Nonlinear Model Algorithmic Control of a pH Neutralization Process

Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 21; no. 4; pp. 395 - 400
Main Author 邹志云 于蒙 王志甄 刘兴红 郭宇晴 张风波 郭宁
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2013
Subjects
Online AccessGet full text
ISSN1004-9541
2210-321X
DOI10.1016/S1004-9541(13)60479-6

Cover

Abstract Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.
AbstractList Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.
Author 邹志云 于蒙 王志甄 刘兴红 郭宇晴 张风波 郭宁
AuthorAffiliation Research Institute of Pharmaceutical Chemistry, Beijing 102205, China
Author_xml – sequence: 1
  fullname: 邹志云 于蒙 王志甄 刘兴红 郭宇晴 张风波 郭宁
BookMark eNqFkMFOGzEQQK0KJALtJyBtb_SwrWfttXfVQwURFKQQKrVI3CxnMhtcOXZibyrB17MkiEMvOfny3oznHbODEAMxdgr8K3BQ334D57JsawlnIL4oLnVbqg9sVFXAS1HBwwEbvSNH7Djnv5xXvIFmxC6mMXgXyKbiNs7JF-d-EZPrH5cOi3EMfYq-iF1hi9V1MaVNn6x3z7Z3MRS_UkTK-SM77KzP9OntPWH3V5d_xtfl5O7nzfh8UqLk0JctnyGS1I3tZDcjaAmBpNBznEHTWI2orNSq0W3NkZrOou4UqYG0orYdiBN2tpu7SnG9odybpctI3ttAcZMNKNU2Utct348KXanhVyAG9PsOxRRzTtQZdP32vuFU5w1w8xrZbCOb14KDbbaRjRrs-j97ldzSpqe93o-dR0Owf46SyegoIM1dIuzNPLq9Ez6_bX6MYbF2YfG-Wta1GFoo8QIOa6Fy
CitedBy_id crossref_primary_10_1007_s13369_017_2740_7
crossref_primary_10_1016_j_cjche_2024_09_005
crossref_primary_10_1007_s11071_014_1771_9
crossref_primary_10_3390_agriculture12091395
crossref_primary_10_25046_aj020607
crossref_primary_10_3390_agriculture13122176
crossref_primary_10_1016_j_conengprac_2024_106159
crossref_primary_10_1016_j_cjche_2015_10_009
crossref_primary_10_1016_S1004_9541_14_60057_4
crossref_primary_10_1016_j_rineng_2024_103357
crossref_primary_10_1007_s13369_020_04463_0
crossref_primary_10_1016_j_cjche_2014_09_053
crossref_primary_10_1016_j_ijcce_2024_09_004
crossref_primary_10_3390_pr9091506
crossref_primary_10_1016_j_isatra_2022_08_022
crossref_primary_10_3390_agronomy13051423
crossref_primary_10_1016_j_cjche_2015_01_009
crossref_primary_10_1016_j_matcom_2020_11_006
crossref_primary_10_1093_imamat_hxx029
crossref_primary_10_3390_pr10071311
crossref_primary_10_1016_j_cjche_2014_05_013
crossref_primary_10_1109_TSMC_2023_3341031
crossref_primary_10_1016_j_conengprac_2015_09_005
crossref_primary_10_1016_j_eswa_2023_120012
Cites_doi 10.1016/0005-1098(89)90002-2
10.1016/S0098-1354(98)00260-9
10.1016/j.conengprac.2011.09.003
10.1016/j.conengprac.2006.10.016
10.1016/j.compchemeng.2011.04.009
10.1016/j.cej.2010.07.065
10.1016/j.automatica.2008.05.013
10.1016/S0005-1098(01)00292-8
10.1016/j.sysconle.2007.09.009
10.1016/S0098-1354(98)00301-9
10.1016/j.jprocont.2011.08.001
10.1016/S1004-9541(08)60200-1
10.1021/ie000309r
10.1016/S1004-9541(07)60147-5
10.1016/0005-1098(78)90001-8
10.1016/j.compchemeng.2006.10.005
10.1016/S0967-0661(02)00186-7
10.1016/S0959-1524(02)00022-7
10.1016/j.dsp.2010.06.006
10.1007/978-3-0348-8407-5_21
10.1016/S0959-1524(97)80001-B
10.1016/S1004-9541(08)60325-0
10.1016/S1004-9541(08)60305-5
10.1016/j.isatra.2007.12.002
10.1016/j.jpowsour.2008.06.064
ContentType Journal Article
Copyright 2013 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)
Copyright_xml – notice: 2013 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1016/S1004-9541(13)60479-6
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Nonlinear Model Algorithmic Control of a pH Neutralization Process
EISSN 2210-321X
EndPage 400
ExternalDocumentID 10_1016_S1004_9541_13_60479_6
S1004954113604796
45536696
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C0
2RA
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8RM
92H
92I
92L
92R
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDC
SDF
SDG
SDH
SES
SPC
SPCBC
SSG
SSZ
T5K
TCJ
TGT
UGNYK
W92
~G-
~WA
-SB
-S~
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
7U5
8FD
EFKBS
L7M
ID FETCH-LOGICAL-c401t-90bcce478af4fbe19ec1e437dcb188a7cc6a47687950ce8fac7f6e6be1a35af13
IEDL.DBID AIKHN
ISSN 1004-9541
IngestDate Fri Sep 05 11:21:22 EDT 2025
Fri Sep 05 09:35:01 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Tue Jul 01 02:57:06 EDT 2025
Fri Feb 23 02:37:34 EST 2024
Wed Feb 14 10:42:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords model algorithmic control
control simulation
nonlinear model predictive control
Hammerstein model
pH neutralization process
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-90bcce478af4fbe19ec1e437dcb188a7cc6a47687950ce8fac7f6e6be1a35af13
Notes Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.
ZOU Zhiyun , YU Meng, WANG Zhizhen , LIU Xinghong , GUO Yuqing , ZHANG Fengbo , GUO Ning ( Research Institute of Pharmaceutical Chemistry, Beijing 102205, China)
11-3270/TQ
model algorithmic control, nonlinear model predictive control, Hammerstein model, pH neutralization process, control simulation
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1372640113
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1669847590
proquest_miscellaneous_1372640113
crossref_citationtrail_10_1016_S1004_9541_13_60479_6
crossref_primary_10_1016_S1004_9541_13_60479_6
elsevier_sciencedirect_doi_10_1016_S1004_9541_13_60479_6
chongqing_primary_45536696
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese journal of chemical engineering
PublicationTitleAlternate Chinese Journal of Chemical Engineering
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mehra, R., Rouhai, R., “Model algorithm control: Review and recent developments”, In: Proceedings of Engineering Foundation Conference on Chemical Process Control II, Sea Island, GA, 287–310 (1982).
Nejati, Shahrokhi, Mehrabani (bib2) 2012; 22
Vanbeylen, Pintelon, Schoukens (bib27) 2008; 44
Harnischmacher, Marquardt (bib20) 2007; 15
Alvarez, Londono (bib1) 2001; 40
Henson (bib13) 1998; 23
Morari, Lee (bib15) 1999; 23
Huo, Zhu, Hu, Tu, Li, Yang (bib19) 2008; 185
Zou, Z.Y., Liu, G.P., Guo, N., “Predictive control of nonlinear Hammerstein systems and application to pH process”, In: Proceedings of European Control Conference 2003, Cambridge, UK, 166 (2003).
Lu, Zhu, Huang, Jiang, Jin (bib7) 2010; 18
Lei, X., Datta, A., “Adaptive model algorithm control”, In: Proceedings of the American Control Conference, Arlington, VA, 4155–4160 (2001).
Dolanc, Strmčnik (bib21) 2008; 57
Ding, Liu, Liu (bib28) 2011; 21
Patikirikorala, Wang, Colman, Han (bib18) 2012; 20
Ławryczuk (bib24) 2011; 166
Zhou, Wang, Jin, Zhang (bib11) 2009; 17
Bai (bib26) 2002; 38
Altinten (bib3) 2007; 31
Garcia, Prett, Morari (bib5) 1989; 25
Qin, S., Badgwell, T.A., “An overview of nonlinear model predictive control applications”, In Nonlinear Predictive Control, Allgower, F., Zheng, A., eds, Birkhauser, 369–393 (2000).
Manenti (bib16) 2011; 35
Qin, Badgwell (bib6) 2003; 11
Gu, Gupta (bib12) 2008; 47
Fruzzetti, Palazoğlu, McDonald (bib22) 1997; 7
Bao, Pi, Sun (bib4) 2007; 15
Zhao, Su, Gu, Chu (bib8) 2009; 17
Man, Shao (bib23) 2011; 62
Pearson (bib25) 2003; 13
Rault, Richalet, Testud, Papon (bib9) 1978; 14
10.1016/S1004-9541(13)60479-6_bib14
Pearson (10.1016/S1004-9541(13)60479-6_bib25) 2003; 13
10.1016/S1004-9541(13)60479-6_bib17
Lu (10.1016/S1004-9541(13)60479-6_bib7) 2010; 18
Vanbeylen (10.1016/S1004-9541(13)60479-6_bib27) 2008; 44
10.1016/S1004-9541(13)60479-6_bib10
Patikirikorala (10.1016/S1004-9541(13)60479-6_bib18) 2012; 20
Huo (10.1016/S1004-9541(13)60479-6_bib19) 2008; 185
Zhao (10.1016/S1004-9541(13)60479-6_bib8) 2009; 17
Harnischmacher (10.1016/S1004-9541(13)60479-6_bib20) 2007; 15
Manenti (10.1016/S1004-9541(13)60479-6_bib16) 2011; 35
Man (10.1016/S1004-9541(13)60479-6_bib23) 2011; 62
Morari (10.1016/S1004-9541(13)60479-6_bib15) 1999; 23
Fruzzetti (10.1016/S1004-9541(13)60479-6_bib22) 1997; 7
Henson (10.1016/S1004-9541(13)60479-6_bib13) 1998; 23
10.1016/S1004-9541(13)60479-6_bib29
Qin (10.1016/S1004-9541(13)60479-6_bib6) 2003; 11
Ławryczuk (10.1016/S1004-9541(13)60479-6_bib24) 2011; 166
Dolanc (10.1016/S1004-9541(13)60479-6_bib21) 2008; 57
Bao (10.1016/S1004-9541(13)60479-6_bib4) 2007; 15
Ding (10.1016/S1004-9541(13)60479-6_bib28) 2011; 21
Altinten (10.1016/S1004-9541(13)60479-6_bib3) 2007; 31
Gu (10.1016/S1004-9541(13)60479-6_bib12) 2008; 47
Bai (10.1016/S1004-9541(13)60479-6_bib26) 2002; 38
Nejati (10.1016/S1004-9541(13)60479-6_bib2) 2012; 22
Alvarez (10.1016/S1004-9541(13)60479-6_bib1) 2001; 40
Zhou (10.1016/S1004-9541(13)60479-6_bib11) 2009; 17
Garcia (10.1016/S1004-9541(13)60479-6_bib5) 1989; 25
Rault (10.1016/S1004-9541(13)60479-6_bib9) 1978; 14
References_xml – volume: 166
  start-page: 269
  year: 2011
  end-page: 287
  ident: bib24
  article-title: “On-line set-point optimisation and predictive control using neural Hammerstein models”
  publication-title: Chemical Engineering Journal
– volume: 62
  start-page: 2275
  year: 2011
  end-page: 2280
  ident: bib23
  article-title: “Neural network predictive control of continuous stirred-tank reactor based on Hammerstein-Wiener model”
  publication-title: CIESC Journal
– volume: 15
  start-page: 1238
  year: 2007
  end-page: 1256
  ident: bib20
  article-title: “Nonlinear model predictive control of multivariable processes using block-structured models”
  publication-title: Control Eng. Practice
– volume: 38
  start-page: 967
  year: 2002
  end-page: 979
  ident: bib26
  article-title: “A blind approach to the Hammerstein-Wiener model identification”
  publication-title: Automatica
– volume: 31
  start-page: 1199
  year: 2007
  end-page: 1204
  ident: bib3
  article-title: “Generalized predictive control applied to a pH neutralization process”
  publication-title: Comput. Chem. Eng.
– volume: 14
  start-page: 413
  year: 1978
  end-page: 428
  ident: bib9
  article-title: “Model predictive heuristic control: application to industrial processes”
  publication-title: Automatica
– volume: 25
  start-page: 335
  year: 1989
  end-page: 348
  ident: bib5
  article-title: “Model predictive control: Theory and practice—a survey”
  publication-title: Automatica
– volume: 23
  start-page: 187
  year: 1998
  end-page: 202
  ident: bib13
  article-title: “Nonlinear model predictive control: current status and future directions”
  publication-title: Comput. Chem. Eng.
– volume: 13
  start-page: 1
  year: 2003
  end-page: 26
  ident: bib25
  article-title: “Selecting nonlinear model structures for computer control”
  publication-title: J. Process Control
– volume: 17
  start-page: 976
  year: 2009
  end-page: 982
  ident: bib11
  article-title: “Iterative learning model predictive control for a class of continuous/batch processes”
  publication-title: Chin. J. Chem. Eng.
– reference: Zou, Z.Y., Liu, G.P., Guo, N., “Predictive control of nonlinear Hammerstein systems and application to pH process”, In: Proceedings of European Control Conference 2003, Cambridge, UK, 166 (2003).
– volume: 15
  start-page: 691
  year: 2007
  end-page: 697
  ident: bib4
  article-title: “Nonlinear model predictive control based on support vector machine with multi-kernel”
  publication-title: Chin. J. Chem. Eng.
– volume: 22
  start-page: 263
  year: 2012
  end-page: 271
  ident: bib2
  article-title: “Comparison between backstepping and input–output linearization techniques for pH process control”
  publication-title: J. Process Control
– volume: 44
  start-page: 3139
  year: 2008
  end-page: 3146
  ident: bib27
  article-title: “Blind maximum likelihood identification of Hammerstein systems”
  publication-title: Automatica
– volume: 47
  start-page: 211
  year: 2008
  end-page: 216
  ident: bib12
  article-title: “Control of nonlinear processes by using linear model predictive control algorithms”
  publication-title: ISA Transactions
– volume: 40
  start-page: 2467
  year: 2001
  end-page: 2473
  ident: bib1
  article-title: “pH neutralization process as a benchmark for testing nonlinear controllers”
  publication-title: Ind. Eng. Chem. Res.
– volume: 11
  start-page: 733
  year: 2003
  end-page: 764
  ident: bib6
  article-title: “A survey of industrial model predictive control technology”
  publication-title: Control Eng. Practice
– reference: Qin, S., Badgwell, T.A., “An overview of nonlinear model predictive control applications”, In Nonlinear Predictive Control, Allgower, F., Zheng, A., eds, Birkhauser, 369–393 (2000).
– volume: 35
  start-page: 2491
  year: 2011
  end-page: 2509
  ident: bib16
  article-title: “Considerations on nonlinear model predictive control techniques”
  publication-title: Comput. Chem. Eng.
– volume: 20
  start-page: 49
  year: 2012
  end-page: 61
  ident: bib18
  article-title: “Hammerstein-Wiener nonlinear model based predictive control for relative QoS performance and resource management of software systems”
  publication-title: Control Eng. Practice
– volume: 17
  start-page: 241
  year: 2009
  end-page: 250
  ident: bib8
  article-title: “A pragmatic approach for assessing the economic performance of model predictive control systems and its industrial application”
  publication-title: Chin. J. Chem. Eng.
– reference: Lei, X., Datta, A., “Adaptive model algorithm control”, In: Proceedings of the American Control Conference, Arlington, VA, 4155–4160 (2001).
– volume: 23
  start-page: 667
  year: 1999
  end-page: 682
  ident: bib15
  article-title: “Model predictive control: Past, present and future”
  publication-title: Comput. Chem. Eng.
– volume: 18
  start-page: 66
  year: 2010
  end-page: 79
  ident: bib7
  article-title: “A new strategy of integrated control and on-line optimization on high-purity distillation process”
  publication-title: Chin. J. Chem. Eng.
– volume: 185
  start-page: 338
  year: 2008
  end-page: 344
  ident: bib19
  article-title: “Nonlinear model predictive control of SOFC based on a Hammerstein model”
  publication-title: Journal of Power Sources
– volume: 21
  start-page: 215
  year: 2011
  end-page: 238
  ident: bib28
  article-title: “Identification methods for Hammerstein nonlinear systems”
  publication-title: Digital Signal Processing
– reference: Mehra, R., Rouhai, R., “Model algorithm control: Review and recent developments”, In: Proceedings of Engineering Foundation Conference on Chemical Process Control II, Sea Island, GA, 287–310 (1982).
– volume: 57
  start-page: 332
  year: 2008
  end-page: 339
  ident: bib21
  article-title: “Design of a nonlinear controller based on a piecewise-linear Hammerstein model”
  publication-title: Systems & Control Letters
– volume: 7
  start-page: 31
  year: 1997
  end-page: 41
  ident: bib22
  article-title: “Nolinear model predictive control using Hammerstein models”
  publication-title: J. Process Control
– volume: 25
  start-page: 335
  issue: 3
  year: 1989
  ident: 10.1016/S1004-9541(13)60479-6_bib5
  article-title: “Model predictive control: Theory and practice—a survey”
  publication-title: Automatica
  doi: 10.1016/0005-1098(89)90002-2
– volume: 23
  start-page: 187
  issue: 2
  year: 1998
  ident: 10.1016/S1004-9541(13)60479-6_bib13
  article-title: “Nonlinear model predictive control: current status and future directions”
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(98)00260-9
– volume: 20
  start-page: 49
  issue: 1
  year: 2012
  ident: 10.1016/S1004-9541(13)60479-6_bib18
  article-title: “Hammerstein-Wiener nonlinear model based predictive control for relative QoS performance and resource management of software systems”
  publication-title: Control Eng. Practice
  doi: 10.1016/j.conengprac.2011.09.003
– volume: 15
  start-page: 1238
  issue: 10
  year: 2007
  ident: 10.1016/S1004-9541(13)60479-6_bib20
  article-title: “Nonlinear model predictive control of multivariable processes using block-structured models”
  publication-title: Control Eng. Practice
  doi: 10.1016/j.conengprac.2006.10.016
– volume: 35
  start-page: 2491
  issue: 11
  year: 2011
  ident: 10.1016/S1004-9541(13)60479-6_bib16
  article-title: “Considerations on nonlinear model predictive control techniques”
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2011.04.009
– volume: 166
  start-page: 269
  issue: 1
  year: 2011
  ident: 10.1016/S1004-9541(13)60479-6_bib24
  article-title: “On-line set-point optimisation and predictive control using neural Hammerstein models”
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2010.07.065
– volume: 44
  start-page: 3139
  issue: 12
  year: 2008
  ident: 10.1016/S1004-9541(13)60479-6_bib27
  article-title: “Blind maximum likelihood identification of Hammerstein systems”
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.05.013
– volume: 38
  start-page: 967
  issue: 6
  year: 2002
  ident: 10.1016/S1004-9541(13)60479-6_bib26
  article-title: “A blind approach to the Hammerstein-Wiener model identification”
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00292-8
– ident: 10.1016/S1004-9541(13)60479-6_bib29
– volume: 57
  start-page: 332
  issue: 4
  year: 2008
  ident: 10.1016/S1004-9541(13)60479-6_bib21
  article-title: “Design of a nonlinear controller based on a piecewise-linear Hammerstein model”
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2007.09.009
– volume: 23
  start-page: 667
  issue: 4–5
  year: 1999
  ident: 10.1016/S1004-9541(13)60479-6_bib15
  article-title: “Model predictive control: Past, present and future”
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(98)00301-9
– volume: 22
  start-page: 263
  issue: 1
  year: 2012
  ident: 10.1016/S1004-9541(13)60479-6_bib2
  article-title: “Comparison between backstepping and input–output linearization techniques for pH process control”
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.08.001
– volume: 17
  start-page: 241
  issue: 2
  year: 2009
  ident: 10.1016/S1004-9541(13)60479-6_bib8
  article-title: “A pragmatic approach for assessing the economic performance of model predictive control systems and its industrial application”
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(08)60200-1
– volume: 40
  start-page: 2467
  year: 2001
  ident: 10.1016/S1004-9541(13)60479-6_bib1
  article-title: “pH neutralization process as a benchmark for testing nonlinear controllers”
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie000309r
– volume: 62
  start-page: 2275
  issue: 8
  year: 2011
  ident: 10.1016/S1004-9541(13)60479-6_bib23
  article-title: “Neural network predictive control of continuous stirred-tank reactor based on Hammerstein-Wiener model”
  publication-title: CIESC Journal
– ident: 10.1016/S1004-9541(13)60479-6_bib17
– volume: 15
  start-page: 691
  issue: 5
  year: 2007
  ident: 10.1016/S1004-9541(13)60479-6_bib4
  article-title: “Nonlinear model predictive control based on support vector machine with multi-kernel”
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(07)60147-5
– volume: 14
  start-page: 413
  issue: 5
  year: 1978
  ident: 10.1016/S1004-9541(13)60479-6_bib9
  article-title: “Model predictive heuristic control: application to industrial processes”
  publication-title: Automatica
  doi: 10.1016/0005-1098(78)90001-8
– volume: 31
  start-page: 1199
  issue: 10
  year: 2007
  ident: 10.1016/S1004-9541(13)60479-6_bib3
  article-title: “Generalized predictive control applied to a pH neutralization process”
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.10.005
– volume: 11
  start-page: 733
  issue: 7
  year: 2003
  ident: 10.1016/S1004-9541(13)60479-6_bib6
  article-title: “A survey of industrial model predictive control technology”
  publication-title: Control Eng. Practice
  doi: 10.1016/S0967-0661(02)00186-7
– volume: 13
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/S1004-9541(13)60479-6_bib25
  article-title: “Selecting nonlinear model structures for computer control”
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(02)00022-7
– volume: 21
  start-page: 215
  issue: 2
  year: 2011
  ident: 10.1016/S1004-9541(13)60479-6_bib28
  article-title: “Identification methods for Hammerstein nonlinear systems”
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2010.06.006
– ident: 10.1016/S1004-9541(13)60479-6_bib14
  doi: 10.1007/978-3-0348-8407-5_21
– volume: 7
  start-page: 31
  issue: 1
  year: 1997
  ident: 10.1016/S1004-9541(13)60479-6_bib22
  article-title: “Nolinear model predictive control using Hammerstein models”
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(97)80001-B
– volume: 18
  start-page: 66
  issue: 1
  year: 2010
  ident: 10.1016/S1004-9541(13)60479-6_bib7
  article-title: “A new strategy of integrated control and on-line optimization on high-purity distillation process”
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(08)60325-0
– volume: 17
  start-page: 976
  issue: 6
  year: 2009
  ident: 10.1016/S1004-9541(13)60479-6_bib11
  article-title: “Iterative learning model predictive control for a class of continuous/batch processes”
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(08)60305-5
– volume: 47
  start-page: 211
  issue: 2
  year: 2008
  ident: 10.1016/S1004-9541(13)60479-6_bib12
  article-title: “Control of nonlinear processes by using linear model predictive control algorithms”
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2007.12.002
– volume: 185
  start-page: 338
  issue: 1
  year: 2008
  ident: 10.1016/S1004-9541(13)60479-6_bib19
  article-title: “Nonlinear model predictive control of SOFC based on a Hammerstein model”
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2008.06.064
– ident: 10.1016/S1004-9541(13)60479-6_bib10
SSID ssj0020818
Score 2.0979838
Snippet Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 395
SubjectTerms Algorithms
Chemical engineering
Computer simulation
control simulation
Derivatives
Hammerstein model
Hammerstein模型
MAC算法
model algorithmic control
nonlinear model predictive control
Nonlinearity
pH neutralization process
pH中和过程
pH值
Robustness
Strategy
强非线性
模型算法控制
线性多项式
非线性过程
Title Nonlinear Model Algorithmic Control of a pH Neutralization Process
URI http://lib.cqvip.com/qk/84275X/201304/45536696.html
https://dx.doi.org/10.1016/S1004-9541(13)60479-6
https://www.proquest.com/docview/1372640113
https://www.proquest.com/docview/1669847590
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcmkPCFqq8pQr9VAOYdfxI84RVqAF1L0UJG6W44xhJUiWZffKb8d2kqWtRJF6tWYsZ8ae8cQz3wB8R45erRYTV2Y-QFHIEpMqkxjOXSoMp9yGeuefYzm65hc34mYFhl0tTEirbG1_Y9OjtW5H-q00-9PJpP8rYJ3lgoemJAEnXa7CWspyKXqwdnx-ORov466A2hYfPQc8CQyvhTzNJHHwB2WHcZ4kwizc1dXto3ceb7mrvwx39EZnG7DeXiPJcbPSTVjB6hN8_A1c8DOcjBsUDDMjoeGZJ76_rWeT-d3DxJJhk6FOakcMmY7IGBfxl0dTlEna8oEtuD47vRqOkrZjQmJ9nDRP8kFhLfJMGcddgTRHS5GzrLQFVcpk1krDfYCR5WJgUTljMydRekrDhHGUfYFeVVf4FUjhqEAnZOZKyg2WuUyppwvwdKksVb4NO0sh6WmDjKG5EEzKXG4D76SmbYs1Hlpe3OtlUlkQvA6C15TpKHjt2Y6WbN2U7zCoTiX6j12jvUN4j_Vbp0LtT1R4JjEV1osnT5P5W6K3e-wfNP4rVYBKHOz8_xJ24UMam2uEPKA96M1nC9z3V5x5cQCrR8_0oN3ILyfC9Jo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4IJ5qy8tIHOAQdp3YjnMsK6qUtrnQSr1ZjjNuVyrJsuz-f8ZOsjwkqMTVmrGcGXvGE898A_AWBZJaHSa-ySlA0ZglNtU2sUL4VFrBhQv1zmeVKi_E50t5uQPzsRYmpFUOtr-36dFaDyPTQZrT5WIx_RKwzgopQlOSgJOu7sCukBTtTWD38PikrLZxV0Bti4-eM5EEhp-FPP0kcfAdz97HeZIIs3DdtVffyHn8zV39YbijNzp6CA-GayQ77Ff6CHawfQz3fwEXfAIfqx4Fw65YaHhGxDdX3Wqxvv66cGzeZ6izzjPLliWrcBN_efRFmWwoH3gKF0efzudlMnRMSBzFSeukmNXOoci19cLXyAt0HEWWN67mWtvcOWUFBRh5IWcOtbcu9woVUdpMWs-zZzBpuxb3gNWeS_RS5b7hwmJTqJQTXYCnS1Wji3042ArJLHtkDCOkzJQq1D6IUWrGDVjjoeXFjdkmlQXBmyB4wzMTBW-I7cOWbZzyFgY9qsT8tmsMOYTbWN-MKjR0osIziW2x23wnmpxuiWT3sn_Q0FfqAJU4O_j_JbyGu-X52ak5Pa5OnsO9NDbaCDlBL2CyXm3wJV131vWrYTv_AAVT9ok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Model+Algorithmic+Control+of+a+pH+Neutralization+Process&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=ZOU%2C+Zhiyun&rft.au=YU%2C+Meng&rft.au=WANG%2C+Zhizhen&rft.au=LIU%2C+Xinghong&rft.date=2013-04-01&rft.issn=1004-9541&rft.volume=21&rft.issue=4&rft.spage=395&rft.epage=400&rft_id=info:doi/10.1016%2FS1004-9541%2813%2960479-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1004_9541_13_60479_6
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84275X%2F84275X.jpg