Biochar-based materials in environmental pollutant elimination, H2 production and CO2 capture applications
Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this review article, biochar and biochar-based materials in the removal of environmental pollutants, hydrogen generation and carbon dioxide capture...
Saved in:
Published in | Biochar (Online) Vol. 5; no. 1; pp. 1 - 24 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
20.07.2023
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 2524-7867 2524-7867 |
DOI | 10.1007/s42773-023-00237-7 |
Cover
Loading…
Abstract | Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this review article, biochar and biochar-based materials in the removal of environmental pollutants, hydrogen generation and carbon dioxide capture were summarized and compared. The interaction mechanisms were discussed from the experimental results and characterization analysis. The high porous structures, active surface sites, (co)doping of single metals/nonmetals, and incorporation of metal oxides or other materials improved the high activity of biochar-based materials in their applications. However, there are still some challenges such as: (1) the fact that H
2
generation with high selectivity or the produced syngas to meet the real application requirement in industrial is the main challenge in H
2
production; (2) the fact that the selective capture of CO
2
with high stability, high adsorption capacity and recyclability at low-cost should be considered and focused on; (3) the sorption-(photo)degradation of the organic chemicals; and (4) the fact that the sorption-reduction-extraction/solidification of metals/radionuclides are efficient methods for the elimination of environmental pollutants. In the end, the perspectives, challenges and possible techniques for biochar-based materials’ real application in future were described.
Graphical Abstract
Highlights
Biochar-based composites exhibited high degradation abilities for organic pollutants.
Biochar-based materials showed high removal/immobilization efficiency of metals through sorption-reduction.
Biochar and biochar-based materials could generate H
2
with high efficiency.
Biochar-based materials can capture and separate CO
2
from complex systems with high selectivity. |
---|---|
AbstractList | Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this review article, biochar and biochar-based materials in the removal of environmental pollutants, hydrogen generation and carbon dioxide capture were summarized and compared. The interaction mechanisms were discussed from the experimental results and characterization analysis. The high porous structures, active surface sites, (co)doping of single metals/nonmetals, and incorporation of metal oxides or other materials improved the high activity of biochar-based materials in their applications. However, there are still some challenges such as: (1) the fact that H
2
generation with high selectivity or the produced syngas to meet the real application requirement in industrial is the main challenge in H
2
production; (2) the fact that the selective capture of CO
2
with high stability, high adsorption capacity and recyclability at low-cost should be considered and focused on; (3) the sorption-(photo)degradation of the organic chemicals; and (4) the fact that the sorption-reduction-extraction/solidification of metals/radionuclides are efficient methods for the elimination of environmental pollutants. In the end, the perspectives, challenges and possible techniques for biochar-based materials’ real application in future were described.
Graphical Abstract Abstract Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this review article, biochar and biochar-based materials in the removal of environmental pollutants, hydrogen generation and carbon dioxide capture were summarized and compared. The interaction mechanisms were discussed from the experimental results and characterization analysis. The high porous structures, active surface sites, (co)doping of single metals/nonmetals, and incorporation of metal oxides or other materials improved the high activity of biochar-based materials in their applications. However, there are still some challenges such as: (1) the fact that H2 generation with high selectivity or the produced syngas to meet the real application requirement in industrial is the main challenge in H2 production; (2) the fact that the selective capture of CO2 with high stability, high adsorption capacity and recyclability at low-cost should be considered and focused on; (3) the sorption-(photo)degradation of the organic chemicals; and (4) the fact that the sorption-reduction-extraction/solidification of metals/radionuclides are efficient methods for the elimination of environmental pollutants. In the end, the perspectives, challenges and possible techniques for biochar-based materials’ real application in future were described. Graphical Abstract Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this review article, biochar and biochar-based materials in the removal of environmental pollutants, hydrogen generation and carbon dioxide capture were summarized and compared. The interaction mechanisms were discussed from the experimental results and characterization analysis. The high porous structures, active surface sites, (co)doping of single metals/nonmetals, and incorporation of metal oxides or other materials improved the high activity of biochar-based materials in their applications. However, there are still some challenges such as: (1) the fact that H 2 generation with high selectivity or the produced syngas to meet the real application requirement in industrial is the main challenge in H 2 production; (2) the fact that the selective capture of CO 2 with high stability, high adsorption capacity and recyclability at low-cost should be considered and focused on; (3) the sorption-(photo)degradation of the organic chemicals; and (4) the fact that the sorption-reduction-extraction/solidification of metals/radionuclides are efficient methods for the elimination of environmental pollutants. In the end, the perspectives, challenges and possible techniques for biochar-based materials’ real application in future were described. Graphical Abstract Highlights Biochar-based composites exhibited high degradation abilities for organic pollutants. Biochar-based materials showed high removal/immobilization efficiency of metals through sorption-reduction. Biochar and biochar-based materials could generate H 2 with high efficiency. Biochar-based materials can capture and separate CO 2 from complex systems with high selectivity. |
ArticleNumber | 42 |
Author | Wang, Xiangke Chen, Zhongshan Wu, Xi-Lin Wang, Suhua Hu, Baowei Li, Zhuang Lu, Hua Huang, Tao Fang, Lin Tang, Zhenwu Yang, Hui |
Author_xml | – sequence: 1 givenname: Lin surname: Fang fullname: Fang, Lin organization: School of Life Science, Shaoxing University – sequence: 2 givenname: Tao surname: Huang fullname: Huang, Tao organization: School of Materials Engineering, Changshu Institute of Technology – sequence: 3 givenname: Hua surname: Lu fullname: Lu, Hua organization: School of Life Science, Shaoxing University, Shaoxing Sanhe Testing Technology Co., LTD – sequence: 4 givenname: Xi-Lin surname: Wu fullname: Wu, Xi-Lin email: dbwxl@zjnu.cn organization: College of Geography and Environmental Science, Zhejiang Normal University – sequence: 5 givenname: Zhongshan surname: Chen fullname: Chen, Zhongshan organization: College of Environmental Science and Engineering, North China Electric Power University – sequence: 6 givenname: Hui surname: Yang fullname: Yang, Hui organization: College of Environmental Science and Engineering, North China Electric Power University – sequence: 7 givenname: Suhua surname: Wang fullname: Wang, Suhua organization: School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology – sequence: 8 givenname: Zhenwu surname: Tang fullname: Tang, Zhenwu organization: College of Life and Environmental Sciences, Minzu University of China – sequence: 9 givenname: Zhuang surname: Li fullname: Li, Zhuang organization: College of Environmental Science and Engineering, North China Electric Power University – sequence: 10 givenname: Baowei surname: Hu fullname: Hu, Baowei email: hbw@usx.edu.cn organization: School of Life Science, Shaoxing University – sequence: 11 givenname: Xiangke orcidid: 0000-0002-3352-1617 surname: Wang fullname: Wang, Xiangke email: xkwang@ncepu.edu.cn organization: School of Life Science, Shaoxing University, College of Environmental Science and Engineering, North China Electric Power University |
BookMark | eNp9UU1vGyEQRVUqNXXyB3riB2RbYFnYPbZWviRLvjRnNAuzKdYaVoAr9d8X24lU9eDDMDPovQcz7zO5CjEgIV84-8oZ09-yFFq3DRM16qEb_YFci07IRvdKX_1TfyK3Oe9YRXWcq3a4JrsfPtpfkJoRMjq6h4LJw5ypDxTDb59i2GMoMNMlzvOhQCgUZ7_3AYqP4Y4-Cbqk6A722FIIjq63glpYyiEhhWWZvT1B8w35OFVlvH3LK_LycP9z_dRsto_P6--bxkrGSzPYrkWGFpWdHAgQdhgnpWWn-kGCauXI-mGSVjELohfo2loqHDhO3Vjnalfk-azrIuzMkvwe0h8TwZvTRUyvBlLxdkaDPeeOaWcHqeQo63O1l86xDoaun6aq1Z-1bIo5J5yM9eU0TkngZ8OZOVpgzhaYun1zssDoShX_Ud-_cpHUnkm5gsMrJrOLhxTqui6x_gIdo5y- |
CitedBy_id | crossref_primary_10_1007_s42773_025_00439_1 crossref_primary_10_1016_j_jaap_2024_106622 crossref_primary_10_1007_s13399_023_05018_7 crossref_primary_10_1073_pnas_2304552120 crossref_primary_10_1016_j_mtchem_2024_102383 crossref_primary_10_1080_10643389_2023_2274259 crossref_primary_10_1007_s11356_023_30961_3 crossref_primary_10_1007_s11705_024_2466_5 crossref_primary_10_1016_j_apcatb_2023_123629 crossref_primary_10_1007_s44279_024_00033_2 crossref_primary_10_1016_j_est_2024_114613 crossref_primary_10_1002_adsu_202400431 crossref_primary_10_1007_s42773_024_00369_4 crossref_primary_10_1021_acsestwater_4c00344 crossref_primary_10_1515_ijmr_2023_0263 crossref_primary_10_1007_s42773_024_00304_7 crossref_primary_10_1007_s13399_024_05296_9 crossref_primary_10_1016_j_jallcom_2024_174378 crossref_primary_10_1016_j_jpcs_2024_111867 crossref_primary_10_1016_j_seppur_2023_124865 crossref_primary_10_1007_s13399_024_05989_1 crossref_primary_10_1016_j_jwpe_2024_106147 crossref_primary_10_1016_j_electacta_2024_143794 crossref_primary_10_1016_j_fuel_2025_134588 crossref_primary_10_1007_s11356_024_33959_7 crossref_primary_10_1016_j_carbon_2023_118584 crossref_primary_10_1007_s41207_024_00514_2 crossref_primary_10_1016_j_jece_2023_111257 crossref_primary_10_1016_j_ijggc_2024_104107 crossref_primary_10_1016_j_jallcom_2024_177908 crossref_primary_10_3390_molecules29010063 crossref_primary_10_1007_s13399_024_06435_y crossref_primary_10_1016_j_hybadv_2023_100113 crossref_primary_10_1016_j_jece_2023_110955 crossref_primary_10_1016_j_jclepro_2025_145194 crossref_primary_10_1016_j_scitotenv_2023_166841 crossref_primary_10_1016_j_jcis_2024_07_024 crossref_primary_10_1007_s11270_024_06932_w crossref_primary_10_1515_npprj_2023_0049 crossref_primary_10_1007_s11157_024_09700_8 crossref_primary_10_1007_s11869_025_01692_w crossref_primary_10_1007_s11356_023_31268_z crossref_primary_10_1016_j_dwt_2024_100542 crossref_primary_10_1007_s10098_024_02962_4 crossref_primary_10_1016_j_ijggc_2024_104156 crossref_primary_10_1021_acsestengg_4c00407 crossref_primary_10_1016_j_bbrep_2023_101601 crossref_primary_10_1016_j_jconhyd_2024_104412 crossref_primary_10_1039_D3CY01700A crossref_primary_10_1039_D3TA03310D crossref_primary_10_1016_j_ijhydene_2024_02_045 crossref_primary_10_1016_j_apsusc_2023_159048 crossref_primary_10_1016_j_jece_2024_114452 crossref_primary_10_1016_j_jtice_2024_105670 crossref_primary_10_1016_j_renene_2024_122287 crossref_primary_10_1021_acs_langmuir_3c02739 crossref_primary_10_1016_j_apcatb_2024_123898 crossref_primary_10_1515_ract_2024_0301 crossref_primary_10_1016_j_pmatsci_2024_101289 crossref_primary_10_1021_acs_est_3c09579 crossref_primary_10_1016_j_renene_2024_120777 crossref_primary_10_1007_s13201_024_02287_z crossref_primary_10_1016_j_esi_2024_02_002 crossref_primary_10_1016_j_jenvman_2024_121160 crossref_primary_10_1039_D3MA00880K crossref_primary_10_1016_j_seppur_2023_124937 crossref_primary_10_1021_acsomega_3c07200 crossref_primary_10_1007_s00289_025_05702_w crossref_primary_10_1080_10643389_2023_2284646 crossref_primary_10_1007_s42773_024_00316_3 crossref_primary_10_1016_j_seppur_2023_126199 crossref_primary_10_1021_acssuschemeng_4c03359 crossref_primary_10_1016_j_seppur_2024_129320 crossref_primary_10_1080_15569543_2024_2309208 crossref_primary_10_1021_acsanm_4c02713 crossref_primary_10_1016_j_sajce_2024_04_004 |
Cites_doi | 10.1016/j.watres.2017.02.063 10.1016/j.scitotenv.2023.161767 10.1016/j.jclepro.2022.133971 10.1016/j.scib.2022.02.012 10.1016/j.jhazmat.2019.121357 10.1016/j.scitotenv.2020.139750 10.1016/j.renene.2015.02.013 10.1016/j.scitotenv.2019.135763 10.1080/10643389.2020.1734433 10.1016/j.seppur.2022.121295 10.1007/s13762-015-0873-3 10.1016/j.envpol.2016.03.013 10.1016/j.jclepro.2020.122550 10.15244/pjoes/99837 10.1021/jacsau.2c00614 10.1016/j.biortech.2021.125086 10.1016/j.scib.2022.10.013 10.1038/s41467-023-36710-x 10.1016/j.psep.2017.02.010 10.1039/C7CS00543A 10.1021/acs.energyfuels.1c04372 10.1016/j.cclet.2022.03.001 10.1016/j.biombioe.2014.03.059 10.1016/j.envint.2019.105216 10.1016/j.apcatb.2020.119386 10.1016/j.jhazmat.2019.121147 10.1016/j.rser.2019.109582 10.1016/j.chemosphere.2021.130671 10.1016/j.scitotenv.2022.157955 10.1016/j.scitotenv.2018.02.091 10.1007/s42773-022-00157-y 10.1016/j.jes.2021.02.021 10.1016/j.jece.2020.104722 10.1016/j.biombioe.2022.106608 10.31635/ccschem.022.202201897 10.1016/j.biortech.2016.05.057 10.1016/j.energy.2022.123409 10.1016/j.jhazmat.2011.04.008 10.1039/C7RA09307A 10.1016/j.carbon.2016.06.010 10.1016/j.apcatb.2022.121343 10.1016/j.envpol.2017.09.051 10.1016/j.fuel.2021.121257 10.1016/j.scitotenv.2022.153054 10.1016/j.enchem.2022.100078 10.1016/j.jhazmat.2020.122255 10.1515/revce-2018-0003 10.1016/j.scitotenv.2017.09.171 10.1016/j.rser.2022.112413 10.1016/j.envres.2022.114093 10.1016/j.fuel.2021.120243 10.1016/j.seppur.2023.123615 10.1016/j.envres.2022.113954 10.1007/s42773-022-00146-1 10.1016/j.ijhydene.2017.06.171 10.1016/j.chemosphere.2019.01.161 10.1016/j.joei.2022.10.017 10.1021/acsami.2c14744 10.1007/s42773-021-00117-y 10.1016/j.fuel.2017.12.054 10.1016/j.cej.2015.08.037 10.1007/s11426-022-1358-1 10.1007/s44246-022-00005-5 10.1007/s12665-015-4116-1 10.1007/s44246-022-00007-3 10.1016/j.jphotochem.2022.114435 10.1021/es203439v 10.1021/acsomega.0c04820 10.1016/j.ibiod.2018.10.001 10.1016/j.scitotenv.2021.152280 10.1016/j.crgsc.2021.100055 10.1016/j.biombioe.2021.106014 10.1016/j.jenvman.2021.113644 10.1016/j.seppur.2022.120592 10.1016/j.seppur.2022.121912 10.1016/j.envres.2021.111026 10.3390/catal12020210 10.1002/jrs.4392 10.1016/j.joei.2022.10.009 10.1016/j.scitotenv.2023.163313 10.1016/j.cej.2022.135972 10.1007/s11356-017-8577-5 10.1016/j.biombioe.2015.11.002 10.1021/acs.est.2c03994 10.1016/j.orggeochem.2005.10.008 10.1016/j.jhazmat.2020.124961 10.1016/j.jhazmat.2020.123541 10.1016/j.jhazmat.2019.121371 10.1002/chem.201802096 10.1016/j.cej.2022.138804 10.1016/j.jclepro.2016.04.088 10.1016/j.ccr.2023.215097 10.1002/adfm.202204175 10.1007/s11356-020-07734-3 10.34133/2022/9790320 10.1007/s11705-022-2218-3 10.1016/j.fuel.2022.125572 10.1002/adma.201902868 10.1016/j.jece.2021.106869 10.1016/j.enchem.2023.100101 10.1016/j.watres.2020.116054 10.1016/j.jhazmat.2022.129691 10.1080/01932691.2012.704753 10.1016/j.apcatb.2022.122092 10.1016/j.jcou.2018.05.018 10.1002/advs.202201735 10.1016/j.jhazmat.2020.124052 10.1016/j.cej.2022.134743 10.1016/j.seppur.2022.122862 10.1016/j.apcatb.2010.07.024 10.1016/j.fuproc.2021.106903 10.1016/j.scitotenv.2022.156072 10.1002/adma.202106621 10.1039/D1NA00843A 10.1007/s11738-023-03520-z 10.1016/j.jes.2021.10.003 10.1016/j.jwpe.2019.101037 10.1016/j.fuel.2018.03.145 10.1007/s42773-019-00006-5 10.1016/j.jhazmat.2021.126128 10.1002/er.3297 10.1016/j.biortech.2010.08.067 10.1007/s10098-014-0730-y 10.1021/acs.chemrev.5b00195 10.1016/j.biortech.2018.09.046 10.1007/s42773-022-00173-y 10.1016/0016-2361(95)93465-P 10.1080/21622515.2019.1631393 10.1016/j.cej.2014.03.105 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s42773-023-00237-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2524-7867 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_e811d07dc9464b4da211d4dd05a958ff 10_1007_s42773_023_00237_7 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 22276054 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Key Technologies Research and Development Program grantid: 2018YFC1900105 funderid: http://dx.doi.org/10.13039/501100012165 |
GroupedDBID | 0R~ AAHBH AAHNG AAJSJ AAKKN AAYZJ ABDBF ABECU ABEEZ ABFTV ABKCH ABMQK ABTEG ABTMW ACACY ACOKC ACULB ACZOJ ADKNI ADURQ ADYFF AFGXO AFQWF AGDGC AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AXYYD C24 C6C EBLON EBS FNLPD GROUPED_DOAJ M~E NQJWS OK1 RSV SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AASML AAYXX CITATION |
ID | FETCH-LOGICAL-c401t-9c53e0ece6cfda2a2c9bf67456894a634b089f4c60ca282ed3c606e91ef5b2513 |
IEDL.DBID | C24 |
ISSN | 2524-7867 |
IngestDate | Wed Aug 27 01:04:41 EDT 2025 Tue Jul 01 03:16:38 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Fri Feb 21 02:42:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Interaction mechanism Environmental pollutant elimination production H capture Biochar-based materials CO |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-9c53e0ece6cfda2a2c9bf67456894a634b089f4c60ca282ed3c606e91ef5b2513 |
ORCID | 0000-0002-3352-1617 |
OpenAccessLink | https://link.springer.com/10.1007/s42773-023-00237-7 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e811d07dc9464b4da211d4dd05a958ff crossref_citationtrail_10_1007_s42773_023_00237_7 crossref_primary_10_1007_s42773_023_00237_7 springer_journals_10_1007_s42773_023_00237_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-20 |
PublicationDateYYYYMMDD | 2023-07-20 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Biochar (Online) |
PublicationTitleAbbrev | Biochar |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore Springer |
Publisher_xml | – name: Springer Nature Singapore – name: Springer |
References | Creamer, Gao, Wang (CR24) 2016; 283 Hu, Tang, Shen, Yao, Zhao, Wang (CR40) 2023; 322 Mohd, Ghani, Resitanim, Sanyang (CR73) 2013; 34 Liu, Ma, Zhuang, Hu, Chen, Liu, Wang (CR60) 2021; 51 Wang, Yi, Zhang, Su, Li, Zhang, Gao (CR99) 2020; 29 Lahijani, Mohammadi, Mohamed (CR50) 2018; 26 Su, Li, Jiang, Duan, Liu, Zhang (CR92) 2023; 45 Hao, Liu, Wu, Wang, Yang, Chen, Tang, Huang, Wang, Yang, Wang (CR38) 2023; 5 Cai, Zhang, Lv, Zhang, Gao, Fang, Kong, Liu, Tan, Hu, Wang (CR11) 2022; 310 Creamer, Gao, Zhang (CR23) 2014; 249 Sun, Feng, Zhang, Sun, Zhao, Zhang (CR94) 2022; 330 Benis, Damuchali, Soltan, McPhedran (CR6) 2020; 739 Singh, Yadav (CR87) 2021; 9 Zhang, Wang, Feng, Gao, Dong, Zhoa, Sun, Huang, Qin (CR122) 2022; 36 Muangrat, Onwudili, Williams (CR74) 2010; 100 Li, Ruan, Jalilov, Tarkunde, Fei, Tour (CR52) 2016; 107 Li, Huang, Liu, Chen, Yang, Wang (CR55) 2023; 314 Lu, Cai, Zhuang, Hu, Wang, Chen, Wang (CR69) 2022; 4 Chatterjee, Sajjadi, Mattern, Chen, Zubatiuk, Leszczynska, Leszczynski, Egiebor, Hammer (CR15) 2018; 225 Brewer, Chuang, Masiello, Gonnermann, Gao, Dugan, Driver, Panzacchi, Zygourakis, Davies (CR9) 2014; 66 Chen, Wang, Hao, Xie, Liu, Yang, Waterhouse, Wang, Ma (CR21) 2023; 14 Kim, Kim, Kim, Yoon, Yang, Ok, Owens, Kim (CR47) 2015; 74 Yang, Liu, Chen, Waterhouse, Ma, Wang (CR113) 2022; 65 Sharma, Melkania (CR85) 2017; 42 Chen, Chen, Lv (CR16) 2011; 102 Shahrak, Ghahramaninezhad, Eydifarash (CR84) 2017; 24 Rouhani, Morsali (CR80) 2018; 24 Salem, Gamal, Sharma, Hemeedi, Howari (CR82) 2021; 299 Elsamadony, Tawfik, Danial, Suzuki (CR30) 2015; 39 Huong, Jitae, Tahtamouni, Tri, Kim, Cho, Lee (CR42) 2020; 33 Zhang, Khan, Sun, Zhang, Taraqqi-A-Kamal, Zhang (CR120) 2020; 706 Zou, Wang, Qian, Huo, Kong, Wang, Dai, Wang, Zhang, Mateo, Ruan, Lei (CR130) 2022; 374 Liu, Ptacek, Wlowes, Finfrock, Liu (CR58) 2020; 134 Gu, Liu, Wang, Chen, Yang, Hu, Shen, Wang (CR33) 2022; 260 Liu, Ye, Xu, Wang (CR66) 2022; 247 Liu, Luo, Dong, Zhao, Xu, Abuelgasim, Abdalazeez, Wang, Chen, Tang (CR65) 2022; 300 Guillem-Navajas, Martin-Illan, Salagre, Michel, Rodriguez-San-Miguel, Zamora (CR34) 2022; 14 Zhang, Liu, Gao, Tan, Cai, Hu, Huang, Fang, Wang (CR121) 2022; 4 Jeyasubramanian, Thangagiri, Sakthivel, Raja, Seenivasan, Balinayagam, Madhavan, Devi, Rathika (CR44) 2021; 292 Liu, Pang, Liu, Li, Zhang, Mao, Qiu, Hu, Yang, Wang (CR61) 2021; 2 Niazi, Bibi, Shahid, Ok, Burton, Wang, Shaheen, Rinklebe, Luttge (CR76) 2018; 232 Maroušek (CR72) 2014; 16 Yao, Hu, Zou, Ji, Hu, Wang, Zhang, Yang, Shen, Tang, Zhang, Zhao, Wang (CR116) 2022; 56 Liu, Zhang, Ma, Wu, Wen, Ai, Sun, Jin, Wang, Wang (CR62) 2022; 33 Hitit, Hallenbeck (CR39) 2021; 147 Su, Liu, Cai, Ma, Jiang, Xing, Liang, Cai, Xia, Le, Sonne, Lam (CR90) 2020; 402 Zubbri, Mohamed, Kamiuchi, Mohammadi (CR132) 2020; 27 Somerville, Jahanshahi (CR88) 2015; 80 Cai, Chen, Wang, Chen, Hu, Shen, Wang (CR12) 2023; 38 Luo, Pang, Wang, Li, Wang, Lei, Huang, Yang (CR70) 2021; 108 Amikam, Fridman-Bishop, Gendel (CR5) 2020; 5 Li, Wang, Zhao, Chen, Chai, Alsaedi, Hayat, Wang (CR53) 2018; 47 Sajjadi, Zubatiuk, Leszczynska, Leszczynski, Chen (CR81) 2018; 35 Wang, Dissanayake, Sun, Tao, Han, An, Gu, Xia, Tian, Ok, Shang (CR100) 2021; 197 Hao, Chen, Liu, Liu, Zhang, Yang, Waterhouse, Wang, Ma (CR36) 2022; 4 Shafawi, Mohamed, Lahijani, Mohammadi (CR83) 2021; 9 Patel, Singhania, Pal, Chen, Pandey, Dong (CR77) 2022; 817 Shi, Yang, Liang, Li, Gan, Xiao, Hu (CR86) 2018; 628–629 Yuan, Wang, Deng, Suvarna, Wang, Zhang, Hamilton, Alahmed, Jamal, Park, Bi, Ok (CR118) 2022; 162 Dong, Ma, Li (CR29) 2011; 190 Chen, Gao, Li, Fang, Bolan, Bhatnagar, Gao, Hou, Wang, Song, Yang, Shaheen, Meng, Chen, Rinklebe, Wang (CR19) 2022; 1 Liu, Xie, Hao, Chen, Yang, Waterhouse, Ma, Wang (CR67) 2022; 9 Abdalazeez, Tianle, Cao, Wang, Abuelgasim, Liu (CR1) 2022; 105 Hao, Xie, Liu, Chen, Yang, Waterhouse, Ma, Wang (CR37) 2023; 3 Chen, Ma, Duan, Lang, Pan (CR17) 2020; 271 Dai, Zhang, Xing, Cui, Sun (CR25) 2019; 223 Zhang, Liu, Ma, Jia, Wen, Ai, Zhao, Fang, Hu, Wang (CR126) 2022; 32 Lyu, Xia, Tang, Zhang, Gao, Shen (CR71) 2020; 384 Zhang, Sun, Gao, Zhang, Han, Li, Fang, Cai, Hu, Tan, Wang (CR127) 2022; 2022 Sun, Sun, Feng, Zhao, Zhang, Zhang, Wu, Win (CR93) 2021; 221 Pointurier, Marie (CR78) 2013; 44 Brown, Kercher, Nguyen, Nagle, Ball (CR10) 2006; 37 Murugesan, Raja, Dutta, Moses, Anandharamakrishnan (CR75) 2022; 851 Xu, Kan, Zhao, Cao (CR108) 2016; 213 Bhavani, Kumar, Hussain, Aminabhavi, Park (CR7) 2022; 434 Farooq, Jang, Hoon, Jung, Hoon, Jeon, Park (CR31) 2021; 280 Wongrod, Simon, Hullebusch, Lens, Guibaud (CR104) 2018; 135 Li, Zhang, Mao, Wang, Shang (CR57) 2023; 880 Zhang, Sun, Xu, Wu (CR124) 2022; 166 Gasim, Choong, Koo, Low, Abdurahman, Ho, Mohamad, Suryawan, Lim, Oh (CR32) 2022; 12 Qiu, Liu, Ling, Cai, Yu, Wang, Fu, Hu, Wang (CR79) 2022; 4 Cao, Sun, Sun (CR13) 2017; 7 Cho, Tsang, Kim, Kwon, Kwon, Song (CR22) 2018; 270 Komkiene, Baltrenaite (CR48) 2016; 13 Li, Xiong, Wei, Qin, Lin (CR54) 2021; 3 Yang, Ye, Zhang, Zeng, Tan, Song, Zhang, Yang, Li, Chen (CR111) 2021; 404 Zahed, Salehi, Madadi, Hejabi (CR119) 2021; 2021 Bie, Zhu, Xu, Zhang, Yu (CR8) 2019; 31 Jiang, Luo, Niu, Xu, Gao, Gao, Gao, Luo, Liu (CR46) 2023; 451 Jia, Yu, Li, Qin, Guo, Zhang, Wang, Zhang, Fan, Jin (CR45) 2021; 323 Li, Liu, Zhao, Cai, Shen, Wang (CR56) 2023; 869 Liu, Ling, Cai, Xu, Su, Yu, Wu, Xu, Hu, Wang (CR64) 2022; 4 Zou, Qian, Wang, Mateo, Wang, Dai, Lin, Zhao, Huo, Wang, Zhang, Kong, Ruan, Lei (CR131) 2022; 441 Son, Poo, Chang, Chae (CR89) 2018; 615 Yan, Li, Zhang, Wang, Zhao, Wang (CR110) 2021; 303 Yu, Tang, Zhang, Wang, Qiu, Song, Fu, Hu, Wang (CR117) 2022; 811 Ahmed, Zhou, Ngo, Guo (CR3) 2016; 84 Tian, Wang, Liu, Ma (CR95) 2020; 183 Wang, Liu, Tian, Yang, Wang, Ma (CR101) 2021; 416 Yang, Liu, Hao, Xie, Wang, Tian, Waterhouse, Kruge, Telfer, Ma (CR112) 2021; 33 Weber, Quicker (CR103) 2018; 217 Liu, Zhang, Xu, Liu, Lv, Liu, Wang (CR59) 2020; 384 Vijayaraghavan (CR98) 2019; 8 Yang, Liu, Liu, Wang, Chen, Wang (CR114) 2023; 17 Zhao, Li, Ren, Chen, Wang (CR128) 2011; 45 Su, Zhao, Xing, Ma, Liu, Li, Zhang, Wu, Xia (CR91) 2022; 214 Igalavithana, Choi, Dissanayake, Shang, Wang, Yang, Kim, Tsang, Lee, Ok (CR43) 2020; 391 Ahmed, Zhou, Ngo, Guo, Chen (CR2) 2016; 214 Dessi, Lakaniemi, Lens (CR27) 2017; 115 Dissanayake, You, Igalavithana, Xia, Bhatnagar, Gupta, Kua, Kim, Kwon, Tsang, Ok (CR28) 2020; 119 Cao, Zhang, Xu, Xiang, Wang, Ding, Hong, Gao (CR14) 2022; 287 Alam, Alam, Khan, Haq, Ayaz, Jalal, Bhat (CR4) 2021; 173 Tran, Tomul, Ha, Nguyen, Lima, Le, Chang, Masindi, Woo (CR97) 2020; 394 Das, Bhattacharyya, Sarmah (CR26) 2016; 129 Lu, Low, Liu, Lua (CR68) 1995; 74 Hao, Chen, Yang, Waterhouse, Ma, Wang (CR35) 2022; 67 Li, Jiang, Yu (CR51) 2015; 115 Zhang, Cao, Wang, Xu, Gao (CR123) 2022; 295 Yao, Shen, Ji, Hu, Tang, Zhao, Wang (CR115) 2022; 67 Kumar, Singh, Mishra, Lo, Kumar (CR49) 2022; 214 Wu, Pei, Zhou, Liu, Cao (CR105) 2022; 838 Zhu, Liu, Jiang, Lin, Yang (CR129) 2022; 4 Xin, Liu, Ma, Gong, Ma, Yan, Chen, Ma, Zhang, Gao, Xin (CR107) 2021; 280 Xue, Wang, Yan, Peng, Wang, Xiao, Wang (CR109) 2021; 408 Chen, Chen, Xu, Xu, Zhang, Song, Tsang, Xu, Cao (CR20) 2022; 440 Liu, Xu, Buyong, Chay, Li, Cai, Hu, Zhu, Wang (CR63) 2022; 1 Wang, Li, Liu, Wang, Zhao, Cai, Li, Chen (CR102) 2023; 437 Wu, Xie, Liu, Li, Wang, Chen, Yang, Hu, Tang, Huang, Wang (CR106) 2023; 483 Zhang, Sun, He, Wu (CR125) 2022; 105 Huang, Song, Chen, Hu, Chen, Wang (CR41) 2019; 1 Tran, Wang, You, Chao (CR96) 2017; 107 Chen, He, Li, Yang, Liu, Wu, Liu, Hu, Wang (CR18) 2022; 122 L Jia (237_CR45) 2021; 323 H Sun (237_CR94) 2022; 330 R Muangrat (237_CR74) 2010; 100 B Chen (237_CR16) 2011; 102 H Chen (237_CR19) 2022; 1 G Zhao (237_CR128) 2011; 45 NA Zubbri (237_CR132) 2020; 27 AE Creamer (237_CR23) 2014; 249 PT Huong (237_CR42) 2020; 33 B Sajjadi (237_CR81) 2018; 35 L Yao (237_CR115) 2022; 67 IB Salem (237_CR82) 2021; 299 M Somerville (237_CR88) 2015; 80 X Yang (237_CR114) 2023; 17 S Wongrod (237_CR104) 2018; 135 X Liu (237_CR62) 2022; 33 DW Cho (237_CR22) 2018; 270 KZ Benis (237_CR6) 2020; 739 AE Creamer (237_CR24) 2016; 283 YP Wang (237_CR101) 2021; 416 Y Dai (237_CR25) 2019; 223 P Dessi (237_CR27) 2017; 115 J Li (237_CR56) 2023; 869 H Gu (237_CR33) 2022; 260 Y Li (237_CR55) 2023; 314 M Qiu (237_CR79) 2022; 4 ZS Chen (237_CR18) 2022; 122 PD Dissanayake (237_CR28) 2020; 119 Y Li (237_CR52) 2016; 107 HS Kim (237_CR47) 2015; 74 H Yang (237_CR113) 2022; 65 A Mohd (237_CR73) 2013; 34 AK Patel (237_CR77) 2022; 817 W Su (237_CR91) 2022; 214 R Zou (237_CR130) 2022; 374 N Liu (237_CR59) 2020; 384 EB Son (237_CR89) 2018; 615 H Wang (237_CR99) 2020; 29 ZX Liu (237_CR64) 2022; 4 Z Liu (237_CR63) 2022; 1 XL Liu (237_CR60) 2021; 51 AN Shafawi (237_CR83) 2021; 9 KH Xue (237_CR109) 2021; 408 HX Zhu (237_CR129) 2022; 4 P Lahijani (237_CR50) 2018; 26 NK Niazi (237_CR76) 2018; 232 Q Li (237_CR57) 2023; 880 HN Tran (237_CR97) 2020; 394 S Shi (237_CR86) 2018; 628–629 T Wang (237_CR100) 2021; 197 L Cao (237_CR14) 2022; 287 MF Gasim (237_CR32) 2022; 12 R Chatterjee (237_CR15) 2018; 225 JW Wu (237_CR105) 2022; 838 H Sun (237_CR93) 2021; 221 WJ Li (237_CR51) 2015; 115 I Alam (237_CR4) 2021; 173 X Zhang (237_CR123) 2022; 295 X Dong (237_CR29) 2011; 190 Y Zhang (237_CR122) 2022; 36 S Wang (237_CR102) 2023; 437 C Zhang (237_CR125) 2022; 105 X Cao (237_CR13) 2017; 7 P Liu (237_CR58) 2020; 134 A Guillem-Navajas (237_CR34) 2022; 14 X Yuan (237_CR118) 2022; 162 Y Yang (237_CR111) 2021; 404 YF Zhang (237_CR121) 2022; 4 H Yang (237_CR112) 2021; 33 M Hao (237_CR37) 2023; 3 F Rouhani (237_CR80) 2018; 24 G Amikam (237_CR5) 2020; 5 P Bhavani (237_CR7) 2022; 434 M Hao (237_CR35) 2022; 67 O Das (237_CR26) 2016; 129 K Zhang (237_CR120) 2020; 706 A Farooq (237_CR31) 2021; 280 YW Cai (237_CR12) 2023; 38 MN Shahrak (237_CR84) 2017; 24 C Zhang (237_CR124) 2022; 166 H Lyu (237_CR71) 2020; 384 K Vijayaraghavan (237_CR98) 2019; 8 M Elsamadony (237_CR30) 2015; 39 J Komkiene (237_CR48) 2016; 13 K Luo (237_CR70) 2021; 108 F Pointurier (237_CR78) 2013; 44 D Singh (237_CR87) 2021; 9 A Kumar (237_CR49) 2022; 214 Q Huang (237_CR41) 2019; 1 Y Wu (237_CR106) 2023; 483 MB Ahmed (237_CR3) 2016; 84 P Sharma (237_CR85) 2017; 42 YC Jiang (237_CR46) 2023; 451 J Li (237_CR53) 2018; 47 H Liu (237_CR66) 2022; 247 X Liu (237_CR67) 2022; 9 Y Su (237_CR92) 2023; 45 X Xu (237_CR108) 2016; 213 RA Brown (237_CR10) 2006; 37 P Murugesan (237_CR75) 2022; 851 M Chen (237_CR20) 2022; 440 SQ Tian (237_CR95) 2020; 183 ZY Hitit (237_CR39) 2021; 147 C Bie (237_CR8) 2019; 31 AD Igalavithana (237_CR43) 2020; 391 K Weber (237_CR103) 2018; 217 XL Liu (237_CR61) 2021; 2 S Xin (237_CR107) 2021; 280 L Yao (237_CR116) 2022; 56 A Abdalazeez (237_CR1) 2022; 105 M Hao (237_CR36) 2022; 4 Q Chen (237_CR17) 2020; 271 S Yu (237_CR117) 2022; 811 MB Ahmed (237_CR2) 2016; 214 MA Zahed (237_CR119) 2021; 2021 R Zou (237_CR131) 2022; 441 K Jeyasubramanian (237_CR44) 2021; 292 Y Lu (237_CR69) 2022; 4 YF Zhang (237_CR127) 2022; 2022 M Hao (237_CR38) 2023; 5 W Su (237_CR90) 2020; 402 C Liu (237_CR65) 2022; 300 Y Hu (237_CR40) 2023; 322 Z Chen (237_CR21) 2023; 14 S Zhang (237_CR126) 2022; 32 J Maroušek (237_CR72) 2014; 16 X Yan (237_CR110) 2021; 303 Y Cai (237_CR11) 2022; 310 Y Li (237_CR54) 2021; 3 HN Tran (237_CR96) 2017; 107 CE Brewer (237_CR9) 2014; 66 GQ Lu (237_CR68) 1995; 74 |
References_xml | – volume: 115 start-page: 120 year: 2017 end-page: 129 ident: CR27 article-title: Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 degrees C publication-title: Water Res doi: 10.1016/j.watres.2017.02.063 – volume: 869 year: 2023 ident: CR56 article-title: Piezoelectric materials and techniques for environmental pollution remediation publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.161767 – volume: 374 year: 2022 ident: CR130 article-title: Catalytic co-pyrolysis of solid wastes (low-density polyethylene and lignocellulosic biomass) over microwave assisted biochar for bio-oil upgrading and hydrogen production publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.133971 – volume: 67 start-page: 924 year: 2022 end-page: 932 ident: CR35 article-title: Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous TcO publication-title: Sci Bull doi: 10.1016/j.scib.2022.02.012 – volume: 384 year: 2020 ident: CR71 article-title: Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg and organic CH Hg publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121357 – volume: 739 year: 2020 ident: CR6 article-title: Treatment of aqueous arsenic-a review of biochar modification methods publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.139750 – volume: 80 start-page: 471 year: 2015 end-page: 478 ident: CR88 article-title: The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood publication-title: Renew Energy doi: 10.1016/j.renene.2015.02.013 – volume: 706 year: 2020 ident: CR120 article-title: Simultaneous reduction of Cr(VI) and oxidation of organic pollutants by rice husk derived biochar and the interactive influences of coexisting Cr(VI) publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135763 – volume: 51 start-page: 751 year: 2021 end-page: 790 ident: CR60 article-title: Recent developments of doped g-C N photocatalysts for the degradation of organic pollutants publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2020.1734433 – volume: 295 year: 2022 ident: CR123 article-title: Preparation and evaluation of fine-tuned micropore biochar by lignin impregnation for CO and VOCs adsorption publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.121295 – volume: 13 start-page: 471 year: 2016 end-page: 482 ident: CR48 article-title: Biochar as adsorbent for removal of heavy metal ions [cadmium(II), copper(II), lead(II), zinc(II)] from aqueous phase publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-015-0873-3 – volume: 213 start-page: 533 year: 2016 end-page: 540 ident: CR108 article-title: Chemical transformation of CO during its capture by waste biomass derived biochars publication-title: Environ Poll doi: 10.1016/j.envpol.2016.03.013 – volume: 271 year: 2020 ident: CR17 article-title: Coupling adsorption and degradation in p-nitrophenol removal by biochars publication-title: J Clean Product doi: 10.1016/j.jclepro.2020.122550 – volume: 29 start-page: 323 year: 2020 end-page: 330 ident: CR99 article-title: Biochar mitigates greenhouse gas emissions from an acidic tea soil publication-title: Pol J Environ Stud doi: 10.15244/pjoes/99837 – volume: 3 start-page: 239 year: 2023 end-page: 251 ident: CR37 article-title: Modulating the uranium extraction performance of multivariate covalent organic frameworks through donor−acceptor linkers and amidoxime nanotraps publication-title: JACS Au doi: 10.1021/jacsau.2c00614 – volume: 323 year: 2021 ident: CR45 article-title: Study on the Hg0 removal characteristics and synergistic mechanism of iron-based modified biochar doped with multiple metals publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.125086 – volume: 67 start-page: 2154 year: 2022 end-page: 2157 ident: CR115 article-title: Cr(VI) detoxification and simultaneous selective recovery of Cr resource from wastewater via photo-chemical extraction using biomass publication-title: Sci Bull doi: 10.1016/j.scib.2022.10.013 – volume: 14 start-page: 1106 year: 2023 ident: CR21 article-title: Tuning excited electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance publication-title: Nat Commun doi: 10.1038/s41467-023-36710-x – volume: 107 start-page: 168 year: 2017 end-page: 180 ident: CR96 article-title: Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of π–π interactions publication-title: Pro Saf Environ Prot doi: 10.1016/j.psep.2017.02.010 – volume: 47 start-page: 2322 year: 2018 end-page: 2356 ident: CR53 article-title: Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions publication-title: Chem Soc Rev doi: 10.1039/C7CS00543A – volume: 36 start-page: 2945 year: 2022 end-page: 2970 ident: CR122 article-title: Functional biochar synergistic solid/liquid-phase CO capture: a review publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c04372 – volume: 33 start-page: 3549 year: 2022 end-page: 3555 ident: CR62 article-title: Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2022.03.001 – volume: 66 start-page: 176 year: 2014 end-page: 185 ident: CR9 article-title: New approaches to measuring biochar density and porosity publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.03.059 – volume: 134 year: 2020 ident: CR58 article-title: Characterization of chromium species and distribution during Cr(VI) removal by biochar using confocal micro-X-ray fluorescence redox mapping and X-ray absorption spectroscopy publication-title: Environ Int doi: 10.1016/j.envint.2019.105216 – volume: 280 year: 2021 ident: CR107 article-title: High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO for the degradation of tetracycline: economical synthesis, catalytic performance and mechanism publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2020.119386 – volume: 391 year: 2020 ident: CR43 article-title: Gasification biochar from biowaste (food waste and wood waste) for effective CO adsorption publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121147 – volume: 119 year: 2020 ident: CR28 article-title: Biochar-based adsorbents for carbon dioxide capture: a critical review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109582 – volume: 280 year: 2021 ident: CR31 article-title: Catalytic steam gasification of food waste using Ni-loaded rice husk derived biochar for hydrogen production publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130671 – volume: 851 year: 2022 ident: CR75 article-title: Food waste valorization via gasification—a review on emerging concepts, prospects and challenges publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.157955 – volume: 628–629 start-page: 499 year: 2018 end-page: 508 ident: CR86 article-title: Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe O @SiO -NH particles publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.02.091 – volume: 4 start-page: 32 year: 2022 ident: CR129 article-title: Sorption kinetics of 1,3,5-trinitrobenzene to biochars produced at various temperatures publication-title: Biochar doi: 10.1007/s42773-022-00157-y – volume: 108 start-page: 201 year: 2021 end-page: 216 ident: CR70 article-title: A critical review on the application of biochar in environmental pollution remediation: role of persistent free radicals (PERs) publication-title: J Environ Sci doi: 10.1016/j.jes.2021.02.021 – volume: 9 year: 2021 ident: CR87 article-title: Steam gasification with torrefaction as pretreatment to enhance syngas production from mixed food waste publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2020.104722 – volume: 166 year: 2022 ident: CR124 article-title: CO capture over steam and KOH activated biochar: effect of relative humidity publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2022.106608 – volume: 4 start-page: 2294 year: 2022 end-page: 2307 ident: CR36 article-title: Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater publication-title: CCS Chem doi: 10.31635/ccschem.022.202201897 – volume: 214 start-page: 836 year: 2016 end-page: 851 ident: CR2 article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.05.057 – volume: 247 year: 2022 ident: CR66 article-title: Effect of activation conditions and iron loading content on the catalytic cracking of toluene by biochar publication-title: Energy doi: 10.1016/j.energy.2022.123409 – volume: 190 start-page: 909 year: 2011 end-page: 915 ident: CR29 article-title: Characteristics and mechanisms of hexavalent chromium by biochar from sugar beet tailing publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2011.04.008 – volume: 7 start-page: 48793 year: 2017 end-page: 48805 ident: CR13 article-title: Application of biochar-based catalysts in biomass upgrading: a review publication-title: RSC Adv doi: 10.1039/C7RA09307A – volume: 107 start-page: 344 year: 2016 end-page: 351 ident: CR52 article-title: Biochar as a renewable source for high-performance CO sorbent publication-title: Carbon doi: 10.1016/j.carbon.2016.06.010 – volume: 310 year: 2022 ident: CR11 article-title: Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2022.121343 – volume: 232 start-page: 31 year: 2018 end-page: 41 ident: CR76 article-title: Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination publication-title: Environ Poll doi: 10.1016/j.envpol.2017.09.051 – volume: 303 year: 2021 ident: CR110 article-title: Understanding the enhancement of CaO on water gas shit reaction for H2 production by density functional theory publication-title: Fuel doi: 10.1016/j.fuel.2021.121257 – volume: 817 year: 2022 ident: CR77 article-title: Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.153054 – volume: 4 year: 2022 ident: CR121 article-title: Application of MOFs and COFs for photocatalysis in CO reduction, H generation, and environmental treatment publication-title: EnergyChem doi: 10.1016/j.enchem.2022.100078 – volume: 394 year: 2020 ident: CR97 article-title: Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.122255 – volume: 35 start-page: 777 year: 2018 end-page: 815 ident: CR81 article-title: Chemical activation of biochar for energy and environmental applications: a comprehensive review publication-title: Rev Chem Eng doi: 10.1515/revce-2018-0003 – volume: 615 start-page: 161 year: 2018 end-page: 168 ident: CR89 article-title: Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.09.171 – volume: 162 year: 2022 ident: CR118 article-title: Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112413 – volume: 214 year: 2022 ident: CR91 article-title: Supercritical water gasification of hyperaccumulators for hydrogen production and heavy metal immobilization with alkali metal catalysts publication-title: Environ Res doi: 10.1016/j.envres.2022.114093 – volume: 292 year: 2021 ident: CR44 article-title: A complete review on biochar: production, property, multifaceted applications, interaction mechanism and computational approach publication-title: Fuel doi: 10.1016/j.fuel.2021.120243 – volume: 314 year: 2023 ident: CR55 article-title: Sorption-catalytic reduction/extraction of hexavalent Cr(VI) and U(VI) by porous framework materials publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2023.123615 – volume: 214 year: 2022 ident: CR49 article-title: A green approach towards sorption of CO on waste derived biochar publication-title: Environ Res doi: 10.1016/j.envres.2022.113954 – volume: 4 start-page: 19 year: 2022 ident: CR79 article-title: Biochar for the removal of contaminants from soil and water: a review publication-title: Biochar doi: 10.1007/s42773-022-00146-1 – volume: 42 start-page: 18865 year: 2017 end-page: 18874 ident: CR85 article-title: Biochar-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of and publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.06.171 – volume: 260 start-page: 23 year: 2022 ident: CR33 article-title: COF-based composites: extraordinary removal performance for heavy metals and radionuclides from aqueous solutions publication-title: Rev Environ Contam Toxicol – volume: 223 start-page: 12 year: 2019 end-page: 27 ident: CR25 article-title: The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.161 – volume: 105 start-page: 399 year: 2022 end-page: 405 ident: CR125 article-title: Direct air capture of CO by KOH-activated bamboo biochar publication-title: J Energy Inst doi: 10.1016/j.joei.2022.10.017 – volume: 14 start-page: 50163 year: 2022 end-page: 50170 ident: CR34 article-title: Iron oxyhydroxide-covalent organic framework nanocomposites for efficient As(III) removal in water publication-title: ACS Appl Mater Interface doi: 10.1021/acsami.2c14744 – volume: 173 start-page: 340 year: 2021 end-page: 351 ident: CR4 article-title: Biochar supplementation regulates growth and heavy metal accumulation in tomato growth in contaminated soils publication-title: Physiol Plant – volume: 3 start-page: 535 year: 2021 end-page: 543 ident: CR54 article-title: Transformation and immobilization of hexavalent chromium in the co-presence of biochar and organic acids: effects of biochar dose and reaction time publication-title: Biochar doi: 10.1007/s42773-021-00117-y – volume: 217 start-page: 240 year: 2018 end-page: 261 ident: CR103 article-title: Properties of biochar publication-title: Fuel doi: 10.1016/j.fuel.2017.12.054 – volume: 283 start-page: 826 year: 2016 end-page: 832 ident: CR24 article-title: Carbon dioxide capture using various metal oxyhydroxide-biochar composites publication-title: Chem Eng J doi: 10.1016/j.cej.2015.08.037 – volume: 65 start-page: 2335 year: 2022 end-page: 2337 ident: CR113 article-title: Emerging technologies for uranium extraction from seawater publication-title: Sci China Chem doi: 10.1007/s11426-022-1358-1 – volume: 1 start-page: 4 year: 2022 ident: CR19 article-title: Engineered biochar for environmental decontamination in aquatic and soil systems: a review publication-title: Carbon Res doi: 10.1007/s44246-022-00005-5 – volume: 74 start-page: 1249 year: 2015 end-page: 1259 ident: CR47 article-title: Effect of biochar on heavy metal immobilization and uptake by lettuce ( L.) in agricultural soil publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4116-1 – volume: 1 start-page: 8 year: 2022 ident: CR63 article-title: Modified biochar: synthesis and mechanism for removal of environmental heavy metals publication-title: Carbon Res doi: 10.1007/s44246-022-00007-3 – volume: 437 year: 2023 ident: CR102 article-title: Photo-/electro-/piezo-catalytic elimination of environmental pollutants publication-title: J Photochem Photobiol A Chem doi: 10.1016/j.jphotochem.2022.114435 – volume: 2 year: 2021 ident: CR61 article-title: Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions publication-title: Innovation – volume: 45 start-page: 10454 year: 2011 end-page: 10462 ident: CR128 article-title: Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management publication-title: Environ Sci Technol doi: 10.1021/es203439v – volume: 5 start-page: 31908 year: 2020 end-page: 31917 ident: CR5 article-title: Biochar-assisted iron-mediated water electrolysis process for hydrogen production publication-title: ACS Omega doi: 10.1021/acsomega.0c04820 – volume: 135 start-page: 96 year: 2018 end-page: 102 ident: CR104 article-title: Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(III and V) and Cd(II) sorption publication-title: Int Biodeterior Biodegrad doi: 10.1016/j.ibiod.2018.10.001 – volume: 811 year: 2022 ident: CR117 article-title: MXenes as emerging nanomaterials in water purification and environmental remediation publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.152280 – volume: 2021 year: 2021 ident: CR119 article-title: Biochar as a sustainable product for remediation of petroleum contaminated soil publication-title: Curr Res Green Sustain Chem doi: 10.1016/j.crgsc.2021.100055 – volume: 147 year: 2021 ident: CR39 article-title: Analytical procedures, data reporting and selected reference values for biological hydrogen production publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2021.106014 – volume: 299 year: 2021 ident: CR82 article-title: Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes publication-title: J Environ Manag doi: 10.1016/j.jenvman.2021.113644 – volume: 287 year: 2022 ident: CR14 article-title: Straw and wood based biochar for CO capture: adsorption performance and governing mechanism publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.120592 – volume: 300 year: 2022 ident: CR65 article-title: Hydrogen-rich syngas production from biomass char by chemical looping gasification with Fe/Ca-based oxygen carrier publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.121912 – volume: 197 year: 2021 ident: CR100 article-title: Adsorption and visible-light photocatalytic degradation of organic pollutants by functionalized biochar: role of iodine doping and reactive species publication-title: Environ Res doi: 10.1016/j.envres.2021.111026 – volume: 12 start-page: 210 year: 2022 ident: CR32 article-title: Application of biochar as functional material for remediation of organic pollutants in water: an overview publication-title: Catalyst doi: 10.3390/catal12020210 – volume: 44 start-page: 1753 year: 2013 end-page: 1579 ident: CR78 article-title: Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles publication-title: J Raman Spectrosc doi: 10.1002/jrs.4392 – volume: 105 start-page: 376 year: 2022 end-page: 387 ident: CR1 article-title: Syngas production from chemical looping gasification of rice husk-derived biochar using BaFe O as an oxygen carrier publication-title: J Energy Inst doi: 10.1016/j.joei.2022.10.009 – volume: 880 year: 2023 ident: CR57 article-title: Carbon content determines the aggregation of biochar colloids from various feedstocks publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.163313 – volume: 441 year: 2022 ident: CR131 article-title: Biochar: from by-products of argo-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions publication-title: Chem Eng J doi: 10.1016/j.cej.2022.135972 – volume: 24 start-page: 9624 year: 2017 end-page: 9634 ident: CR84 article-title: Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-8577-5 – volume: 84 start-page: 76 year: 2016 end-page: 86 ident: CR3 article-title: Insight into biochar properties and its cost analysis publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2015.11.002 – volume: 56 start-page: 14030 year: 2022 end-page: 14037 ident: CR116 article-title: Selective and efficient photo-extraction of aqueous Cr(VI) as solid-state polyhydroxy Cr(V) complex for environment remediation and resources recovery publication-title: Environ Sci Technol doi: 10.1021/acs.est.2c03994 – volume: 37 start-page: 321 year: 2006 end-page: 333 ident: CR10 article-title: Production and characterization of synthetic wood chars for use as surrogates for natural sorbents publication-title: Org Geochem doi: 10.1016/j.orggeochem.2005.10.008 – volume: 408 year: 2021 ident: CR109 article-title: Enhanced As(III) transformation and removal with biochar/SnS /phosphotungstic acid composites: synergic effect of overcoming the electronic inertness of biochar and W O (AsO ) (As(V)-POMs) coprecipitation publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124961 – volume: 402 year: 2020 ident: CR90 article-title: Hydrogen production and heavy metal immobilization using hyperaccumulators in supercritical water gasification publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123541 – volume: 384 year: 2020 ident: CR59 article-title: Removal mechanisms of aqueous Cr(VI) using apple wood biochar: a spectroscopic study publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121371 – volume: 24 start-page: 17170 year: 2018 end-page: 17179 ident: CR80 article-title: Goal-directed design of metal–organic frameworks for Hg(II) and Pb(II) adsorption from aqueous solutions publication-title: Chem Eur J doi: 10.1002/chem.201802096 – volume: 451 year: 2023 ident: CR46 article-title: In-situ growth of bimetallic FeCo-MOF on magnetic biochar for enhanced clearance of tetracycline and fruit preservation publication-title: Chem Eng J doi: 10.1016/j.cej.2022.138804 – volume: 129 start-page: 159 year: 2016 end-page: 168 ident: CR26 article-title: Sustainable eco-composites obtained from waste derived biochar: a consideration in performance properties, production costs and environmental impact publication-title: J Clean Prod doi: 10.1016/j.jclepro.2016.04.088 – volume: 483 year: 2023 ident: CR106 article-title: Functional nanomaterials for selective uranium recovery from seawater: material design, extraction properties and mechanisms publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2023.215097 – volume: 32 start-page: 2204175 year: 2022 ident: CR126 article-title: Molybdenum (VI)-oxo clusters incorporation activates g-C N with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance publication-title: Adv Funct Mater doi: 10.1002/adfm.202204175 – volume: 27 start-page: 11809 year: 2020 end-page: 11828 ident: CR132 article-title: Enhancement of CO adsorption on biochar sorbent modified by metal incorporation publication-title: Environ Sci Poll Res doi: 10.1007/s11356-020-07734-3 – volume: 2022 start-page: 9790320 year: 2022 ident: CR127 article-title: Insights into photothermally enhanced photocatalytic U(VI) extraction by a step-scheme heterojunction publication-title: Research doi: 10.34133/2022/9790320 – volume: 17 start-page: 395 year: 2023 end-page: 403 ident: CR114 article-title: Optimizing iodine capture performance by metal−organic framework containing with bipyridine units publication-title: Front Chem Sci Eng doi: 10.1007/s11705-022-2218-3 – volume: 330 year: 2022 ident: CR94 article-title: Regeneration of deactivated biochar for catalytic tar reforming by partial oxidation: effect of oxygen concentration and regeneration time publication-title: Fuel doi: 10.1016/j.fuel.2022.125572 – volume: 31 start-page: 1902868 year: 2019 ident: CR8 article-title: In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO reduction publication-title: Adv Mater doi: 10.1002/adma.201902868 – volume: 9 year: 2021 ident: CR83 article-title: Recent advances in developing engineered biochar for CO capture: an insight into the biochar modification approaches publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2021.106869 – volume: 5 year: 2023 ident: CR38 article-title: Advanced porous adsorbents for radionuclides elimination publication-title: EnergyChem doi: 10.1016/j.enchem.2023.100101 – volume: 183 year: 2020 ident: CR95 article-title: Degradation of organic pollutants by ferrate/biochar: enhanced formation of strong intermediate oxidative iron species publication-title: Water Res doi: 10.1016/j.watres.2020.116054 – volume: 440 year: 2022 ident: CR20 article-title: Biochar colloids facilitate transport and transformation of Cr(VI) in soil: active site competition coupling with reduction reaction publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022.129691 – volume: 34 start-page: 974 year: 2013 end-page: 984 ident: CR73 article-title: A review: carbon dioxide capture: biomass-derived biochar and its applications publication-title: J Dispers Sci Technol doi: 10.1080/01932691.2012.704753 – volume: 322 year: 2023 ident: CR40 article-title: Photochemically triggered self-extraction of uranium from aqueous solution under ambient conditions publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2022.122092 – volume: 26 start-page: 281 year: 2018 end-page: 293 ident: CR50 article-title: Metal incorporated biochar as a potential adsorbent for high capacity CO capture at ambient condition publication-title: J CO2 Utilization doi: 10.1016/j.jcou.2018.05.018 – volume: 9 start-page: 2201735 year: 2022 ident: CR67 article-title: Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime−functionalized In−N−C catalyst publication-title: Adv Sci doi: 10.1002/advs.202201735 – volume: 404 year: 2021 ident: CR111 article-title: Application of biochar for remediation of polluted sediments publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124052 – volume: 434 year: 2022 ident: CR7 article-title: Eco-friendly rice husk derived biochar as a highly efficient noble metal-free cocatalyst for high production of H using solar light irradiation publication-title: Chem Eng J doi: 10.1016/j.cej.2022.134743 – volume: 38 year: 2023 ident: CR12 article-title: Carbon-based nanocomposites for the elimination of inorganic and organic pollutants through sorption and catalysis strategies publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.122862 – volume: 100 start-page: 143 year: 2010 end-page: 156 ident: CR74 article-title: Influence of NaOH, Ni/Al O and Ni/ SiO catalysts on hydrogen production from the subcritical water gasification of model food waste compounds publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2010.07.024 – volume: 221 year: 2021 ident: CR93 article-title: Mechanism of coke formation and corresponding gas fraction characteristics in biochar-catalyzed tar reforming during corn straw pyrolysis publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2021.106903 – volume: 838 year: 2022 ident: CR105 article-title: Assessment of potential biotoxicity induced by biochar-derived dissolved organic matters to biological fermentative H production publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.156072 – volume: 33 start-page: 2106621 year: 2021 ident: CR112 article-title: Functionalized Iron−Nitrogen−Carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater publication-title: Adv Mater doi: 10.1002/adma.202106621 – volume: 4 start-page: 1246 year: 2022 end-page: 1262 ident: CR64 article-title: Synthesis of carbon-based nanomaterials and their application in pollution management publication-title: Nanoscale Adv doi: 10.1039/D1NA00843A – volume: 45 start-page: 53 year: 2023 ident: CR92 article-title: Sex-specific physiological and growth responses to elevated temperature and CO concentration in Chinese seabuckthorn ( subsp. Sinensis Rousi) publication-title: Acta Physiol Plant doi: 10.1007/s11738-023-03520-z – volume: 122 start-page: 1 year: 2022 end-page: 13 ident: CR18 article-title: Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction publication-title: J Environ Sci doi: 10.1016/j.jes.2021.10.003 – volume: 33 year: 2020 ident: CR42 article-title: Novel activation of peroxymonosulfate by biochar derived from husk toward oxidation of organic contaminants in wastewater publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2019.101037 – volume: 225 start-page: 287 year: 2018 end-page: 298 ident: CR15 article-title: Ultrasound cavitation intensified amine functionalization: a feasible strategy for enhancing CO capture capacity of biochar publication-title: Fuel doi: 10.1016/j.fuel.2018.03.145 – volume: 1 start-page: 45 year: 2019 end-page: 73 ident: CR41 article-title: Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review publication-title: Biochar doi: 10.1007/s42773-019-00006-5 – volume: 416 year: 2021 ident: CR101 article-title: Straw biochar enhanced removal of heavy metal by ferrate publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.126128 – volume: 39 start-page: 929 year: 2015 end-page: 940 ident: CR30 article-title: Optimization of hydrogen production from organic fraction of municipal solid waste (OFMSW) dry anaerobic digestion with analysis of microbial community publication-title: Int J Energy Res doi: 10.1002/er.3297 – volume: 102 start-page: 716 year: 2011 end-page: 723 ident: CR16 article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.08.067 – volume: 16 start-page: 1821 year: 2014 end-page: 1825 ident: CR72 article-title: Significant breakthrough in biochar cost reduction publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-014-0730-y – volume: 115 start-page: 12251 year: 2015 end-page: 12285 ident: CR51 article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00195 – volume: 270 start-page: 346 year: 2018 end-page: 351 ident: CR22 article-title: Thermochemical conversion of cobalt-loaded spent coffee grounds for production of energy resource and environmental catalyst publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.09.046 – volume: 4 start-page: 45 year: 2022 ident: CR69 article-title: Application of biochar-based photocatalysts for sorption-(photo)degradation/reduction of environmental contaminants: Mechanism, challenges and perspective publication-title: Biochar doi: 10.1007/s42773-022-00173-y – volume: 74 start-page: 344 year: 1995 end-page: 348 ident: CR68 article-title: Surface area development of sewage sludge during pyrolysis publication-title: Fuel doi: 10.1016/0016-2361(95)93465-P – volume: 8 start-page: 47 year: 2019 end-page: 64 ident: CR98 article-title: Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications publication-title: Environ Technol Rev doi: 10.1080/21622515.2019.1631393 – volume: 249 start-page: 174 year: 2014 end-page: 179 ident: CR23 article-title: Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood publication-title: Chem Eng J doi: 10.1016/j.cej.2014.03.105 – volume: 314 year: 2023 ident: 237_CR55 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2023.123615 – volume: 7 start-page: 48793 year: 2017 ident: 237_CR13 publication-title: RSC Adv doi: 10.1039/C7RA09307A – volume: 384 year: 2020 ident: 237_CR71 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121357 – volume: 223 start-page: 12 year: 2019 ident: 237_CR25 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.161 – volume: 27 start-page: 11809 year: 2020 ident: 237_CR132 publication-title: Environ Sci Poll Res doi: 10.1007/s11356-020-07734-3 – volume: 300 year: 2022 ident: 237_CR65 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.121912 – volume: 1 start-page: 4 year: 2022 ident: 237_CR19 publication-title: Carbon Res doi: 10.1007/s44246-022-00005-5 – volume: 129 start-page: 159 year: 2016 ident: 237_CR26 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2016.04.088 – volume: 74 start-page: 344 year: 1995 ident: 237_CR68 publication-title: Fuel doi: 10.1016/0016-2361(95)93465-P – volume: 441 year: 2022 ident: 237_CR131 publication-title: Chem Eng J doi: 10.1016/j.cej.2022.135972 – volume: 283 start-page: 826 year: 2016 ident: 237_CR24 publication-title: Chem Eng J doi: 10.1016/j.cej.2015.08.037 – volume: 287 year: 2022 ident: 237_CR14 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.120592 – volume: 869 year: 2023 ident: 237_CR56 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.161767 – volume: 706 year: 2020 ident: 237_CR120 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135763 – volume: 166 year: 2022 ident: 237_CR124 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2022.106608 – volume: 38 year: 2023 ident: 237_CR12 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.122862 – volume: 107 start-page: 344 year: 2016 ident: 237_CR52 publication-title: Carbon doi: 10.1016/j.carbon.2016.06.010 – volume: 13 start-page: 471 year: 2016 ident: 237_CR48 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-015-0873-3 – volume: 221 year: 2021 ident: 237_CR93 publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2021.106903 – volume: 483 year: 2023 ident: 237_CR106 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2023.215097 – volume: 5 start-page: 31908 year: 2020 ident: 237_CR5 publication-title: ACS Omega doi: 10.1021/acsomega.0c04820 – volume: 122 start-page: 1 year: 2022 ident: 237_CR18 publication-title: J Environ Sci doi: 10.1016/j.jes.2021.10.003 – volume: 56 start-page: 14030 year: 2022 ident: 237_CR116 publication-title: Environ Sci Technol doi: 10.1021/acs.est.2c03994 – volume: 67 start-page: 924 year: 2022 ident: 237_CR35 publication-title: Sci Bull doi: 10.1016/j.scib.2022.02.012 – volume: 2 year: 2021 ident: 237_CR61 publication-title: Innovation – volume: 14 start-page: 1106 year: 2023 ident: 237_CR21 publication-title: Nat Commun doi: 10.1038/s41467-023-36710-x – volume: 33 year: 2020 ident: 237_CR42 publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2019.101037 – volume: 391 year: 2020 ident: 237_CR43 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121147 – volume: 33 start-page: 3549 year: 2022 ident: 237_CR62 publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2022.03.001 – volume: 217 start-page: 240 year: 2018 ident: 237_CR103 publication-title: Fuel doi: 10.1016/j.fuel.2017.12.054 – volume: 173 start-page: 340 year: 2021 ident: 237_CR4 publication-title: Physiol Plant – volume: 811 year: 2022 ident: 237_CR117 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.152280 – volume: 190 start-page: 909 year: 2011 ident: 237_CR29 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2011.04.008 – volume: 47 start-page: 2322 year: 2018 ident: 237_CR53 publication-title: Chem Soc Rev doi: 10.1039/C7CS00543A – volume: 271 year: 2020 ident: 237_CR17 publication-title: J Clean Product doi: 10.1016/j.jclepro.2020.122550 – volume: 135 start-page: 96 year: 2018 ident: 237_CR104 publication-title: Int Biodeterior Biodegrad doi: 10.1016/j.ibiod.2018.10.001 – volume: 12 start-page: 210 year: 2022 ident: 237_CR32 publication-title: Catalyst doi: 10.3390/catal12020210 – volume: 14 start-page: 50163 year: 2022 ident: 237_CR34 publication-title: ACS Appl Mater Interface doi: 10.1021/acsami.2c14744 – volume: 260 start-page: 23 year: 2022 ident: 237_CR33 publication-title: Rev Environ Contam Toxicol – volume: 32 start-page: 2204175 year: 2022 ident: 237_CR126 publication-title: Adv Funct Mater doi: 10.1002/adfm.202204175 – volume: 838 year: 2022 ident: 237_CR105 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.156072 – volume: 402 year: 2020 ident: 237_CR90 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123541 – volume: 249 start-page: 174 year: 2014 ident: 237_CR23 publication-title: Chem Eng J doi: 10.1016/j.cej.2014.03.105 – volume: 107 start-page: 168 year: 2017 ident: 237_CR96 publication-title: Pro Saf Environ Prot doi: 10.1016/j.psep.2017.02.010 – volume: 115 start-page: 12251 year: 2015 ident: 237_CR51 publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00195 – volume: 213 start-page: 533 year: 2016 ident: 237_CR108 publication-title: Environ Poll doi: 10.1016/j.envpol.2016.03.013 – volume: 67 start-page: 2154 year: 2022 ident: 237_CR115 publication-title: Sci Bull doi: 10.1016/j.scib.2022.10.013 – volume: 628–629 start-page: 499 year: 2018 ident: 237_CR86 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.02.091 – volume: 105 start-page: 376 year: 2022 ident: 237_CR1 publication-title: J Energy Inst doi: 10.1016/j.joei.2022.10.009 – volume: 105 start-page: 399 year: 2022 ident: 237_CR125 publication-title: J Energy Inst doi: 10.1016/j.joei.2022.10.017 – volume: 80 start-page: 471 year: 2015 ident: 237_CR88 publication-title: Renew Energy doi: 10.1016/j.renene.2015.02.013 – volume: 214 start-page: 836 year: 2016 ident: 237_CR2 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.05.057 – volume: 416 year: 2021 ident: 237_CR101 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.126128 – volume: 35 start-page: 777 year: 2018 ident: 237_CR81 publication-title: Rev Chem Eng doi: 10.1515/revce-2018-0003 – volume: 303 year: 2021 ident: 237_CR110 publication-title: Fuel doi: 10.1016/j.fuel.2021.121257 – volume: 3 start-page: 535 year: 2021 ident: 237_CR54 publication-title: Biochar doi: 10.1007/s42773-021-00117-y – volume: 322 year: 2023 ident: 237_CR40 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2022.122092 – volume: 270 start-page: 346 year: 2018 ident: 237_CR22 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.09.046 – volume: 36 start-page: 2945 year: 2022 ident: 237_CR122 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c04372 – volume: 147 year: 2021 ident: 237_CR39 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2021.106014 – volume: 33 start-page: 2106621 year: 2021 ident: 237_CR112 publication-title: Adv Mater doi: 10.1002/adma.202106621 – volume: 51 start-page: 751 year: 2021 ident: 237_CR60 publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2020.1734433 – volume: 440 year: 2022 ident: 237_CR20 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022.129691 – volume: 45 start-page: 53 year: 2023 ident: 237_CR92 publication-title: Acta Physiol Plant doi: 10.1007/s11738-023-03520-z – volume: 66 start-page: 176 year: 2014 ident: 237_CR9 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.03.059 – volume: 183 year: 2020 ident: 237_CR95 publication-title: Water Res doi: 10.1016/j.watres.2020.116054 – volume: 292 year: 2021 ident: 237_CR44 publication-title: Fuel doi: 10.1016/j.fuel.2021.120243 – volume: 84 start-page: 76 year: 2016 ident: 237_CR3 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2015.11.002 – volume: 615 start-page: 161 year: 2018 ident: 237_CR89 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.09.171 – volume: 434 year: 2022 ident: 237_CR7 publication-title: Chem Eng J doi: 10.1016/j.cej.2022.134743 – volume: 29 start-page: 323 year: 2020 ident: 237_CR99 publication-title: Pol J Environ Stud doi: 10.15244/pjoes/99837 – volume: 17 start-page: 395 year: 2023 ident: 237_CR114 publication-title: Front Chem Sci Eng doi: 10.1007/s11705-022-2218-3 – volume: 4 start-page: 2294 year: 2022 ident: 237_CR36 publication-title: CCS Chem doi: 10.31635/ccschem.022.202201897 – volume: 384 year: 2020 ident: 237_CR59 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121371 – volume: 100 start-page: 143 year: 2010 ident: 237_CR74 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2010.07.024 – volume: 310 year: 2022 ident: 237_CR11 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2022.121343 – volume: 24 start-page: 17170 year: 2018 ident: 237_CR80 publication-title: Chem Eur J doi: 10.1002/chem.201802096 – volume: 739 year: 2020 ident: 237_CR6 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.139750 – volume: 4 start-page: 1246 year: 2022 ident: 237_CR64 publication-title: Nanoscale Adv doi: 10.1039/D1NA00843A – volume: 24 start-page: 9624 year: 2017 ident: 237_CR84 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-8577-5 – volume: 42 start-page: 18865 year: 2017 ident: 237_CR85 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.06.171 – volume: 280 year: 2021 ident: 237_CR31 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130671 – volume: 247 year: 2022 ident: 237_CR66 publication-title: Energy doi: 10.1016/j.energy.2022.123409 – volume: 851 year: 2022 ident: 237_CR75 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.157955 – volume: 1 start-page: 8 year: 2022 ident: 237_CR63 publication-title: Carbon Res doi: 10.1007/s44246-022-00007-3 – volume: 9 year: 2021 ident: 237_CR87 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2020.104722 – volume: 31 start-page: 1902868 year: 2019 ident: 237_CR8 publication-title: Adv Mater doi: 10.1002/adma.201902868 – volume: 37 start-page: 321 year: 2006 ident: 237_CR10 publication-title: Org Geochem doi: 10.1016/j.orggeochem.2005.10.008 – volume: 2021 year: 2021 ident: 237_CR119 publication-title: Curr Res Green Sustain Chem doi: 10.1016/j.crgsc.2021.100055 – volume: 225 start-page: 287 year: 2018 ident: 237_CR15 publication-title: Fuel doi: 10.1016/j.fuel.2018.03.145 – volume: 39 start-page: 929 year: 2015 ident: 237_CR30 publication-title: Int J Energy Res doi: 10.1002/er.3297 – volume: 232 start-page: 31 year: 2018 ident: 237_CR76 publication-title: Environ Poll doi: 10.1016/j.envpol.2017.09.051 – volume: 4 year: 2022 ident: 237_CR121 publication-title: EnergyChem doi: 10.1016/j.enchem.2022.100078 – volume: 4 start-page: 32 year: 2022 ident: 237_CR129 publication-title: Biochar doi: 10.1007/s42773-022-00157-y – volume: 115 start-page: 120 year: 2017 ident: 237_CR27 publication-title: Water Res doi: 10.1016/j.watres.2017.02.063 – volume: 102 start-page: 716 year: 2011 ident: 237_CR16 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.08.067 – volume: 437 year: 2023 ident: 237_CR102 publication-title: J Photochem Photobiol A Chem doi: 10.1016/j.jphotochem.2022.114435 – volume: 16 start-page: 1821 year: 2014 ident: 237_CR72 publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-014-0730-y – volume: 214 year: 2022 ident: 237_CR91 publication-title: Environ Res doi: 10.1016/j.envres.2022.114093 – volume: 214 year: 2022 ident: 237_CR49 publication-title: Environ Res doi: 10.1016/j.envres.2022.113954 – volume: 404 year: 2021 ident: 237_CR111 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124052 – volume: 134 year: 2020 ident: 237_CR58 publication-title: Environ Int doi: 10.1016/j.envint.2019.105216 – volume: 2022 start-page: 9790320 year: 2022 ident: 237_CR127 publication-title: Research doi: 10.34133/2022/9790320 – volume: 299 year: 2021 ident: 237_CR82 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2021.113644 – volume: 394 year: 2020 ident: 237_CR97 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.122255 – volume: 880 year: 2023 ident: 237_CR57 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.163313 – volume: 45 start-page: 10454 year: 2011 ident: 237_CR128 publication-title: Environ Sci Technol doi: 10.1021/es203439v – volume: 5 year: 2023 ident: 237_CR38 publication-title: EnergyChem doi: 10.1016/j.enchem.2023.100101 – volume: 108 start-page: 201 year: 2021 ident: 237_CR70 publication-title: J Environ Sci doi: 10.1016/j.jes.2021.02.021 – volume: 9 start-page: 2201735 year: 2022 ident: 237_CR67 publication-title: Adv Sci doi: 10.1002/advs.202201735 – volume: 9 year: 2021 ident: 237_CR83 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2021.106869 – volume: 330 year: 2022 ident: 237_CR94 publication-title: Fuel doi: 10.1016/j.fuel.2022.125572 – volume: 119 year: 2020 ident: 237_CR28 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109582 – volume: 65 start-page: 2335 year: 2022 ident: 237_CR113 publication-title: Sci China Chem doi: 10.1007/s11426-022-1358-1 – volume: 408 year: 2021 ident: 237_CR109 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124961 – volume: 3 start-page: 239 year: 2023 ident: 237_CR37 publication-title: JACS Au doi: 10.1021/jacsau.2c00614 – volume: 4 start-page: 45 year: 2022 ident: 237_CR69 publication-title: Biochar doi: 10.1007/s42773-022-00173-y – volume: 817 year: 2022 ident: 237_CR77 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.153054 – volume: 1 start-page: 45 year: 2019 ident: 237_CR41 publication-title: Biochar doi: 10.1007/s42773-019-00006-5 – volume: 34 start-page: 974 year: 2013 ident: 237_CR73 publication-title: J Dispers Sci Technol doi: 10.1080/01932691.2012.704753 – volume: 197 year: 2021 ident: 237_CR100 publication-title: Environ Res doi: 10.1016/j.envres.2021.111026 – volume: 44 start-page: 1753 year: 2013 ident: 237_CR78 publication-title: J Raman Spectrosc doi: 10.1002/jrs.4392 – volume: 323 year: 2021 ident: 237_CR45 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.125086 – volume: 280 year: 2021 ident: 237_CR107 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2020.119386 – volume: 295 year: 2022 ident: 237_CR123 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.121295 – volume: 4 start-page: 19 year: 2022 ident: 237_CR79 publication-title: Biochar doi: 10.1007/s42773-022-00146-1 – volume: 74 start-page: 1249 year: 2015 ident: 237_CR47 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4116-1 – volume: 374 year: 2022 ident: 237_CR130 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.133971 – volume: 451 year: 2023 ident: 237_CR46 publication-title: Chem Eng J doi: 10.1016/j.cej.2022.138804 – volume: 26 start-page: 281 year: 2018 ident: 237_CR50 publication-title: J CO2 Utilization doi: 10.1016/j.jcou.2018.05.018 – volume: 8 start-page: 47 year: 2019 ident: 237_CR98 publication-title: Environ Technol Rev doi: 10.1080/21622515.2019.1631393 – volume: 162 year: 2022 ident: 237_CR118 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112413 |
SSID | ssj0002511639 |
Score | 2.5278149 |
SecondaryResourceType | review_article |
Snippet | Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties. In this... Abstract Biochar and biochar-based materials have been studied extensively in multidisciplinary areas because of their outstanding physicochemical properties.... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Agriculture Biochar-based materials Ceramics CO2 capture Composites Earth and Environmental Science Environment Environmental Engineering/Biotechnology Environmental pollutant elimination Fossil Fuels (incl. Carbon Capture) Glass H2 production Interaction mechanism Natural Materials Renewable and Green Energy Review Soil Science & Conservation |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxdRVJxf5ODNFdskTZqjE8cQ1IuD3UqaD5iMruj8_30v7UZFmBcPLW1JSPnl9X3w-n6PkJs8ZS54KROVgQoUPBRJlXmeaGuDM5ljwmO98_OLnM7E0zyf91p94T9hLT1wC9ydL7LMpcpZLaSohDMQsTjhXJobnRchoPYFm9cLplAHo-MMtrerkom1coIphSlLOOCkEvXDEkXC_l_Z0GhkJofkoPMO6X37Vkdkz9fH5H28WGFxVIIWx1FwMVupoYua9urUYF6DfYuxLTD1y9itC1Ef0SmjTUvsCrfU1I4-vDJqTYPZA9pPYZ-Q2eTx7WGadC0SEguB0RogzblPvfUSoWWGWV0FqcArKrQwkosqLXQQVqbWQHDlHYdL6XXmQ14BSPyUDOpV7c8IFcxCPMZ0zgMXKURtonJSgD-pHFdc2SHJNnCVtuMPxzYWy3LLfBwhLgHdMkJcqiG53c5pWvaMnaPHuAvbkch8HR-APJSdPJR_ycOQjDZ7WHaf4-eONc__Y80Lss-iYClQOpdksP748lfgq6yr6yiW35vK5DU priority: 102 providerName: Directory of Open Access Journals |
Title | Biochar-based materials in environmental pollutant elimination, H2 production and CO2 capture applications |
URI | https://link.springer.com/article/10.1007/s42773-023-00237-7 https://doaj.org/article/e811d07dc9464b4da211d4dd05a958ff |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3F-jBy8uUKbpEl73MrGEKYXB7uVNh9jMrqyzat_uy9pNiaK4KGhKWna_vLyPnh97yH0GIdEGc15ICJggYyaJCgjTYNUSqOKSBGmbbzz-IWPJux5Gk99UNh6-7f71iXpOPUu2I0RIazPEQ5oRCAO0VEMtrul68zHOFj-a5VmkLs-Qub3W79JIZes_4cn1AmY4Rk69Zoh7jVLeY4OdHWBTnqzlc-OoS_Re3--tGFSgZU9CoOy2dAPnld4L2INZqltBWNbIBjrhavbZfHv4hHBdZPiFbq4qBTOXgmWRW3nx_vO7Cs0GQ7eslHgiyUEEkykDYAbUx1qqbkFmRREpqXhAvSjJGUFp6wMk9QwyUNZgJmlFYVTrtNIm7gEyOg1alXLSt8gzIgEVEkaU0NZCPYbKxVnoFkKRQUVso2iLXi59JnEbUGLRb7LgewAzwHr3AGeizZ62t1TN3k0_hzdt2uyG2lzYLsLy9Us91sq10kUKXgnmTLOSgYfDX2mVBgXaZwY00bd7YrmfmOu_3jm7f-G36Fj4ghKAKO5R63N6kM_gH6yKTuOHG3Ls46z8aEdfw6-AH2D35o |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD-rB-Bnxswdvsri1XbsdYdGgAl4g4dZs_TAYMgjg_-_rGAt-hMTDlnXpuu3X17731r3fQ-gu9Im2hnNPBDAFMmojLwsM9WKlrE4DTZhx8c7dHm8P2MswHJY0OS4W5sf6_cOcESHcSiNssBOe2EY7DDxl9_tewpPqe4ozlUHblnExf1_6TfcUFP2_1j8LtfJ0iA5KexA3lx14hLZMfoz2m--zkhPDnKCP1mjigqM8p3E0BhNzKTV4lOO1ODVoZeryFru0wNiMi2xdDvUGbhM8XRK7QhGnucbJG8Eqnbr28foS9ikaPD32k7ZXpkjwFDhGC4A0pMY3ynAHLUmJijPLBVhFUcxSTlnmR7FlivsqBefKaAqH3MSBsWEGkNEzVMsnuTlHmBEF_hiJQ2op88FrY5nmDOxJoamgQtVRsAJPqpI_3KWxGMuK-bgAXALWsgBcijq6r66ZLtkzNtZuuT6pajrm6-IECIQsB5I0URBoeCYVM84yBi8NZaa1H6ZxGFlbR41Vj8pyOM433PPif9Vv0W673-3IznPv9RLtkUK4BEw1V6i2mH2aa7BQFtlNIZpfrnLbqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QPQgPnF95uBNy7ZJmrRHXV3WtwcFb6HNY1mRblnr_3eSdsuKsuChpSlp2k4eM8Pk-wah0zgk2hrOAxHBEsioTYI8MjRIlbI6izRhxuGdHx754JXdvsVvMyh-v9t9GpKsMQ2OpamouqW23Rb4xogQLv4IB5xEIBbRMngqkdvU12vwDm4tdgY06OAGLfP3oz80kifu_xUV9cqmv4HWGysRX9TduokWTLGF1i6Gk4Ypw2yj98vR2EGmAqeHNAbDsx5LeFTgGfQatFK6bMYuWTA2Hz6Hl-uLczwguKzpXqGIs0Lj3hPBKitd-3g2sL2DXvvXL71B0CROCBS4SxUIOqYmNMpwJ3CSEZXmlguwlZKUZZyyPExSyxQPVQYul9EULrlJI2PjHERGd9FSMS7MHsKMKPDSSBpTS1kIvhzLNWdgZQpNBRWqg6Kp8KRqWMVdcosP2fIhe4FLkLX0Apeig87aZ8qaU2Nu7UvXJ21Nx4ftb4wnQ9lML2mSKNLwTSplnOUMfhrKTOswztI4sbaDzqc9KptJ-jnnnfv_q36CVp6v-vL-5vHuAK0SP7YErD-HaKmafJkjMFuq_NiPzG9zzePI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar-based+materials+in+environmental+pollutant+elimination%2C+H2+production+and+CO2+capture+applications&rft.jtitle=Biochar+%28Online%29&rft.au=Fang%2C+Lin&rft.au=Huang%2C+Tao&rft.au=Lu%2C+Hua&rft.au=Wu%2C+Xi-Lin&rft.date=2023-07-20&rft.pub=Springer+Nature+Singapore&rft.eissn=2524-7867&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-023-00237-7&rft.externalDocID=10_1007_s42773_023_00237_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7867&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7867&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7867&client=summon |