page: 201
  year: 2021
  end-page: 216
  ident: CR70
  article-title: A critical review on the application of biochar in environmental pollution remediation: role of persistent free radicals (PERs)
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2021.02.021
– volume: 9
  year: 2021
  ident: CR87
  article-title: Steam gasification with torrefaction as pretreatment to enhance syngas production from mixed food waste
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2020.104722
– volume: 166
  year: 2022
  ident: CR124
  article-title: CO capture over steam and KOH activated biochar: effect of relative humidity
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2022.106608
– volume: 4
  start-page: 2294
  year: 2022
  end-page: 2307
  ident: CR36
  article-title: Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater
  publication-title: CCS Chem
  doi: 10.31635/ccschem.022.202201897
– volume: 214
  start-page: 836
  year: 2016
  end-page: 851
  ident: CR2
  article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.05.057
– volume: 247
  year: 2022
  ident: CR66
  article-title: Effect of activation conditions and iron loading content on the catalytic cracking of toluene by biochar
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123409
– volume: 190
  start-page: 909
  year: 2011
  end-page: 915
  ident: CR29
  article-title: Characteristics and mechanisms of hexavalent chromium by biochar from sugar beet tailing
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2011.04.008
– volume: 7
  start-page: 48793
  year: 2017
  end-page: 48805
  ident: CR13
  article-title: Application of biochar-based catalysts in biomass upgrading: a review
  publication-title: RSC Adv
  doi: 10.1039/C7RA09307A
– volume: 107
  start-page: 344
  year: 2016
  end-page: 351
  ident: CR52
  article-title: Biochar as a renewable source for high-performance CO sorbent
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.06.010
– volume: 310
  year: 2022
  ident: CR11
  article-title: Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2022.121343
– volume: 232
  start-page: 31
  year: 2018
  end-page: 41
  ident: CR76
  article-title: Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination
  publication-title: Environ Poll
  doi: 10.1016/j.envpol.2017.09.051
– volume: 303
  year: 2021
  ident: CR110
  article-title: Understanding the enhancement of CaO on water gas shit reaction for H2 production by density functional theory
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121257
– volume: 817
  year: 2022
  ident: CR77
  article-title: Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.153054
– volume: 4
  year: 2022
  ident: CR121
  article-title: Application of MOFs and COFs for photocatalysis in CO reduction, H generation, and environmental treatment
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2022.100078
– volume: 394
  year: 2020
  ident: CR97
  article-title: Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.122255
– volume: 35
  start-page: 777
  year: 2018
  end-page: 815
  ident: CR81
  article-title: Chemical activation of biochar for energy and environmental applications: a comprehensive review
  publication-title: Rev Chem Eng
  doi: 10.1515/revce-2018-0003
– volume: 615
  start-page: 161
  year: 2018
  end-page: 168
  ident: CR89
  article-title: Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.09.171
– volume: 162
  year: 2022
  ident: CR118
  article-title: Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112413
– volume: 214
  year: 2022
  ident: CR91
  article-title: Supercritical water gasification of hyperaccumulators for hydrogen production and heavy metal immobilization with alkali metal catalysts
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.114093
– volume: 292
  year: 2021
  ident: CR44
  article-title: A complete review on biochar: production, property, multifaceted applications, interaction mechanism and computational approach
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.120243
– volume: 314
  year: 2023
  ident: CR55
  article-title: Sorption-catalytic reduction/extraction of hexavalent Cr(VI) and U(VI) by porous framework materials
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2023.123615
– volume: 214
  year: 2022
  ident: CR49
  article-title: A green approach towards sorption of CO on waste derived biochar
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.113954
– volume: 4
  start-page: 19
  year: 2022
  ident: CR79
  article-title: Biochar for the removal of contaminants from soil and water: a review
  publication-title: Biochar
  doi: 10.1007/s42773-022-00146-1
– volume: 42
  start-page: 18865
  year: 2017
  end-page: 18874
  ident: CR85
  article-title: Biochar-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of and
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.171
– volume: 260
  start-page: 23
  year: 2022
  ident: CR33
  article-title: COF-based composites: extraordinary removal performance for heavy metals and radionuclides from aqueous solutions
  publication-title: Rev Environ Contam Toxicol
– volume: 223
  start-page: 12
  year: 2019
  end-page: 27
  ident: CR25
  article-title: The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.161
– volume: 105
  start-page: 399
  year: 2022
  end-page: 405
  ident: CR125
  article-title: Direct air capture of CO by KOH-activated bamboo biochar
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2022.10.017
– volume: 14
  start-page: 50163
  year: 2022
  end-page: 50170
  ident: CR34
  article-title: Iron oxyhydroxide-covalent organic framework nanocomposites for efficient As(III) removal in water
  publication-title: ACS Appl Mater Interface
  doi: 10.1021/acsami.2c14744
– volume: 173
  start-page: 340
  year: 2021
  end-page: 351
  ident: CR4
  article-title: Biochar supplementation regulates growth and heavy metal accumulation in tomato growth in contaminated soils
  publication-title: Physiol Plant
– volume: 3
  start-page: 535
  year: 2021
  end-page: 543
  ident: CR54
  article-title: Transformation and immobilization of hexavalent chromium in the co-presence of biochar and organic acids: effects of biochar dose and reaction time
  publication-title: Biochar
  doi: 10.1007/s42773-021-00117-y
– volume: 217
  start-page: 240
  year: 2018
  end-page: 261
  ident: CR103
  article-title: Properties of biochar
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.12.054
– volume: 283
  start-page: 826
  year: 2016
  end-page: 832
  ident: CR24
  article-title: Carbon dioxide capture using various metal oxyhydroxide-biochar composites
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2015.08.037
– volume: 65
  start-page: 2335
  year: 2022
  end-page: 2337
  ident: CR113
  article-title: Emerging technologies for uranium extraction from seawater
  publication-title: Sci China Chem
  doi: 10.1007/s11426-022-1358-1
– volume: 1
  start-page: 4
  year: 2022
  ident: CR19
  article-title: Engineered biochar for environmental decontamination in aquatic and soil systems: a review
  publication-title: Carbon Res
  doi: 10.1007/s44246-022-00005-5
– volume: 74
  start-page: 1249
  year: 2015
  end-page: 1259
  ident: CR47
  article-title: Effect of biochar on heavy metal immobilization and uptake by lettuce ( L.) in agricultural soil
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4116-1
– volume: 1
  start-page: 8
  year: 2022
  ident: CR63
  article-title: Modified biochar: synthesis and mechanism for removal of environmental heavy metals
  publication-title: Carbon Res
  doi: 10.1007/s44246-022-00007-3
– volume: 437
  year: 2023
  ident: CR102
  article-title: Photo-/electro-/piezo-catalytic elimination of environmental pollutants
  publication-title: J Photochem Photobiol A Chem
  doi: 10.1016/j.jphotochem.2022.114435
– volume: 2
  year: 2021
  ident: CR61
  article-title: Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions
  publication-title: Innovation
– volume: 45
  start-page: 10454
  year: 2011
  end-page: 10462
  ident: CR128
  article-title: Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management
  publication-title: Environ Sci Technol
  doi: 10.1021/es203439v
– volume: 5
  start-page: 31908
  year: 2020
  end-page: 31917
  ident: CR5
  article-title: Biochar-assisted iron-mediated water electrolysis process for hydrogen production
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c04820
– volume: 135
  start-page: 96
  year: 2018
  end-page: 102
  ident: CR104
  article-title: Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(III and V) and Cd(II) sorption
  publication-title: Int Biodeterior Biodegrad
  doi: 10.1016/j.ibiod.2018.10.001
– volume: 811
  year: 2022
  ident: CR117
  article-title: MXenes as emerging nanomaterials in water purification and environmental remediation
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.152280
– volume: 2021
  year: 2021
  ident: CR119
  article-title: Biochar as a sustainable product for remediation of petroleum contaminated soil
  publication-title: Curr Res Green Sustain Chem
  doi: 10.1016/j.crgsc.2021.100055
– volume: 147
  year: 2021
  ident: CR39
  article-title: Analytical procedures, data reporting and selected reference values for biological hydrogen production
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2021.106014
– volume: 299
  year: 2021
  ident: CR82
  article-title: Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2021.113644
– volume: 287
  year: 2022
  ident: CR14
  article-title: Straw and wood based biochar for CO capture: adsorption performance and governing mechanism
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.120592
– volume: 300
  year: 2022
  ident: CR65
  article-title: Hydrogen-rich syngas production from biomass char by chemical looping gasification with Fe/Ca-based oxygen carrier
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.121912
– volume: 197
  year: 2021
  ident: CR100
  article-title: Adsorption and visible-light photocatalytic degradation of organic pollutants by functionalized biochar: role of iodine doping and reactive species
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111026
– volume: 12
  start-page: 210
  year: 2022
  ident: CR32
  article-title: Application of biochar as functional material for remediation of organic pollutants in water: an overview
  publication-title: Catalyst
  doi: 10.3390/catal12020210
– volume: 44
  start-page: 1753
  year: 2013
  end-page: 1579
  ident: CR78
  article-title: Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.4392
– volume: 105
  start-page: 376
  year: 2022
  end-page: 387
  ident: CR1
  article-title: Syngas production from chemical looping gasification of rice husk-derived biochar using BaFe O as an oxygen carrier
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2022.10.009
– volume: 880
  year: 2023
  ident: CR57
  article-title: Carbon content determines the aggregation of biochar colloids from various feedstocks
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.163313
– volume: 441
  year: 2022
  ident: CR131
  article-title: Biochar: from by-products of argo-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.135972
– volume: 24
  start-page: 9624
  year: 2017
  end-page: 9634
  ident: CR84
  article-title: Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-017-8577-5
– volume: 84
  start-page: 76
  year: 2016
  end-page: 86
  ident: CR3
  article-title: Insight into biochar properties and its cost analysis
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2015.11.002
– volume: 56
  start-page: 14030
  year: 2022
  end-page: 14037
  ident: CR116
  article-title: Selective and efficient photo-extraction of aqueous Cr(VI) as solid-state polyhydroxy Cr(V) complex for environment remediation and resources recovery
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c03994
– volume: 37
  start-page: 321
  year: 2006
  end-page: 333
  ident: CR10
  article-title: Production and characterization of synthetic wood chars for use as surrogates for natural sorbents
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2005.10.008
– volume: 408
  year: 2021
  ident: CR109
  article-title: Enhanced As(III) transformation and removal with biochar/SnS /phosphotungstic acid composites: synergic effect of overcoming the electronic inertness of biochar and W O (AsO ) (As(V)-POMs) coprecipitation
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124961
– volume: 402
  year: 2020
  ident: CR90
  article-title: Hydrogen production and heavy metal immobilization using hyperaccumulators in supercritical water gasification
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123541
– volume: 384
  year: 2020
  ident: CR59
  article-title: Removal mechanisms of aqueous Cr(VI) using apple wood biochar: a spectroscopic study
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121371
– volume: 24
  start-page: 17170
  year: 2018
  end-page: 17179
  ident: CR80
  article-title: Goal-directed design of metal–organic frameworks for Hg(II) and Pb(II) adsorption from aqueous solutions
  publication-title: Chem Eur J
  doi: 10.1002/chem.201802096
– volume: 451
  year: 2023
  ident: CR46
  article-title: In-situ growth of bimetallic FeCo-MOF on magnetic biochar for enhanced clearance of tetracycline and fruit preservation
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.138804
– volume: 129
  start-page: 159
  year: 2016
  end-page: 168
  ident: CR26
  article-title: Sustainable eco-composites obtained from waste derived biochar: a consideration in performance properties, production costs and environmental impact
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2016.04.088
– volume: 483
  year: 2023
  ident: CR106
  article-title: Functional nanomaterials for selective uranium recovery from seawater: material design, extraction properties and mechanisms
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2023.215097
– volume: 32
  start-page: 2204175
  year: 2022
  ident: CR126
  article-title: Molybdenum (VI)-oxo clusters incorporation activates g-C N with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202204175
– volume: 27
  start-page: 11809
  year: 2020
  end-page: 11828
  ident: CR132
  article-title: Enhancement of CO adsorption on biochar sorbent modified by metal incorporation
  publication-title: Environ Sci Poll Res
  doi: 10.1007/s11356-020-07734-3
– volume: 2022
  start-page: 9790320
  year: 2022
  ident: CR127
  article-title: Insights into photothermally enhanced photocatalytic U(VI) extraction by a step-scheme heterojunction
  publication-title: Research
  doi: 10.34133/2022/9790320
– volume: 17
  start-page: 395
  year: 2023
  end-page: 403
  ident: CR114
  article-title: Optimizing iodine capture performance by metal−organic framework containing with bipyridine units
  publication-title: Front Chem Sci Eng
  doi: 10.1007/s11705-022-2218-3
– volume: 330
  year: 2022
  ident: CR94
  article-title: Regeneration of deactivated biochar for catalytic tar reforming by partial oxidation: effect of oxygen concentration and regeneration time
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125572
– volume: 31
  start-page: 1902868
  year: 2019
  ident: CR8
  article-title: In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO reduction
  publication-title: Adv Mater
  doi: 10.1002/adma.201902868
– volume: 9
  year: 2021
  ident: CR83
  article-title: Recent advances in developing engineered biochar for CO capture: an insight into the biochar modification approaches
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2021.106869
– volume: 5
  year: 2023
  ident: CR38
  article-title: Advanced porous adsorbents for radionuclides elimination
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2023.100101
– volume: 183
  year: 2020
  ident: CR95
  article-title: Degradation of organic pollutants by ferrate/biochar: enhanced formation of strong intermediate oxidative iron species
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.116054
– volume: 440
  year: 2022
  ident: CR20
  article-title: Biochar colloids facilitate transport and transformation of Cr(VI) in soil: active site competition coupling with reduction reaction
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2022.129691
– volume: 34
  start-page: 974
  year: 2013
  end-page: 984
  ident: CR73
  article-title: A review: carbon dioxide capture: biomass-derived biochar and its applications
  publication-title: J Dispers Sci Technol
  doi: 10.1080/01932691.2012.704753
– volume: 322
  year: 2023
  ident: CR40
  article-title: Photochemically triggered self-extraction of uranium from aqueous solution under ambient conditions
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2022.122092
– volume: 26
  start-page: 281
  year: 2018
  end-page: 293
  ident: CR50
  article-title: Metal incorporated biochar as a potential adsorbent for high capacity CO capture at ambient condition
  publication-title: J CO2 Utilization
  doi: 10.1016/j.jcou.2018.05.018
– volume: 9
  start-page: 2201735
  year: 2022
  ident: CR67
  article-title: Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime−functionalized In−N−C catalyst
  publication-title: Adv Sci
  doi: 10.1002/advs.202201735
– volume: 404
  year: 2021
  ident: CR111
  article-title: Application of biochar for remediation of polluted sediments
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124052
– volume: 434
  year: 2022
  ident: CR7
  article-title: Eco-friendly rice husk derived biochar as a highly efficient noble metal-free cocatalyst for high production of H using solar light irradiation
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.134743
– volume: 38
  year: 2023
  ident: CR12
  article-title: Carbon-based nanocomposites for the elimination of inorganic and organic pollutants through sorption and catalysis strategies
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.122862
– volume: 100
  start-page: 143
  year: 2010
  end-page: 156
  ident: CR74
  article-title: Influence of NaOH, Ni/Al O and Ni/ SiO catalysts on hydrogen production from the subcritical water gasification of model food waste compounds
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2010.07.024
– volume: 221
  year: 2021
  ident: CR93
  article-title: Mechanism of coke formation and corresponding gas fraction characteristics in biochar-catalyzed tar reforming during corn straw pyrolysis
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2021.106903
– volume: 838
  year: 2022
  ident: CR105
  article-title: Assessment of potential biotoxicity induced by biochar-derived dissolved organic matters to biological fermentative H production
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.156072
– volume: 33
  start-page: 2106621
  year: 2021
  ident: CR112
  article-title: Functionalized Iron−Nitrogen−Carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater
  publication-title: Adv Mater
  doi: 10.1002/adma.202106621
– volume: 4
  start-page: 1246
  year: 2022
  end-page: 1262
  ident: CR64
  article-title: Synthesis of carbon-based nanomaterials and their application in pollution management
  publication-title: Nanoscale Adv
  doi: 10.1039/D1NA00843A
– volume: 45
  start-page: 53
  year: 2023
  ident: CR92
  article-title: Sex-specific physiological and growth responses to elevated temperature and CO concentration in Chinese seabuckthorn ( subsp. Sinensis Rousi)
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-023-03520-z
– volume: 122
  start-page: 1
  year: 2022
  end-page: 13
  ident: CR18
  article-title: Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2021.10.003
– volume: 33
  year: 2020
  ident: CR42
  article-title: Novel activation of peroxymonosulfate by biochar derived from husk toward oxidation of organic contaminants in wastewater
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2019.101037
– volume: 225
  start-page: 287
  year: 2018
  end-page: 298
  ident: CR15
  article-title: Ultrasound cavitation intensified amine functionalization: a feasible strategy for enhancing CO capture capacity of biochar
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.03.145
– volume: 1
  start-page: 45
  year: 2019
  end-page: 73
  ident: CR41
  article-title: Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review
  publication-title: Biochar
  doi: 10.1007/s42773-019-00006-5
– volume: 416
  year: 2021
  ident: CR101
  article-title: Straw biochar enhanced removal of heavy metal by ferrate
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.126128
– volume: 39
  start-page: 929
  year: 2015
  end-page: 940
  ident: CR30
  article-title: Optimization of hydrogen production from organic fraction of municipal solid waste (OFMSW) dry anaerobic digestion with analysis of microbial community
  publication-title: Int J Energy Res
  doi: 10.1002/er.3297
– volume: 102
  start-page: 716
  year: 2011
  end-page: 723
  ident: CR16
  article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.08.067
– volume: 16
  start-page: 1821
  year: 2014
  end-page: 1825
  ident: CR72
  article-title: Significant breakthrough in biochar cost reduction
  publication-title: Clean Technol Environ Policy
  doi: 10.1007/s10098-014-0730-y
– volume: 115
  start-page: 12251
  year: 2015
  end-page: 12285
  ident: CR51
  article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00195
– volume: 270
  start-page: 346
  year: 2018
  end-page: 351
  ident: CR22
  article-title: Thermochemical conversion of cobalt-loaded spent coffee grounds for production of energy resource and environmental catalyst
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.09.046
– volume: 4
  start-page: 45
  year: 2022
  ident: CR69
  article-title: Application of biochar-based photocatalysts for sorption-(photo)degradation/reduction of environmental contaminants: Mechanism, challenges and perspective
  publication-title: Biochar
  doi: 10.1007/s42773-022-00173-y
– volume: 74
  start-page: 344
  year: 1995
  end-page: 348
  ident: CR68
  article-title: Surface area development of sewage sludge during pyrolysis
  publication-title: Fuel
  doi: 10.1016/0016-2361(95)93465-P
– volume: 8
  start-page: 47
  year: 2019
  end-page: 64
  ident: CR98
  article-title: Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications
  publication-title: Environ Technol Rev
  doi: 10.1080/21622515.2019.1631393
– volume: 249
  start-page: 174
  year: 2014
  end-page: 179
  ident: CR23
  article-title: Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2014.03.105
– volume: 314
  year: 2023
  ident: 237_CR55
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2023.123615
– volume: 7
  start-page: 48793
  year: 2017
  ident: 237_CR13
  publication-title: RSC Adv
  doi: 10.1039/C7RA09307A
– volume: 384
  year: 2020
  ident: 237_CR71
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121357
– volume: 223
  start-page: 12
  year: 2019
  ident: 237_CR25
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.161
– volume: 27
  start-page: 11809
  year: 2020
  ident: 237_CR132
  publication-title: Environ Sci Poll Res
  doi: 10.1007/s11356-020-07734-3
– volume: 300
  year: 2022
  ident: 237_CR65
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.121912
– volume: 1
  start-page: 4
  year: 2022
  ident: 237_CR19
  publication-title: Carbon Res
  doi: 10.1007/s44246-022-00005-5
– volume: 129
  start-page: 159
  year: 2016
  ident: 237_CR26
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2016.04.088
– volume: 74
  start-page: 344
  year: 1995
  ident: 237_CR68
  publication-title: Fuel
  doi: 10.1016/0016-2361(95)93465-P
– volume: 441
  year: 2022
  ident: 237_CR131
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.135972
– volume: 283
  start-page: 826
  year: 2016
  ident: 237_CR24
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2015.08.037
– volume: 287
  year: 2022
  ident: 237_CR14
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.120592
– volume: 869
  year: 2023
  ident: 237_CR56
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.161767
– volume: 706
  year: 2020
  ident: 237_CR120
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135763
– volume: 166
  year: 2022
  ident: 237_CR124
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2022.106608
– volume: 38
  year: 2023
  ident: 237_CR12
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.122862
– volume: 107
  start-page: 344
  year: 2016
  ident: 237_CR52
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.06.010
– volume: 13
  start-page: 471
  year: 2016
  ident: 237_CR48
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-015-0873-3
– volume: 221
  year: 2021
  ident: 237_CR93
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2021.106903
– volume: 483
  year: 2023
  ident: 237_CR106
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2023.215097
– volume: 5
  start-page: 31908
  year: 2020
  ident: 237_CR5
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c04820
– volume: 122
  start-page: 1
  year: 2022
  ident: 237_CR18
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2021.10.003
– volume: 56
  start-page: 14030
  year: 2022
  ident: 237_CR116
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c03994
– volume: 67
  start-page: 924
  year: 2022
  ident: 237_CR35
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2022.02.012
– volume: 2
  year: 2021
  ident: 237_CR61
  publication-title: Innovation
– volume: 14
  start-page: 1106
  year: 2023
  ident: 237_CR21
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-36710-x
– volume: 33
  year: 2020
  ident: 237_CR42
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2019.101037
– volume: 391
  year: 2020
  ident: 237_CR43
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121147
– volume: 33
  start-page: 3549
  year: 2022
  ident: 237_CR62
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2022.03.001
– volume: 217
  start-page: 240
  year: 2018
  ident: 237_CR103
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.12.054
– volume: 173
  start-page: 340
  year: 2021
  ident: 237_CR4
  publication-title: Physiol Plant
– volume: 811
  year: 2022
  ident: 237_CR117
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.152280
– volume: 190
  start-page: 909
  year: 2011
  ident: 237_CR29
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2011.04.008
– volume: 47
  start-page: 2322
  year: 2018
  ident: 237_CR53
  publication-title: Chem Soc Rev
  doi: 10.1039/C7CS00543A
– volume: 271
  year: 2020
  ident: 237_CR17
  publication-title: J Clean Product
  doi: 10.1016/j.jclepro.2020.122550
– volume: 135
  start-page: 96
  year: 2018
  ident: 237_CR104
  publication-title: Int Biodeterior Biodegrad
  doi: 10.1016/j.ibiod.2018.10.001
– volume: 12
  start-page: 210
  year: 2022
  ident: 237_CR32
  publication-title: Catalyst
  doi: 10.3390/catal12020210
– volume: 14
  start-page: 50163
  year: 2022
  ident: 237_CR34
  publication-title: ACS Appl Mater Interface
  doi: 10.1021/acsami.2c14744
– volume: 260
  start-page: 23
  year: 2022
  ident: 237_CR33
  publication-title: Rev Environ Contam Toxicol
– volume: 32
  start-page: 2204175
  year: 2022
  ident: 237_CR126
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202204175
– volume: 838
  year: 2022
  ident: 237_CR105
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.156072
– volume: 402
  year: 2020
  ident: 237_CR90
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123541
– volume: 249
  start-page: 174
  year: 2014
  ident: 237_CR23
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2014.03.105
– volume: 107
  start-page: 168
  year: 2017
  ident: 237_CR96
  publication-title: Pro Saf Environ Prot
  doi: 10.1016/j.psep.2017.02.010
– volume: 115
  start-page: 12251
  year: 2015
  ident: 237_CR51
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00195
– volume: 213
  start-page: 533
  year: 2016
  ident: 237_CR108
  publication-title: Environ Poll
  doi: 10.1016/j.envpol.2016.03.013
– volume: 67
  start-page: 2154
  year: 2022
  ident: 237_CR115
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2022.10.013
– volume: 628–629
  start-page: 499
  year: 2018
  ident: 237_CR86
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.02.091
– volume: 105
  start-page: 376
  year: 2022
  ident: 237_CR1
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2022.10.009
– volume: 105
  start-page: 399
  year: 2022
  ident: 237_CR125
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2022.10.017
– volume: 80
  start-page: 471
  year: 2015
  ident: 237_CR88
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.02.013
– volume: 214
  start-page: 836
  year: 2016
  ident: 237_CR2
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.05.057
– volume: 416
  year: 2021
  ident: 237_CR101
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.126128
– volume: 35
  start-page: 777
  year: 2018
  ident: 237_CR81
  publication-title: Rev Chem Eng
  doi: 10.1515/revce-2018-0003
– volume: 303
  year: 2021
  ident: 237_CR110
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121257
– volume: 3
  start-page: 535
  year: 2021
  ident: 237_CR54
  publication-title: Biochar
  doi: 10.1007/s42773-021-00117-y
– volume: 322
  year: 2023
  ident: 237_CR40
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2022.122092
– volume: 270
  start-page: 346
  year: 2018
  ident: 237_CR22
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.09.046
– volume: 36
  start-page: 2945
  year: 2022
  ident: 237_CR122
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c04372
– volume: 147
  year: 2021
  ident: 237_CR39
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2021.106014
– volume: 33
  start-page: 2106621
  year: 2021
  ident: 237_CR112
  publication-title: Adv Mater
  doi: 10.1002/adma.202106621
– volume: 51
  start-page: 751
  year: 2021
  ident: 237_CR60
  publication-title: Crit Rev Environ Sci Technol
  doi: 10.1080/10643389.2020.1734433
– volume: 440
  year: 2022
  ident: 237_CR20
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2022.129691
– volume: 45
  start-page: 53
  year: 2023
  ident: 237_CR92
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-023-03520-z
– volume: 66
  start-page: 176
  year: 2014
  ident: 237_CR9
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.03.059
– volume: 183
  year: 2020
  ident: 237_CR95
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.116054
– volume: 292
  year: 2021
  ident: 237_CR44
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.120243
– volume: 84
  start-page: 76
  year: 2016
  ident: 237_CR3
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2015.11.002
– volume: 615
  start-page: 161
  year: 2018
  ident: 237_CR89
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.09.171
– volume: 434
  year: 2022
  ident: 237_CR7
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.134743
– volume: 29
  start-page: 323
  year: 2020
  ident: 237_CR99
  publication-title: Pol J Environ Stud
  doi: 10.15244/pjoes/99837
– volume: 17
  start-page: 395
  year: 2023
  ident: 237_CR114
  publication-title: Front Chem Sci Eng
  doi: 10.1007/s11705-022-2218-3
– volume: 4
  start-page: 2294
  year: 2022
  ident: 237_CR36
  publication-title: CCS Chem
  doi: 10.31635/ccschem.022.202201897
– volume: 384
  year: 2020
  ident: 237_CR59
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121371
– volume: 100
  start-page: 143
  year: 2010
  ident: 237_CR74
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2010.07.024
– volume: 310
  year: 2022
  ident: 237_CR11
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2022.121343
– volume: 24
  start-page: 17170
  year: 2018
  ident: 237_CR80
  publication-title: Chem Eur J
  doi: 10.1002/chem.201802096
– volume: 739
  year: 2020
  ident: 237_CR6
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.139750
– volume: 4
  start-page: 1246
  year: 2022
  ident: 237_CR64
  publication-title: Nanoscale Adv
  doi: 10.1039/D1NA00843A
– volume: 24
  start-page: 9624
  year: 2017
  ident: 237_CR84
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-017-8577-5
– volume: 42
  start-page: 18865
  year: 2017
  ident: 237_CR85
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.171
– volume: 280
  year: 2021
  ident: 237_CR31
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130671
– volume: 247
  year: 2022
  ident: 237_CR66
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123409
– volume: 851
  year: 2022
  ident: 237_CR75
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.157955
– volume: 1
  start-page: 8
  year: 2022
  ident: 237_CR63
  publication-title: Carbon Res
  doi: 10.1007/s44246-022-00007-3
– volume: 9
  year: 2021
  ident: 237_CR87
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2020.104722
– volume: 31
  start-page: 1902868
  year: 2019
  ident: 237_CR8
  publication-title: Adv Mater
  doi: 10.1002/adma.201902868
– volume: 37
  start-page: 321
  year: 2006
  ident: 237_CR10
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2005.10.008
– volume: 2021
  year: 2021
  ident: 237_CR119
  publication-title: Curr Res Green Sustain Chem
  doi: 10.1016/j.crgsc.2021.100055
– volume: 225
  start-page: 287
  year: 2018
  ident: 237_CR15
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.03.145
– volume: 39
  start-page: 929
  year: 2015
  ident: 237_CR30
  publication-title: Int J Energy Res
  doi: 10.1002/er.3297
– volume: 232
  start-page: 31
  year: 2018
  ident: 237_CR76
  publication-title: Environ Poll
  doi: 10.1016/j.envpol.2017.09.051
– volume: 4
  year: 2022
  ident: 237_CR121
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2022.100078
– volume: 4
  start-page: 32
  year: 2022
  ident: 237_CR129
  publication-title: Biochar
  doi: 10.1007/s42773-022-00157-y
– volume: 115
  start-page: 120
  year: 2017
  ident: 237_CR27
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.02.063
– volume: 102
  start-page: 716
  year: 2011
  ident: 237_CR16
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.08.067
– volume: 437
  year: 2023
  ident: 237_CR102
  publication-title: J Photochem Photobiol A Chem
  doi: 10.1016/j.jphotochem.2022.114435
– volume: 16
  start-page: 1821
  year: 2014
  ident: 237_CR72
  publication-title: Clean Technol Environ Policy
  doi: 10.1007/s10098-014-0730-y
– volume: 214
  year: 2022
  ident: 237_CR91
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.114093
– volume: 214
  year: 2022
  ident: 237_CR49
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.113954
– volume: 404
  year: 2021
  ident: 237_CR111
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124052
– volume: 134
  year: 2020
  ident: 237_CR58
  publication-title: Environ Int
  doi: 10.1016/j.envint.2019.105216
– volume: 2022
  start-page: 9790320
  year: 2022
  ident: 237_CR127
  publication-title: Research
  doi: 10.34133/2022/9790320
– volume: 299
  year: 2021
  ident: 237_CR82
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2021.113644
– volume: 394
  year: 2020
  ident: 237_CR97
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.122255
– volume: 880
  year: 2023
  ident: 237_CR57
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.163313
– volume: 45
  start-page: 10454
  year: 2011
  ident: 237_CR128
  publication-title: Environ Sci Technol
  doi: 10.1021/es203439v
– volume: 5
  year: 2023
  ident: 237_CR38
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2023.100101
– volume: 108
  start-page: 201
  year: 2021
  ident: 237_CR70
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2021.02.021
– volume: 9
  start-page: 2201735
  year: 2022
  ident: 237_CR67
  publication-title: Adv Sci
  doi: 10.1002/advs.202201735
– volume: 9
  year: 2021
  ident: 237_CR83
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2021.106869
– volume: 330
  year: 2022
  ident: 237_CR94
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125572
– volume: 119
  year: 2020
  ident: 237_CR28
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109582
– volume: 65
  start-page: 2335
  year: 2022
  ident: 237_CR113
  publication-title: Sci China Chem
  doi: 10.1007/s11426-022-1358-1
– volume: 408
  year: 2021
  ident: 237_CR109
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124961
– volume: 3
  start-page: 239
  year: 2023
  ident: 237_CR37
  publication-title: JACS Au
  doi: 10.1021/jacsau.2c00614
– volume: 4
  start-page: 45
  year: 2022
  ident: 237_CR69
  publication-title: Biochar
  doi: 10.1007/s42773-022-00173-y
– volume: 817
  year: 2022
  ident: 237_CR77
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.153054
– volume: 1
  start-page: 45
  year: 2019
  ident: 237_CR41
  publication-title: Biochar
  doi: 10.1007/s42773-019-00006-5
– volume: 34
  start-page: 974
  year: 2013
  ident: 237_CR73
  publication-title: J Dispers Sci Technol
  doi: 10.1080/01932691.2012.704753
– volume: 197
  year: 2021
  ident: 237_CR100
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111026
– volume: 44
  start-page: 1753
  year: 2013
  ident: 237_CR78
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.4392
– volume: 323
  year: 2021
  ident: 237_CR45
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.125086
– volume: 280
  year: 2021
  ident: 237_CR107
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2020.119386
– volume: 295
  year: 2022
  ident: 237_CR123
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.121295
– volume: 4
  start-page: 19
  year: 2022
  ident: 237_CR79
  publication-title: Biochar
  doi: 10.1007/s42773-022-00146-1
– volume: 74
  start-page: 1249
  year: 2015
  ident: 237_CR47
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4116-1
– volume: 374
  year: 2022
  ident: 237_CR130
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.133971
– volume: 451
  year: 2023
  ident: 237_CR46
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.138804
– volume: 26
  start-page: 281
  year: 2018
  ident: 237_CR50
  publication-title: J CO2 Utilization
  doi: 10.1016/j.jcou.2018.05.018
– volume: 8
  start-page: 47
  year: 2019
  ident: 237_CR98
  publication-title: Environ Technol Rev
  doi: 10.1080/21622515.2019.1631393
– volume: 162
  year: 2022
  ident: 237_CR118
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112413
SSID ssj0002511639
Score 2.5278149
SecondaryResourceType review_article
Snippet Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this...
Abstract Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties....
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Agriculture
Biochar-based materials
Ceramics
CO2 capture
Composites
Earth and Environmental Science
Environment
Environmental Engineering/Biotechnology
Environmental pollutant elimination
Fossil Fuels (incl. Carbon Capture)
Glass
H2 production
Interaction mechanism
Natural Materials
Renewable and Green Energy
Review
Soil Science & Conservation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxdRVJxf5ODNFdskTZqjE8cQ1IuD3UqaD5iMruj8_30v7UZFmBcPLW1JSPnl9X3w-n6PkJs8ZS54KROVgQoUPBRJlXmeaGuDM5ljwmO98_OLnM7E0zyf91p94T9hLT1wC9ydL7LMpcpZLaSohDMQsTjhXJobnRchoPYFm9cLplAHo-MMtrerkom1coIphSlLOOCkEvXDEkXC_l_Z0GhkJofkoPMO6X37Vkdkz9fH5H28WGFxVIIWx1FwMVupoYua9urUYF6DfYuxLTD1y9itC1Ef0SmjTUvsCrfU1I4-vDJqTYPZA9pPYZ-Q2eTx7WGadC0SEguB0RogzblPvfUSoWWGWV0FqcArKrQwkosqLXQQVqbWQHDlHYdL6XXmQ14BSPyUDOpV7c8IFcxCPMZ0zgMXKURtonJSgD-pHFdc2SHJNnCVtuMPxzYWy3LLfBwhLgHdMkJcqiG53c5pWvaMnaPHuAvbkch8HR-APJSdPJR_ycOQjDZ7WHaf4-eONc__Y80Lss-iYClQOpdksP748lfgq6yr6yiW35vK5DU
  priority: 102
  providerName: Directory of Open Access Journals
Title Biochar-based materials in environmental pollutant elimination, H2 production and CO2 capture applications
URI https://link.springer.com/article/10.1007/s42773-023-00237-7
https://doaj.org/article/e811d07dc9464b4da211d4dd05a958ff
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3F-jBy8uUKbpEl73MrGEKYXB7uVNh9jMrqyzat_uy9pNiaK4KGhKWna_vLyPnh97yH0GIdEGc15ICJggYyaJCgjTYNUSqOKSBGmbbzz-IWPJux5Gk99UNh6-7f71iXpOPUu2I0RIazPEQ5oRCAO0VEMtrul68zHOFj-a5VmkLs-Qub3W79JIZes_4cn1AmY4Rk69Zoh7jVLeY4OdHWBTnqzlc-OoS_Re3--tGFSgZU9CoOy2dAPnld4L2INZqltBWNbIBjrhavbZfHv4hHBdZPiFbq4qBTOXgmWRW3nx_vO7Cs0GQ7eslHgiyUEEkykDYAbUx1qqbkFmRREpqXhAvSjJGUFp6wMk9QwyUNZgJmlFYVTrtNIm7gEyOg1alXLSt8gzIgEVEkaU0NZCPYbKxVnoFkKRQUVso2iLXi59JnEbUGLRb7LgewAzwHr3AGeizZ62t1TN3k0_hzdt2uyG2lzYLsLy9Us91sq10kUKXgnmTLOSgYfDX2mVBgXaZwY00bd7YrmfmOu_3jm7f-G36Fj4ghKAKO5R63N6kM_gH6yKTuOHG3Ls46z8aEdfw6-AH2D35o
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD-rB-Bnxswdvsri1XbsdYdGgAl4g4dZs_TAYMgjg_-_rGAt-hMTDlnXpuu3X17731r3fQ-gu9Im2hnNPBDAFMmojLwsM9WKlrE4DTZhx8c7dHm8P2MswHJY0OS4W5sf6_cOcESHcSiNssBOe2EY7DDxl9_tewpPqe4ozlUHblnExf1_6TfcUFP2_1j8LtfJ0iA5KexA3lx14hLZMfoz2m--zkhPDnKCP1mjigqM8p3E0BhNzKTV4lOO1ODVoZeryFru0wNiMi2xdDvUGbhM8XRK7QhGnucbJG8Eqnbr28foS9ikaPD32k7ZXpkjwFDhGC4A0pMY3ynAHLUmJijPLBVhFUcxSTlnmR7FlivsqBefKaAqH3MSBsWEGkNEzVMsnuTlHmBEF_hiJQ2op88FrY5nmDOxJoamgQtVRsAJPqpI_3KWxGMuK-bgAXALWsgBcijq6r66ZLtkzNtZuuT6pajrm6-IECIQsB5I0URBoeCYVM84yBi8NZaa1H6ZxGFlbR41Vj8pyOM433PPif9Vv0W673-3IznPv9RLtkUK4BEw1V6i2mH2aa7BQFtlNIZpfrnLbqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QPQgPnF95uBNy7ZJmrRHXV3WtwcFb6HNY1mRblnr_3eSdsuKsuChpSlp2k4eM8Pk-wah0zgk2hrOAxHBEsioTYI8MjRIlbI6izRhxuGdHx754JXdvsVvMyh-v9t9GpKsMQ2OpamouqW23Rb4xogQLv4IB5xEIBbRMngqkdvU12vwDm4tdgY06OAGLfP3oz80kifu_xUV9cqmv4HWGysRX9TduokWTLGF1i6Gk4Ypw2yj98vR2EGmAqeHNAbDsx5LeFTgGfQatFK6bMYuWTA2Hz6Hl-uLczwguKzpXqGIs0Lj3hPBKitd-3g2sL2DXvvXL71B0CROCBS4SxUIOqYmNMpwJ3CSEZXmlguwlZKUZZyyPExSyxQPVQYul9EULrlJI2PjHERGd9FSMS7MHsKMKPDSSBpTS1kIvhzLNWdgZQpNBRWqg6Kp8KRqWMVdcosP2fIhe4FLkLX0Apeig87aZ8qaU2Nu7UvXJ21Nx4ftb4wnQ9lML2mSKNLwTSplnOUMfhrKTOswztI4sbaDzqc9KptJ-jnnnfv_q36CVp6v-vL-5vHuAK0SP7YErD-HaKmafJkjMFuq_NiPzG9zzePI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar-based+materials+in+environmental+pollutant+elimination%2C+H2+production+and+CO2+capture+applications&rft.jtitle=Biochar+%28Online%29&rft.au=Fang%2C+Lin&rft.au=Huang%2C+Tao&rft.au=Lu%2C+Hua&rft.au=Wu%2C+Xi-Lin&rft.date=2023-07-20&rft.pub=Springer+Nature+Singapore&rft.eissn=2524-7867&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-023-00237-7&rft.externalDocID=10_1007_s42773_023_00237_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7867&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7867&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7867&client=summon