Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications

Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction (ORR), which is the rate-determining factor affecting over...

Full description

Saved in:
Bibliographic Details
Published inElectrochemical energy reviews Vol. 2; no. 4; pp. 518 - 538
Main Authors Li, Yahao, Li, Qingyu, Wang, Hongqiang, Zhang, Lei, Wilkinson, David P., Zhang, Jiujun
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction (ORR), which is the rate-determining factor affecting overall system performance. Therefore, to increase the rate of ORR for enhanced system performances, efficient electrocatalysts are essential. And although ORR electrocatalysts have been intensively explored and developed, significant breakthroughs have yet been achieved in terms of catalytic activity, stability, cost and associated electrochemical system performance. Based on this, this review will comprehensively present the recent progresses of ORR electrocatalysts, including precious metal catalysts, non-precious metal catalysts, single-atom catalysts and metal-free catalysts. In addition, major technical challenges are analyzed and possible future research directions to overcome these challenges are proposed to facilitate further research and development toward practical application. Graphic Abstract
AbstractList Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction (ORR), which is the rate-determining factor affecting overall system performance. Therefore, to increase the rate of ORR for enhanced system performances, efficient electrocatalysts are essential. And although ORR electrocatalysts have been intensively explored and developed, significant breakthroughs have yet been achieved in terms of catalytic activity, stability, cost and associated electrochemical system performance. Based on this, this review will comprehensively present the recent progresses of ORR electrocatalysts, including precious metal catalysts, non-precious metal catalysts, single-atom catalysts and metal-free catalysts. In addition, major technical challenges are analyzed and possible future research directions to overcome these challenges are proposed to facilitate further research and development toward practical application. Graphic Abstract
Author Li, Yahao
Wang, Hongqiang
Li, Qingyu
Zhang, Lei
Wilkinson, David P.
Zhang, Jiujun
Author_xml – sequence: 1
  givenname: Yahao
  surname: Li
  fullname: Li, Yahao
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University
– sequence: 2
  givenname: Qingyu
  surname: Li
  fullname: Li, Qingyu
  email: liqingyu62@126.com
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University
– sequence: 3
  givenname: Hongqiang
  surname: Wang
  fullname: Wang, Hongqiang
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University
– sequence: 4
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: College of Sciences, Institute for Sustainable Energy, Shanghai University, Energy, Mining and Environment, National Research Council Canada
– sequence: 5
  givenname: David P.
  surname: Wilkinson
  fullname: Wilkinson, David P.
  organization: Department of Chemical and Biochemical Engineering, University of British Columbia
– sequence: 6
  givenname: Jiujun
  surname: Zhang
  fullname: Zhang, Jiujun
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, College of Sciences, Institute for Sustainable Energy, Shanghai University, Department of Chemical and Biochemical Engineering, University of British Columbia
BookMark eNp9kMtqwzAQRUVJoWmaH-hKP-BWT9tahpA-IJAS2rWQ5bHr4MhBUqD--zpx20UXWc2d4Z5h5t6iiescIHRPyQMlJHsMgiqaJ4SqhBAiWSKu0JRJRpKc8nTyq0WubtA8hN1gYpzKlLMpqrdgwUX85rvaQwgQcOPw5quvweEtlEcbm-6kzChWLdjoO2uiafsQA646_zf8hH1jTYtXDnzd48Xh0A79iQt36LoybYD5T52hj6fV-_IlWW-eX5eLdWIFoTFRQrESCqLKUnIoZEkyywBEzivKs7KqUpuzAphIC6kko1ZlIC3lNCWZKgrOZygf91rfheCh0raJ5xOiN02rKdGnzPSYmR4y0-fMtBhQ9g89-GZvfH8Z4iMUBrOrwetdd_RuePES9Q0GY4Lc
CitedBy_id crossref_primary_10_3390_catal10050475
crossref_primary_10_1002_adfm_202402103
crossref_primary_10_3390_nano12173039
crossref_primary_10_1002_ange_202308344
crossref_primary_10_1007_s10562_023_04412_0
crossref_primary_10_1080_10256016_2021_1985488
crossref_primary_10_1002_adfm_202314282
crossref_primary_10_1016_j_jechem_2022_01_035
crossref_primary_10_1016_j_ccr_2022_214854
crossref_primary_10_1021_acsenergylett_4c01319
crossref_primary_10_1002_celc_202400563
crossref_primary_10_1021_acsaem_0c01356
crossref_primary_10_1016_j_ccr_2024_216191
crossref_primary_10_1016_j_envres_2023_115808
crossref_primary_10_1021_acs_energyfuels_1c01658
crossref_primary_10_1021_acs_langmuir_2c03122
crossref_primary_10_1016_j_cattod_2023_114080
crossref_primary_10_1002_cphc_202000529
crossref_primary_10_1016_j_cis_2023_103077
crossref_primary_10_1021_acsaem_2c01499
crossref_primary_10_1039_D3GC02940A
crossref_primary_10_1016_S1872_2067_21_63992_X
crossref_primary_10_1021_acscatal_3c04956
crossref_primary_10_1063_5_0142527
crossref_primary_10_1002_ece2_27
crossref_primary_10_1016_j_ijhydene_2020_03_250
crossref_primary_10_1016_j_ijhydene_2020_11_153
crossref_primary_10_1039_D0TA02681F
crossref_primary_10_1016_j_talanta_2021_123127
crossref_primary_10_1021_acs_jpcc_1c06234
crossref_primary_10_1016_j_jwpe_2022_103114
crossref_primary_10_1016_j_mtsust_2023_100659
crossref_primary_10_1021_acsnano_0c04437
crossref_primary_10_1021_acsaem_4c01216
crossref_primary_10_1002_chem_202301036
crossref_primary_10_1016_j_electacta_2024_145138
crossref_primary_10_1021_acsami_0c12305
crossref_primary_10_1016_j_jechem_2021_08_004
crossref_primary_10_1016_j_trechm_2022_07_007
crossref_primary_10_1002_adsu_202400881
crossref_primary_10_1002_aesr_202300266
crossref_primary_10_3390_catal13030635
crossref_primary_10_1016_j_catcom_2022_106432
crossref_primary_10_1016_j_ijhydene_2022_07_269
crossref_primary_10_1016_j_jpowsour_2022_231530
crossref_primary_10_1016_j_nanoen_2020_104504
crossref_primary_10_1039_D0CY01311K
crossref_primary_10_1016_j_jelechem_2023_117568
crossref_primary_10_1016_j_mtcomm_2024_108860
crossref_primary_10_1016_j_electacta_2021_137745
crossref_primary_10_1007_s41918_023_00197_3
crossref_primary_10_3390_catal13010161
crossref_primary_10_1021_acsenergylett_1c02673
crossref_primary_10_1016_j_chemphys_2025_112682
crossref_primary_10_1016_j_rser_2023_113451
crossref_primary_10_1016_j_seppur_2021_119771
crossref_primary_10_1016_j_ijhydene_2020_06_259
crossref_primary_10_3390_en15010272
crossref_primary_10_1016_j_surfcoat_2020_126643
crossref_primary_10_1021_acsami_0c09323
crossref_primary_10_1016_j_checat_2022_12_001
crossref_primary_10_1016_j_elecom_2021_106960
crossref_primary_10_1021_acsaem_1c03175
crossref_primary_10_1016_j_jechem_2021_12_028
crossref_primary_10_1016_S1872_2067_21_64088_3
crossref_primary_10_1016_j_cej_2024_153791
crossref_primary_10_1016_j_jallcom_2022_166287
crossref_primary_10_1039_D3QM00972F
crossref_primary_10_1016_j_apcatb_2021_120021
crossref_primary_10_1021_acscatal_4c02062
crossref_primary_10_1016_j_jece_2021_105662
crossref_primary_10_1016_j_jechem_2020_07_041
crossref_primary_10_1002_maco_202011707
crossref_primary_10_1016_j_jallcom_2024_176973
crossref_primary_10_1039_D0NA00726A
crossref_primary_10_1016_j_apsadv_2024_100609
crossref_primary_10_1039_D2RA08007A
crossref_primary_10_2139_ssrn_3866374
crossref_primary_10_1002_anie_202308344
crossref_primary_10_1007_s40820_022_00984_5
crossref_primary_10_1016_j_jelechem_2022_116826
crossref_primary_10_1039_D0TA10500G
crossref_primary_10_3390_catal13010187
crossref_primary_10_1016_j_mcat_2025_114861
crossref_primary_10_1039_D0TA09232K
crossref_primary_10_1021_acs_energyfuels_2c04272
crossref_primary_10_1039_D0TA07900F
crossref_primary_10_3390_catal10121472
crossref_primary_10_1007_s40820_021_00768_3
crossref_primary_10_1016_j_ijhydene_2021_09_177
crossref_primary_10_1039_D1NR04821J
crossref_primary_10_1016_j_matchemphys_2022_126959
crossref_primary_10_3390_molecules26164756
crossref_primary_10_3390_ijms21197052
crossref_primary_10_1155_2022_6607683
crossref_primary_10_1016_j_cattod_2024_114578
crossref_primary_10_1021_acssuschemeng_1c05250
crossref_primary_10_1016_j_jelechem_2022_116799
crossref_primary_10_3390_electrochem2040037
crossref_primary_10_1007_s41918_022_00146_6
crossref_primary_10_2139_ssrn_4092245
crossref_primary_10_1016_j_jpowsour_2023_233809
crossref_primary_10_1002_smll_202500795
crossref_primary_10_59761_RCR5085
crossref_primary_10_1016_j_electacta_2023_143282
crossref_primary_10_1016_j_jcis_2020_07_008
crossref_primary_10_1002_celc_202400248
crossref_primary_10_1007_s11356_021_17529_9
crossref_primary_10_1016_j_rechem_2023_100952
crossref_primary_10_1021_acscatal_5c00623
crossref_primary_10_1002_adfm_202303189
crossref_primary_10_1002_ente_202000927
crossref_primary_10_1149_1945_7111_abfca0
crossref_primary_10_1016_j_heliyon_2022_e09849
crossref_primary_10_1007_s41918_021_00099_2
crossref_primary_10_1007_s41918_021_00109_3
crossref_primary_10_1016_j_apsusc_2022_154048
crossref_primary_10_1016_j_jelechem_2023_117510
crossref_primary_10_1021_acsaem_1c01888
crossref_primary_10_1016_j_hazadv_2025_100630
crossref_primary_10_1016_j_bios_2022_114097
crossref_primary_10_3389_fenrg_2020_00189
crossref_primary_10_1016_j_coelec_2020_01_018
crossref_primary_10_1016_j_jtice_2023_104897
crossref_primary_10_1002_asia_202100940
crossref_primary_10_1016_j_jcis_2022_09_008
crossref_primary_10_2139_ssrn_3976833
crossref_primary_10_1016_j_pmatsci_2020_100770
crossref_primary_10_1002_adfm_202214883
crossref_primary_10_1039_C9SE00861F
crossref_primary_10_3390_jcs4030121
crossref_primary_10_1007_s12274_020_3234_6
crossref_primary_10_1021_acs_macromol_2c00468
crossref_primary_10_1039_D1DT03033G
crossref_primary_10_1063_5_0151159
crossref_primary_10_1002_anie_202213782
crossref_primary_10_1039_D0NJ00320D
crossref_primary_10_1002_ijch_202100077
crossref_primary_10_1149_1945_7111_acfc2a
crossref_primary_10_1002_adfm_202204137
crossref_primary_10_1016_j_nanoen_2021_106221
crossref_primary_10_1016_j_jcou_2022_102211
crossref_primary_10_1149_1945_7111_abcb77
crossref_primary_10_1016_j_pnsc_2020_09_011
crossref_primary_10_1002_adma_202101874
crossref_primary_10_3390_catal11121525
crossref_primary_10_1002_slct_202103594
crossref_primary_10_1002_admi_202200349
crossref_primary_10_1016_j_electacta_2024_144353
crossref_primary_10_1063_5_0035999
crossref_primary_10_3390_nano14231924
crossref_primary_10_1016_j_nanoen_2024_110537
crossref_primary_10_1016_j_apsusc_2023_159202
crossref_primary_10_1039_D1TA09861F
crossref_primary_10_1016_j_apmt_2021_101131
crossref_primary_10_32604_jrm_2022_015806
crossref_primary_10_1002_chem_202302854
crossref_primary_10_1016_j_apsusc_2020_148508
crossref_primary_10_1002_ange_202213782
crossref_primary_10_1016_j_jwpe_2023_103639
crossref_primary_10_1016_j_ijhydene_2024_04_211
crossref_primary_10_1016_j_jpowsour_2024_234553
crossref_primary_10_1002_smtd_202100947
crossref_primary_10_1007_s41918_021_00094_7
crossref_primary_10_3390_catal13091289
crossref_primary_10_1002_cey2_52
crossref_primary_10_3390_nano13233019
crossref_primary_10_1002_ece2_12
crossref_primary_10_1002_smtd_202301805
crossref_primary_10_1515_zpch_2023_0366
crossref_primary_10_1016_j_mtsust_2021_100072
crossref_primary_10_1007_s11581_021_04411_4
crossref_primary_10_3390_ma13122746
crossref_primary_10_3390_en15124437
crossref_primary_10_1016_j_matchemphys_2021_125248
crossref_primary_10_1016_j_mtadv_2020_100116
crossref_primary_10_1016_j_coelec_2021_100688
crossref_primary_10_1021_acs_jpcc_4c00101
crossref_primary_10_1016_j_diamond_2021_108338
crossref_primary_10_1149_1945_7111_ab861d
crossref_primary_10_1021_acs_chemrev_0c00576
crossref_primary_10_1021_acsanm_3c00827
crossref_primary_10_1016_j_ijhydene_2020_11_009
crossref_primary_10_1002_aenm_202100695
crossref_primary_10_1002_celc_202000579
crossref_primary_10_1016_j_jechem_2020_03_039
crossref_primary_10_1039_D3CC00221G
crossref_primary_10_1002_slct_202200616
crossref_primary_10_1007_s41918_020_00085_0
crossref_primary_10_1039_D2TA05988F
Cites_doi 10.1021/acsami.5b10727
10.1039/c3ee43463j
10.1002/aenm.201600794
10.1016/j.enpol.2008.08.016
10.1016/j.jcat.2011.06.015
10.1002/celc.201500382
10.1016/j.carbon.2013.05.067
10.1016/j.jpowsour.2010.12.047
10.1038/nchem.1069
10.1016/j.ccr.2012.12.012
10.1002/aenm.201500985
10.1016/j.nanoen.2016.05.024
10.1021/acs.chemmater.7b01619
10.1002/adma.201606800
10.1002/chem.201304561
10.1016/j.elecom.2006.02.020
10.1039/c5ta07878d
10.1039/c2ee03590a
10.1021/acsami.6b12547
10.1039/c3cs60248f
10.1039/c5ra21385a
10.1007/s41918-018-0013-0
10.1016/j.apcatb.2015.12.052
10.1039/c5cs00670h
10.1016/j.jcat.2019.04.028
10.1080/01614940600631348
10.1002/anie.201402646
10.1016/j.electacta.2016.10.108
10.1002/anie.200462335
10.1038/nchem.623
10.1002/ente.201900123
10.1021/ja307951y
10.1039/c2jm31079a
10.1126/science.aad4998
10.1021/acs.chemmater.8b03681
10.1007/s10008-016-3346-9
10.1039/c2cp44147k
10.1039/c7cy00715a
10.1002/anie.201510495
10.1021/acs.chemrev.5b00462
10.1002/aenm.201600087
10.1039/c5nr08763e
10.1021/acs.nanolett.5b03446
10.1016/j.nanoen.2016.12.056
10.1016/j.carbon.2018.12.066
10.1016/j.colsurfa.2019.02.030
10.1016/j.jpowsour.2010.01.056
10.1016/j.cattod.2019.04.055
10.1021/cr500519c
10.1016/j.energy.2016.02.103
10.1016/j.rinp.2017.02.013
10.1016/j.physe.2018.07.032
10.1021/ja204748u
10.1021/la404188p
10.1016/j.electacta.2018.12.056
10.1016/j.carbon.2016.04.033
10.1021/jp211946n
10.1016/j.ijhydene.2015.06.027
10.1039/c1ee01431e
10.1038/nnano.2015.48
10.1002/cssc.201700369
10.1016/j.ijhydene.2018.11.120
10.1016/j.jpowsour.2014.01.042
10.1039/c3cc40971f
10.1016/j.jpowsour.2009.08.100
10.1016/j.jallcom.2016.06.060
10.1016/j.carbon.2010.05.022
10.1016/j.cej.2018.04.208
10.5796/electrochemistry.84.133
10.1039/c6ta08363c
10.1016/j.apcatb.2016.05.028
10.1002/smll.201602334
10.1039/c0cc02048f
10.1002/anie.201604311
10.1016/j.electacta.2015.10.020
10.1039/c5nr06749a
10.1016/j.ultsonch.2016.09.021
10.1149/2.0521802jes
10.1016/j.cattod.2018.01.029
10.1021/jz3011833
10.1021/cs501762g
10.1016/j.nanoen.2016.07.007
10.1016/j.ijhydene.2018.01.095
10.1021/cr5003563
10.1021/acsami.6b02352
10.1021/acsenergylett.6b00532
10.1016/j.carbon.2014.11.008
10.1021/acsami.6b10804
10.1021/acs.nanolett.5b04636
10.1016/j.carbon.2016.06.102
10.1021/ja403440e
10.1038/nmat1840
10.1016/j.fuel.2016.12.033
10.1016/j.nanoen.2015.12.014
10.1080/10962247.2016.1158133
10.1038/nchem.367
10.1039/c8ta09034c
10.1002/adfm.201503666
10.1038/nchem.288
10.1021/acscatal.6b02666
10.1016/j.electacta.2016.08.090
10.1016/j.electacta.2016.01.070
10.1016/j.cej.2015.12.057
10.1039/c1cs15228a
10.1016/j.apsusc.2017.08.222
10.1038/nnano.2012.72
10.1016/j.apcatb.2016.02.009
10.1021/cm303357p
10.1007/s12274-016-1400-7
10.1002/slct.201600401
10.1016/j.jpowsour.2007.11.050
10.1016/j.nantod.2016.09.001
10.1039/c3cc43107j
10.1039/c5cs00434a
10.1007/s12274-016-0982-4
10.1007/s41918-018-0002-3
10.1002/adfm.201505509
10.1021/cm901698s
10.1039/c5nj03390j
10.1126/sciadv.1601705
10.1039/C1JM14694G
10.1016/j.ijhydene.2016.12.068
10.1016/j.rser.2016.09.135
10.1002/anie.201105204
10.1039/C6TA08580F
10.1007/BF00613033
10.1007/s10800-016-1027-0
10.1021/jp047349j
10.1016/j.carbon.2007.04.031
10.1016/j.electacta.2018.01.046
10.1038/ncomms15938
10.1016/j.electacta.2017.10.057
10.1039/c1nj20612e
10.1021/ja909537g
10.1002/cctc.201701777
10.1149/2.1311609jes
10.1002/adfm.201303902
10.1002/anie.201101287
10.1021/cr980129f
10.1002/cssc.200900180
10.1039/C6EE03446B
10.1039/C7NR02264F
10.1016/j.coelec.2018.04.001
10.1002/adfm.201602158
10.1002/anie.201508809
10.1038/nchem.1095
10.1007/s10853-017-1605-5
10.1016/0008-6223(95)00154-6
10.1002/aenm.201701345
10.1002/anie.201711858
10.1002/ange.201702430
10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9
10.1021/ja3085934
10.1111/j.1151-2916.1999.tb02241.x
10.1039/c2gc35309a
10.1039/C4CS00484A
10.1149/1.2425884
10.1002/ange.201206720
10.1002/anie.201710997
10.1149/2.018401jes
10.1021/acsnano.5b02191
10.1002/admi.201801623
10.1021/acscatal.7b00366
10.1021/acsnano.7b02148
10.1126/science.1168049
10.1021/acsomega.7b01793
10.1021/acsnano.5b05984
10.1166/jamr.2017.1333
10.1038/2011212a0
10.1002/adma.201301870
10.1039/C7CP05091G
10.1126/science.aac8033
10.1126/science.1170051
10.1021/acscatal.7b03972
10.1002/anie.201109257
10.1039/c0ee00558d
10.1002/smll.201603423
10.1021/jp9076273
10.1002/aenm.201701476
10.1126/sciadv.1500462
10.1021/ja306376s
10.1126/science.1170377
10.1039/c2cp43541a
10.1002/cssc.201701306
10.1021/acs.jpcc.7b05592
10.1021/jp102284s
10.1016/j.carbon.2016.12.061
10.1016/j.electacta.2017.03.088
10.1016/j.electacta.2014.08.001
10.1021/ja3030565
10.1016/j.electacta.2017.06.017
10.1002/smll.201700099
10.1002/9783527664900
10.1039/C7NR01925D
10.1002/ange.201309171
10.1126/science.1962206
10.1126/science.1253150
10.1038/s41929-018-0063-z
10.1021/jp0647986
10.1002/cctc.201500148
10.1021/acsnano.8b00932
10.1016/j.apcatb.2019.03.016
10.1002/adma.201705407
10.1002/cssc.201801070
10.1016/S0013-4686(98)00272-2
10.1016/j.carbon.2006.08.022
10.1126/science.aad0832
ContentType Journal Article
Copyright The Author(s) 2019
Copyright_xml – notice: The Author(s) 2019
DBID C6C
AAYXX
CITATION
DOI 10.1007/s41918-019-00052-4
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2520-8136
EndPage 538
ExternalDocumentID 10_1007_s41918_019_00052_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51774100; 51762006
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
C6C
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z7V
Z7X
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c401t-9492deb09dd53eb5d07c2ee483f137dff6c82be246b59521c97e5c1316079bb33
IEDL.DBID C6C
ISSN 2520-8489
IngestDate Tue Jul 01 01:11:00 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
Fri Feb 21 02:31:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Metal-free catalyst
Electrocatalyst
Precious metal catalyst
Non-precious metal catalyst
Single-atom catalyst
Oxygen reduction reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-9492deb09dd53eb5d07c2ee483f137dff6c82be246b59521c97e5c1316079bb33
OpenAccessLink https://doi.org/10.1007/s41918-019-00052-4
PageCount 21
ParticipantIDs crossref_citationtrail_10_1007_s41918_019_00052_4
crossref_primary_10_1007_s41918_019_00052_4
springer_journals_10_1007_s41918_019_00052_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Electrochemical energy reviews
PublicationTitleAbbrev Electrochem. Energ. Rev
PublicationYear 2019
Publisher Springer Singapore
Publisher_xml – name: Springer Singapore
References Lin, Chu, Wang (CR27) 2016; 40
Zhang, Vukmirovic, Xu (CR42) 2005; 44
Noori, Verma (CR164) 2019; 298
Wu, Chen (CR128) 2011; 133
Lim, Jiang, Camargo (CR40) 2009; 324
Nie, Li, Wei (CR56) 2015; 44
Jun, Kim, Shin (CR107) 2016; 3
Suntivich, Gasteiger, Yabuuchi (CR110) 2011; 3
Ozaki, Anahara, Kimura (CR198) 2006; 44
Wang, Yan, Wu (CR172) 2019; 144
Liu, Ruan, Sang (CR10) 2016; 215
von Deak, Biddinger, Luthman (CR28) 2010; 48
Su, Yao, Zhang (CR207) 2016; 26
Read, Callejas, Holder (CR140) 2016; 8
Lee, Li, Park (CR99) 2017
Mosa, Biswas, El-Sawy (CR78) 2016; 4
Pan, Chen, Yu (CR113) 2016; 66
Osgood, Devaguptapu, Xu (CR91) 2016; 11
Yang, Mao, Cao (CR204) 2018; 427
Zhong, Zhang, Liu (CR119) 2006; 8
Sun, Li, Yang (CR165) 2018
Jasinski (CR163) 1964; 201
Wang, Li, Wang (CR171) 2019
Xu, Wu, Zhang (CR135) 2013; 49
Zhang, Li, Sun (CR84) 2019
Zheng, Cao, Wu (CR11) 2016; 107
Li, Zhang, Zhang (CR12) 2017; 9
Yang, He, Guo (CR8) 2017; 12
Sui, Wang, Zhou (CR43) 2017; 5
Saheb Koussa, Koussa (CR2) 2016; 102
Yang, Hu, Zhang (CR75) 2016; 9
Jiang, Zhao, Guo (CR52) 2017; 3
Ryabova, Bonnefont, Simonov (CR92) 2017; 246
Yu, Pan, Cao (CR35) 2011; 282
Mazza, Trassatti (CR117) 1963; 110
Choi, Chung, Park (CR25) 2013; 15
Deng, Zhong, Li (CR29) 2016; 8
Li, Liu, Gan (CR181) 2019; 6
Wu, Geng, Ge (CR19) 2016; 6
Chai, Qiu, Qiao (CR193) 2017; 10
Liu, Jiao, Lu (CR159) 2017; 8
Wu, Shi, Wang (CR44) 2017; 29
Wang, Li, Xiong (CR145) 2016; 26
Zhang, Wang, Hua (CR114) 2016; 186
Jensen, Tymoczko, Rossmeisl (CR53) 2018; 57
Xu, Cheng, Cao (CR170) 2018; 1
Song, Wu, Zhou (CR20) 2016; 12
Wang, Yin, Zhao (CR179) 2013; 49
Yuan, Yang, He (CR122) 2017; 9
Sun, Li, Zhong (CR166) 2018; 165
Xiang, Zhao, Jiang (CR86) 2018; 6
Chen, Higgins, Yu (CR130) 2011; 4
Xia, Liu, Wang (CR121) 2008; 177
Ozaki, Kimura, Anahara (CR199) 2007; 45
Risch, Stoerzinger, Han (CR83) 2017; 121
Chen, Huang, Wan (CR148) 2015; 5
Zhang, Li, Wang (CR104) 2019; 44
Popczun, Read, Roske (CR137) 2014; 53
Sheng, Gao, Bao (CR196) 2012; 22
Zhang, Zhang, Chen (CR149) 2016; 4
Choi, Park, Woo (CR32) 2012; 22
Jia, Ramaswamy, Hafiz (CR180) 2015; 9
Yu, Wang, Bao (CR26) 2016; 21
Wu, Wang, Ding (CR100) 2016; 55
Xiao, Chen, Wang (CR132) 2015; 5
Kim, Kim, Lee (CR160) 2018; 11
Wohlgemuth, White, Willinger (CR203) 2012; 14
Wang, Ambrosi, Pumera (CR209) 2013; 125
Tian, Tang, Luo (CR49) 2017; 7
Dai, Xue, Qu (CR183) 2015; 115
Su, Zhang, Frank (CR184) 2010; 3
Fan, Ida, Staykov (CR123) 2017; 13
Jiang, Wang, Wang (CR206) 2016; 189
Kobayashi, Aoki, Wakisaka (CR55) 2018; 3
Tong, Chen, Zhou (CR93) 2017; 129
Zhang, Sha, Fei (CR158) 2017; 11
Sickafus, Wills, Grimes (CR103) 1999; 82
Bo, Guo (CR194) 2013; 15
Ma, You, Wang (CR18) 2016; 8
Zeng, Shui, Liu (CR157) 2018; 8
Kim, Roh, Sahoo (CR155) 2018; 8
Doan-Nguyen, Zhang, Trigg (CR147) 2015; 9
Guo, Fang, Li (CR151) 2014; 344
Shafiee, Topal (CR1) 2009; 37
Żółtowski, Dražić, Vorkapić (CR74) 1973; 3
Menezes, Indra, Das (CR144) 2016; 7
Zhu, Liu, Liu (CR189) 2015; 7
Jeon, Yoo, Cho (CR60) 2009; 113
Yuan, Zeng, Zhang (CR175) 2010; 132
Pena, Fierro (CR108) 2001; 101
Chen, Takanabe, Ohnishi (CR131) 2010; 46
Masa, Barwe, Andronescu (CR143) 2016; 1
Duan, Wang, Ding (CR112) 2017; 193
Shahid, Rameshkumar, Basirun (CR95) 2017; 237
Wang, Fang, Zhang (CR5) 2018; 1
Xu, Gao, Zhao (CR89) 2012; 5
Beermann, Gocyla, Willinger (CR15) 2016; 16
Gong, Du, Xia (CR186) 2009; 323
Zhu, Liu, Ren (CR142) 2015; 25
Sunarso, Torriero, Zhou (CR109) 2012; 116
Gara, Compton (CR185) 2011; 35
Abreu-Sepulveda, Dhital, Huq (CR116) 2016; 163
Strasser, Koh, Anniyev (CR68) 2010; 2
Yamamoto, Imaoka, Chun (CR41) 2009; 1
Dombrovskis, Jeong, Fossum (CR178) 2013; 25
Cheng, Su, Liang (CR79) 2010; 22
Zeng, Zhang, Liu (CR80) 2017; 256
Roy, Knudsen, Pedersen (CR54) 2018; 8
Wang, Xiao, Liu (CR124) 2017; 42
Al-Hakemy, Nassr, Naggar (CR96) 2017; 47
Mendoza-Garcia, Su, Sun (CR139) 2016; 8
Greeley, Stephens, Bondarenko (CR65) 2009; 1
Zhang, Li, Zhang (CR37) 2014; 255
Kuttiyiel, Choi, Sasaki (CR46) 2016
Zhang, Qu, Shi (CR16) 2016; 55
Zhang, Zhang, Cao (CR88) 2018; 30
Wei, Feng, Scherer (CR97) 2017
Wang, Fan, Ignaszak (CR126) 2018; 348
Zhou, Sun, Xi (CR102) 2018; 30
Stamenkovic, Mun, Arenz (CR50) 2007; 6
Zhang, Wilkinson, Liu (CR72) 2018; 262
Stacy, Regmi, Leonard (CR57) 2017; 69
Su, Zhang, Zhuang (CR205) 2013; 62
Lehtimäki, Hoffmannová, Boytsova (CR77) 2016; 191
Dai, Liu, Song (CR22) 2016; 27
Xu, Li, Wang (CR167) 2010; 195
Liang, Jiao, Jaroniec (CR202) 2012; 124
Zhang, Li, Wang (CR101) 2018; 11
Cai, Hübner, Sasaki (CR47) 2018; 57
Wang, Zhang, Xia (CR201) 2012; 51
Chen, Yu, Wang (CR36) 2017; 32
Yu, Xue, Dai (CR33) 2012; 3
Tammeveski, Zagal (CR162) 2018; 9
Wu, Yang, Sun (CR94) 2012; 134
Chen, Li, Wang (CR23) 2016; 1
He, Li, Yin (CR156) 2017; 114
Zhang, Mahmood, Yin (CR192) 2013; 25
Neburchilov, Wang, Martin (CR118) 2010; 195
Rios, Gautier, Poillerat (CR105) 1998; 44
Cheng, Tian, Fan (CR195) 2014; 143
Hwang, Kim, Lee (CR62) 2012; 134
Dong, Chen, Zhang (CR129) 2013; 257
Liu, Li (CR138) 2016; 8
Delmondo, Munoz-Tabares, Sacco (CR81) 2017; 19
Jung, Sohn, Park (CR45) 2016; 196
Chen, Dodelet, Zhang (CR71) 2014
Yin, Zhang, Liu (CR125) 2014; 24
Bai, Zhao, Li (CR17) 2016; 105
Wei, Kibsgaard, Dickens (CR39) 2017; 355
Yang, Bhattacharjya, Inamdar (CR190) 2012; 134
Zhou, Liu, Zhao (CR115) 2016; 288
Arjun, Pan, Yang (CR111) 2017; 7
Xiong, Shan, Zhou (CR48) 2017; 13
Popczun, McKone, Read (CR136) 2013; 135
Liu, Xu, Yan (CR153) 2018; 10
Wang, Su (CR34) 2014; 7
Raciti, Kubal, Ma (CR14) 2016; 20
Lefèvre, Proietti, Jaouen (CR24) 2009; 324
Markovic, Schmidt, Stamenkovic (CR61) 2001; 1
Huang, Zhang, Kongkanand (CR70) 2014; 161
Omura, Yano, Tryk (CR69) 2014; 30
Guo, Shibuya, Akiba (CR188) 2016; 351
Yang, Jiang, Zhao (CR197) 2011; 50
Yang, Wang, Ma (CR87) 2019; 109
Wang, Iyyamperumal, Roy (CR200) 2011; 50
Zhu, Li, Fu (CR161) 2016; 45
Wang, Xu, Xu (CR73) 2014; 43
Lv, Wang (CR141) 2017; 7
Jiang, Zhu, Feng (CR31) 2014; 20
Chen, Choi, Wang (CR176) 2011; 196
Nørskov, Rossmeisl, Logadottir (CR64) 2004; 108
Cheng, Chen (CR38) 2012; 41
He, Yin, Li (CR90) 2015; 40
Li, Zhou, Wang (CR174) 2012; 7
CR3
Pletcher, Li, Price (CR98) 2016; 188
Qi, Jiang, Jiang (CR120) 2010; 114
CR7
Wu, Jin, Yang (CR191) 2015; 82
Shi, Zhang, Huang (CR210) 2018; 53
Yin, Utetiwabo, Sun (CR173) 2019; 374
Li, Chen, Duan (CR182) 2019; 249
Huang, Wei, Gao (CR9) 2016; 220
Liu, Tan, Li (CR106) 2006; 48
Ball (CR154) 2018
Chen, Ji, Wang (CR208) 2018; 43
Sun, Liu, Qu (CR133) 2016; 6
Shi, Zhang (CR134) 2016; 45
Coleman, Chowdhury, Co (CR51) 2015; 5
Zhao, Watanabe, Hashimoto (CR177) 2012; 134
Roche, Chaînet, Chatenet (CR82) 2007; 111
Shao, Chang, Dodelet (CR58) 2016; 116
Wang, Zhao, Fang (CR59) 2015; 115
Ojha, Gautam, Muthurasu (CR85) 2019; 568
Pels, Kapteijn, Moulijn (CR187) 1995; 33
Li, Liu, Fan (CR21) 2016; 686
Chiwata, Yano, Ogawa (CR13) 2016; 84
Shen, Wei, Ai (CR168) 2017; 10
Zagal, Koper (CR169) 2016; 55
Trost (CR67) 1991; 254
Zhang, Zhao, Xia (CR30) 2015; 10
Creutzig, Jochem, Edelenbosch (CR4) 2015; 350
Wang, Yang, Liu (CR127) 2017; 9
Stephens, Bondarenko, Grønbjerg (CR63) 2012; 5
Deng, Chen, Yu (CR152) 2015; 1
Freund, Lächelt, Gruber (CR66) 2018; 12
Wang, Wang, Luo (CR6) 2018; 1
Zuo, Jiang, Abdel-Halim (CR76) 2017; 35
Yang, Zhang, Hu (CR146) 2015; 15
Qiao, Wang, Yang (CR150) 2011; 3
D Xia (52_CR121) 2008; 177
Y Li (52_CR181) 2019; 6
ZH Sheng (52_CR196) 2012; 22
H Huang (52_CR9) 2016; 220
Z Zeng (52_CR80) 2017; 256
P Strasser (52_CR68) 2010; 2
A Mendoza-Garcia (52_CR139) 2016; 8
MA Abreu-Sepulveda (52_CR116) 2016; 163
R Zhang (52_CR149) 2016; 4
J Kim (52_CR160) 2018; 11
L Dai (52_CR22) 2016; 27
K Yamamoto (52_CR41) 2009; 1
DS Yang (52_CR190) 2012; 134
L Yu (52_CR35) 2011; 282
T Zhang (52_CR84) 2019
Y Li (52_CR174) 2012; 7
C Deng (52_CR29) 2016; 8
N Jung (52_CR45) 2016; 196
F Cheng (52_CR79) 2010; 22
JK Nørskov (52_CR64) 2004; 108
DW Wang (52_CR34) 2014; 7
Q Jia (52_CR180) 2015; 9
Z Zhou (52_CR115) 2016; 288
R Wang (52_CR6) 2018; 1
G Xu (52_CR167) 2010; 195
J Li (52_CR12) 2017; 9
J Zhang (52_CR16) 2016; 55
JK Dombrovskis (52_CR178) 2013; 25
T Jiang (52_CR206) 2016; 189
M Risch (52_CR83) 2017; 121
MT Noori (52_CR164) 2019; 298
L Wang (52_CR179) 2013; 49
C Sun (52_CR165) 2018
J Yang (52_CR87) 2019; 109
D Pletcher (52_CR98) 2016; 188
X Yuan (52_CR175) 2010; 132
V Neburchilov (52_CR118) 2010; 195
Y Nie (52_CR56) 2015; 44
I Roche (52_CR82) 2007; 111
X Bo (52_CR194) 2013; 15
K Gong (52_CR186) 2009; 323
KH Wu (52_CR44) 2017; 29
F Creutzig (52_CR4) 2015; 350
X Zeng (52_CR157) 2018; 8
X Shi (52_CR210) 2018; 53
X Chen (52_CR36) 2017; 32
Y Zhou (52_CR102) 2018; 30
JI Ozaki (52_CR199) 2007; 45
Y Liu (52_CR10) 2016; 215
LT Song (52_CR20) 2016; 12
H Lin (52_CR27) 2016; 40
52_CR7
F Mazza (52_CR117) 1963; 110
52_CR3
VR Stamenkovic (52_CR50) 2007; 6
Z Chen (52_CR130) 2011; 4
M Li (52_CR21) 2016; 686
KA Kuttiyiel (52_CR46) 2016
J Zhang (52_CR30) 2015; 10
ZS Wu (52_CR94) 2012; 134
A Jun (52_CR107) 2016; 3
S Kobayashi (52_CR55) 2018; 3
E Rios (52_CR105) 1998; 44
Y Fan (52_CR123) 2017; 13
F He (52_CR156) 2017; 114
Y Zhao (52_CR177) 2012; 134
F Cheng (52_CR38) 2012; 41
YN Yu (52_CR26) 2016; 21
M Shen (52_CR168) 2017; 10
X Zheng (52_CR11) 2016; 107
J Liu (52_CR159) 2017; 8
N Arjun (52_CR111) 2017; 7
YJ Wang (52_CR5) 2018; 1
KL Pan (52_CR113) 2016; 66
R Freund (52_CR66) 2018; 12
L Dai (52_CR183) 2015; 115
B Lim (52_CR40) 2009; 324
T Zhang (52_CR104) 2019; 44
C Wei (52_CR97) 2017
H Xu (52_CR170) 2018; 1
L Yang (52_CR197) 2011; 50
EJ Coleman (52_CR51) 2015; 5
GP Ojha (52_CR85) 2019; 568
GL Chai (52_CR193) 2017; 10
D Yu (52_CR33) 2012; 3
S Yang (52_CR204) 2018; 427
V Beermann (52_CR15) 2016; 16
IM Mosa (52_CR78) 2016; 4
R Jasinski (52_CR163) 1964; 201
Y Su (52_CR207) 2016; 26
X Yin (52_CR173) 2019; 374
Y Liu (52_CR106) 2006; 48
H Wu (52_CR128) 2011; 133
P Żółtowski (52_CR74) 1973; 3
DU Lee (52_CR99) 2017
L Wang (52_CR209) 2013; 125
Y Chen (52_CR208) 2018; 43
D von Deak (52_CR28) 2010; 48
P Ball (52_CR154) 2018
B Qiao (52_CR150) 2011; 3
C Wang (52_CR171) 2019
H Zhong (52_CR119) 2006; 8
CG Read (52_CR140) 2016; 8
H Jiang (52_CR31) 2014; 20
M Lefèvre (52_CR24) 2009; 324
S Shafiee (52_CR1) 2009; 37
Y Xu (52_CR135) 2013; 49
Y Xiong (52_CR48) 2017; 13
P Xiao (52_CR132) 2015; 5
J Omura (52_CR69) 2014; 30
TY Jeon (52_CR60) 2009; 113
J Stacy (52_CR57) 2017; 69
EJ Popczun (52_CR136) 2013; 135
Y Shi (52_CR134) 2016; 45
VV Doan-Nguyen (52_CR147) 2015; 9
L Zhang (52_CR72) 2018; 262
C Sun (52_CR166) 2018; 165
T Zhang (52_CR101) 2018; 11
EJ Popczun (52_CR137) 2014; 53
M Pena (52_CR108) 2001; 101
J Greeley (52_CR65) 2009; 1
JI Ozaki (52_CR198) 2006; 44
Y Tong (52_CR93) 2017; 129
X Bai (52_CR17) 2016; 105
J Suntivich (52_CR110) 2011; 3
D Saheb Koussa (52_CR2) 2016; 102
J Zhang (52_CR42) 2005; 44
M Chiwata (52_CR13) 2016; 84
Z Chen (52_CR71) 2014
G Wu (52_CR100) 2016; 55
H Yin (52_CR125) 2014; 24
J Chen (52_CR131) 2010; 46
D Guo (52_CR188) 2016; 351
SJ Hwang (52_CR62) 2012; 134
DS Su (52_CR184) 2010; 3
CH Choi (52_CR32) 2012; 22
KE Sickafus (52_CR103) 1999; 82
BM Trost (52_CR67) 1991; 254
C Zhang (52_CR114) 2016; 186
J Sunarso (52_CR109) 2012; 116
M Wang (52_CR127) 2017; 9
Y Su (52_CR205) 2013; 62
T Zhang (52_CR88) 2018; 30
J Xu (52_CR89) 2012; 5
C Roy (52_CR54) 2018; 8
D Deng (52_CR152) 2015; 1
M Sun (52_CR133) 2016; 6
S Dong (52_CR129) 2013; 257
C Zhu (52_CR161) 2016; 45
SZ Wei (52_CR39) 2017; 355
B Cai (52_CR47) 2018; 57
S Sui (52_CR43) 2017; 5
M Shao (52_CR58) 2016; 116
M Liu (52_CR138) 2016; 8
K Wang (52_CR124) 2017; 42
N Markovic (52_CR61) 2001; 1
S Wang (52_CR201) 2012; 51
Q Duan (52_CR112) 2017; 193
PW Menezes (52_CR144) 2016; 7
Y Wang (52_CR126) 2018; 348
YP Zhu (52_CR189) 2015; 7
Z Chen (52_CR176) 2011; 196
C Zhang (52_CR158) 2017; 11
Y Huang (52_CR70) 2014; 161
J Kim (52_CR155) 2018; 8
S Wang (52_CR172) 2019; 144
J Pels (52_CR187) 1995; 33
Y Lv (52_CR141) 2017; 7
LX Zuo (52_CR76) 2017; 35
MM Shahid (52_CR95) 2017; 237
AS Ryabova (52_CR92) 2017; 246
K Tammeveski (52_CR162) 2018; 9
M Gara (52_CR185) 2011; 35
C Zhang (52_CR192) 2013; 25
X Chen (52_CR23) 2016; 1
X Guo (52_CR151) 2014; 344
M Lehtimäki (52_CR77) 2016; 191
H Yang (52_CR146) 2015; 15
K Jiang (52_CR52) 2017; 3
W Xiang (52_CR86) 2018; 6
S Wang (52_CR200) 2011; 50
J Qi (52_CR120) 2010; 114
J Masa (52_CR143) 2016; 1
H Wu (52_CR19) 2016; 6
YJ Wang (52_CR59) 2015; 115
X He (52_CR90) 2015; 40
KD Jensen (52_CR53) 2018; 57
WJ Yang (52_CR8) 2017; 12
M Ma (52_CR18) 2016; 8
CH Choi (52_CR25) 2013; 15
L Delmondo (52_CR81) 2017; 19
L Zhang (52_CR37) 2014; 255
JH Zagal (52_CR169) 2016; 55
Y Cheng (52_CR195) 2014; 143
YP Zhu (52_CR142) 2015; 25
X Wang (52_CR145) 2016; 26
J Liang (52_CR202) 2012; 124
IEL Stephens (52_CR63) 2012; 5
D Raciti (52_CR14) 2016; 20
H Yang (52_CR75) 2016; 9
W Liu (52_CR153) 2018; 10
AZ Al-Hakemy (52_CR96) 2017; 47
K Chen (52_CR148) 2015; 5
ZL Wang (52_CR73) 2014; 43
Y Yuan (52_CR122) 2017; 9
SA Wohlgemuth (52_CR203) 2012; 14
J Wu (52_CR191) 2015; 82
Y Li (52_CR182) 2019; 249
X Tian (52_CR49) 2017; 7
H Osgood (52_CR91) 2016; 11
References_xml – volume: 8
  start-page: 2158
  year: 2016
  end-page: 2165
  ident: CR138
  article-title: Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10727
– volume: 7
  start-page: 576
  year: 2014
  ident: CR34
  article-title: Heterogeneous nanocarbon materials for oxygen reduction reaction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43463j
– volume: 6
  start-page: 1600794
  year: 2016
  ident: CR19
  article-title: Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600794
– volume: 26
  start-page: 5893
  year: 2016
  end-page: 5902
  ident: CR207
  article-title: Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc–air battery
  publication-title: Adv. Funct. Mater.
– volume: 37
  start-page: 181
  year: 2009
  end-page: 189
  ident: CR1
  article-title: When will fossil fuel reserves be diminished?
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.08.016
– volume: 35
  start-page: 2647
  year: 2011
  end-page: 2652
  ident: CR185
  article-title: Activity of carbon electrodes towards oxygen reduction in acid: a comparative study
  publication-title: New J. Chem.
– volume: 282
  start-page: 183
  year: 2011
  end-page: 190
  ident: CR35
  article-title: Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.06.015
– volume: 69
  start-page: 401
  year: 2017
  end-page: 414
  ident: CR57
  article-title: The recent progress and future of oxygen reduction reaction catalysis: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 101
  start-page: 1981
  year: 2001
  end-page: 2018
  ident: CR108
  article-title: Chemical structures and performance of perovskite oxides
  publication-title: Chem. Rev.
– volume: 24
  start-page: 2930
  year: 2014
  end-page: 2937
  ident: CR125
  article-title: Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 511
  year: 2016
  end-page: 530
  ident: CR107
  article-title: Perovskite as a cathode material: a review of its role in solid-oxide fuel cell technology
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201500382
– volume: 62
  start-page: 296
  year: 2013
  end-page: 301
  ident: CR205
  article-title: Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.05.067
– volume: 196
  start-page: 3673
  year: 2011
  end-page: 3677
  ident: CR176
  article-title: Highly durable and active non-precious air cathode catalyst for zinc air battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.047
– volume: 1
  start-page: e1500462
  year: 2015
  ident: CR152
  article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature
  publication-title: Sci. Adv.
– volume: 3
  start-page: 546
  year: 2011
  end-page: 550
  ident: CR110
  article-title: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1069
– volume: 9
  start-page: 6259
  year: 2017
  end-page: 6263
  ident: CR122
  article-title: Cobalt–zinc nitride on nitrogen doped carbon black nanohybrids as a non-noble metal electrocatalyst for oxygen reduction reaction
  publication-title: Nanoscale
– volume: 15
  start-page: 2459
  year: 2013
  end-page: 2465
  ident: CR194
  article-title: Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 946
  year: 2018
  end-page: 950
  ident: CR153
  article-title: Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: a new protocol by utilization of H MoO with plasmon resonance
  publication-title: ChemCatChem
– volume: 257
  start-page: 1946
  year: 2013
  end-page: 1956
  ident: CR129
  article-title: Nanostructured transition metal nitrides for energy storage and fuel cells
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.12.012
– volume: 5
  start-page: 1500985
  year: 2015
  ident: CR132
  article-title: A review of phosphide-based materials for electrocatalytic hydrogen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500985
– volume: 3
  start-page: 154
  year: 2018
  end-page: 158
  ident: CR55
  article-title: Atomically flat Pt skin and striking enrichment of Co in underlying alloy at Pt Co (111) single crystal with unprecedented activity for the oxygen reduction reaction
  publication-title: ACS Omega
– volume: 5
  start-page: 1808
  year: 2017
  end-page: 1825
  ident: CR43
  article-title: A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells
  publication-title: J. Mater. Chem. A
– year: 2016
  ident: CR46
  article-title: Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M = Fe Co, Ni or Cu) cores for the oxygen reduction reaction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.05.024
– volume: 29
  start-page: 4649
  year: 2017
  end-page: 4653
  ident: CR44
  article-title: In situ electrostatic modulation of path selectivity for the oxygen reduction reaction on Fe–N doped carbon catalyst
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01619
– year: 2017
  ident: CR97
  article-title: Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606800
– volume: 20
  start-page: 3106
  year: 2014
  end-page: 3112
  ident: CR31
  article-title: Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions
  publication-title: Chemistry
  doi: 10.1002/chem.201304561
– volume: 8
  start-page: 707
  year: 2006
  end-page: 712
  ident: CR119
  article-title: A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.02.020
– volume: 1
  start-page: 105
  year: 2001
  end-page: 116
  ident: CR61
  article-title: Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review
  publication-title: Fuel Cells
– volume: 114
  start-page: 619
  year: 2017
  end-page: 627
  ident: CR156
  article-title: Single Pd atoms supported by graphitic carbon nitride, a potential oxygen reduction reaction catalyst from theoretical perspective
  publication-title: Carbon
– volume: 351
  start-page: 361
  year: 2016
  end-page: 365
  ident: CR188
  article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts
  publication-title: Science
– volume: 163
  start-page: F1124
  year: 2016
  end-page: F1132
  ident: CR116
  article-title: The influence of Fe substitution in lanthanum calcium cobalt oxide on the oxygen evolution reaction in alkaline media
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 620
  year: 2016
  end-page: 631
  ident: CR78
  article-title: Tunable mesoporous manganese oxide for high performance oxygen reduction and evolution reactions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta07878d
– volume: 82
  start-page: 3279
  year: 1999
  end-page: 3292
  ident: CR103
  article-title: Structure of spinel
  publication-title: J. Am. Ceram. Soc.
– volume: 5
  start-page: 6744
  year: 2012
  ident: CR63
  article-title: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03590a
– volume: 9
  start-page: 398
  year: 2017
  end-page: 405
  ident: CR12
  article-title: S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12547
– volume: 43
  start-page: 7746
  year: 2014
  end-page: 7786
  ident: CR73
  article-title: Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60248f
– volume: 5
  start-page: 92893
  year: 2015
  end-page: 92898
  ident: CR148
  article-title: Hybrids based on transition metal phosphide (Mn P, Co P, Ni P) nanoparticles and heteroatom-doped carbon nanotubes for efficient oxygen reduction reaction
  publication-title: RSC Adv.
  doi: 10.1039/c5ra21385a
– volume: 1
  start-page: 324
  year: 2018
  end-page: 387
  ident: CR6
  article-title: Core–shell-structured low-platinum electrocatalysts for fuel cell applications
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0013-0
– volume: 186
  start-page: 173
  year: 2016
  end-page: 183
  ident: CR114
  article-title: Relationship between catalytic deactivation and physicochemical properties of LaMnO perovskite catalyst during catalytic oxidation of vinyl chloride
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.12.052
– volume: 45
  start-page: 517
  year: 2016
  end-page: 531
  ident: CR161
  article-title: Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c5cs00670h
– volume: 44
  start-page: 3358
  year: 2006
  end-page: 3361
  ident: CR198
  article-title: Simultaneous doping of boron and nitrogen into a carbon to enhance its oxygen reduction activity in proton exchange membrane fuel cells
  publication-title: Carbon
– volume: 45
  start-page: 1847
  year: 2007
  end-page: 1853
  ident: CR199
  article-title: Preparation and oxygen reduction activity of BN-doped carbons
  publication-title: Carbon
– volume: 324
  start-page: 1302
  year: 2009
  end-page: 1305
  ident: CR40
  article-title: Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction
  publication-title: Science
– volume: 374
  start-page: 43
  year: 2019
  end-page: 50
  ident: CR173
  article-title: Incorporation of CeF on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.04.028
– volume: 11
  start-page: 2730
  year: 2018
  end-page: 2736
  ident: CR101
  article-title: Spinel MnCo O nanoparticles supported on three-dimensional graphene with enhanced mass transfer as an efficient electrocatalyst for oxygen reduction reaction
  publication-title: Chemsuschem
– volume: 48
  start-page: 145
  year: 2006
  end-page: 198
  ident: CR106
  article-title: Mixed conducting ceramics for catalytic membrane processing
  publication-title: Catal. Rev.
  doi: 10.1080/01614940600631348
– volume: 53
  start-page: 5427
  year: 2014
  end-page: 5430
  ident: CR137
  article-title: Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402646
– volume: 10
  start-page: 1186
  year: 2017
  end-page: 1195
  ident: CR193
  article-title: Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 2094
  year: 2018
  end-page: 2105
  ident: CR66
  article-title: Multifunctional efficiency: extending the concept of atom economy to functional nanomaterials
  publication-title: ACS Nano
– volume: 220
  start-page: 427
  year: 2016
  end-page: 435
  ident: CR9
  article-title: Nitrogen-doped porous carbon derived from biomass as a highly efficient electrocatalyst for oxygen reduction reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.108
– volume: 44
  start-page: 2132
  year: 2005
  end-page: 2135
  ident: CR42
  article-title: Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200462335
– volume: 2
  start-page: 454
  year: 2010
  end-page: 460
  ident: CR68
  article-title: Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.623
– year: 2019
  ident: CR171
  article-title: Vertical-space-limit synthesis of bifunctional Fe, N-codoped 2D multilayer graphene electrocatalysts for Zn–Air battery
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900123
– volume: 47
  start-page: 183
  year: 2017
  end-page: 195
  ident: CR96
  article-title: Electrodeposited cobalt oxide nanoparticles modified carbon nanotubes as a non-precious catalyst electrode for oxygen reduction reaction
  publication-title: J. Appl. Electrochem.
– volume: 134
  start-page: 19508
  year: 2012
  end-page: 19511
  ident: CR62
  article-title: Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307951y
– volume: 22
  start-page: 12107
  year: 2012
  ident: CR32
  article-title: Phosphorus–nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31079a
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: CR39
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 124
  start-page: 11664
  year: 2012
  end-page: 11668
  ident: CR202
  article-title: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance
  publication-title: Angew. Chem.
– volume: 30
  start-page: 8270
  year: 2018
  end-page: 8279
  ident: CR88
  article-title: A self-templating redox-mediated synthesis of hollow phosphated manganese oxide nanospheres as noble-metal-like oxygen electrocatalysts
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03681
– volume: 21
  start-page: 103
  year: 2016
  end-page: 110
  ident: CR26
  article-title: Biomass-derived synthesis of nitrogen and phosphorus Co-doped mesoporous carbon spheres as catalysts for oxygen reduction reaction
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-016-3346-9
– volume: 7
  start-page: 2903
  year: 2015
  end-page: 2909
  ident: CR189
  article-title: Direct synthesis of phosphorus-doped mesoporous carbon materials for efficient electrocatalytic oxygen reduction
  publication-title: ChemCatChem
– volume: 15
  start-page: 1802
  year: 2013
  end-page: 1805
  ident: CR25
  article-title: Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acidic media
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp44147k
– volume: 7
  start-page: 3676
  year: 2017
  end-page: 3691
  ident: CR141
  article-title: Nonprecious metal phosphides as catalysts for hydrogen evolution, oxygen reduction and evolution reactions
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c7cy00715a
– volume: 55
  start-page: 2230
  year: 2016
  end-page: 2234
  ident: CR16
  article-title: N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510495
– volume: 11
  start-page: 104
  year: 2018
  end-page: 113
  ident: CR160
  article-title: Single-atom catalysts of precious metals for electrochemical reactions
  publication-title: Chemsuschem
– volume: 350
  start-page: 911
  year: 2015
  end-page: 912
  ident: CR4
  article-title: Transport: a roadblock to climate change mitigation?
  publication-title: Science
– volume: 8
  start-page: 2071
  year: 2018
  end-page: 2080
  ident: CR54
  article-title: Scalable synthesis of carbon-supported platinum–lanthanide and—rare-earth alloys for oxygen reduction
  publication-title: ACS Catal.
– volume: 116
  start-page: 3594
  year: 2016
  end-page: 3657
  ident: CR58
  article-title: Recent advances in electrocatalysts for oxygen reduction reaction
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00462
– volume: 6
  start-page: 1600087
  year: 2016
  ident: CR133
  article-title: Earth-rich transition metal phosphide for energy conversion and storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600087
– volume: 8
  start-page: 3244
  year: 2016
  end-page: 3247
  ident: CR139
  article-title: Sea urchin-like cobalt-iron phosphide as an active catalyst for oxygen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/c5nr08763e
– volume: 15
  start-page: 7616
  year: 2015
  end-page: 7620
  ident: CR146
  article-title: Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03446
– volume: 32
  start-page: 353
  year: 2017
  end-page: 358
  ident: CR36
  article-title: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.056
– volume: 144
  start-page: 798
  year: 2019
  end-page: 804
  ident: CR172
  article-title: A hierarchical porous Fe–N impregnated carbon–graphene hybrid for high-performance oxygen reduction reaction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.12.066
– volume: 50
  start-page: 7132
  year: 2011
  end-page: 7135
  ident: CR197
  article-title: Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 568
  start-page: 311
  year: 2019
  end-page: 318
  ident: CR85
  article-title: In-situ fabrication of manganese oxide nanorods decorated manganese oxide nanosheets as an efficient and durable catalyst for oxygen reduction reaction
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2019.02.030
– volume: 195
  start-page: 4731
  year: 2010
  end-page: 4735
  ident: CR167
  article-title: Planar polyphthalocyanine cobalt absorbed on carbon black as stable electrocatalysts for direct methanol fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.01.056
– volume: 44
  start-page: 1491
  year: 1998
  end-page: 1497
  ident: CR105
  article-title: Mixed valency spinel oxides of transition metals and electrocatalysis: case of the Mn Co O system
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 1701345
  year: 2018
  ident: CR157
  article-title: Single-atom to single-atom grafting of Pt onto Fe–N center: Pt @Fe–N–C multifunctional electrocatalyst with significantly enhanced properties
  publication-title: Adv. Energy Mater.
– volume: 113
  start-page: 19732
  year: 2009
  end-page: 19739
  ident: CR60
  article-title: Influence of oxide on the oxygen reduction reaction of carbon-supported Pt–Ni alloy nanoparticles
  publication-title: J. Phys. Chem. C
– year: 2019
  ident: CR84
  article-title: α-MnO nanorods supported on three dimensional graphene as high activity and durability cathode electrocatalysts for magnesium–air fuel cells
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.04.055
– volume: 1
  start-page: 339
  year: 2018
  end-page: 348
  ident: CR170
  article-title: A universal principle for a rational design of single-atom electrocatalysts
  publication-title: Nat. Catal.
– volume: 115
  start-page: 3433
  year: 2015
  end-page: 3467
  ident: CR59
  article-title: Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity
  publication-title: Chem. Rev.
  doi: 10.1021/cr500519c
– volume: 14
  start-page: 1515
  year: 2012
  end-page: 1523
  ident: CR203
  article-title: A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction
  publication-title: Green Chem.
– volume: 3
  start-page: 271
  year: 1973
  end-page: 283
  ident: CR74
  article-title: Carbon-air electrode with regenerative short time overload capacity: Part 1. Effect of manganese dioxide
  publication-title: J. Appl. Electrochem.
– volume: 42
  start-page: 202
  year: 2017
  end-page: 211
  ident: CR124
  article-title: Rational design and synthesis of sandwich-like iron nitride-graphene composites as efficient catalysts for oxygen reduction reaction
  publication-title: Int. J. Hydrog. Energy
– volume: 102
  start-page: 216
  year: 2016
  end-page: 230
  ident: CR2
  article-title: GHGs (greenhouse gases) emission and economic analysis of a GCRES (grid-connected renewable energy system) in the arid region, Algeria
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.103
– volume: 7
  start-page: 920
  year: 2017
  end-page: 926
  ident: CR111
  article-title: The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.02.013
– volume: 109
  start-page: 191
  year: 2019
  end-page: 197
  ident: CR87
  article-title: Insight into the effect of crystalline structure on the oxygen reduction reaction activities of one-dimensional MnO
  publication-title: Physica E
  doi: 10.1016/j.physe.2018.07.032
– volume: 133
  start-page: 15236
  year: 2011
  end-page: 15239
  ident: CR128
  article-title: Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204748u
– year: 2018
  ident: CR154
  publication-title: Single-atom catalysis: a new field that learns from tradition
– volume: 254
  start-page: 1471
  year: 1991
  end-page: 1477
  ident: CR67
  article-title: The atom economy—a search for synthetic efficiency
  publication-title: Science
– volume: 33
  start-page: 1641
  year: 1995
  end-page: 1653
  ident: CR187
  article-title: Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis
  publication-title: Carbon
– ident: CR7
– volume: 30
  start-page: 432
  year: 2014
  end-page: 439
  ident: CR69
  article-title: Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4(-) anions on Pt and Pt–Co alloy in HClO solutions
  publication-title: Langmuir
  doi: 10.1021/la404188p
– volume: 134
  start-page: 19528
  year: 2012
  end-page: 19531
  ident: CR177
  article-title: Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer
  publication-title: J. Am. Chem. Soc.
– volume: 298
  start-page: 70
  year: 2019
  end-page: 79
  ident: CR164
  article-title: Cobalt—iron phthalocyanine supported on carbide—derived carbon as an excellent oxygen reduction reaction catalyst for microbial fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.056
– volume: 105
  start-page: 214
  year: 2016
  end-page: 223
  ident: CR17
  article-title: Theoretical insights on the reaction pathways for oxygen reduction reaction on phosphorus doped graphene
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.04.033
– volume: 116
  start-page: 5827
  year: 2012
  end-page: 5834
  ident: CR109
  article-title: Oxygen reduction reaction activity of la-based perovskite oxides in alkaline medium: a thin-film rotating ring-disk electrode study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp211946n
– volume: 9
  start-page: 12496
  year: 2015
  end-page: 12505
  ident: CR180
  article-title: Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity
  publication-title: ACS Nano
– volume: 40
  start-page: 9713
  year: 2015
  end-page: 9722
  ident: CR90
  article-title: A Co/metal-organic-framework bifunctional electrocatalyst: the effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.06.027
– volume: 3
  start-page: 169
  year: 2010
  end-page: 180
  ident: CR184
  article-title: Metal-free heterogeneous catalysis for sustainable chemistry
  publication-title: Chemsuschem
– volume: 143
  start-page: 291
  year: 2014
  end-page: 296
  ident: CR195
  article-title: Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reaction in alkaline media
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 5333
  year: 2012
  end-page: 5339
  ident: CR89
  article-title: Non-precious Co O nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01431e
– volume: 10
  start-page: 444
  year: 2015
  end-page: 452
  ident: CR30
  article-title: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.48
– volume: 324
  start-page: 71
  year: 2009
  end-page: 74
  ident: CR24
  article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells
  publication-title: Science
– year: 2017
  ident: CR99
  article-title: Self-assembly of spinel nanocrystals into mesoporous spheres as bifunctionally active oxygen reduction and evolution electrocatalysts
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201700369
– volume: 44
  start-page: 1610
  year: 2019
  end-page: 1619
  ident: CR104
  article-title: Spinel CoFe O supported by three dimensional graphene as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reaction
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.11.120
– volume: 57
  start-page: 2963
  year: 2018
  end-page: 2966
  ident: CR47
  article-title: Core–shell structuring of pure metallic aerogels towards highly efficient platinum utilization for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 11756
  year: 2011
  end-page: 11760
  ident: CR200
  article-title: Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen
  publication-title: Angew. Chem. Int. Ed.
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: CR64
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
– volume: 255
  start-page: 242
  year: 2014
  end-page: 250
  ident: CR37
  article-title: Kinetics of oxygen reduction reaction on three different Pt surfaces of Pt/C catalyst analyzed by rotating ring-disk electrode in acidic solution
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.042
– volume: 49
  start-page: 3022
  year: 2013
  end-page: 3024
  ident: CR179
  article-title: Ion-exchanged route synthesis of Fe N–N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40971f
– volume: 22
  start-page: 390
  year: 2012
  end-page: 395
  ident: CR196
  article-title: Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells
  publication-title: J. Mater. Chem.
– volume: 195
  start-page: 1271
  year: 2010
  end-page: 1291
  ident: CR118
  article-title: A review on air cathodes for zinc–air fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.08.100
– volume: 246
  start-page: 643
  year: 2017
  end-page: 653
  ident: CR92
  article-title: Further insights into the role of carbon in manganese oxide/carbon composites in the oxygen reduction reaction in alkaline media
  publication-title: Electrochim. Acta
– volume: 201
  start-page: 1212
  year: 1964
  end-page: 1213
  ident: CR163
  article-title: A new fuel cell cathode catalyst
  publication-title: Nature
– volume: 686
  start-page: 467
  year: 2016
  end-page: 478
  ident: CR21
  article-title: Three-dimensional hierarchical meso/macroporous Fe/Co-nitrogen-doped carbon encapsulated FeCo alloy nanoparticles prepared without any template or surfactant: high-performance bifunctional oxygen electrodes
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.06.060
– volume: 48
  start-page: 3637
  year: 2010
  end-page: 3639
  ident: CR28
  article-title: The effect of phosphorus in nitrogen-containing carbon nanostructures on oxygen reduction in PEM fuel cells
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.05.022
– volume: 348
  start-page: 416
  year: 2018
  end-page: 437
  ident: CR126
  article-title: Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal–air battery oxygen reduction and evolution reactions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.208
– volume: 9
  start-page: 7641
  year: 2017
  end-page: 7649
  ident: CR127
  article-title: The role of iron nitrides in the Fe–N–C catalysis system towards the oxygen reduction reaction
  publication-title: Nanoscale
– volume: 25
  start-page: 4932
  year: 2013
  end-page: 4937
  ident: CR192
  article-title: Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries
  publication-title: Adv. Mater.
– volume: 84
  start-page: 133
  year: 2016
  end-page: 137
  ident: CR13
  article-title: Oxygen reduction reaction activity of carbon-supported Pt–Fe, Pt–Co, and Pt–Ni alloys with stabilized Pt-skin layers
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.84.133
– volume: 4
  start-page: 18723
  year: 2016
  end-page: 18729
  ident: CR149
  article-title: FeP embedded in N, P dual-doped porous carbon nanosheets: an efficient and durable bifunctional catalyst for oxygen reduction and evolution reactions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c6ta08363c
– volume: 196
  start-page: 199
  year: 2016
  end-page: 206
  ident: CR45
  article-title: High-performance PtCux@Pt core–shell nanoparticles decorated with nanoporous Pt surfaces for oxygen reduction reaction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.05.028
– volume: 9
  start-page: 207
  year: 2018
  end-page: 213
  ident: CR162
  article-title: Electrocatalytic oxygen reduction on transition metal macrocyclic complexes for anion exchange membrane fuel cell application
  publication-title: Curr. Opin. Electrochem.
– volume: 12
  start-page: 6398
  year: 2016
  end-page: 6406
  ident: CR20
  article-title: Sustainable hydrothermal carbonization synthesis of iron/nitrogen-doped carbon nanofiber aerogels as electrocatalysts for oxygen reduction
  publication-title: Small
  doi: 10.1002/smll.201602334
– volume: 46
  start-page: 7492
  year: 2010
  end-page: 7494
  ident: CR131
  article-title: Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C N template
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc02048f
– volume: 55
  start-page: 14510
  year: 2016
  end-page: 14521
  ident: CR169
  article-title: Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604311
– volume: 19
  start-page: 28781
  year: 2017
  end-page: 28787
  ident: CR81
  article-title: Thermal evolution of Mn O nanofibres as catalysts for the oxygen reduction reaction
  publication-title: Phys. Chem. Chem. Phys.
– volume: 188
  start-page: 286
  year: 2016
  end-page: 293
  ident: CR98
  article-title: Comparison of the spinels Co O and NiCo O as bifunctional oxygen catalysts in alkaline media
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.10.020
– volume: 8
  start-page: 1580
  year: 2016
  end-page: 1587
  ident: CR29
  article-title: A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer
  publication-title: Nanoscale
  doi: 10.1039/c5nr06749a
– volume: 3
  start-page: e1601705
  year: 2017
  ident: CR52
  article-title: Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires
  publication-title: Sci. Adv.
– volume: 35
  start-page: 219
  year: 2017
  end-page: 225
  ident: CR76
  article-title: Sonochemical preparation of stable porous MnO and its application as an efficient electrocatalyst for oxygen reduction reaction
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.09.021
– volume: 165
  start-page: F24
  year: 2018
  end-page: F31
  ident: CR166
  article-title: Three-dimensional graphene-supported cobalt phthalocyanine as advanced electrocatalysts for oxygen reduction reaction
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0521802jes
– year: 2018
  ident: CR165
  article-title: Two-dimensional closely packed amide polyphthalocyanine iron absorbed on Vulcan XC-72 as an efficient electrocatalyst for oxygen reduction reaction
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.01.029
– volume: 3
  start-page: 2863
  year: 2012
  end-page: 2870
  ident: CR33
  article-title: Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3011833
– volume: 110
  start-page: 847
  year: 1963
  end-page: 849
  ident: CR117
  article-title: Tungsten, titanium, and tantalum carbides and titanium nitrides as electrodes in redox systems
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 1245
  year: 2015
  end-page: 1253
  ident: CR51
  article-title: Insights into the oxygen reduction reaction activity of Pt/C and PtCu/C catalysts
  publication-title: ACS Catal.
  doi: 10.1021/cs501762g
– volume: 27
  start-page: 185
  year: 2016
  end-page: 195
  ident: CR22
  article-title: Mn O -decorated Co O nanoparticles supported on graphene oxide: dual electrocatalyst system for oxygen reduction reaction in alkaline medium
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.07.007
– volume: 43
  start-page: 5124
  year: 2018
  end-page: 5132
  ident: CR208
  article-title: Synthesis of porous nitrogen and sulfur co-doped carbon beehive in a high-melting-point molten salt medium for improved catalytic activity toward oxygen reduction reaction
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.01.095
– volume: 115
  start-page: 4823
  year: 2015
  end-page: 4892
  ident: CR183
  article-title: Metal-free catalysts for oxygen reduction reaction
  publication-title: Chem. Rev.
  doi: 10.1021/cr5003563
– volume: 13
  start-page: 1700099
  year: 2017
  ident: CR123
  article-title: Ni–Fe nitride nanoplates on nitrogen-doped graphene as a synergistic catalyst for reversible oxygen evolution reaction and rechargeable Zn–Air battery
  publication-title: Small
– volume: 8
  start-page: 12798
  year: 2016
  end-page: 12803
  ident: CR140
  article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02352
– volume: 1
  start-page: 1192
  year: 2016
  end-page: 1198
  ident: CR143
  article-title: Low overpotential water splitting using cobalt-cobalt phosphide nanoparticles supported on nickel foam
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00532
– volume: 82
  start-page: 562
  year: 2015
  end-page: 571
  ident: CR191
  article-title: Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.11.008
– volume: 8
  start-page: 32307
  year: 2016
  end-page: 32316
  ident: CR18
  article-title: Biomass-derived porous Fe C/tungsten carbide/graphitic carbon nanocomposite for efficient electrocatalysis of oxygen reduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10804
– ident: CR3
– volume: 16
  start-page: 1719
  year: 2016
  end-page: 1725
  ident: CR15
  article-title: Rh-doped Pt–Ni octahedral nanoparticles: understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04636
– volume: 9
  start-page: 8108
  year: 2015
  end-page: 8115
  ident: CR147
  article-title: Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction
  publication-title: ACS Nano
– volume: 53
  start-page: 1404
  year: 2018
  end-page: 1413
  ident: CR210
  article-title: The key roles of trace iron for nitrogen, sulfur dual-doped carbon nanospheres as high efficient oxygen reduction catalyst
  publication-title: J. Mater. Sci.
– volume: 107
  start-page: 907
  year: 2016
  end-page: 916
  ident: CR11
  article-title: Yolk-shell N/P/B ternary-doped biocarbon derived from yeast cells for enhanced oxygen reduction reaction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.06.102
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  ident: CR150
  article-title: Single-atom catalysis of CO oxidation using Pt /FeO
  publication-title: Nat. Chem.
– volume: 135
  start-page: 9267
  year: 2013
  end-page: 9270
  ident: CR136
  article-title: Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403440e
– volume: 132
  start-page: 1754
  year: 2010
  end-page: 1755
  ident: CR175
  article-title: Improved performance of proton exchange membrane fuel cells with p-toluenesulfonic acid-doped Co-PPy/C as cathode electrocatalyst
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 241
  issue: 3
  year: 2007
  end-page: 247
  ident: CR50
  article-title: Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1840
– volume: 193
  start-page: 112
  year: 2017
  end-page: 118
  ident: CR112
  article-title: Partial oxidation of methane over Ni based catalyst derived from order mesoporous LaNiO perovskite prepared by modified nanocasting method
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.12.033
– volume: 20
  start-page: 202
  year: 2016
  end-page: 211
  ident: CR14
  article-title: Pt Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.12.014
– volume: 66
  start-page: 619
  year: 2016
  end-page: 630
  ident: CR113
  article-title: Enhancement of nitric oxide decomposition efficiency achieved with lanthanum-based perovskite-type catalyst
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10962247.2016.1158133
– volume: 1
  start-page: 552
  year: 2009
  end-page: 556
  ident: CR65
  article-title: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.367
– volume: 6
  start-page: 23366
  year: 2018
  end-page: 23377
  ident: CR86
  article-title: Palladium single atoms supported by interwoven carbon nanotube and manganese oxide nanowire networks for enhanced electrocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta09034c
– year: 2014
  ident: CR71
  publication-title: Non-noble metal Catalysts for Oxygen Reduction
– volume: 114
  start-page: 18159
  year: 2010
  end-page: 18166
  ident: CR120
  article-title: Theoretical and experimental studies on the relationship between the structures of molybdenum nitrides and their catalytic activities toward the oxygen reduction reaction
  publication-title: J. Phys. Chem. C
– volume: 134
  start-page: 9082
  year: 2012
  end-page: 9085
  ident: CR94
  article-title: 3D nitrogen-doped graphene aerogel-supported Fe O nanoparticles as efficient electrocatalysts for the oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 7337
  year: 2015
  end-page: 7347
  ident: CR142
  article-title: Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503666
– volume: 1
  start-page: 397
  year: 2009
  end-page: 402
  ident: CR41
  article-title: Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.288
– volume: 30
  start-page: 1705407
  year: 2018
  ident: CR102
  article-title: Superexchange effects on oxygen reduction activity of edge-sharing [Co Mn O ] octahedra in spinel oxide
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1801623
  year: 2019
  ident: CR181
  article-title: Sustainable and atomically dispersed iron electrocatalysts derived from nitrogen-and phosphorus-modified woody biomass for efficient oxygen reduction
  publication-title: Adv. Mater. Interfaces
– volume: 129
  start-page: 7227
  year: 2017
  end-page: 7231
  ident: CR93
  article-title: A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B, N-decorated graphene
  publication-title: Angew. Chem.
– volume: 323
  start-page: 760
  year: 2009
  end-page: 764
  ident: CR186
  article-title: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction
  publication-title: Science
– volume: 7
  start-page: 103
  year: 2016
  end-page: 109
  ident: CR144
  article-title: Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02666
– volume: 215
  start-page: 388
  year: 2016
  end-page: 397
  ident: CR10
  article-title: Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.090
– volume: 44
  start-page: 2168
  year: 2015
  end-page: 2201
  ident: CR56
  article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 4209
  year: 2012
  end-page: 4212
  ident: CR201
  article-title: BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 111
  start-page: 1434
  year: 2007
  end-page: 1443
  ident: CR82
  article-title: Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism
  publication-title: J. Phys. Chem. C
– volume: 344
  start-page: 616
  year: 2014
  end-page: 619
  ident: CR151
  article-title: Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen
  publication-title: Science
– volume: 191
  start-page: 452
  year: 2016
  end-page: 461
  ident: CR77
  article-title: Targeted design of α-MnO based catalysts for oxygen reduction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.070
– volume: 288
  start-page: 701
  year: 2016
  end-page: 710
  ident: CR115
  article-title: Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.12.057
– volume: 121
  start-page: 17682
  year: 2017
  end-page: 17692
  ident: CR83
  article-title: Redox processes of manganese oxide in catalyzing oxygen evolution and reduction: an in situ soft X-ray absorption spectroscopy study
  publication-title: J. Phys. Chem. C
– volume: 41
  start-page: 2172
  year: 2012
  end-page: 2192
  ident: CR38
  article-title: Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15228a
– volume: 11
  start-page: 6930
  year: 2017
  end-page: 6941
  ident: CR158
  article-title: Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium
  publication-title: ACS Nano
– volume: 427
  start-page: 626
  year: 2018
  end-page: 634
  ident: CR204
  article-title: Onion-derived N, S self-doped carbon materials as highly efficient metal-free electrocatalysts for the oxygen reduction reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.222
– volume: 55
  start-page: 1340
  year: 2016
  end-page: 1344
  ident: CR100
  article-title: A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 394
  year: 2012
  end-page: 400
  ident: CR174
  article-title: An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.72
– volume: 134
  start-page: 16127
  year: 2012
  end-page: 16130
  ident: CR190
  article-title: Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1603423
  year: 2017
  ident: CR48
  article-title: Tuning surface structure and strain in Pd–Pt core–shell nanocrystals for enhanced electrocatalytic oxygen reduction
  publication-title: Small
– volume: 57
  start-page: 2800
  year: 2018
  end-page: 2805
  ident: CR53
  article-title: Elucidation of the oxygen reduction volcano in alkaline media using a copper–platinum (111) alloy
  publication-title: Angew. Chem. Int. Ed.
– volume: 189
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR206
  article-title: A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.02.009
– volume: 25
  start-page: 856
  year: 2013
  end-page: 861
  ident: CR178
  article-title: Transition metal ion-chelating ordered mesoporous carbons as noble metal-free fuel cell catalysts
  publication-title: Chem. Mater.
  doi: 10.1021/cm303357p
– volume: 10
  start-page: 1449
  year: 2017
  end-page: 1470
  ident: CR168
  article-title: Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: from mechanistic insights to structural optimization
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1400-7
– volume: 262
  start-page: 326
  year: 2018
  end-page: 336
  ident: CR72
  article-title: Progress in nanostructured (Fe or Co)/N/C non-noble metal electrocatalysts for fuel cell oxygen reduction reaction
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 2159
  year: 2016
  end-page: 2162
  ident: CR23
  article-title: Spinel MnCo O /N, S-doped carbon nanotubes as an efficient oxygen reduction reaction electrocatalyst
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201600401
– volume: 177
  start-page: 296
  year: 2008
  end-page: 302
  ident: CR121
  article-title: Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.050
– volume: 237
  start-page: 61
  year: 2017
  end-page: 68
  ident: CR95
  article-title: Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 601
  year: 2016
  end-page: 625
  ident: CR91
  article-title: Transition metal (Fe Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.09.001
– volume: 256
  start-page: 232
  year: 2017
  end-page: 240
  ident: CR80
  article-title: Uniformly electrodeposited α-MnO film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction
  publication-title: Electrochim. Acta
– volume: 49
  start-page: 6656
  year: 2013
  end-page: 6658
  ident: CR135
  article-title: Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43107j
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  ident: CR134
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c5cs00434a
– volume: 249
  start-page: 306
  year: 2019
  end-page: 315
  ident: CR182
  article-title: Atomically dispersed Fe–N–P–C complex electrocatalysts for superior oxygen reduction
  publication-title: Appl. Catal. B-Environ
– volume: 161
  start-page: F10
  year: 2014
  end-page: F15
  ident: CR70
  article-title: Transient platinum oxide formation and oxygen reduction on carbon-supported platinum and platinum–cobalt alloy electrocatalysts
  publication-title: J. Electrochem. Soc.
– volume: 125
  start-page: 14063
  year: 2013
  end-page: 14066
  ident: CR209
  article-title: “Metal-free” catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities
  publication-title: Angew. Chem.
– volume: 12
  start-page: 143
  year: 2017
  end-page: 146
  ident: CR8
  article-title: Preparation and properties of a new ceramet inert anode for aluminum electrolysis
  publication-title: J. Adv. Microsc. Res.
– volume: 7
  start-page: 3810
  year: 2017
  end-page: 3817
  ident: CR49
  article-title: High-performance core-shell catalyst with nitride nanoparticles as a core: well-defined titanium copper nitride coated with an atomic Pt layer for the oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 8
  start-page: 15938
  year: 2017
  ident: CR159
  article-title: High performance platinum single atom electrocatalyst for oxygen reduction reaction
  publication-title: Nat. Commun.
– volume: 9
  start-page: 207
  year: 2016
  end-page: 213
  ident: CR75
  article-title: Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-0982-4
– volume: 1
  start-page: 1
  year: 2018
  end-page: 34
  ident: CR5
  article-title: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0002-3
– volume: 26
  start-page: 4067
  year: 2016
  end-page: 4077
  ident: CR145
  article-title: Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201505509
– volume: 8
  start-page: 1701476
  year: 2018
  ident: CR155
  article-title: Highly durable platinum single-atom alloy catalyst for electrochemical reactions
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 3167
  year: 2011
  end-page: 3192
  ident: CR130
  article-title: A review on non-precious metal electrocatalysts for PEM fuel cells
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 898
  year: 2010
  end-page: 905
  ident: CR79
  article-title: MnO -based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media
  publication-title: Chem. Mater.
  doi: 10.1021/cm901698s
– volume: 40
  start-page: 6022
  year: 2016
  end-page: 6029
  ident: CR27
  article-title: Boron, nitrogen, and phosphorous ternary doped graphene aerogel with hierarchically porous structures as highly efficient electrocatalysts for oxygen reduction reaction
  publication-title: New J. Chem.
  doi: 10.1039/c5nj03390j
– volume: 3
  start-page: e1601705
  year: 2017
  ident: 52_CR52
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601705
– volume: 22
  start-page: 390
  year: 2012
  ident: 52_CR196
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14694G
– volume: 42
  start-page: 202
  year: 2017
  ident: 52_CR124
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.12.068
– volume: 8
  start-page: 32307
  year: 2016
  ident: 52_CR18
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10804
– volume: 69
  start-page: 401
  year: 2017
  ident: 52_CR57
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.09.135
– volume: 50
  start-page: 11756
  year: 2011
  ident: 52_CR200
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201105204
– volume: 5
  start-page: 5333
  year: 2012
  ident: 52_CR89
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01431e
– volume: 5
  start-page: 1808
  year: 2017
  ident: 52_CR43
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08580F
– volume: 165
  start-page: F24
  year: 2018
  ident: 52_CR166
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0521802jes
– volume: 3
  start-page: 271
  year: 1973
  ident: 52_CR74
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF00613033
– volume: 191
  start-page: 452
  year: 2016
  ident: 52_CR77
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.070
– volume: 7
  start-page: 3676
  year: 2017
  ident: 52_CR141
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c7cy00715a
– volume: 5
  start-page: 1500985
  year: 2015
  ident: 52_CR132
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500985
– volume: 47
  start-page: 183
  year: 2017
  ident: 52_CR96
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-016-1027-0
– volume: 108
  start-page: 17886
  year: 2004
  ident: 52_CR64
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 5
  start-page: 6744
  year: 2012
  ident: 52_CR63
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03590a
– volume: 195
  start-page: 4731
  year: 2010
  ident: 52_CR167
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.01.056
– volume: 5
  start-page: 92893
  year: 2015
  ident: 52_CR148
  publication-title: RSC Adv.
  doi: 10.1039/c5ra21385a
– volume: 45
  start-page: 1847
  year: 2007
  ident: 52_CR199
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.04.031
– volume: 144
  start-page: 798
  year: 2019
  ident: 52_CR172
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.12.066
– volume: 262
  start-page: 326
  year: 2018
  ident: 52_CR72
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.01.046
– volume: 288
  start-page: 701
  year: 2016
  ident: 52_CR115
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.12.057
– volume: 27
  start-page: 185
  year: 2016
  ident: 52_CR22
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.07.007
– volume: 8
  start-page: 15938
  year: 2017
  ident: 52_CR159
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15938
– volume: 256
  start-page: 232
  year: 2017
  ident: 52_CR80
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.057
– volume: 8
  start-page: 707
  year: 2006
  ident: 52_CR119
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.02.020
– volume: 35
  start-page: 2647
  year: 2011
  ident: 52_CR185
  publication-title: New J. Chem.
  doi: 10.1039/c1nj20612e
– volume: 177
  start-page: 296
  year: 2008
  ident: 52_CR121
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.050
– volume: 45
  start-page: 1529
  year: 2016
  ident: 52_CR134
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c5cs00434a
– volume: 115
  start-page: 3433
  year: 2015
  ident: 52_CR59
  publication-title: Chem. Rev.
  doi: 10.1021/cr500519c
– volume: 193
  start-page: 112
  year: 2017
  ident: 52_CR112
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.12.033
– volume: 132
  start-page: 1754
  year: 2010
  ident: 52_CR175
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909537g
– volume: 10
  start-page: 946
  year: 2018
  ident: 52_CR153
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201701777
– volume: 374
  start-page: 43
  year: 2019
  ident: 52_CR173
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.04.028
– volume: 163
  start-page: F1124
  year: 2016
  ident: 52_CR116
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1311609jes
– volume: 22
  start-page: 898
  year: 2010
  ident: 52_CR79
  publication-title: Chem. Mater.
  doi: 10.1021/cm901698s
– volume: 35
  start-page: 219
  year: 2017
  ident: 52_CR76
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.09.021
– volume: 24
  start-page: 2930
  year: 2014
  ident: 52_CR125
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303902
– volume: 50
  start-page: 7132
  year: 2011
  ident: 52_CR197
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101287
– volume: 101
  start-page: 1981
  year: 2001
  ident: 52_CR108
  publication-title: Chem. Rev.
  doi: 10.1021/cr980129f
– ident: 52_CR3
– year: 2016
  ident: 52_CR46
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.05.024
– volume: 115
  start-page: 4823
  year: 2015
  ident: 52_CR183
  publication-title: Chem. Rev.
  doi: 10.1021/cr5003563
– volume: 3
  start-page: 169
  year: 2010
  ident: 52_CR184
  publication-title: Chemsuschem
  doi: 10.1002/cssc.200900180
– volume: 49
  start-page: 3022
  year: 2013
  ident: 52_CR179
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40971f
– volume: 3
  start-page: 511
  year: 2016
  ident: 52_CR107
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201500382
– volume: 49
  start-page: 6656
  year: 2013
  ident: 52_CR135
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43107j
– volume: 84
  start-page: 133
  year: 2016
  ident: 52_CR13
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.84.133
– volume: 45
  start-page: 517
  year: 2016
  ident: 52_CR161
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c5cs00670h
– volume: 10
  start-page: 1186
  year: 2017
  ident: 52_CR193
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03446B
– volume: 22
  start-page: 12107
  year: 2012
  ident: 52_CR32
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31079a
– volume: 15
  start-page: 1802
  year: 2013
  ident: 52_CR25
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp44147k
– volume: 9
  start-page: 6259
  year: 2017
  ident: 52_CR122
  publication-title: Nanoscale
  doi: 10.1039/C7NR02264F
– volume: 9
  start-page: 207
  year: 2018
  ident: 52_CR162
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.04.001
– volume: 26
  start-page: 5893
  year: 2016
  ident: 52_CR207
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602158
– volume: 6
  start-page: 23366
  year: 2018
  ident: 52_CR86
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta09034c
– volume: 21
  start-page: 103
  year: 2016
  ident: 52_CR26
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-016-3346-9
– volume: 43
  start-page: 7746
  year: 2014
  ident: 52_CR73
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60248f
– volume: 55
  start-page: 1340
  year: 2016
  ident: 52_CR100
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201508809
– volume: 3
  start-page: 634
  year: 2011
  ident: 52_CR150
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 53
  start-page: 1404
  year: 2018
  ident: 52_CR210
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1605-5
– volume: 196
  start-page: 199
  year: 2016
  ident: 52_CR45
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.05.028
– volume: 25
  start-page: 856
  year: 2013
  ident: 52_CR178
  publication-title: Chem. Mater.
  doi: 10.1021/cm303357p
– volume: 33
  start-page: 1641
  year: 1995
  ident: 52_CR187
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00154-6
– volume: 188
  start-page: 286
  year: 2016
  ident: 52_CR98
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.10.020
– volume: 186
  start-page: 173
  year: 2016
  ident: 52_CR114
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.12.052
– volume: 8
  start-page: 1701345
  year: 2018
  ident: 52_CR157
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701345
– volume: 55
  start-page: 2230
  year: 2016
  ident: 52_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510495
– volume: 57
  start-page: 2800
  year: 2018
  ident: 52_CR53
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201711858
– volume: 3
  start-page: 2863
  year: 2012
  ident: 52_CR33
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3011833
– volume: 129
  start-page: 7227
  year: 2017
  ident: 52_CR93
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201702430
– volume: 4
  start-page: 18723
  year: 2016
  ident: 52_CR149
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c6ta08363c
– volume: 1
  start-page: 105
  year: 2001
  ident: 52_CR61
  publication-title: Fuel Cells
  doi: 10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9
– volume: 298
  start-page: 70
  year: 2019
  ident: 52_CR164
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.056
– volume: 107
  start-page: 907
  year: 2016
  ident: 52_CR11
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.06.102
– volume: 7
  start-page: 103
  year: 2016
  ident: 52_CR144
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02666
– volume: 134
  start-page: 19528
  year: 2012
  ident: 52_CR177
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3085934
– volume: 82
  start-page: 3279
  year: 1999
  ident: 52_CR103
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb02241.x
– volume: 1
  start-page: 1
  year: 2018
  ident: 52_CR5
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0002-3
– volume: 48
  start-page: 3637
  year: 2010
  ident: 52_CR28
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.05.022
– volume: 14
  start-page: 1515
  year: 2012
  ident: 52_CR203
  publication-title: Green Chem.
  doi: 10.1039/c2gc35309a
– ident: 52_CR7
– volume: 44
  start-page: 2168
  year: 2015
  ident: 52_CR56
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00484A
– volume: 110
  start-page: 847
  year: 1963
  ident: 52_CR117
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2425884
– volume: 20
  start-page: 3106
  year: 2014
  ident: 52_CR31
  publication-title: Chemistry
  doi: 10.1002/chem.201304561
– volume: 124
  start-page: 11664
  year: 2012
  ident: 52_CR202
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201206720
– year: 2017
  ident: 52_CR97
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606800
– volume: 57
  start-page: 2963
  year: 2018
  ident: 52_CR47
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710997
– volume: 161
  start-page: F10
  year: 2014
  ident: 52_CR70
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.018401jes
– volume: 9
  start-page: 8108
  year: 2015
  ident: 52_CR147
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02191
– volume: 12
  start-page: 6398
  year: 2016
  ident: 52_CR20
  publication-title: Small
  doi: 10.1002/smll.201602334
– year: 2019
  ident: 52_CR84
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.04.055
– volume: 6
  start-page: 1801623
  year: 2019
  ident: 52_CR181
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201801623
– volume: 7
  start-page: 3810
  year: 2017
  ident: 52_CR49
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00366
– volume: 11
  start-page: 6930
  year: 2017
  ident: 52_CR158
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02148
– volume: 323
  start-page: 760
  year: 2009
  ident: 52_CR186
  publication-title: Science
  doi: 10.1126/science.1168049
– volume: 257
  start-page: 1946
  year: 2013
  ident: 52_CR129
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.12.012
– volume: 3
  start-page: 154
  year: 2018
  ident: 52_CR55
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01793
– volume: 32
  start-page: 353
  year: 2017
  ident: 52_CR36
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.056
– volume: 9
  start-page: 12496
  year: 2015
  ident: 52_CR180
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05984
– volume: 6
  start-page: 1600794
  year: 2016
  ident: 52_CR19
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600794
– volume: 12
  start-page: 143
  year: 2017
  ident: 52_CR8
  publication-title: J. Adv. Microsc. Res.
  doi: 10.1166/jamr.2017.1333
– volume: 201
  start-page: 1212
  year: 1964
  ident: 52_CR163
  publication-title: Nature
  doi: 10.1038/2011212a0
– volume: 134
  start-page: 19508
  year: 2012
  ident: 52_CR62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307951y
– volume: 25
  start-page: 4932
  year: 2013
  ident: 52_CR192
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301870
– volume: 55
  start-page: 14510
  year: 2016
  ident: 52_CR169
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604311
– volume: 348
  start-page: 416
  year: 2018
  ident: 52_CR126
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.208
– volume: 43
  start-page: 5124
  year: 2018
  ident: 52_CR208
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.01.095
– volume: 19
  start-page: 28781
  year: 2017
  ident: 52_CR81
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP05091G
– volume: 350
  start-page: 911
  year: 2015
  ident: 52_CR4
  publication-title: Science
  doi: 10.1126/science.aac8033
– volume: 8
  start-page: 1580
  year: 2016
  ident: 52_CR29
  publication-title: Nanoscale
  doi: 10.1039/c5nr06749a
– volume: 1
  start-page: 1192
  year: 2016
  ident: 52_CR143
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00532
– volume: 8
  start-page: 12798
  year: 2016
  ident: 52_CR140
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02352
– volume: 6
  start-page: 241
  issue: 3
  year: 2007
  ident: 52_CR50
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1840
– volume: 29
  start-page: 4649
  year: 2017
  ident: 52_CR44
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01619
– volume: 48
  start-page: 145
  year: 2006
  ident: 52_CR106
  publication-title: Catal. Rev.
  doi: 10.1080/01614940600631348
– volume: 30
  start-page: 432
  year: 2014
  ident: 52_CR69
  publication-title: Langmuir
  doi: 10.1021/la404188p
– volume: 30
  start-page: 8270
  year: 2018
  ident: 52_CR88
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03681
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: 52_CR39
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 282
  start-page: 183
  year: 2011
  ident: 52_CR35
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.06.015
– volume: 324
  start-page: 71
  year: 2009
  ident: 52_CR24
  publication-title: Science
  doi: 10.1126/science.1170051
– volume: 1
  start-page: 2159
  year: 2016
  ident: 52_CR23
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201600401
– volume: 8
  start-page: 2071
  year: 2018
  ident: 52_CR54
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03972
– volume: 37
  start-page: 181
  year: 2009
  ident: 52_CR1
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.08.016
– volume: 2
  start-page: 454
  year: 2010
  ident: 52_CR68
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.623
– volume: 44
  start-page: 2132
  year: 2005
  ident: 52_CR42
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200462335
– volume: 51
  start-page: 4209
  year: 2012
  ident: 52_CR201
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201109257
– volume: 1
  start-page: 552
  year: 2009
  ident: 52_CR65
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.367
– volume: 4
  start-page: 3167
  year: 2011
  ident: 52_CR130
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00558d
– volume: 109
  start-page: 191
  year: 2019
  ident: 52_CR87
  publication-title: Physica E
  doi: 10.1016/j.physe.2018.07.032
– volume: 44
  start-page: 1610
  year: 2019
  ident: 52_CR104
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.11.120
– volume: 1
  start-page: 324
  year: 2018
  ident: 52_CR6
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0013-0
– volume: 13
  start-page: 1603423
  year: 2017
  ident: 52_CR48
  publication-title: Small
  doi: 10.1002/smll.201603423
– volume: 113
  start-page: 19732
  year: 2009
  ident: 52_CR60
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9076273
– volume: 196
  start-page: 3673
  year: 2011
  ident: 52_CR176
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.047
– volume: 10
  start-page: 444
  year: 2015
  ident: 52_CR30
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.48
– volume: 6
  start-page: 1600087
  year: 2016
  ident: 52_CR133
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600087
– volume: 53
  start-page: 5427
  year: 2014
  ident: 52_CR137
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402646
– volume: 8
  start-page: 1701476
  year: 2018
  ident: 52_CR155
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701476
– volume: 41
  start-page: 2172
  year: 2012
  ident: 52_CR38
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15228a
– volume: 215
  start-page: 388
  year: 2016
  ident: 52_CR10
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.090
– volume: 1
  start-page: e1500462
  year: 2015
  ident: 52_CR152
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500462
– volume: 134
  start-page: 16127
  year: 2012
  ident: 52_CR190
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306376s
– volume: 7
  start-page: 576
  year: 2014
  ident: 52_CR34
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43463j
– volume: 324
  start-page: 1302
  year: 2009
  ident: 52_CR40
  publication-title: Science
  doi: 10.1126/science.1170377
– volume: 102
  start-page: 216
  year: 2016
  ident: 52_CR2
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.103
– volume: 15
  start-page: 2459
  year: 2013
  ident: 52_CR194
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp43541a
– volume: 195
  start-page: 1271
  year: 2010
  ident: 52_CR118
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.08.100
– volume: 40
  start-page: 6022
  year: 2016
  ident: 52_CR27
  publication-title: New J. Chem.
  doi: 10.1039/c5nj03390j
– volume: 5
  start-page: 1245
  year: 2015
  ident: 52_CR51
  publication-title: ACS Catal.
  doi: 10.1021/cs501762g
– volume: 11
  start-page: 104
  year: 2018
  ident: 52_CR160
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201701306
– volume: 116
  start-page: 3594
  year: 2016
  ident: 52_CR58
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00462
– volume: 15
  start-page: 7616
  year: 2015
  ident: 52_CR146
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03446
– volume: 8
  start-page: 2158
  year: 2016
  ident: 52_CR138
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10727
– year: 2017
  ident: 52_CR99
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201700369
– volume: 116
  start-page: 5827
  year: 2012
  ident: 52_CR109
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp211946n
– volume: 568
  start-page: 311
  year: 2019
  ident: 52_CR85
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2019.02.030
– volume: 10
  start-page: 1449
  year: 2017
  ident: 52_CR168
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1400-7
– volume: 8
  start-page: 3244
  year: 2016
  ident: 52_CR139
  publication-title: Nanoscale
  doi: 10.1039/c5nr08763e
– volume: 121
  start-page: 17682
  year: 2017
  ident: 52_CR83
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b05592
– volume: 114
  start-page: 18159
  year: 2010
  ident: 52_CR120
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp102284s
– year: 2019
  ident: 52_CR171
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900123
– volume: 114
  start-page: 619
  year: 2017
  ident: 52_CR156
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.061
– volume: 82
  start-page: 562
  year: 2015
  ident: 52_CR191
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.11.008
– volume: 40
  start-page: 9713
  year: 2015
  ident: 52_CR90
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.06.027
– year: 2018
  ident: 52_CR165
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.01.029
– volume: 237
  start-page: 61
  year: 2017
  ident: 52_CR95
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.088
– volume: 143
  start-page: 291
  year: 2014
  ident: 52_CR195
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.08.001
– volume: 134
  start-page: 9082
  year: 2012
  ident: 52_CR94
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3030565
– volume: 246
  start-page: 643
  year: 2017
  ident: 52_CR92
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.017
– volume: 220
  start-page: 427
  year: 2016
  ident: 52_CR9
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.108
– volume: 13
  start-page: 1700099
  year: 2017
  ident: 52_CR123
  publication-title: Small
  doi: 10.1002/smll.201700099
– volume: 255
  start-page: 242
  year: 2014
  ident: 52_CR37
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.042
– volume: 25
  start-page: 7337
  year: 2015
  ident: 52_CR142
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503666
– volume: 26
  start-page: 4067
  year: 2016
  ident: 52_CR145
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201505509
– volume: 62
  start-page: 296
  year: 2013
  ident: 52_CR205
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.05.067
– volume: 3
  start-page: 546
  year: 2011
  ident: 52_CR110
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1069
– volume-title: Single-atom catalysis: a new field that learns from tradition
  year: 2018
  ident: 52_CR154
– volume-title: Non-noble metal Catalysts for Oxygen Reduction
  year: 2014
  ident: 52_CR71
  doi: 10.1002/9783527664900
– volume: 9
  start-page: 207
  year: 2016
  ident: 52_CR75
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-0982-4
– volume: 4
  start-page: 620
  year: 2016
  ident: 52_CR78
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta07878d
– volume: 16
  start-page: 1719
  year: 2016
  ident: 52_CR15
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04636
– volume: 9
  start-page: 7641
  year: 2017
  ident: 52_CR127
  publication-title: Nanoscale
  doi: 10.1039/C7NR01925D
– volume: 189
  start-page: 1
  year: 2016
  ident: 52_CR206
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.02.009
– volume: 125
  start-page: 14063
  year: 2013
  ident: 52_CR209
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201309171
– volume: 254
  start-page: 1471
  year: 1991
  ident: 52_CR67
  publication-title: Science
  doi: 10.1126/science.1962206
– volume: 344
  start-page: 616
  year: 2014
  ident: 52_CR151
  publication-title: Science
  doi: 10.1126/science.1253150
– volume: 686
  start-page: 467
  year: 2016
  ident: 52_CR21
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.06.060
– volume: 1
  start-page: 339
  year: 2018
  ident: 52_CR170
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 11
  start-page: 601
  year: 2016
  ident: 52_CR91
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.09.001
– volume: 7
  start-page: 920
  year: 2017
  ident: 52_CR111
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.02.013
– volume: 111
  start-page: 1434
  year: 2007
  ident: 52_CR82
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0647986
– volume: 133
  start-page: 15236
  year: 2011
  ident: 52_CR128
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204748u
– volume: 7
  start-page: 2903
  year: 2015
  ident: 52_CR189
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500148
– volume: 7
  start-page: 394
  year: 2012
  ident: 52_CR174
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.72
– volume: 1
  start-page: 397
  year: 2009
  ident: 52_CR41
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.288
– volume: 12
  start-page: 2094
  year: 2018
  ident: 52_CR66
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00932
– volume: 135
  start-page: 9267
  year: 2013
  ident: 52_CR136
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403440e
– volume: 46
  start-page: 7492
  year: 2010
  ident: 52_CR131
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc02048f
– volume: 249
  start-page: 306
  year: 2019
  ident: 52_CR182
  publication-title: Appl. Catal. B-Environ
  doi: 10.1016/j.apcatb.2019.03.016
– volume: 20
  start-page: 202
  year: 2016
  ident: 52_CR14
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.12.014
– volume: 30
  start-page: 1705407
  year: 2018
  ident: 52_CR102
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705407
– volume: 11
  start-page: 2730
  year: 2018
  ident: 52_CR101
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201801070
– volume: 105
  start-page: 214
  year: 2016
  ident: 52_CR17
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.04.033
– volume: 44
  start-page: 1491
  year: 1998
  ident: 52_CR105
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(98)00272-2
– volume: 66
  start-page: 619
  year: 2016
  ident: 52_CR113
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10962247.2016.1158133
– volume: 44
  start-page: 3358
  year: 2006
  ident: 52_CR198
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.08.022
– volume: 9
  start-page: 398
  year: 2017
  ident: 52_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12547
– volume: 427
  start-page: 626
  year: 2018
  ident: 52_CR204
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.222
– volume: 351
  start-page: 361
  year: 2016
  ident: 52_CR188
  publication-title: Science
  doi: 10.1126/science.aad0832
SSID ssj0002315632
Score 2.540648
SecondaryResourceType review_article
Snippet Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems,...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 518
SubjectTerms Catalysis
Chemistry
Chemistry and Materials Science
Electrochemistry
Industrial Chemistry/Chemical Engineering
Renewable and Green Energy
Review Article
Title Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications
URI https://link.springer.com/article/10.1007/s41918-019-00052-4
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfQifuLnyMGbFtMmaZPjVjaG4BRxsFtZmkQEqWIruP_el7QrTmTgrZSkh99L-r5_D6FLoqhmNCEB_B9d6MbqQEYafB4SzgkXhHLq-p3vJvF4ym5nfNbQ5LhemF_5-5uSgUPhyq1k4LNSAdtEXR7S2J3gNE7beArYKTz288giDh6RYEI2PTJ_f2ZVD60mQb1uGe2incYoxP1aintowxT7aCtdzmI7QM9g3YF2wA-umsqxfZf4pcD3XwsQP3507KsOX3iq2xTwsB5u42Mzi7IqMZim7cuGIgAPfdsf7v9IYR-i6Wj4lI6DZkRCkINjVAWSAbJGEak1p0ZxTZI8MoYJakOaaGvjXETKRCxWXIKmzmVieB5SRysnlaL0CHWKt8IcI2yEoHNiDRFWMqaZdBEOUOiWhqG1ETtB4RKwLG_4w90Yi9esZT72IGcAcuZBzmDPVbvnvWbPWLv6eimHrLlJ5Zrlp_9bfoa2Iyd_X4pyjjrVx6e5AIOiUj3U7Y8Gg0nPn6hvlErAwA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D_MifuK3OXjTYtokbXIcZWPqNkU22K0sbSKCVLEV3H_vS9oVJzLwVkLSw--lfd-_h9AlUTRjNCIe_B9t6MZkngwy8HmIPyNcEMqp7XcejsL-hN1N-bSmybG9ML_y9zcFA4fClltJz2WlPLaONmBN2PK9OIybeArYKTx088gCDh6RYELWPTJ_v2ZZDy0nQZ1u6W2jrdooxJ1KijtoTee7qB0vZrHtoWew7kA74EdbTWXZvgv8kuOHrzmIHz9Z9lWLLzxVbQq4Ww23cbGZeVEWGEzTZrGmCMBd1_aHOz9S2Pto0uuO475Xj0jwUnCMSk8yQFYrIrOMU614RqI00JoJanwaZcaEqQiUDliouARNncpI89SnllZOKkXpAWrlb7k-RFgLQWfEaCKMZCxj0kY4QKEb6vvGBOwI-QvAkrTmD7djLF6ThvnYgZwAyIkDOYEzV82Z94o9Y-Xu64UckvpLKlZsP_7f9gvU7o-Hg2RwO7o_QZuBvQuuLOUUtcqPT30GxkWpzt2t-gaz98Ix
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QX0Rr3g3D75pMW2SNnkcdWPe5hAHeytrk4ggddgK7t97knZlAxn4VkpSyslpz_X7DkKXJKWK0Yh48H-0qRujPBkoiHmIPyZcEMqpxTs_9cPekN2P-GgOxe-63WclyQrTYFma8vJmosxNA3xjEGbYJizpuVqVx1bRGkQqrlAbh3GTZQHvhYduSlnAIU4STMgaOfP3Yxat02Jp1Fmc7jbaql1F3K7Odget6HwXbcSzCW176A18PnhnPLA9VpYDvMDvOX7-mYJS4BfLyWqlDlcVeAF3qpE3LmMzLcoCg8Pa3KyJA3DHgQFxe66wvY-G3c5r3PPqwQleBuFS6UkG8tYpkUpxqlOuSJQFWjNBjU8jZUyYiSDVAQtTLsF-ZzLSPPOpJZuTaUrpAWrln7k-RFgLQcfEaCKMZEwxafMeYOYN9X1jAnaE_JnAkqxmFbfDLT6Shg_ZCTkBISdOyAnsuWr2TCpOjaWrr2fnkNTfV7Fk-fH_ll-g9cFtN3m86z-coM3AqoLrVTlFrfLrW5-Bx1Gm506pfgFUYcp4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progresses+in+Oxygen+Reduction+Reaction+Electrocatalysts+for+Electrochemical+Energy+Applications&rft.jtitle=Electrochemical+energy+reviews&rft.au=Li%2C+Yahao&rft.au=Li%2C+Qingyu&rft.au=Wang%2C+Hongqiang&rft.au=Zhang%2C+Lei&rft.date=2019-12-01&rft.pub=Springer+Singapore&rft.issn=2520-8489&rft.eissn=2520-8136&rft.volume=2&rft.issue=4&rft.spage=518&rft.epage=538&rft_id=info:doi/10.1007%2Fs41918-019-00052-4&rft.externalDocID=10_1007_s41918_019_00052_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8489&client=summon