Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications
Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction (ORR), which is the rate-determining factor affecting over...
Saved in:
Published in | Electrochemical energy reviews Vol. 2; no. 4; pp. 518 - 538 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction (ORR), which is the rate-determining factor affecting overall system performance. Therefore, to increase the rate of ORR for enhanced system performances, efficient electrocatalysts are essential. And although ORR electrocatalysts have been intensively explored and developed, significant breakthroughs have yet been achieved in terms of catalytic activity, stability, cost and associated electrochemical system performance. Based on this, this review will comprehensively present the recent progresses of ORR electrocatalysts, including precious metal catalysts, non-precious metal catalysts, single-atom catalysts and metal-free catalysts. In addition, major technical challenges are analyzed and possible future research directions to overcome these challenges are proposed to facilitate further research and development toward practical application.
Graphic Abstract |
---|---|
AbstractList | Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction (ORR), which is the rate-determining factor affecting overall system performance. Therefore, to increase the rate of ORR for enhanced system performances, efficient electrocatalysts are essential. And although ORR electrocatalysts have been intensively explored and developed, significant breakthroughs have yet been achieved in terms of catalytic activity, stability, cost and associated electrochemical system performance. Based on this, this review will comprehensively present the recent progresses of ORR electrocatalysts, including precious metal catalysts, non-precious metal catalysts, single-atom catalysts and metal-free catalysts. In addition, major technical challenges are analyzed and possible future research directions to overcome these challenges are proposed to facilitate further research and development toward practical application.
Graphic Abstract |
Author | Li, Yahao Wang, Hongqiang Li, Qingyu Zhang, Lei Wilkinson, David P. Zhang, Jiujun |
Author_xml | – sequence: 1 givenname: Yahao surname: Li fullname: Li, Yahao organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University – sequence: 2 givenname: Qingyu surname: Li fullname: Li, Qingyu email: liqingyu62@126.com organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University – sequence: 3 givenname: Hongqiang surname: Wang fullname: Wang, Hongqiang organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University – sequence: 4 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: College of Sciences, Institute for Sustainable Energy, Shanghai University, Energy, Mining and Environment, National Research Council Canada – sequence: 5 givenname: David P. surname: Wilkinson fullname: Wilkinson, David P. organization: Department of Chemical and Biochemical Engineering, University of British Columbia – sequence: 6 givenname: Jiujun surname: Zhang fullname: Zhang, Jiujun organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, College of Sciences, Institute for Sustainable Energy, Shanghai University, Department of Chemical and Biochemical Engineering, University of British Columbia |
BookMark | eNp9kMtqwzAQRUVJoWmaH-hKP-BWT9tahpA-IJAS2rWQ5bHr4MhBUqD--zpx20UXWc2d4Z5h5t6iiescIHRPyQMlJHsMgiqaJ4SqhBAiWSKu0JRJRpKc8nTyq0WubtA8hN1gYpzKlLMpqrdgwUX85rvaQwgQcOPw5quvweEtlEcbm-6kzChWLdjoO2uiafsQA646_zf8hH1jTYtXDnzd48Xh0A79iQt36LoybYD5T52hj6fV-_IlWW-eX5eLdWIFoTFRQrESCqLKUnIoZEkyywBEzivKs7KqUpuzAphIC6kko1ZlIC3lNCWZKgrOZygf91rfheCh0raJ5xOiN02rKdGnzPSYmR4y0-fMtBhQ9g89-GZvfH8Z4iMUBrOrwetdd_RuePES9Q0GY4Lc |
CitedBy_id | crossref_primary_10_3390_catal10050475 crossref_primary_10_1002_adfm_202402103 crossref_primary_10_3390_nano12173039 crossref_primary_10_1002_ange_202308344 crossref_primary_10_1007_s10562_023_04412_0 crossref_primary_10_1080_10256016_2021_1985488 crossref_primary_10_1002_adfm_202314282 crossref_primary_10_1016_j_jechem_2022_01_035 crossref_primary_10_1016_j_ccr_2022_214854 crossref_primary_10_1021_acsenergylett_4c01319 crossref_primary_10_1002_celc_202400563 crossref_primary_10_1021_acsaem_0c01356 crossref_primary_10_1016_j_ccr_2024_216191 crossref_primary_10_1016_j_envres_2023_115808 crossref_primary_10_1021_acs_energyfuels_1c01658 crossref_primary_10_1021_acs_langmuir_2c03122 crossref_primary_10_1016_j_cattod_2023_114080 crossref_primary_10_1002_cphc_202000529 crossref_primary_10_1016_j_cis_2023_103077 crossref_primary_10_1021_acsaem_2c01499 crossref_primary_10_1039_D3GC02940A crossref_primary_10_1016_S1872_2067_21_63992_X crossref_primary_10_1021_acscatal_3c04956 crossref_primary_10_1063_5_0142527 crossref_primary_10_1002_ece2_27 crossref_primary_10_1016_j_ijhydene_2020_03_250 crossref_primary_10_1016_j_ijhydene_2020_11_153 crossref_primary_10_1039_D0TA02681F crossref_primary_10_1016_j_talanta_2021_123127 crossref_primary_10_1021_acs_jpcc_1c06234 crossref_primary_10_1016_j_jwpe_2022_103114 crossref_primary_10_1016_j_mtsust_2023_100659 crossref_primary_10_1021_acsnano_0c04437 crossref_primary_10_1021_acsaem_4c01216 crossref_primary_10_1002_chem_202301036 crossref_primary_10_1016_j_electacta_2024_145138 crossref_primary_10_1021_acsami_0c12305 crossref_primary_10_1016_j_jechem_2021_08_004 crossref_primary_10_1016_j_trechm_2022_07_007 crossref_primary_10_1002_adsu_202400881 crossref_primary_10_1002_aesr_202300266 crossref_primary_10_3390_catal13030635 crossref_primary_10_1016_j_catcom_2022_106432 crossref_primary_10_1016_j_ijhydene_2022_07_269 crossref_primary_10_1016_j_jpowsour_2022_231530 crossref_primary_10_1016_j_nanoen_2020_104504 crossref_primary_10_1039_D0CY01311K crossref_primary_10_1016_j_jelechem_2023_117568 crossref_primary_10_1016_j_mtcomm_2024_108860 crossref_primary_10_1016_j_electacta_2021_137745 crossref_primary_10_1007_s41918_023_00197_3 crossref_primary_10_3390_catal13010161 crossref_primary_10_1021_acsenergylett_1c02673 crossref_primary_10_1016_j_chemphys_2025_112682 crossref_primary_10_1016_j_rser_2023_113451 crossref_primary_10_1016_j_seppur_2021_119771 crossref_primary_10_1016_j_ijhydene_2020_06_259 crossref_primary_10_3390_en15010272 crossref_primary_10_1016_j_surfcoat_2020_126643 crossref_primary_10_1021_acsami_0c09323 crossref_primary_10_1016_j_checat_2022_12_001 crossref_primary_10_1016_j_elecom_2021_106960 crossref_primary_10_1021_acsaem_1c03175 crossref_primary_10_1016_j_jechem_2021_12_028 crossref_primary_10_1016_S1872_2067_21_64088_3 crossref_primary_10_1016_j_cej_2024_153791 crossref_primary_10_1016_j_jallcom_2022_166287 crossref_primary_10_1039_D3QM00972F crossref_primary_10_1016_j_apcatb_2021_120021 crossref_primary_10_1021_acscatal_4c02062 crossref_primary_10_1016_j_jece_2021_105662 crossref_primary_10_1016_j_jechem_2020_07_041 crossref_primary_10_1002_maco_202011707 crossref_primary_10_1016_j_jallcom_2024_176973 crossref_primary_10_1039_D0NA00726A crossref_primary_10_1016_j_apsadv_2024_100609 crossref_primary_10_1039_D2RA08007A crossref_primary_10_2139_ssrn_3866374 crossref_primary_10_1002_anie_202308344 crossref_primary_10_1007_s40820_022_00984_5 crossref_primary_10_1016_j_jelechem_2022_116826 crossref_primary_10_1039_D0TA10500G crossref_primary_10_3390_catal13010187 crossref_primary_10_1016_j_mcat_2025_114861 crossref_primary_10_1039_D0TA09232K crossref_primary_10_1021_acs_energyfuels_2c04272 crossref_primary_10_1039_D0TA07900F crossref_primary_10_3390_catal10121472 crossref_primary_10_1007_s40820_021_00768_3 crossref_primary_10_1016_j_ijhydene_2021_09_177 crossref_primary_10_1039_D1NR04821J crossref_primary_10_1016_j_matchemphys_2022_126959 crossref_primary_10_3390_molecules26164756 crossref_primary_10_3390_ijms21197052 crossref_primary_10_1155_2022_6607683 crossref_primary_10_1016_j_cattod_2024_114578 crossref_primary_10_1021_acssuschemeng_1c05250 crossref_primary_10_1016_j_jelechem_2022_116799 crossref_primary_10_3390_electrochem2040037 crossref_primary_10_1007_s41918_022_00146_6 crossref_primary_10_2139_ssrn_4092245 crossref_primary_10_1016_j_jpowsour_2023_233809 crossref_primary_10_1002_smll_202500795 crossref_primary_10_59761_RCR5085 crossref_primary_10_1016_j_electacta_2023_143282 crossref_primary_10_1016_j_jcis_2020_07_008 crossref_primary_10_1002_celc_202400248 crossref_primary_10_1007_s11356_021_17529_9 crossref_primary_10_1016_j_rechem_2023_100952 crossref_primary_10_1021_acscatal_5c00623 crossref_primary_10_1002_adfm_202303189 crossref_primary_10_1002_ente_202000927 crossref_primary_10_1149_1945_7111_abfca0 crossref_primary_10_1016_j_heliyon_2022_e09849 crossref_primary_10_1007_s41918_021_00099_2 crossref_primary_10_1007_s41918_021_00109_3 crossref_primary_10_1016_j_apsusc_2022_154048 crossref_primary_10_1016_j_jelechem_2023_117510 crossref_primary_10_1021_acsaem_1c01888 crossref_primary_10_1016_j_hazadv_2025_100630 crossref_primary_10_1016_j_bios_2022_114097 crossref_primary_10_3389_fenrg_2020_00189 crossref_primary_10_1016_j_coelec_2020_01_018 crossref_primary_10_1016_j_jtice_2023_104897 crossref_primary_10_1002_asia_202100940 crossref_primary_10_1016_j_jcis_2022_09_008 crossref_primary_10_2139_ssrn_3976833 crossref_primary_10_1016_j_pmatsci_2020_100770 crossref_primary_10_1002_adfm_202214883 crossref_primary_10_1039_C9SE00861F crossref_primary_10_3390_jcs4030121 crossref_primary_10_1007_s12274_020_3234_6 crossref_primary_10_1021_acs_macromol_2c00468 crossref_primary_10_1039_D1DT03033G crossref_primary_10_1063_5_0151159 crossref_primary_10_1002_anie_202213782 crossref_primary_10_1039_D0NJ00320D crossref_primary_10_1002_ijch_202100077 crossref_primary_10_1149_1945_7111_acfc2a crossref_primary_10_1002_adfm_202204137 crossref_primary_10_1016_j_nanoen_2021_106221 crossref_primary_10_1016_j_jcou_2022_102211 crossref_primary_10_1149_1945_7111_abcb77 crossref_primary_10_1016_j_pnsc_2020_09_011 crossref_primary_10_1002_adma_202101874 crossref_primary_10_3390_catal11121525 crossref_primary_10_1002_slct_202103594 crossref_primary_10_1002_admi_202200349 crossref_primary_10_1016_j_electacta_2024_144353 crossref_primary_10_1063_5_0035999 crossref_primary_10_3390_nano14231924 crossref_primary_10_1016_j_nanoen_2024_110537 crossref_primary_10_1016_j_apsusc_2023_159202 crossref_primary_10_1039_D1TA09861F crossref_primary_10_1016_j_apmt_2021_101131 crossref_primary_10_32604_jrm_2022_015806 crossref_primary_10_1002_chem_202302854 crossref_primary_10_1016_j_apsusc_2020_148508 crossref_primary_10_1002_ange_202213782 crossref_primary_10_1016_j_jwpe_2023_103639 crossref_primary_10_1016_j_ijhydene_2024_04_211 crossref_primary_10_1016_j_jpowsour_2024_234553 crossref_primary_10_1002_smtd_202100947 crossref_primary_10_1007_s41918_021_00094_7 crossref_primary_10_3390_catal13091289 crossref_primary_10_1002_cey2_52 crossref_primary_10_3390_nano13233019 crossref_primary_10_1002_ece2_12 crossref_primary_10_1002_smtd_202301805 crossref_primary_10_1515_zpch_2023_0366 crossref_primary_10_1016_j_mtsust_2021_100072 crossref_primary_10_1007_s11581_021_04411_4 crossref_primary_10_3390_ma13122746 crossref_primary_10_3390_en15124437 crossref_primary_10_1016_j_matchemphys_2021_125248 crossref_primary_10_1016_j_mtadv_2020_100116 crossref_primary_10_1016_j_coelec_2021_100688 crossref_primary_10_1021_acs_jpcc_4c00101 crossref_primary_10_1016_j_diamond_2021_108338 crossref_primary_10_1149_1945_7111_ab861d crossref_primary_10_1021_acs_chemrev_0c00576 crossref_primary_10_1021_acsanm_3c00827 crossref_primary_10_1016_j_ijhydene_2020_11_009 crossref_primary_10_1002_aenm_202100695 crossref_primary_10_1002_celc_202000579 crossref_primary_10_1016_j_jechem_2020_03_039 crossref_primary_10_1039_D3CC00221G crossref_primary_10_1002_slct_202200616 crossref_primary_10_1007_s41918_020_00085_0 crossref_primary_10_1039_D2TA05988F |
Cites_doi | 10.1021/acsami.5b10727 10.1039/c3ee43463j 10.1002/aenm.201600794 10.1016/j.enpol.2008.08.016 10.1016/j.jcat.2011.06.015 10.1002/celc.201500382 10.1016/j.carbon.2013.05.067 10.1016/j.jpowsour.2010.12.047 10.1038/nchem.1069 10.1016/j.ccr.2012.12.012 10.1002/aenm.201500985 10.1016/j.nanoen.2016.05.024 10.1021/acs.chemmater.7b01619 10.1002/adma.201606800 10.1002/chem.201304561 10.1016/j.elecom.2006.02.020 10.1039/c5ta07878d 10.1039/c2ee03590a 10.1021/acsami.6b12547 10.1039/c3cs60248f 10.1039/c5ra21385a 10.1007/s41918-018-0013-0 10.1016/j.apcatb.2015.12.052 10.1039/c5cs00670h 10.1016/j.jcat.2019.04.028 10.1080/01614940600631348 10.1002/anie.201402646 10.1016/j.electacta.2016.10.108 10.1002/anie.200462335 10.1038/nchem.623 10.1002/ente.201900123 10.1021/ja307951y 10.1039/c2jm31079a 10.1126/science.aad4998 10.1021/acs.chemmater.8b03681 10.1007/s10008-016-3346-9 10.1039/c2cp44147k 10.1039/c7cy00715a 10.1002/anie.201510495 10.1021/acs.chemrev.5b00462 10.1002/aenm.201600087 10.1039/c5nr08763e 10.1021/acs.nanolett.5b03446 10.1016/j.nanoen.2016.12.056 10.1016/j.carbon.2018.12.066 10.1016/j.colsurfa.2019.02.030 10.1016/j.jpowsour.2010.01.056 10.1016/j.cattod.2019.04.055 10.1021/cr500519c 10.1016/j.energy.2016.02.103 10.1016/j.rinp.2017.02.013 10.1016/j.physe.2018.07.032 10.1021/ja204748u 10.1021/la404188p 10.1016/j.electacta.2018.12.056 10.1016/j.carbon.2016.04.033 10.1021/jp211946n 10.1016/j.ijhydene.2015.06.027 10.1039/c1ee01431e 10.1038/nnano.2015.48 10.1002/cssc.201700369 10.1016/j.ijhydene.2018.11.120 10.1016/j.jpowsour.2014.01.042 10.1039/c3cc40971f 10.1016/j.jpowsour.2009.08.100 10.1016/j.jallcom.2016.06.060 10.1016/j.carbon.2010.05.022 10.1016/j.cej.2018.04.208 10.5796/electrochemistry.84.133 10.1039/c6ta08363c 10.1016/j.apcatb.2016.05.028 10.1002/smll.201602334 10.1039/c0cc02048f 10.1002/anie.201604311 10.1016/j.electacta.2015.10.020 10.1039/c5nr06749a 10.1016/j.ultsonch.2016.09.021 10.1149/2.0521802jes 10.1016/j.cattod.2018.01.029 10.1021/jz3011833 10.1021/cs501762g 10.1016/j.nanoen.2016.07.007 10.1016/j.ijhydene.2018.01.095 10.1021/cr5003563 10.1021/acsami.6b02352 10.1021/acsenergylett.6b00532 10.1016/j.carbon.2014.11.008 10.1021/acsami.6b10804 10.1021/acs.nanolett.5b04636 10.1016/j.carbon.2016.06.102 10.1021/ja403440e 10.1038/nmat1840 10.1016/j.fuel.2016.12.033 10.1016/j.nanoen.2015.12.014 10.1080/10962247.2016.1158133 10.1038/nchem.367 10.1039/c8ta09034c 10.1002/adfm.201503666 10.1038/nchem.288 10.1021/acscatal.6b02666 10.1016/j.electacta.2016.08.090 10.1016/j.electacta.2016.01.070 10.1016/j.cej.2015.12.057 10.1039/c1cs15228a 10.1016/j.apsusc.2017.08.222 10.1038/nnano.2012.72 10.1016/j.apcatb.2016.02.009 10.1021/cm303357p 10.1007/s12274-016-1400-7 10.1002/slct.201600401 10.1016/j.jpowsour.2007.11.050 10.1016/j.nantod.2016.09.001 10.1039/c3cc43107j 10.1039/c5cs00434a 10.1007/s12274-016-0982-4 10.1007/s41918-018-0002-3 10.1002/adfm.201505509 10.1021/cm901698s 10.1039/c5nj03390j 10.1126/sciadv.1601705 10.1039/C1JM14694G 10.1016/j.ijhydene.2016.12.068 10.1016/j.rser.2016.09.135 10.1002/anie.201105204 10.1039/C6TA08580F 10.1007/BF00613033 10.1007/s10800-016-1027-0 10.1021/jp047349j 10.1016/j.carbon.2007.04.031 10.1016/j.electacta.2018.01.046 10.1038/ncomms15938 10.1016/j.electacta.2017.10.057 10.1039/c1nj20612e 10.1021/ja909537g 10.1002/cctc.201701777 10.1149/2.1311609jes 10.1002/adfm.201303902 10.1002/anie.201101287 10.1021/cr980129f 10.1002/cssc.200900180 10.1039/C6EE03446B 10.1039/C7NR02264F 10.1016/j.coelec.2018.04.001 10.1002/adfm.201602158 10.1002/anie.201508809 10.1038/nchem.1095 10.1007/s10853-017-1605-5 10.1016/0008-6223(95)00154-6 10.1002/aenm.201701345 10.1002/anie.201711858 10.1002/ange.201702430 10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9 10.1021/ja3085934 10.1111/j.1151-2916.1999.tb02241.x 10.1039/c2gc35309a 10.1039/C4CS00484A 10.1149/1.2425884 10.1002/ange.201206720 10.1002/anie.201710997 10.1149/2.018401jes 10.1021/acsnano.5b02191 10.1002/admi.201801623 10.1021/acscatal.7b00366 10.1021/acsnano.7b02148 10.1126/science.1168049 10.1021/acsomega.7b01793 10.1021/acsnano.5b05984 10.1166/jamr.2017.1333 10.1038/2011212a0 10.1002/adma.201301870 10.1039/C7CP05091G 10.1126/science.aac8033 10.1126/science.1170051 10.1021/acscatal.7b03972 10.1002/anie.201109257 10.1039/c0ee00558d 10.1002/smll.201603423 10.1021/jp9076273 10.1002/aenm.201701476 10.1126/sciadv.1500462 10.1021/ja306376s 10.1126/science.1170377 10.1039/c2cp43541a 10.1002/cssc.201701306 10.1021/acs.jpcc.7b05592 10.1021/jp102284s 10.1016/j.carbon.2016.12.061 10.1016/j.electacta.2017.03.088 10.1016/j.electacta.2014.08.001 10.1021/ja3030565 10.1016/j.electacta.2017.06.017 10.1002/smll.201700099 10.1002/9783527664900 10.1039/C7NR01925D 10.1002/ange.201309171 10.1126/science.1962206 10.1126/science.1253150 10.1038/s41929-018-0063-z 10.1021/jp0647986 10.1002/cctc.201500148 10.1021/acsnano.8b00932 10.1016/j.apcatb.2019.03.016 10.1002/adma.201705407 10.1002/cssc.201801070 10.1016/S0013-4686(98)00272-2 10.1016/j.carbon.2006.08.022 10.1126/science.aad0832 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 |
Copyright_xml | – notice: The Author(s) 2019 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s41918-019-00052-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2520-8136 |
EndPage | 538 |
ExternalDocumentID | 10_1007_s41918_019_00052_4 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51774100; 51762006 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA C6C CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z7V Z7X ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c401t-9492deb09dd53eb5d07c2ee483f137dff6c82be246b59521c97e5c1316079bb33 |
IEDL.DBID | C6C |
ISSN | 2520-8489 |
IngestDate | Tue Jul 01 01:11:00 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 Fri Feb 21 02:31:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Metal-free catalyst Electrocatalyst Precious metal catalyst Non-precious metal catalyst Single-atom catalyst Oxygen reduction reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-9492deb09dd53eb5d07c2ee483f137dff6c82be246b59521c97e5c1316079bb33 |
OpenAccessLink | https://doi.org/10.1007/s41918-019-00052-4 |
PageCount | 21 |
ParticipantIDs | crossref_citationtrail_10_1007_s41918_019_00052_4 crossref_primary_10_1007_s41918_019_00052_4 springer_journals_10_1007_s41918_019_00052_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Electrochemical energy reviews |
PublicationTitleAbbrev | Electrochem. Energ. Rev |
PublicationYear | 2019 |
Publisher | Springer Singapore |
Publisher_xml | – name: Springer Singapore |
References | Lin, Chu, Wang (CR27) 2016; 40 Zhang, Vukmirovic, Xu (CR42) 2005; 44 Noori, Verma (CR164) 2019; 298 Wu, Chen (CR128) 2011; 133 Lim, Jiang, Camargo (CR40) 2009; 324 Nie, Li, Wei (CR56) 2015; 44 Jun, Kim, Shin (CR107) 2016; 3 Suntivich, Gasteiger, Yabuuchi (CR110) 2011; 3 Ozaki, Anahara, Kimura (CR198) 2006; 44 Wang, Yan, Wu (CR172) 2019; 144 Liu, Ruan, Sang (CR10) 2016; 215 von Deak, Biddinger, Luthman (CR28) 2010; 48 Su, Yao, Zhang (CR207) 2016; 26 Read, Callejas, Holder (CR140) 2016; 8 Lee, Li, Park (CR99) 2017 Mosa, Biswas, El-Sawy (CR78) 2016; 4 Pan, Chen, Yu (CR113) 2016; 66 Osgood, Devaguptapu, Xu (CR91) 2016; 11 Yang, Mao, Cao (CR204) 2018; 427 Zhong, Zhang, Liu (CR119) 2006; 8 Sun, Li, Yang (CR165) 2018 Jasinski (CR163) 1964; 201 Wang, Li, Wang (CR171) 2019 Xu, Wu, Zhang (CR135) 2013; 49 Zhang, Li, Sun (CR84) 2019 Zheng, Cao, Wu (CR11) 2016; 107 Li, Zhang, Zhang (CR12) 2017; 9 Yang, He, Guo (CR8) 2017; 12 Sui, Wang, Zhou (CR43) 2017; 5 Saheb Koussa, Koussa (CR2) 2016; 102 Yang, Hu, Zhang (CR75) 2016; 9 Jiang, Zhao, Guo (CR52) 2017; 3 Ryabova, Bonnefont, Simonov (CR92) 2017; 246 Yu, Pan, Cao (CR35) 2011; 282 Mazza, Trassatti (CR117) 1963; 110 Choi, Chung, Park (CR25) 2013; 15 Deng, Zhong, Li (CR29) 2016; 8 Li, Liu, Gan (CR181) 2019; 6 Wu, Geng, Ge (CR19) 2016; 6 Chai, Qiu, Qiao (CR193) 2017; 10 Liu, Jiao, Lu (CR159) 2017; 8 Wu, Shi, Wang (CR44) 2017; 29 Wang, Li, Xiong (CR145) 2016; 26 Zhang, Wang, Hua (CR114) 2016; 186 Jensen, Tymoczko, Rossmeisl (CR53) 2018; 57 Xu, Cheng, Cao (CR170) 2018; 1 Song, Wu, Zhou (CR20) 2016; 12 Wang, Yin, Zhao (CR179) 2013; 49 Yuan, Yang, He (CR122) 2017; 9 Sun, Li, Zhong (CR166) 2018; 165 Xiang, Zhao, Jiang (CR86) 2018; 6 Chen, Higgins, Yu (CR130) 2011; 4 Xia, Liu, Wang (CR121) 2008; 177 Ozaki, Kimura, Anahara (CR199) 2007; 45 Risch, Stoerzinger, Han (CR83) 2017; 121 Chen, Huang, Wan (CR148) 2015; 5 Zhang, Li, Wang (CR104) 2019; 44 Popczun, Read, Roske (CR137) 2014; 53 Sheng, Gao, Bao (CR196) 2012; 22 Zhang, Zhang, Chen (CR149) 2016; 4 Choi, Park, Woo (CR32) 2012; 22 Jia, Ramaswamy, Hafiz (CR180) 2015; 9 Yu, Wang, Bao (CR26) 2016; 21 Wu, Wang, Ding (CR100) 2016; 55 Xiao, Chen, Wang (CR132) 2015; 5 Kim, Kim, Lee (CR160) 2018; 11 Wohlgemuth, White, Willinger (CR203) 2012; 14 Wang, Ambrosi, Pumera (CR209) 2013; 125 Tian, Tang, Luo (CR49) 2017; 7 Dai, Xue, Qu (CR183) 2015; 115 Su, Zhang, Frank (CR184) 2010; 3 Fan, Ida, Staykov (CR123) 2017; 13 Jiang, Wang, Wang (CR206) 2016; 189 Kobayashi, Aoki, Wakisaka (CR55) 2018; 3 Tong, Chen, Zhou (CR93) 2017; 129 Zhang, Sha, Fei (CR158) 2017; 11 Sickafus, Wills, Grimes (CR103) 1999; 82 Bo, Guo (CR194) 2013; 15 Ma, You, Wang (CR18) 2016; 8 Zeng, Shui, Liu (CR157) 2018; 8 Kim, Roh, Sahoo (CR155) 2018; 8 Doan-Nguyen, Zhang, Trigg (CR147) 2015; 9 Guo, Fang, Li (CR151) 2014; 344 Shafiee, Topal (CR1) 2009; 37 Żółtowski, Dražić, Vorkapić (CR74) 1973; 3 Menezes, Indra, Das (CR144) 2016; 7 Zhu, Liu, Liu (CR189) 2015; 7 Jeon, Yoo, Cho (CR60) 2009; 113 Yuan, Zeng, Zhang (CR175) 2010; 132 Pena, Fierro (CR108) 2001; 101 Chen, Takanabe, Ohnishi (CR131) 2010; 46 Masa, Barwe, Andronescu (CR143) 2016; 1 Duan, Wang, Ding (CR112) 2017; 193 Shahid, Rameshkumar, Basirun (CR95) 2017; 237 Wang, Fang, Zhang (CR5) 2018; 1 Xu, Gao, Zhao (CR89) 2012; 5 Beermann, Gocyla, Willinger (CR15) 2016; 16 Gong, Du, Xia (CR186) 2009; 323 Zhu, Liu, Ren (CR142) 2015; 25 Sunarso, Torriero, Zhou (CR109) 2012; 116 Gara, Compton (CR185) 2011; 35 Abreu-Sepulveda, Dhital, Huq (CR116) 2016; 163 Strasser, Koh, Anniyev (CR68) 2010; 2 Yamamoto, Imaoka, Chun (CR41) 2009; 1 Dombrovskis, Jeong, Fossum (CR178) 2013; 25 Cheng, Su, Liang (CR79) 2010; 22 Zeng, Zhang, Liu (CR80) 2017; 256 Roy, Knudsen, Pedersen (CR54) 2018; 8 Wang, Xiao, Liu (CR124) 2017; 42 Al-Hakemy, Nassr, Naggar (CR96) 2017; 47 Mendoza-Garcia, Su, Sun (CR139) 2016; 8 Greeley, Stephens, Bondarenko (CR65) 2009; 1 Zhang, Li, Zhang (CR37) 2014; 255 Kuttiyiel, Choi, Sasaki (CR46) 2016 Zhang, Qu, Shi (CR16) 2016; 55 Zhang, Zhang, Cao (CR88) 2018; 30 Wei, Feng, Scherer (CR97) 2017 Wang, Fan, Ignaszak (CR126) 2018; 348 Zhou, Sun, Xi (CR102) 2018; 30 Stamenkovic, Mun, Arenz (CR50) 2007; 6 Zhang, Wilkinson, Liu (CR72) 2018; 262 Stacy, Regmi, Leonard (CR57) 2017; 69 Su, Zhang, Zhuang (CR205) 2013; 62 Lehtimäki, Hoffmannová, Boytsova (CR77) 2016; 191 Dai, Liu, Song (CR22) 2016; 27 Xu, Li, Wang (CR167) 2010; 195 Liang, Jiao, Jaroniec (CR202) 2012; 124 Zhang, Li, Wang (CR101) 2018; 11 Cai, Hübner, Sasaki (CR47) 2018; 57 Wang, Zhang, Xia (CR201) 2012; 51 Chen, Yu, Wang (CR36) 2017; 32 Yu, Xue, Dai (CR33) 2012; 3 Tammeveski, Zagal (CR162) 2018; 9 Wu, Yang, Sun (CR94) 2012; 134 Chen, Li, Wang (CR23) 2016; 1 He, Li, Yin (CR156) 2017; 114 Zhang, Mahmood, Yin (CR192) 2013; 25 Neburchilov, Wang, Martin (CR118) 2010; 195 Rios, Gautier, Poillerat (CR105) 1998; 44 Cheng, Tian, Fan (CR195) 2014; 143 Hwang, Kim, Lee (CR62) 2012; 134 Dong, Chen, Zhang (CR129) 2013; 257 Liu, Li (CR138) 2016; 8 Delmondo, Munoz-Tabares, Sacco (CR81) 2017; 19 Jung, Sohn, Park (CR45) 2016; 196 Chen, Dodelet, Zhang (CR71) 2014 Yin, Zhang, Liu (CR125) 2014; 24 Bai, Zhao, Li (CR17) 2016; 105 Wei, Kibsgaard, Dickens (CR39) 2017; 355 Yang, Bhattacharjya, Inamdar (CR190) 2012; 134 Zhou, Liu, Zhao (CR115) 2016; 288 Arjun, Pan, Yang (CR111) 2017; 7 Xiong, Shan, Zhou (CR48) 2017; 13 Popczun, McKone, Read (CR136) 2013; 135 Liu, Xu, Yan (CR153) 2018; 10 Wang, Su (CR34) 2014; 7 Raciti, Kubal, Ma (CR14) 2016; 20 Lefèvre, Proietti, Jaouen (CR24) 2009; 324 Markovic, Schmidt, Stamenkovic (CR61) 2001; 1 Huang, Zhang, Kongkanand (CR70) 2014; 161 Omura, Yano, Tryk (CR69) 2014; 30 Guo, Shibuya, Akiba (CR188) 2016; 351 Yang, Jiang, Zhao (CR197) 2011; 50 Yang, Wang, Ma (CR87) 2019; 109 Wang, Iyyamperumal, Roy (CR200) 2011; 50 Zhu, Li, Fu (CR161) 2016; 45 Wang, Xu, Xu (CR73) 2014; 43 Lv, Wang (CR141) 2017; 7 Jiang, Zhu, Feng (CR31) 2014; 20 Chen, Choi, Wang (CR176) 2011; 196 Nørskov, Rossmeisl, Logadottir (CR64) 2004; 108 Cheng, Chen (CR38) 2012; 41 He, Yin, Li (CR90) 2015; 40 Li, Zhou, Wang (CR174) 2012; 7 CR3 Pletcher, Li, Price (CR98) 2016; 188 Qi, Jiang, Jiang (CR120) 2010; 114 CR7 Wu, Jin, Yang (CR191) 2015; 82 Shi, Zhang, Huang (CR210) 2018; 53 Yin, Utetiwabo, Sun (CR173) 2019; 374 Li, Chen, Duan (CR182) 2019; 249 Huang, Wei, Gao (CR9) 2016; 220 Liu, Tan, Li (CR106) 2006; 48 Ball (CR154) 2018 Chen, Ji, Wang (CR208) 2018; 43 Sun, Liu, Qu (CR133) 2016; 6 Shi, Zhang (CR134) 2016; 45 Coleman, Chowdhury, Co (CR51) 2015; 5 Zhao, Watanabe, Hashimoto (CR177) 2012; 134 Roche, Chaînet, Chatenet (CR82) 2007; 111 Shao, Chang, Dodelet (CR58) 2016; 116 Wang, Zhao, Fang (CR59) 2015; 115 Ojha, Gautam, Muthurasu (CR85) 2019; 568 Pels, Kapteijn, Moulijn (CR187) 1995; 33 Li, Liu, Fan (CR21) 2016; 686 Chiwata, Yano, Ogawa (CR13) 2016; 84 Shen, Wei, Ai (CR168) 2017; 10 Zagal, Koper (CR169) 2016; 55 Trost (CR67) 1991; 254 Zhang, Zhao, Xia (CR30) 2015; 10 Creutzig, Jochem, Edelenbosch (CR4) 2015; 350 Wang, Yang, Liu (CR127) 2017; 9 Stephens, Bondarenko, Grønbjerg (CR63) 2012; 5 Deng, Chen, Yu (CR152) 2015; 1 Freund, Lächelt, Gruber (CR66) 2018; 12 Wang, Wang, Luo (CR6) 2018; 1 Zuo, Jiang, Abdel-Halim (CR76) 2017; 35 Yang, Zhang, Hu (CR146) 2015; 15 Qiao, Wang, Yang (CR150) 2011; 3 D Xia (52_CR121) 2008; 177 Y Li (52_CR181) 2019; 6 ZH Sheng (52_CR196) 2012; 22 H Huang (52_CR9) 2016; 220 Z Zeng (52_CR80) 2017; 256 P Strasser (52_CR68) 2010; 2 A Mendoza-Garcia (52_CR139) 2016; 8 MA Abreu-Sepulveda (52_CR116) 2016; 163 R Zhang (52_CR149) 2016; 4 J Kim (52_CR160) 2018; 11 L Dai (52_CR22) 2016; 27 K Yamamoto (52_CR41) 2009; 1 DS Yang (52_CR190) 2012; 134 L Yu (52_CR35) 2011; 282 T Zhang (52_CR84) 2019 Y Li (52_CR174) 2012; 7 C Deng (52_CR29) 2016; 8 N Jung (52_CR45) 2016; 196 F Cheng (52_CR79) 2010; 22 JK Nørskov (52_CR64) 2004; 108 DW Wang (52_CR34) 2014; 7 Q Jia (52_CR180) 2015; 9 Z Zhou (52_CR115) 2016; 288 R Wang (52_CR6) 2018; 1 G Xu (52_CR167) 2010; 195 J Li (52_CR12) 2017; 9 J Zhang (52_CR16) 2016; 55 JK Dombrovskis (52_CR178) 2013; 25 T Jiang (52_CR206) 2016; 189 M Risch (52_CR83) 2017; 121 MT Noori (52_CR164) 2019; 298 L Wang (52_CR179) 2013; 49 C Sun (52_CR165) 2018 J Yang (52_CR87) 2019; 109 D Pletcher (52_CR98) 2016; 188 X Yuan (52_CR175) 2010; 132 V Neburchilov (52_CR118) 2010; 195 Y Nie (52_CR56) 2015; 44 I Roche (52_CR82) 2007; 111 X Bo (52_CR194) 2013; 15 K Gong (52_CR186) 2009; 323 KH Wu (52_CR44) 2017; 29 F Creutzig (52_CR4) 2015; 350 X Zeng (52_CR157) 2018; 8 X Shi (52_CR210) 2018; 53 X Chen (52_CR36) 2017; 32 Y Zhou (52_CR102) 2018; 30 JI Ozaki (52_CR199) 2007; 45 Y Liu (52_CR10) 2016; 215 LT Song (52_CR20) 2016; 12 H Lin (52_CR27) 2016; 40 52_CR7 F Mazza (52_CR117) 1963; 110 52_CR3 VR Stamenkovic (52_CR50) 2007; 6 Z Chen (52_CR130) 2011; 4 M Li (52_CR21) 2016; 686 KA Kuttiyiel (52_CR46) 2016 J Zhang (52_CR30) 2015; 10 ZS Wu (52_CR94) 2012; 134 A Jun (52_CR107) 2016; 3 S Kobayashi (52_CR55) 2018; 3 E Rios (52_CR105) 1998; 44 Y Fan (52_CR123) 2017; 13 F He (52_CR156) 2017; 114 Y Zhao (52_CR177) 2012; 134 F Cheng (52_CR38) 2012; 41 YN Yu (52_CR26) 2016; 21 M Shen (52_CR168) 2017; 10 X Zheng (52_CR11) 2016; 107 J Liu (52_CR159) 2017; 8 N Arjun (52_CR111) 2017; 7 YJ Wang (52_CR5) 2018; 1 KL Pan (52_CR113) 2016; 66 R Freund (52_CR66) 2018; 12 L Dai (52_CR183) 2015; 115 B Lim (52_CR40) 2009; 324 T Zhang (52_CR104) 2019; 44 C Wei (52_CR97) 2017 H Xu (52_CR170) 2018; 1 L Yang (52_CR197) 2011; 50 EJ Coleman (52_CR51) 2015; 5 GP Ojha (52_CR85) 2019; 568 GL Chai (52_CR193) 2017; 10 D Yu (52_CR33) 2012; 3 S Yang (52_CR204) 2018; 427 V Beermann (52_CR15) 2016; 16 IM Mosa (52_CR78) 2016; 4 R Jasinski (52_CR163) 1964; 201 Y Su (52_CR207) 2016; 26 X Yin (52_CR173) 2019; 374 Y Liu (52_CR106) 2006; 48 H Wu (52_CR128) 2011; 133 P Żółtowski (52_CR74) 1973; 3 DU Lee (52_CR99) 2017 L Wang (52_CR209) 2013; 125 Y Chen (52_CR208) 2018; 43 D von Deak (52_CR28) 2010; 48 P Ball (52_CR154) 2018 B Qiao (52_CR150) 2011; 3 C Wang (52_CR171) 2019 H Zhong (52_CR119) 2006; 8 CG Read (52_CR140) 2016; 8 H Jiang (52_CR31) 2014; 20 M Lefèvre (52_CR24) 2009; 324 S Shafiee (52_CR1) 2009; 37 Y Xu (52_CR135) 2013; 49 Y Xiong (52_CR48) 2017; 13 P Xiao (52_CR132) 2015; 5 J Omura (52_CR69) 2014; 30 TY Jeon (52_CR60) 2009; 113 J Stacy (52_CR57) 2017; 69 EJ Popczun (52_CR136) 2013; 135 Y Shi (52_CR134) 2016; 45 VV Doan-Nguyen (52_CR147) 2015; 9 L Zhang (52_CR72) 2018; 262 C Sun (52_CR166) 2018; 165 T Zhang (52_CR101) 2018; 11 EJ Popczun (52_CR137) 2014; 53 M Pena (52_CR108) 2001; 101 J Greeley (52_CR65) 2009; 1 JI Ozaki (52_CR198) 2006; 44 Y Tong (52_CR93) 2017; 129 X Bai (52_CR17) 2016; 105 J Suntivich (52_CR110) 2011; 3 D Saheb Koussa (52_CR2) 2016; 102 J Zhang (52_CR42) 2005; 44 M Chiwata (52_CR13) 2016; 84 Z Chen (52_CR71) 2014 G Wu (52_CR100) 2016; 55 H Yin (52_CR125) 2014; 24 J Chen (52_CR131) 2010; 46 D Guo (52_CR188) 2016; 351 SJ Hwang (52_CR62) 2012; 134 DS Su (52_CR184) 2010; 3 CH Choi (52_CR32) 2012; 22 KE Sickafus (52_CR103) 1999; 82 BM Trost (52_CR67) 1991; 254 C Zhang (52_CR114) 2016; 186 J Sunarso (52_CR109) 2012; 116 M Wang (52_CR127) 2017; 9 Y Su (52_CR205) 2013; 62 T Zhang (52_CR88) 2018; 30 J Xu (52_CR89) 2012; 5 C Roy (52_CR54) 2018; 8 D Deng (52_CR152) 2015; 1 M Sun (52_CR133) 2016; 6 S Dong (52_CR129) 2013; 257 C Zhu (52_CR161) 2016; 45 SZ Wei (52_CR39) 2017; 355 B Cai (52_CR47) 2018; 57 S Sui (52_CR43) 2017; 5 M Shao (52_CR58) 2016; 116 M Liu (52_CR138) 2016; 8 K Wang (52_CR124) 2017; 42 N Markovic (52_CR61) 2001; 1 S Wang (52_CR201) 2012; 51 Q Duan (52_CR112) 2017; 193 PW Menezes (52_CR144) 2016; 7 Y Wang (52_CR126) 2018; 348 YP Zhu (52_CR189) 2015; 7 Z Chen (52_CR176) 2011; 196 C Zhang (52_CR158) 2017; 11 Y Huang (52_CR70) 2014; 161 J Kim (52_CR155) 2018; 8 S Wang (52_CR172) 2019; 144 J Pels (52_CR187) 1995; 33 Y Lv (52_CR141) 2017; 7 LX Zuo (52_CR76) 2017; 35 MM Shahid (52_CR95) 2017; 237 AS Ryabova (52_CR92) 2017; 246 K Tammeveski (52_CR162) 2018; 9 M Gara (52_CR185) 2011; 35 C Zhang (52_CR192) 2013; 25 X Chen (52_CR23) 2016; 1 X Guo (52_CR151) 2014; 344 M Lehtimäki (52_CR77) 2016; 191 H Yang (52_CR146) 2015; 15 K Jiang (52_CR52) 2017; 3 W Xiang (52_CR86) 2018; 6 S Wang (52_CR200) 2011; 50 J Qi (52_CR120) 2010; 114 J Masa (52_CR143) 2016; 1 H Wu (52_CR19) 2016; 6 YJ Wang (52_CR59) 2015; 115 X He (52_CR90) 2015; 40 KD Jensen (52_CR53) 2018; 57 WJ Yang (52_CR8) 2017; 12 M Ma (52_CR18) 2016; 8 CH Choi (52_CR25) 2013; 15 L Delmondo (52_CR81) 2017; 19 L Zhang (52_CR37) 2014; 255 JH Zagal (52_CR169) 2016; 55 Y Cheng (52_CR195) 2014; 143 YP Zhu (52_CR142) 2015; 25 X Wang (52_CR145) 2016; 26 J Liang (52_CR202) 2012; 124 IEL Stephens (52_CR63) 2012; 5 D Raciti (52_CR14) 2016; 20 H Yang (52_CR75) 2016; 9 W Liu (52_CR153) 2018; 10 AZ Al-Hakemy (52_CR96) 2017; 47 K Chen (52_CR148) 2015; 5 ZL Wang (52_CR73) 2014; 43 Y Yuan (52_CR122) 2017; 9 SA Wohlgemuth (52_CR203) 2012; 14 J Wu (52_CR191) 2015; 82 Y Li (52_CR182) 2019; 249 X Tian (52_CR49) 2017; 7 H Osgood (52_CR91) 2016; 11 |
References_xml | – volume: 8 start-page: 2158 year: 2016 end-page: 2165 ident: CR138 article-title: Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10727 – volume: 7 start-page: 576 year: 2014 ident: CR34 article-title: Heterogeneous nanocarbon materials for oxygen reduction reaction publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43463j – volume: 6 start-page: 1600794 year: 2016 ident: CR19 article-title: Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600794 – volume: 26 start-page: 5893 year: 2016 end-page: 5902 ident: CR207 article-title: Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc–air battery publication-title: Adv. Funct. Mater. – volume: 37 start-page: 181 year: 2009 end-page: 189 ident: CR1 article-title: When will fossil fuel reserves be diminished? publication-title: Energy Policy doi: 10.1016/j.enpol.2008.08.016 – volume: 35 start-page: 2647 year: 2011 end-page: 2652 ident: CR185 article-title: Activity of carbon electrodes towards oxygen reduction in acid: a comparative study publication-title: New J. Chem. – volume: 282 start-page: 183 year: 2011 end-page: 190 ident: CR35 article-title: Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study publication-title: J. Catal. doi: 10.1016/j.jcat.2011.06.015 – volume: 69 start-page: 401 year: 2017 end-page: 414 ident: CR57 article-title: The recent progress and future of oxygen reduction reaction catalysis: a review publication-title: Renew. Sustain. Energy Rev. – volume: 101 start-page: 1981 year: 2001 end-page: 2018 ident: CR108 article-title: Chemical structures and performance of perovskite oxides publication-title: Chem. Rev. – volume: 24 start-page: 2930 year: 2014 end-page: 2937 ident: CR125 article-title: Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction publication-title: Adv. Funct. Mater. – volume: 3 start-page: 511 year: 2016 end-page: 530 ident: CR107 article-title: Perovskite as a cathode material: a review of its role in solid-oxide fuel cell technology publication-title: ChemElectroChem doi: 10.1002/celc.201500382 – volume: 62 start-page: 296 year: 2013 end-page: 301 ident: CR205 article-title: Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction publication-title: Carbon doi: 10.1016/j.carbon.2013.05.067 – volume: 196 start-page: 3673 year: 2011 end-page: 3677 ident: CR176 article-title: Highly durable and active non-precious air cathode catalyst for zinc air battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.12.047 – volume: 1 start-page: e1500462 year: 2015 ident: CR152 article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature publication-title: Sci. Adv. – volume: 3 start-page: 546 year: 2011 end-page: 550 ident: CR110 article-title: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries publication-title: Nat. Chem. doi: 10.1038/nchem.1069 – volume: 9 start-page: 6259 year: 2017 end-page: 6263 ident: CR122 article-title: Cobalt–zinc nitride on nitrogen doped carbon black nanohybrids as a non-noble metal electrocatalyst for oxygen reduction reaction publication-title: Nanoscale – volume: 15 start-page: 2459 year: 2013 end-page: 2465 ident: CR194 article-title: Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 946 year: 2018 end-page: 950 ident: CR153 article-title: Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: a new protocol by utilization of H MoO with plasmon resonance publication-title: ChemCatChem – volume: 257 start-page: 1946 year: 2013 end-page: 1956 ident: CR129 article-title: Nanostructured transition metal nitrides for energy storage and fuel cells publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2012.12.012 – volume: 5 start-page: 1500985 year: 2015 ident: CR132 article-title: A review of phosphide-based materials for electrocatalytic hydrogen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500985 – volume: 3 start-page: 154 year: 2018 end-page: 158 ident: CR55 article-title: Atomically flat Pt skin and striking enrichment of Co in underlying alloy at Pt Co (111) single crystal with unprecedented activity for the oxygen reduction reaction publication-title: ACS Omega – volume: 5 start-page: 1808 year: 2017 end-page: 1825 ident: CR43 article-title: A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells publication-title: J. Mater. Chem. A – year: 2016 ident: CR46 article-title: Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M = Fe Co, Ni or Cu) cores for the oxygen reduction reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.05.024 – volume: 29 start-page: 4649 year: 2017 end-page: 4653 ident: CR44 article-title: In situ electrostatic modulation of path selectivity for the oxygen reduction reaction on Fe–N doped carbon catalyst publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01619 – year: 2017 ident: CR97 article-title: Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels publication-title: Adv. Mater. doi: 10.1002/adma.201606800 – volume: 20 start-page: 3106 year: 2014 end-page: 3112 ident: CR31 article-title: Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions publication-title: Chemistry doi: 10.1002/chem.201304561 – volume: 8 start-page: 707 year: 2006 end-page: 712 ident: CR119 article-title: A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.02.020 – volume: 1 start-page: 105 year: 2001 end-page: 116 ident: CR61 article-title: Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review publication-title: Fuel Cells – volume: 114 start-page: 619 year: 2017 end-page: 627 ident: CR156 article-title: Single Pd atoms supported by graphitic carbon nitride, a potential oxygen reduction reaction catalyst from theoretical perspective publication-title: Carbon – volume: 351 start-page: 361 year: 2016 end-page: 365 ident: CR188 article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts publication-title: Science – volume: 163 start-page: F1124 year: 2016 end-page: F1132 ident: CR116 article-title: The influence of Fe substitution in lanthanum calcium cobalt oxide on the oxygen evolution reaction in alkaline media publication-title: J. Electrochem. Soc. – volume: 4 start-page: 620 year: 2016 end-page: 631 ident: CR78 article-title: Tunable mesoporous manganese oxide for high performance oxygen reduction and evolution reactions publication-title: J. Mater. Chem. A doi: 10.1039/c5ta07878d – volume: 82 start-page: 3279 year: 1999 end-page: 3292 ident: CR103 article-title: Structure of spinel publication-title: J. Am. Ceram. Soc. – volume: 5 start-page: 6744 year: 2012 ident: CR63 article-title: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03590a – volume: 9 start-page: 398 year: 2017 end-page: 405 ident: CR12 article-title: S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12547 – volume: 43 start-page: 7746 year: 2014 end-page: 7786 ident: CR73 article-title: Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60248f – volume: 5 start-page: 92893 year: 2015 end-page: 92898 ident: CR148 article-title: Hybrids based on transition metal phosphide (Mn P, Co P, Ni P) nanoparticles and heteroatom-doped carbon nanotubes for efficient oxygen reduction reaction publication-title: RSC Adv. doi: 10.1039/c5ra21385a – volume: 1 start-page: 324 year: 2018 end-page: 387 ident: CR6 article-title: Core–shell-structured low-platinum electrocatalysts for fuel cell applications publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0013-0 – volume: 186 start-page: 173 year: 2016 end-page: 183 ident: CR114 article-title: Relationship between catalytic deactivation and physicochemical properties of LaMnO perovskite catalyst during catalytic oxidation of vinyl chloride publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.12.052 – volume: 45 start-page: 517 year: 2016 end-page: 531 ident: CR161 article-title: Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures publication-title: Chem. Soc. Rev. doi: 10.1039/c5cs00670h – volume: 44 start-page: 3358 year: 2006 end-page: 3361 ident: CR198 article-title: Simultaneous doping of boron and nitrogen into a carbon to enhance its oxygen reduction activity in proton exchange membrane fuel cells publication-title: Carbon – volume: 45 start-page: 1847 year: 2007 end-page: 1853 ident: CR199 article-title: Preparation and oxygen reduction activity of BN-doped carbons publication-title: Carbon – volume: 324 start-page: 1302 year: 2009 end-page: 1305 ident: CR40 article-title: Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction publication-title: Science – volume: 374 start-page: 43 year: 2019 end-page: 50 ident: CR173 article-title: Incorporation of CeF on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell publication-title: J. Catal. doi: 10.1016/j.jcat.2019.04.028 – volume: 11 start-page: 2730 year: 2018 end-page: 2736 ident: CR101 article-title: Spinel MnCo O nanoparticles supported on three-dimensional graphene with enhanced mass transfer as an efficient electrocatalyst for oxygen reduction reaction publication-title: Chemsuschem – volume: 48 start-page: 145 year: 2006 end-page: 198 ident: CR106 article-title: Mixed conducting ceramics for catalytic membrane processing publication-title: Catal. Rev. doi: 10.1080/01614940600631348 – volume: 53 start-page: 5427 year: 2014 end-page: 5430 ident: CR137 article-title: Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402646 – volume: 10 start-page: 1186 year: 2017 end-page: 1195 ident: CR193 article-title: Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks publication-title: Energy Environ. Sci. – volume: 12 start-page: 2094 year: 2018 end-page: 2105 ident: CR66 article-title: Multifunctional efficiency: extending the concept of atom economy to functional nanomaterials publication-title: ACS Nano – volume: 220 start-page: 427 year: 2016 end-page: 435 ident: CR9 article-title: Nitrogen-doped porous carbon derived from biomass as a highly efficient electrocatalyst for oxygen reduction reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.108 – volume: 44 start-page: 2132 year: 2005 end-page: 2135 ident: CR42 article-title: Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462335 – volume: 2 start-page: 454 year: 2010 end-page: 460 ident: CR68 article-title: Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts publication-title: Nat. Chem. doi: 10.1038/nchem.623 – year: 2019 ident: CR171 article-title: Vertical-space-limit synthesis of bifunctional Fe, N-codoped 2D multilayer graphene electrocatalysts for Zn–Air battery publication-title: Energy Technol. doi: 10.1002/ente.201900123 – volume: 47 start-page: 183 year: 2017 end-page: 195 ident: CR96 article-title: Electrodeposited cobalt oxide nanoparticles modified carbon nanotubes as a non-precious catalyst electrode for oxygen reduction reaction publication-title: J. Appl. Electrochem. – volume: 134 start-page: 19508 year: 2012 end-page: 19511 ident: CR62 article-title: Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307951y – volume: 22 start-page: 12107 year: 2012 ident: CR32 article-title: Phosphorus–nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon publication-title: J. Mater. Chem. doi: 10.1039/c2jm31079a – volume: 355 start-page: eaad4998 year: 2017 ident: CR39 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 124 start-page: 11664 year: 2012 end-page: 11668 ident: CR202 article-title: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance publication-title: Angew. Chem. – volume: 30 start-page: 8270 year: 2018 end-page: 8279 ident: CR88 article-title: A self-templating redox-mediated synthesis of hollow phosphated manganese oxide nanospheres as noble-metal-like oxygen electrocatalysts publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03681 – volume: 21 start-page: 103 year: 2016 end-page: 110 ident: CR26 article-title: Biomass-derived synthesis of nitrogen and phosphorus Co-doped mesoporous carbon spheres as catalysts for oxygen reduction reaction publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-016-3346-9 – volume: 7 start-page: 2903 year: 2015 end-page: 2909 ident: CR189 article-title: Direct synthesis of phosphorus-doped mesoporous carbon materials for efficient electrocatalytic oxygen reduction publication-title: ChemCatChem – volume: 15 start-page: 1802 year: 2013 end-page: 1805 ident: CR25 article-title: Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acidic media publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp44147k – volume: 7 start-page: 3676 year: 2017 end-page: 3691 ident: CR141 article-title: Nonprecious metal phosphides as catalysts for hydrogen evolution, oxygen reduction and evolution reactions publication-title: Catal. Sci. Technol. doi: 10.1039/c7cy00715a – volume: 55 start-page: 2230 year: 2016 end-page: 2234 ident: CR16 article-title: N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510495 – volume: 11 start-page: 104 year: 2018 end-page: 113 ident: CR160 article-title: Single-atom catalysts of precious metals for electrochemical reactions publication-title: Chemsuschem – volume: 350 start-page: 911 year: 2015 end-page: 912 ident: CR4 article-title: Transport: a roadblock to climate change mitigation? publication-title: Science – volume: 8 start-page: 2071 year: 2018 end-page: 2080 ident: CR54 article-title: Scalable synthesis of carbon-supported platinum–lanthanide and—rare-earth alloys for oxygen reduction publication-title: ACS Catal. – volume: 116 start-page: 3594 year: 2016 end-page: 3657 ident: CR58 article-title: Recent advances in electrocatalysts for oxygen reduction reaction publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00462 – volume: 6 start-page: 1600087 year: 2016 ident: CR133 article-title: Earth-rich transition metal phosphide for energy conversion and storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600087 – volume: 8 start-page: 3244 year: 2016 end-page: 3247 ident: CR139 article-title: Sea urchin-like cobalt-iron phosphide as an active catalyst for oxygen evolution reaction publication-title: Nanoscale doi: 10.1039/c5nr08763e – volume: 15 start-page: 7616 year: 2015 end-page: 7620 ident: CR146 article-title: Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03446 – volume: 32 start-page: 353 year: 2017 end-page: 358 ident: CR36 article-title: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.056 – volume: 144 start-page: 798 year: 2019 end-page: 804 ident: CR172 article-title: A hierarchical porous Fe–N impregnated carbon–graphene hybrid for high-performance oxygen reduction reaction publication-title: Carbon doi: 10.1016/j.carbon.2018.12.066 – volume: 50 start-page: 7132 year: 2011 end-page: 7135 ident: CR197 article-title: Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 568 start-page: 311 year: 2019 end-page: 318 ident: CR85 article-title: In-situ fabrication of manganese oxide nanorods decorated manganese oxide nanosheets as an efficient and durable catalyst for oxygen reduction reaction publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2019.02.030 – volume: 195 start-page: 4731 year: 2010 end-page: 4735 ident: CR167 article-title: Planar polyphthalocyanine cobalt absorbed on carbon black as stable electrocatalysts for direct methanol fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.01.056 – volume: 44 start-page: 1491 year: 1998 end-page: 1497 ident: CR105 article-title: Mixed valency spinel oxides of transition metals and electrocatalysis: case of the Mn Co O system publication-title: Electrochim. Acta – volume: 8 start-page: 1701345 year: 2018 ident: CR157 article-title: Single-atom to single-atom grafting of Pt onto Fe–N center: Pt @Fe–N–C multifunctional electrocatalyst with significantly enhanced properties publication-title: Adv. Energy Mater. – volume: 113 start-page: 19732 year: 2009 end-page: 19739 ident: CR60 article-title: Influence of oxide on the oxygen reduction reaction of carbon-supported Pt–Ni alloy nanoparticles publication-title: J. Phys. Chem. C – year: 2019 ident: CR84 article-title: α-MnO nanorods supported on three dimensional graphene as high activity and durability cathode electrocatalysts for magnesium–air fuel cells publication-title: Catal. Today doi: 10.1016/j.cattod.2019.04.055 – volume: 1 start-page: 339 year: 2018 end-page: 348 ident: CR170 article-title: A universal principle for a rational design of single-atom electrocatalysts publication-title: Nat. Catal. – volume: 115 start-page: 3433 year: 2015 end-page: 3467 ident: CR59 article-title: Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity publication-title: Chem. Rev. doi: 10.1021/cr500519c – volume: 14 start-page: 1515 year: 2012 end-page: 1523 ident: CR203 article-title: A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction publication-title: Green Chem. – volume: 3 start-page: 271 year: 1973 end-page: 283 ident: CR74 article-title: Carbon-air electrode with regenerative short time overload capacity: Part 1. Effect of manganese dioxide publication-title: J. Appl. Electrochem. – volume: 42 start-page: 202 year: 2017 end-page: 211 ident: CR124 article-title: Rational design and synthesis of sandwich-like iron nitride-graphene composites as efficient catalysts for oxygen reduction reaction publication-title: Int. J. Hydrog. Energy – volume: 102 start-page: 216 year: 2016 end-page: 230 ident: CR2 article-title: GHGs (greenhouse gases) emission and economic analysis of a GCRES (grid-connected renewable energy system) in the arid region, Algeria publication-title: Energy doi: 10.1016/j.energy.2016.02.103 – volume: 7 start-page: 920 year: 2017 end-page: 926 ident: CR111 article-title: The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications publication-title: Results Phys. doi: 10.1016/j.rinp.2017.02.013 – volume: 109 start-page: 191 year: 2019 end-page: 197 ident: CR87 article-title: Insight into the effect of crystalline structure on the oxygen reduction reaction activities of one-dimensional MnO publication-title: Physica E doi: 10.1016/j.physe.2018.07.032 – volume: 133 start-page: 15236 year: 2011 end-page: 15239 ident: CR128 article-title: Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204748u – year: 2018 ident: CR154 publication-title: Single-atom catalysis: a new field that learns from tradition – volume: 254 start-page: 1471 year: 1991 end-page: 1477 ident: CR67 article-title: The atom economy—a search for synthetic efficiency publication-title: Science – volume: 33 start-page: 1641 year: 1995 end-page: 1653 ident: CR187 article-title: Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis publication-title: Carbon – ident: CR7 – volume: 30 start-page: 432 year: 2014 end-page: 439 ident: CR69 article-title: Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4(-) anions on Pt and Pt–Co alloy in HClO solutions publication-title: Langmuir doi: 10.1021/la404188p – volume: 134 start-page: 19528 year: 2012 end-page: 19531 ident: CR177 article-title: Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer publication-title: J. Am. Chem. Soc. – volume: 298 start-page: 70 year: 2019 end-page: 79 ident: CR164 article-title: Cobalt—iron phthalocyanine supported on carbide—derived carbon as an excellent oxygen reduction reaction catalyst for microbial fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.056 – volume: 105 start-page: 214 year: 2016 end-page: 223 ident: CR17 article-title: Theoretical insights on the reaction pathways for oxygen reduction reaction on phosphorus doped graphene publication-title: Carbon doi: 10.1016/j.carbon.2016.04.033 – volume: 116 start-page: 5827 year: 2012 end-page: 5834 ident: CR109 article-title: Oxygen reduction reaction activity of la-based perovskite oxides in alkaline medium: a thin-film rotating ring-disk electrode study publication-title: J. Phys. Chem. C doi: 10.1021/jp211946n – volume: 9 start-page: 12496 year: 2015 end-page: 12505 ident: CR180 article-title: Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity publication-title: ACS Nano – volume: 40 start-page: 9713 year: 2015 end-page: 9722 ident: CR90 article-title: A Co/metal-organic-framework bifunctional electrocatalyst: the effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.06.027 – volume: 3 start-page: 169 year: 2010 end-page: 180 ident: CR184 article-title: Metal-free heterogeneous catalysis for sustainable chemistry publication-title: Chemsuschem – volume: 143 start-page: 291 year: 2014 end-page: 296 ident: CR195 article-title: Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reaction in alkaline media publication-title: Electrochim. Acta – volume: 5 start-page: 5333 year: 2012 end-page: 5339 ident: CR89 article-title: Non-precious Co O nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01431e – volume: 10 start-page: 444 year: 2015 end-page: 452 ident: CR30 article-title: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.48 – volume: 324 start-page: 71 year: 2009 end-page: 74 ident: CR24 article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells publication-title: Science – year: 2017 ident: CR99 article-title: Self-assembly of spinel nanocrystals into mesoporous spheres as bifunctionally active oxygen reduction and evolution electrocatalysts publication-title: Chemsuschem doi: 10.1002/cssc.201700369 – volume: 44 start-page: 1610 year: 2019 end-page: 1619 ident: CR104 article-title: Spinel CoFe O supported by three dimensional graphene as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reaction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.11.120 – volume: 57 start-page: 2963 year: 2018 end-page: 2966 ident: CR47 article-title: Core–shell structuring of pure metallic aerogels towards highly efficient platinum utilization for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 11756 year: 2011 end-page: 11760 ident: CR200 article-title: Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen publication-title: Angew. Chem. Int. Ed. – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: CR64 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B – volume: 255 start-page: 242 year: 2014 end-page: 250 ident: CR37 article-title: Kinetics of oxygen reduction reaction on three different Pt surfaces of Pt/C catalyst analyzed by rotating ring-disk electrode in acidic solution publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.042 – volume: 49 start-page: 3022 year: 2013 end-page: 3024 ident: CR179 article-title: Ion-exchanged route synthesis of Fe N–N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst publication-title: Chem. Commun. doi: 10.1039/c3cc40971f – volume: 22 start-page: 390 year: 2012 end-page: 395 ident: CR196 article-title: Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells publication-title: J. Mater. Chem. – volume: 195 start-page: 1271 year: 2010 end-page: 1291 ident: CR118 article-title: A review on air cathodes for zinc–air fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.08.100 – volume: 246 start-page: 643 year: 2017 end-page: 653 ident: CR92 article-title: Further insights into the role of carbon in manganese oxide/carbon composites in the oxygen reduction reaction in alkaline media publication-title: Electrochim. Acta – volume: 201 start-page: 1212 year: 1964 end-page: 1213 ident: CR163 article-title: A new fuel cell cathode catalyst publication-title: Nature – volume: 686 start-page: 467 year: 2016 end-page: 478 ident: CR21 article-title: Three-dimensional hierarchical meso/macroporous Fe/Co-nitrogen-doped carbon encapsulated FeCo alloy nanoparticles prepared without any template or surfactant: high-performance bifunctional oxygen electrodes publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.06.060 – volume: 48 start-page: 3637 year: 2010 end-page: 3639 ident: CR28 article-title: The effect of phosphorus in nitrogen-containing carbon nanostructures on oxygen reduction in PEM fuel cells publication-title: Carbon doi: 10.1016/j.carbon.2010.05.022 – volume: 348 start-page: 416 year: 2018 end-page: 437 ident: CR126 article-title: Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal–air battery oxygen reduction and evolution reactions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.208 – volume: 9 start-page: 7641 year: 2017 end-page: 7649 ident: CR127 article-title: The role of iron nitrides in the Fe–N–C catalysis system towards the oxygen reduction reaction publication-title: Nanoscale – volume: 25 start-page: 4932 year: 2013 end-page: 4937 ident: CR192 article-title: Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries publication-title: Adv. Mater. – volume: 84 start-page: 133 year: 2016 end-page: 137 ident: CR13 article-title: Oxygen reduction reaction activity of carbon-supported Pt–Fe, Pt–Co, and Pt–Ni alloys with stabilized Pt-skin layers publication-title: Electrochemistry doi: 10.5796/electrochemistry.84.133 – volume: 4 start-page: 18723 year: 2016 end-page: 18729 ident: CR149 article-title: FeP embedded in N, P dual-doped porous carbon nanosheets: an efficient and durable bifunctional catalyst for oxygen reduction and evolution reactions publication-title: J. Mater. Chem. A doi: 10.1039/c6ta08363c – volume: 196 start-page: 199 year: 2016 end-page: 206 ident: CR45 article-title: High-performance PtCux@Pt core–shell nanoparticles decorated with nanoporous Pt surfaces for oxygen reduction reaction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.05.028 – volume: 9 start-page: 207 year: 2018 end-page: 213 ident: CR162 article-title: Electrocatalytic oxygen reduction on transition metal macrocyclic complexes for anion exchange membrane fuel cell application publication-title: Curr. Opin. Electrochem. – volume: 12 start-page: 6398 year: 2016 end-page: 6406 ident: CR20 article-title: Sustainable hydrothermal carbonization synthesis of iron/nitrogen-doped carbon nanofiber aerogels as electrocatalysts for oxygen reduction publication-title: Small doi: 10.1002/smll.201602334 – volume: 46 start-page: 7492 year: 2010 end-page: 7494 ident: CR131 article-title: Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C N template publication-title: Chem. Commun. doi: 10.1039/c0cc02048f – volume: 55 start-page: 14510 year: 2016 end-page: 14521 ident: CR169 article-title: Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604311 – volume: 19 start-page: 28781 year: 2017 end-page: 28787 ident: CR81 article-title: Thermal evolution of Mn O nanofibres as catalysts for the oxygen reduction reaction publication-title: Phys. Chem. Chem. Phys. – volume: 188 start-page: 286 year: 2016 end-page: 293 ident: CR98 article-title: Comparison of the spinels Co O and NiCo O as bifunctional oxygen catalysts in alkaline media publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.10.020 – volume: 8 start-page: 1580 year: 2016 end-page: 1587 ident: CR29 article-title: A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer publication-title: Nanoscale doi: 10.1039/c5nr06749a – volume: 3 start-page: e1601705 year: 2017 ident: CR52 article-title: Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires publication-title: Sci. Adv. – volume: 35 start-page: 219 year: 2017 end-page: 225 ident: CR76 article-title: Sonochemical preparation of stable porous MnO and its application as an efficient electrocatalyst for oxygen reduction reaction publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.09.021 – volume: 165 start-page: F24 year: 2018 end-page: F31 ident: CR166 article-title: Three-dimensional graphene-supported cobalt phthalocyanine as advanced electrocatalysts for oxygen reduction reaction publication-title: J. Electrochem. Soc. doi: 10.1149/2.0521802jes – year: 2018 ident: CR165 article-title: Two-dimensional closely packed amide polyphthalocyanine iron absorbed on Vulcan XC-72 as an efficient electrocatalyst for oxygen reduction reaction publication-title: Catal. Today doi: 10.1016/j.cattod.2018.01.029 – volume: 3 start-page: 2863 year: 2012 end-page: 2870 ident: CR33 article-title: Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3011833 – volume: 110 start-page: 847 year: 1963 end-page: 849 ident: CR117 article-title: Tungsten, titanium, and tantalum carbides and titanium nitrides as electrodes in redox systems publication-title: J. Electrochem. Soc. – volume: 5 start-page: 1245 year: 2015 end-page: 1253 ident: CR51 article-title: Insights into the oxygen reduction reaction activity of Pt/C and PtCu/C catalysts publication-title: ACS Catal. doi: 10.1021/cs501762g – volume: 27 start-page: 185 year: 2016 end-page: 195 ident: CR22 article-title: Mn O -decorated Co O nanoparticles supported on graphene oxide: dual electrocatalyst system for oxygen reduction reaction in alkaline medium publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.07.007 – volume: 43 start-page: 5124 year: 2018 end-page: 5132 ident: CR208 article-title: Synthesis of porous nitrogen and sulfur co-doped carbon beehive in a high-melting-point molten salt medium for improved catalytic activity toward oxygen reduction reaction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.01.095 – volume: 115 start-page: 4823 year: 2015 end-page: 4892 ident: CR183 article-title: Metal-free catalysts for oxygen reduction reaction publication-title: Chem. Rev. doi: 10.1021/cr5003563 – volume: 13 start-page: 1700099 year: 2017 ident: CR123 article-title: Ni–Fe nitride nanoplates on nitrogen-doped graphene as a synergistic catalyst for reversible oxygen evolution reaction and rechargeable Zn–Air battery publication-title: Small – volume: 8 start-page: 12798 year: 2016 end-page: 12803 ident: CR140 article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02352 – volume: 1 start-page: 1192 year: 2016 end-page: 1198 ident: CR143 article-title: Low overpotential water splitting using cobalt-cobalt phosphide nanoparticles supported on nickel foam publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00532 – volume: 82 start-page: 562 year: 2015 end-page: 571 ident: CR191 article-title: Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction publication-title: Carbon doi: 10.1016/j.carbon.2014.11.008 – volume: 8 start-page: 32307 year: 2016 end-page: 32316 ident: CR18 article-title: Biomass-derived porous Fe C/tungsten carbide/graphitic carbon nanocomposite for efficient electrocatalysis of oxygen reduction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10804 – ident: CR3 – volume: 16 start-page: 1719 year: 2016 end-page: 1725 ident: CR15 article-title: Rh-doped Pt–Ni octahedral nanoparticles: understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04636 – volume: 9 start-page: 8108 year: 2015 end-page: 8115 ident: CR147 article-title: Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction publication-title: ACS Nano – volume: 53 start-page: 1404 year: 2018 end-page: 1413 ident: CR210 article-title: The key roles of trace iron for nitrogen, sulfur dual-doped carbon nanospheres as high efficient oxygen reduction catalyst publication-title: J. Mater. Sci. – volume: 107 start-page: 907 year: 2016 end-page: 916 ident: CR11 article-title: Yolk-shell N/P/B ternary-doped biocarbon derived from yeast cells for enhanced oxygen reduction reaction publication-title: Carbon doi: 10.1016/j.carbon.2016.06.102 – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: CR150 article-title: Single-atom catalysis of CO oxidation using Pt /FeO publication-title: Nat. Chem. – volume: 135 start-page: 9267 year: 2013 end-page: 9270 ident: CR136 article-title: Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403440e – volume: 132 start-page: 1754 year: 2010 end-page: 1755 ident: CR175 article-title: Improved performance of proton exchange membrane fuel cells with p-toluenesulfonic acid-doped Co-PPy/C as cathode electrocatalyst publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 241 issue: 3 year: 2007 end-page: 247 ident: CR50 article-title: Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces publication-title: Nat. Mater. doi: 10.1038/nmat1840 – volume: 193 start-page: 112 year: 2017 end-page: 118 ident: CR112 article-title: Partial oxidation of methane over Ni based catalyst derived from order mesoporous LaNiO perovskite prepared by modified nanocasting method publication-title: Fuel doi: 10.1016/j.fuel.2016.12.033 – volume: 20 start-page: 202 year: 2016 end-page: 211 ident: CR14 article-title: Pt Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.12.014 – volume: 66 start-page: 619 year: 2016 end-page: 630 ident: CR113 article-title: Enhancement of nitric oxide decomposition efficiency achieved with lanthanum-based perovskite-type catalyst publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10962247.2016.1158133 – volume: 1 start-page: 552 year: 2009 end-page: 556 ident: CR65 article-title: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts publication-title: Nat. Chem. doi: 10.1038/nchem.367 – volume: 6 start-page: 23366 year: 2018 end-page: 23377 ident: CR86 article-title: Palladium single atoms supported by interwoven carbon nanotube and manganese oxide nanowire networks for enhanced electrocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/c8ta09034c – year: 2014 ident: CR71 publication-title: Non-noble metal Catalysts for Oxygen Reduction – volume: 114 start-page: 18159 year: 2010 end-page: 18166 ident: CR120 article-title: Theoretical and experimental studies on the relationship between the structures of molybdenum nitrides and their catalytic activities toward the oxygen reduction reaction publication-title: J. Phys. Chem. C – volume: 134 start-page: 9082 year: 2012 end-page: 9085 ident: CR94 article-title: 3D nitrogen-doped graphene aerogel-supported Fe O nanoparticles as efficient electrocatalysts for the oxygen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 7337 year: 2015 end-page: 7347 ident: CR142 article-title: Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503666 – volume: 1 start-page: 397 year: 2009 end-page: 402 ident: CR41 article-title: Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions publication-title: Nat. Chem. doi: 10.1038/nchem.288 – volume: 30 start-page: 1705407 year: 2018 ident: CR102 article-title: Superexchange effects on oxygen reduction activity of edge-sharing [Co Mn O ] octahedra in spinel oxide publication-title: Adv. Mater. – volume: 6 start-page: 1801623 year: 2019 ident: CR181 article-title: Sustainable and atomically dispersed iron electrocatalysts derived from nitrogen-and phosphorus-modified woody biomass for efficient oxygen reduction publication-title: Adv. Mater. Interfaces – volume: 129 start-page: 7227 year: 2017 end-page: 7231 ident: CR93 article-title: A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B, N-decorated graphene publication-title: Angew. Chem. – volume: 323 start-page: 760 year: 2009 end-page: 764 ident: CR186 article-title: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction publication-title: Science – volume: 7 start-page: 103 year: 2016 end-page: 109 ident: CR144 article-title: Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.6b02666 – volume: 215 start-page: 388 year: 2016 end-page: 397 ident: CR10 article-title: Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.090 – volume: 44 start-page: 2168 year: 2015 end-page: 2201 ident: CR56 article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction publication-title: Chem. Soc. Rev. – volume: 51 start-page: 4209 year: 2012 end-page: 4212 ident: CR201 article-title: BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 111 start-page: 1434 year: 2007 end-page: 1443 ident: CR82 article-title: Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism publication-title: J. Phys. Chem. C – volume: 344 start-page: 616 year: 2014 end-page: 619 ident: CR151 article-title: Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen publication-title: Science – volume: 191 start-page: 452 year: 2016 end-page: 461 ident: CR77 article-title: Targeted design of α-MnO based catalysts for oxygen reduction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.01.070 – volume: 288 start-page: 701 year: 2016 end-page: 710 ident: CR115 article-title: Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.12.057 – volume: 121 start-page: 17682 year: 2017 end-page: 17692 ident: CR83 article-title: Redox processes of manganese oxide in catalyzing oxygen evolution and reduction: an in situ soft X-ray absorption spectroscopy study publication-title: J. Phys. Chem. C – volume: 41 start-page: 2172 year: 2012 end-page: 2192 ident: CR38 article-title: Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15228a – volume: 11 start-page: 6930 year: 2017 end-page: 6941 ident: CR158 article-title: Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium publication-title: ACS Nano – volume: 427 start-page: 626 year: 2018 end-page: 634 ident: CR204 article-title: Onion-derived N, S self-doped carbon materials as highly efficient metal-free electrocatalysts for the oxygen reduction reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.222 – volume: 55 start-page: 1340 year: 2016 end-page: 1344 ident: CR100 article-title: A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 394 year: 2012 end-page: 400 ident: CR174 article-title: An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.72 – volume: 134 start-page: 16127 year: 2012 end-page: 16130 ident: CR190 article-title: Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1603423 year: 2017 ident: CR48 article-title: Tuning surface structure and strain in Pd–Pt core–shell nanocrystals for enhanced electrocatalytic oxygen reduction publication-title: Small – volume: 57 start-page: 2800 year: 2018 end-page: 2805 ident: CR53 article-title: Elucidation of the oxygen reduction volcano in alkaline media using a copper–platinum (111) alloy publication-title: Angew. Chem. Int. Ed. – volume: 189 start-page: 1 year: 2016 end-page: 11 ident: CR206 article-title: A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.02.009 – volume: 25 start-page: 856 year: 2013 end-page: 861 ident: CR178 article-title: Transition metal ion-chelating ordered mesoporous carbons as noble metal-free fuel cell catalysts publication-title: Chem. Mater. doi: 10.1021/cm303357p – volume: 10 start-page: 1449 year: 2017 end-page: 1470 ident: CR168 article-title: Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: from mechanistic insights to structural optimization publication-title: Nano Res. doi: 10.1007/s12274-016-1400-7 – volume: 262 start-page: 326 year: 2018 end-page: 336 ident: CR72 article-title: Progress in nanostructured (Fe or Co)/N/C non-noble metal electrocatalysts for fuel cell oxygen reduction reaction publication-title: Electrochim. Acta – volume: 1 start-page: 2159 year: 2016 end-page: 2162 ident: CR23 article-title: Spinel MnCo O /N, S-doped carbon nanotubes as an efficient oxygen reduction reaction electrocatalyst publication-title: ChemistrySelect doi: 10.1002/slct.201600401 – volume: 177 start-page: 296 year: 2008 end-page: 302 ident: CR121 article-title: Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.11.050 – volume: 237 start-page: 61 year: 2017 end-page: 68 ident: CR95 article-title: Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium publication-title: Electrochim. Acta – volume: 11 start-page: 601 year: 2016 end-page: 625 ident: CR91 article-title: Transition metal (Fe Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media publication-title: Nano Today doi: 10.1016/j.nantod.2016.09.001 – volume: 256 start-page: 232 year: 2017 end-page: 240 ident: CR80 article-title: Uniformly electrodeposited α-MnO film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction publication-title: Electrochim. Acta – volume: 49 start-page: 6656 year: 2013 end-page: 6658 ident: CR135 article-title: Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction publication-title: Chem. Commun. doi: 10.1039/c3cc43107j – volume: 45 start-page: 1529 year: 2016 end-page: 1541 ident: CR134 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/c5cs00434a – volume: 249 start-page: 306 year: 2019 end-page: 315 ident: CR182 article-title: Atomically dispersed Fe–N–P–C complex electrocatalysts for superior oxygen reduction publication-title: Appl. Catal. B-Environ – volume: 161 start-page: F10 year: 2014 end-page: F15 ident: CR70 article-title: Transient platinum oxide formation and oxygen reduction on carbon-supported platinum and platinum–cobalt alloy electrocatalysts publication-title: J. Electrochem. Soc. – volume: 125 start-page: 14063 year: 2013 end-page: 14066 ident: CR209 article-title: “Metal-free” catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities publication-title: Angew. Chem. – volume: 12 start-page: 143 year: 2017 end-page: 146 ident: CR8 article-title: Preparation and properties of a new ceramet inert anode for aluminum electrolysis publication-title: J. Adv. Microsc. Res. – volume: 7 start-page: 3810 year: 2017 end-page: 3817 ident: CR49 article-title: High-performance core-shell catalyst with nitride nanoparticles as a core: well-defined titanium copper nitride coated with an atomic Pt layer for the oxygen reduction reaction publication-title: ACS Catal. – volume: 8 start-page: 15938 year: 2017 ident: CR159 article-title: High performance platinum single atom electrocatalyst for oxygen reduction reaction publication-title: Nat. Commun. – volume: 9 start-page: 207 year: 2016 end-page: 213 ident: CR75 article-title: Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts publication-title: Nano Res. doi: 10.1007/s12274-016-0982-4 – volume: 1 start-page: 1 year: 2018 end-page: 34 ident: CR5 article-title: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0002-3 – volume: 26 start-page: 4067 year: 2016 end-page: 4077 ident: CR145 article-title: Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505509 – volume: 8 start-page: 1701476 year: 2018 ident: CR155 article-title: Highly durable platinum single-atom alloy catalyst for electrochemical reactions publication-title: Adv. Energy Mater. – volume: 4 start-page: 3167 year: 2011 end-page: 3192 ident: CR130 article-title: A review on non-precious metal electrocatalysts for PEM fuel cells publication-title: Energy Environ. Sci. – volume: 22 start-page: 898 year: 2010 end-page: 905 ident: CR79 article-title: MnO -based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media publication-title: Chem. Mater. doi: 10.1021/cm901698s – volume: 40 start-page: 6022 year: 2016 end-page: 6029 ident: CR27 article-title: Boron, nitrogen, and phosphorous ternary doped graphene aerogel with hierarchically porous structures as highly efficient electrocatalysts for oxygen reduction reaction publication-title: New J. Chem. doi: 10.1039/c5nj03390j – volume: 3 start-page: e1601705 year: 2017 ident: 52_CR52 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601705 – volume: 22 start-page: 390 year: 2012 ident: 52_CR196 publication-title: J. Mater. Chem. doi: 10.1039/C1JM14694G – volume: 42 start-page: 202 year: 2017 ident: 52_CR124 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.12.068 – volume: 8 start-page: 32307 year: 2016 ident: 52_CR18 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10804 – volume: 69 start-page: 401 year: 2017 ident: 52_CR57 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.09.135 – volume: 50 start-page: 11756 year: 2011 ident: 52_CR200 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201105204 – volume: 5 start-page: 5333 year: 2012 ident: 52_CR89 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01431e – volume: 5 start-page: 1808 year: 2017 ident: 52_CR43 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08580F – volume: 165 start-page: F24 year: 2018 ident: 52_CR166 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0521802jes – volume: 3 start-page: 271 year: 1973 ident: 52_CR74 publication-title: J. Appl. Electrochem. doi: 10.1007/BF00613033 – volume: 191 start-page: 452 year: 2016 ident: 52_CR77 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.01.070 – volume: 7 start-page: 3676 year: 2017 ident: 52_CR141 publication-title: Catal. Sci. Technol. doi: 10.1039/c7cy00715a – volume: 5 start-page: 1500985 year: 2015 ident: 52_CR132 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500985 – volume: 47 start-page: 183 year: 2017 ident: 52_CR96 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-016-1027-0 – volume: 108 start-page: 17886 year: 2004 ident: 52_CR64 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 5 start-page: 6744 year: 2012 ident: 52_CR63 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03590a – volume: 195 start-page: 4731 year: 2010 ident: 52_CR167 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.01.056 – volume: 5 start-page: 92893 year: 2015 ident: 52_CR148 publication-title: RSC Adv. doi: 10.1039/c5ra21385a – volume: 45 start-page: 1847 year: 2007 ident: 52_CR199 publication-title: Carbon doi: 10.1016/j.carbon.2007.04.031 – volume: 144 start-page: 798 year: 2019 ident: 52_CR172 publication-title: Carbon doi: 10.1016/j.carbon.2018.12.066 – volume: 262 start-page: 326 year: 2018 ident: 52_CR72 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.046 – volume: 288 start-page: 701 year: 2016 ident: 52_CR115 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.12.057 – volume: 27 start-page: 185 year: 2016 ident: 52_CR22 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.07.007 – volume: 8 start-page: 15938 year: 2017 ident: 52_CR159 publication-title: Nat. Commun. doi: 10.1038/ncomms15938 – volume: 256 start-page: 232 year: 2017 ident: 52_CR80 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.057 – volume: 8 start-page: 707 year: 2006 ident: 52_CR119 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.02.020 – volume: 35 start-page: 2647 year: 2011 ident: 52_CR185 publication-title: New J. Chem. doi: 10.1039/c1nj20612e – volume: 177 start-page: 296 year: 2008 ident: 52_CR121 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.11.050 – volume: 45 start-page: 1529 year: 2016 ident: 52_CR134 publication-title: Chem. Soc. Rev. doi: 10.1039/c5cs00434a – volume: 115 start-page: 3433 year: 2015 ident: 52_CR59 publication-title: Chem. Rev. doi: 10.1021/cr500519c – volume: 193 start-page: 112 year: 2017 ident: 52_CR112 publication-title: Fuel doi: 10.1016/j.fuel.2016.12.033 – volume: 132 start-page: 1754 year: 2010 ident: 52_CR175 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909537g – volume: 10 start-page: 946 year: 2018 ident: 52_CR153 publication-title: ChemCatChem doi: 10.1002/cctc.201701777 – volume: 374 start-page: 43 year: 2019 ident: 52_CR173 publication-title: J. Catal. doi: 10.1016/j.jcat.2019.04.028 – volume: 163 start-page: F1124 year: 2016 ident: 52_CR116 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1311609jes – volume: 22 start-page: 898 year: 2010 ident: 52_CR79 publication-title: Chem. Mater. doi: 10.1021/cm901698s – volume: 35 start-page: 219 year: 2017 ident: 52_CR76 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.09.021 – volume: 24 start-page: 2930 year: 2014 ident: 52_CR125 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303902 – volume: 50 start-page: 7132 year: 2011 ident: 52_CR197 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101287 – volume: 101 start-page: 1981 year: 2001 ident: 52_CR108 publication-title: Chem. Rev. doi: 10.1021/cr980129f – ident: 52_CR3 – year: 2016 ident: 52_CR46 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.05.024 – volume: 115 start-page: 4823 year: 2015 ident: 52_CR183 publication-title: Chem. Rev. doi: 10.1021/cr5003563 – volume: 3 start-page: 169 year: 2010 ident: 52_CR184 publication-title: Chemsuschem doi: 10.1002/cssc.200900180 – volume: 49 start-page: 3022 year: 2013 ident: 52_CR179 publication-title: Chem. Commun. doi: 10.1039/c3cc40971f – volume: 3 start-page: 511 year: 2016 ident: 52_CR107 publication-title: ChemElectroChem doi: 10.1002/celc.201500382 – volume: 49 start-page: 6656 year: 2013 ident: 52_CR135 publication-title: Chem. Commun. doi: 10.1039/c3cc43107j – volume: 84 start-page: 133 year: 2016 ident: 52_CR13 publication-title: Electrochemistry doi: 10.5796/electrochemistry.84.133 – volume: 45 start-page: 517 year: 2016 ident: 52_CR161 publication-title: Chem. Soc. Rev. doi: 10.1039/c5cs00670h – volume: 10 start-page: 1186 year: 2017 ident: 52_CR193 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03446B – volume: 22 start-page: 12107 year: 2012 ident: 52_CR32 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31079a – volume: 15 start-page: 1802 year: 2013 ident: 52_CR25 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp44147k – volume: 9 start-page: 6259 year: 2017 ident: 52_CR122 publication-title: Nanoscale doi: 10.1039/C7NR02264F – volume: 9 start-page: 207 year: 2018 ident: 52_CR162 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.04.001 – volume: 26 start-page: 5893 year: 2016 ident: 52_CR207 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602158 – volume: 6 start-page: 23366 year: 2018 ident: 52_CR86 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta09034c – volume: 21 start-page: 103 year: 2016 ident: 52_CR26 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-016-3346-9 – volume: 43 start-page: 7746 year: 2014 ident: 52_CR73 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60248f – volume: 55 start-page: 1340 year: 2016 ident: 52_CR100 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201508809 – volume: 3 start-page: 634 year: 2011 ident: 52_CR150 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 53 start-page: 1404 year: 2018 ident: 52_CR210 publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1605-5 – volume: 196 start-page: 199 year: 2016 ident: 52_CR45 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.05.028 – volume: 25 start-page: 856 year: 2013 ident: 52_CR178 publication-title: Chem. Mater. doi: 10.1021/cm303357p – volume: 33 start-page: 1641 year: 1995 ident: 52_CR187 publication-title: Carbon doi: 10.1016/0008-6223(95)00154-6 – volume: 188 start-page: 286 year: 2016 ident: 52_CR98 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.10.020 – volume: 186 start-page: 173 year: 2016 ident: 52_CR114 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.12.052 – volume: 8 start-page: 1701345 year: 2018 ident: 52_CR157 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701345 – volume: 55 start-page: 2230 year: 2016 ident: 52_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510495 – volume: 57 start-page: 2800 year: 2018 ident: 52_CR53 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201711858 – volume: 3 start-page: 2863 year: 2012 ident: 52_CR33 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3011833 – volume: 129 start-page: 7227 year: 2017 ident: 52_CR93 publication-title: Angew. Chem. doi: 10.1002/ange.201702430 – volume: 4 start-page: 18723 year: 2016 ident: 52_CR149 publication-title: J. Mater. Chem. A doi: 10.1039/c6ta08363c – volume: 1 start-page: 105 year: 2001 ident: 52_CR61 publication-title: Fuel Cells doi: 10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9 – volume: 298 start-page: 70 year: 2019 ident: 52_CR164 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.056 – volume: 107 start-page: 907 year: 2016 ident: 52_CR11 publication-title: Carbon doi: 10.1016/j.carbon.2016.06.102 – volume: 7 start-page: 103 year: 2016 ident: 52_CR144 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02666 – volume: 134 start-page: 19528 year: 2012 ident: 52_CR177 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3085934 – volume: 82 start-page: 3279 year: 1999 ident: 52_CR103 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb02241.x – volume: 1 start-page: 1 year: 2018 ident: 52_CR5 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0002-3 – volume: 48 start-page: 3637 year: 2010 ident: 52_CR28 publication-title: Carbon doi: 10.1016/j.carbon.2010.05.022 – volume: 14 start-page: 1515 year: 2012 ident: 52_CR203 publication-title: Green Chem. doi: 10.1039/c2gc35309a – ident: 52_CR7 – volume: 44 start-page: 2168 year: 2015 ident: 52_CR56 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00484A – volume: 110 start-page: 847 year: 1963 ident: 52_CR117 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2425884 – volume: 20 start-page: 3106 year: 2014 ident: 52_CR31 publication-title: Chemistry doi: 10.1002/chem.201304561 – volume: 124 start-page: 11664 year: 2012 ident: 52_CR202 publication-title: Angew. Chem. doi: 10.1002/ange.201206720 – year: 2017 ident: 52_CR97 publication-title: Adv. Mater. doi: 10.1002/adma.201606800 – volume: 57 start-page: 2963 year: 2018 ident: 52_CR47 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710997 – volume: 161 start-page: F10 year: 2014 ident: 52_CR70 publication-title: J. Electrochem. Soc. doi: 10.1149/2.018401jes – volume: 9 start-page: 8108 year: 2015 ident: 52_CR147 publication-title: ACS Nano doi: 10.1021/acsnano.5b02191 – volume: 12 start-page: 6398 year: 2016 ident: 52_CR20 publication-title: Small doi: 10.1002/smll.201602334 – year: 2019 ident: 52_CR84 publication-title: Catal. Today doi: 10.1016/j.cattod.2019.04.055 – volume: 6 start-page: 1801623 year: 2019 ident: 52_CR181 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201801623 – volume: 7 start-page: 3810 year: 2017 ident: 52_CR49 publication-title: ACS Catal. doi: 10.1021/acscatal.7b00366 – volume: 11 start-page: 6930 year: 2017 ident: 52_CR158 publication-title: ACS Nano doi: 10.1021/acsnano.7b02148 – volume: 323 start-page: 760 year: 2009 ident: 52_CR186 publication-title: Science doi: 10.1126/science.1168049 – volume: 257 start-page: 1946 year: 2013 ident: 52_CR129 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2012.12.012 – volume: 3 start-page: 154 year: 2018 ident: 52_CR55 publication-title: ACS Omega doi: 10.1021/acsomega.7b01793 – volume: 32 start-page: 353 year: 2017 ident: 52_CR36 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.056 – volume: 9 start-page: 12496 year: 2015 ident: 52_CR180 publication-title: ACS Nano doi: 10.1021/acsnano.5b05984 – volume: 6 start-page: 1600794 year: 2016 ident: 52_CR19 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600794 – volume: 12 start-page: 143 year: 2017 ident: 52_CR8 publication-title: J. Adv. Microsc. Res. doi: 10.1166/jamr.2017.1333 – volume: 201 start-page: 1212 year: 1964 ident: 52_CR163 publication-title: Nature doi: 10.1038/2011212a0 – volume: 134 start-page: 19508 year: 2012 ident: 52_CR62 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307951y – volume: 25 start-page: 4932 year: 2013 ident: 52_CR192 publication-title: Adv. Mater. doi: 10.1002/adma.201301870 – volume: 55 start-page: 14510 year: 2016 ident: 52_CR169 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604311 – volume: 348 start-page: 416 year: 2018 ident: 52_CR126 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.208 – volume: 43 start-page: 5124 year: 2018 ident: 52_CR208 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.01.095 – volume: 19 start-page: 28781 year: 2017 ident: 52_CR81 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP05091G – volume: 350 start-page: 911 year: 2015 ident: 52_CR4 publication-title: Science doi: 10.1126/science.aac8033 – volume: 8 start-page: 1580 year: 2016 ident: 52_CR29 publication-title: Nanoscale doi: 10.1039/c5nr06749a – volume: 1 start-page: 1192 year: 2016 ident: 52_CR143 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00532 – volume: 8 start-page: 12798 year: 2016 ident: 52_CR140 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02352 – volume: 6 start-page: 241 issue: 3 year: 2007 ident: 52_CR50 publication-title: Nat. Mater. doi: 10.1038/nmat1840 – volume: 29 start-page: 4649 year: 2017 ident: 52_CR44 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01619 – volume: 48 start-page: 145 year: 2006 ident: 52_CR106 publication-title: Catal. Rev. doi: 10.1080/01614940600631348 – volume: 30 start-page: 432 year: 2014 ident: 52_CR69 publication-title: Langmuir doi: 10.1021/la404188p – volume: 30 start-page: 8270 year: 2018 ident: 52_CR88 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03681 – volume: 355 start-page: eaad4998 year: 2017 ident: 52_CR39 publication-title: Science doi: 10.1126/science.aad4998 – volume: 282 start-page: 183 year: 2011 ident: 52_CR35 publication-title: J. Catal. doi: 10.1016/j.jcat.2011.06.015 – volume: 324 start-page: 71 year: 2009 ident: 52_CR24 publication-title: Science doi: 10.1126/science.1170051 – volume: 1 start-page: 2159 year: 2016 ident: 52_CR23 publication-title: ChemistrySelect doi: 10.1002/slct.201600401 – volume: 8 start-page: 2071 year: 2018 ident: 52_CR54 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03972 – volume: 37 start-page: 181 year: 2009 ident: 52_CR1 publication-title: Energy Policy doi: 10.1016/j.enpol.2008.08.016 – volume: 2 start-page: 454 year: 2010 ident: 52_CR68 publication-title: Nat. Chem. doi: 10.1038/nchem.623 – volume: 44 start-page: 2132 year: 2005 ident: 52_CR42 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462335 – volume: 51 start-page: 4209 year: 2012 ident: 52_CR201 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201109257 – volume: 1 start-page: 552 year: 2009 ident: 52_CR65 publication-title: Nat. Chem. doi: 10.1038/nchem.367 – volume: 4 start-page: 3167 year: 2011 ident: 52_CR130 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00558d – volume: 109 start-page: 191 year: 2019 ident: 52_CR87 publication-title: Physica E doi: 10.1016/j.physe.2018.07.032 – volume: 44 start-page: 1610 year: 2019 ident: 52_CR104 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.11.120 – volume: 1 start-page: 324 year: 2018 ident: 52_CR6 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0013-0 – volume: 13 start-page: 1603423 year: 2017 ident: 52_CR48 publication-title: Small doi: 10.1002/smll.201603423 – volume: 113 start-page: 19732 year: 2009 ident: 52_CR60 publication-title: J. Phys. Chem. C doi: 10.1021/jp9076273 – volume: 196 start-page: 3673 year: 2011 ident: 52_CR176 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.12.047 – volume: 10 start-page: 444 year: 2015 ident: 52_CR30 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.48 – volume: 6 start-page: 1600087 year: 2016 ident: 52_CR133 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600087 – volume: 53 start-page: 5427 year: 2014 ident: 52_CR137 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402646 – volume: 8 start-page: 1701476 year: 2018 ident: 52_CR155 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701476 – volume: 41 start-page: 2172 year: 2012 ident: 52_CR38 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15228a – volume: 215 start-page: 388 year: 2016 ident: 52_CR10 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.090 – volume: 1 start-page: e1500462 year: 2015 ident: 52_CR152 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500462 – volume: 134 start-page: 16127 year: 2012 ident: 52_CR190 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306376s – volume: 7 start-page: 576 year: 2014 ident: 52_CR34 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43463j – volume: 324 start-page: 1302 year: 2009 ident: 52_CR40 publication-title: Science doi: 10.1126/science.1170377 – volume: 102 start-page: 216 year: 2016 ident: 52_CR2 publication-title: Energy doi: 10.1016/j.energy.2016.02.103 – volume: 15 start-page: 2459 year: 2013 ident: 52_CR194 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp43541a – volume: 195 start-page: 1271 year: 2010 ident: 52_CR118 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.08.100 – volume: 40 start-page: 6022 year: 2016 ident: 52_CR27 publication-title: New J. Chem. doi: 10.1039/c5nj03390j – volume: 5 start-page: 1245 year: 2015 ident: 52_CR51 publication-title: ACS Catal. doi: 10.1021/cs501762g – volume: 11 start-page: 104 year: 2018 ident: 52_CR160 publication-title: Chemsuschem doi: 10.1002/cssc.201701306 – volume: 116 start-page: 3594 year: 2016 ident: 52_CR58 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00462 – volume: 15 start-page: 7616 year: 2015 ident: 52_CR146 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03446 – volume: 8 start-page: 2158 year: 2016 ident: 52_CR138 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10727 – year: 2017 ident: 52_CR99 publication-title: Chemsuschem doi: 10.1002/cssc.201700369 – volume: 116 start-page: 5827 year: 2012 ident: 52_CR109 publication-title: J. Phys. Chem. C doi: 10.1021/jp211946n – volume: 568 start-page: 311 year: 2019 ident: 52_CR85 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2019.02.030 – volume: 10 start-page: 1449 year: 2017 ident: 52_CR168 publication-title: Nano Res. doi: 10.1007/s12274-016-1400-7 – volume: 8 start-page: 3244 year: 2016 ident: 52_CR139 publication-title: Nanoscale doi: 10.1039/c5nr08763e – volume: 121 start-page: 17682 year: 2017 ident: 52_CR83 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b05592 – volume: 114 start-page: 18159 year: 2010 ident: 52_CR120 publication-title: J. Phys. Chem. C doi: 10.1021/jp102284s – year: 2019 ident: 52_CR171 publication-title: Energy Technol. doi: 10.1002/ente.201900123 – volume: 114 start-page: 619 year: 2017 ident: 52_CR156 publication-title: Carbon doi: 10.1016/j.carbon.2016.12.061 – volume: 82 start-page: 562 year: 2015 ident: 52_CR191 publication-title: Carbon doi: 10.1016/j.carbon.2014.11.008 – volume: 40 start-page: 9713 year: 2015 ident: 52_CR90 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.06.027 – year: 2018 ident: 52_CR165 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.01.029 – volume: 237 start-page: 61 year: 2017 ident: 52_CR95 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.088 – volume: 143 start-page: 291 year: 2014 ident: 52_CR195 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.08.001 – volume: 134 start-page: 9082 year: 2012 ident: 52_CR94 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3030565 – volume: 246 start-page: 643 year: 2017 ident: 52_CR92 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.017 – volume: 220 start-page: 427 year: 2016 ident: 52_CR9 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.108 – volume: 13 start-page: 1700099 year: 2017 ident: 52_CR123 publication-title: Small doi: 10.1002/smll.201700099 – volume: 255 start-page: 242 year: 2014 ident: 52_CR37 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.042 – volume: 25 start-page: 7337 year: 2015 ident: 52_CR142 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503666 – volume: 26 start-page: 4067 year: 2016 ident: 52_CR145 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505509 – volume: 62 start-page: 296 year: 2013 ident: 52_CR205 publication-title: Carbon doi: 10.1016/j.carbon.2013.05.067 – volume: 3 start-page: 546 year: 2011 ident: 52_CR110 publication-title: Nat. Chem. doi: 10.1038/nchem.1069 – volume-title: Single-atom catalysis: a new field that learns from tradition year: 2018 ident: 52_CR154 – volume-title: Non-noble metal Catalysts for Oxygen Reduction year: 2014 ident: 52_CR71 doi: 10.1002/9783527664900 – volume: 9 start-page: 207 year: 2016 ident: 52_CR75 publication-title: Nano Res. doi: 10.1007/s12274-016-0982-4 – volume: 4 start-page: 620 year: 2016 ident: 52_CR78 publication-title: J. Mater. Chem. A doi: 10.1039/c5ta07878d – volume: 16 start-page: 1719 year: 2016 ident: 52_CR15 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04636 – volume: 9 start-page: 7641 year: 2017 ident: 52_CR127 publication-title: Nanoscale doi: 10.1039/C7NR01925D – volume: 189 start-page: 1 year: 2016 ident: 52_CR206 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.02.009 – volume: 125 start-page: 14063 year: 2013 ident: 52_CR209 publication-title: Angew. Chem. doi: 10.1002/ange.201309171 – volume: 254 start-page: 1471 year: 1991 ident: 52_CR67 publication-title: Science doi: 10.1126/science.1962206 – volume: 344 start-page: 616 year: 2014 ident: 52_CR151 publication-title: Science doi: 10.1126/science.1253150 – volume: 686 start-page: 467 year: 2016 ident: 52_CR21 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.06.060 – volume: 1 start-page: 339 year: 2018 ident: 52_CR170 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 11 start-page: 601 year: 2016 ident: 52_CR91 publication-title: Nano Today doi: 10.1016/j.nantod.2016.09.001 – volume: 7 start-page: 920 year: 2017 ident: 52_CR111 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.02.013 – volume: 111 start-page: 1434 year: 2007 ident: 52_CR82 publication-title: J. Phys. Chem. C doi: 10.1021/jp0647986 – volume: 133 start-page: 15236 year: 2011 ident: 52_CR128 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204748u – volume: 7 start-page: 2903 year: 2015 ident: 52_CR189 publication-title: ChemCatChem doi: 10.1002/cctc.201500148 – volume: 7 start-page: 394 year: 2012 ident: 52_CR174 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.72 – volume: 1 start-page: 397 year: 2009 ident: 52_CR41 publication-title: Nat. Chem. doi: 10.1038/nchem.288 – volume: 12 start-page: 2094 year: 2018 ident: 52_CR66 publication-title: ACS Nano doi: 10.1021/acsnano.8b00932 – volume: 135 start-page: 9267 year: 2013 ident: 52_CR136 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403440e – volume: 46 start-page: 7492 year: 2010 ident: 52_CR131 publication-title: Chem. Commun. doi: 10.1039/c0cc02048f – volume: 249 start-page: 306 year: 2019 ident: 52_CR182 publication-title: Appl. Catal. B-Environ doi: 10.1016/j.apcatb.2019.03.016 – volume: 20 start-page: 202 year: 2016 ident: 52_CR14 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.12.014 – volume: 30 start-page: 1705407 year: 2018 ident: 52_CR102 publication-title: Adv. Mater. doi: 10.1002/adma.201705407 – volume: 11 start-page: 2730 year: 2018 ident: 52_CR101 publication-title: Chemsuschem doi: 10.1002/cssc.201801070 – volume: 105 start-page: 214 year: 2016 ident: 52_CR17 publication-title: Carbon doi: 10.1016/j.carbon.2016.04.033 – volume: 44 start-page: 1491 year: 1998 ident: 52_CR105 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(98)00272-2 – volume: 66 start-page: 619 year: 2016 ident: 52_CR113 publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10962247.2016.1158133 – volume: 44 start-page: 3358 year: 2006 ident: 52_CR198 publication-title: Carbon doi: 10.1016/j.carbon.2006.08.022 – volume: 9 start-page: 398 year: 2017 ident: 52_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12547 – volume: 427 start-page: 626 year: 2018 ident: 52_CR204 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.222 – volume: 351 start-page: 361 year: 2016 ident: 52_CR188 publication-title: Science doi: 10.1126/science.aad0832 |
SSID | ssj0002315632 |
Score | 2.540648 |
SecondaryResourceType | review_article |
Snippet | Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems,... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 518 |
SubjectTerms | Catalysis Chemistry Chemistry and Materials Science Electrochemistry Industrial Chemistry/Chemical Engineering Renewable and Green Energy Review Article |
Title | Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications |
URI | https://link.springer.com/article/10.1007/s41918-019-00052-4 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfQifuLnyMGbFtMmaZPjVjaG4BRxsFtZmkQEqWIruP_el7QrTmTgrZSkh99L-r5_D6FLoqhmNCEB_B9d6MbqQEYafB4SzgkXhHLq-p3vJvF4ym5nfNbQ5LhemF_5-5uSgUPhyq1k4LNSAdtEXR7S2J3gNE7beArYKTz288giDh6RYEI2PTJ_f2ZVD60mQb1uGe2incYoxP1aintowxT7aCtdzmI7QM9g3YF2wA-umsqxfZf4pcD3XwsQP3507KsOX3iq2xTwsB5u42Mzi7IqMZim7cuGIgAPfdsf7v9IYR-i6Wj4lI6DZkRCkINjVAWSAbJGEak1p0ZxTZI8MoYJakOaaGvjXETKRCxWXIKmzmVieB5SRysnlaL0CHWKt8IcI2yEoHNiDRFWMqaZdBEOUOiWhqG1ETtB4RKwLG_4w90Yi9esZT72IGcAcuZBzmDPVbvnvWbPWLv6eimHrLlJ5Zrlp_9bfoa2Iyd_X4pyjjrVx6e5AIOiUj3U7Y8Gg0nPn6hvlErAwA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D_MifuK3OXjTYtokbXIcZWPqNkU22K0sbSKCVLEV3H_vS9oVJzLwVkLSw--lfd-_h9AlUTRjNCIe_B9t6MZkngwy8HmIPyNcEMqp7XcejsL-hN1N-bSmybG9ML_y9zcFA4fClltJz2WlPLaONmBN2PK9OIybeArYKTx088gCDh6RYELWPTJ_v2ZZDy0nQZ1u6W2jrdooxJ1KijtoTee7qB0vZrHtoWew7kA74EdbTWXZvgv8kuOHrzmIHz9Z9lWLLzxVbQq4Ww23cbGZeVEWGEzTZrGmCMBd1_aHOz9S2Pto0uuO475Xj0jwUnCMSk8yQFYrIrOMU614RqI00JoJanwaZcaEqQiUDliouARNncpI89SnllZOKkXpAWrlb7k-RFgLQWfEaCKMZCxj0kY4QKEb6vvGBOwI-QvAkrTmD7djLF6ThvnYgZwAyIkDOYEzV82Z94o9Y-Xu64UckvpLKlZsP_7f9gvU7o-Hg2RwO7o_QZuBvQuuLOUUtcqPT30GxkWpzt2t-gaz98Ix |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QX0Rr3g3D75pMW2SNnkcdWPe5hAHeytrk4ggddgK7t97knZlAxn4VkpSyslpz_X7DkKXJKWK0Yh48H-0qRujPBkoiHmIPyZcEMqpxTs_9cPekN2P-GgOxe-63WclyQrTYFma8vJmosxNA3xjEGbYJizpuVqVx1bRGkQqrlAbh3GTZQHvhYduSlnAIU4STMgaOfP3Yxat02Jp1Fmc7jbaql1F3K7Odget6HwXbcSzCW176A18PnhnPLA9VpYDvMDvOX7-mYJS4BfLyWqlDlcVeAF3qpE3LmMzLcoCg8Pa3KyJA3DHgQFxe66wvY-G3c5r3PPqwQleBuFS6UkG8tYpkUpxqlOuSJQFWjNBjU8jZUyYiSDVAQtTLsF-ZzLSPPOpJZuTaUrpAWrln7k-RFgLQcfEaCKMZEwxafMeYOYN9X1jAnaE_JnAkqxmFbfDLT6Shg_ZCTkBISdOyAnsuWr2TCpOjaWrr2fnkNTfV7Fk-fH_ll-g9cFtN3m86z-coM3AqoLrVTlFrfLrW5-Bx1Gm506pfgFUYcp4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progresses+in+Oxygen+Reduction+Reaction+Electrocatalysts+for+Electrochemical+Energy+Applications&rft.jtitle=Electrochemical+energy+reviews&rft.au=Li%2C+Yahao&rft.au=Li%2C+Qingyu&rft.au=Wang%2C+Hongqiang&rft.au=Zhang%2C+Lei&rft.date=2019-12-01&rft.pub=Springer+Singapore&rft.issn=2520-8489&rft.eissn=2520-8136&rft.volume=2&rft.issue=4&rft.spage=518&rft.epage=538&rft_id=info:doi/10.1007%2Fs41918-019-00052-4&rft.externalDocID=10_1007_s41918_019_00052_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8489&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8489&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8489&client=summon |