A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage

Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was s...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 49; no. 5; pp. 1561 - 1567
Main Authors Beheshti, Elham, Nojeh, Alireza, Servati, Peyman
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was shown that individual calcium atoms are not stable on pure graphene, and formation of aggregates is favorable. Substitutional boron doping can eliminate the clustering problem for Ca atoms on graphene. Up to four hydrogen molecules can stably bind to a Ca atom on a graphene plane with substitutional doping of a single boron atom. The average binding energy of ∼0.4 eV/H 2 is in the range that permits H 2 recycling at ambient conditions. Two binding mechanisms contribute to the adsorption of H 2 molecules: polarization of the H 2 molecule under the electric field produced by the Ca–graphene dipole, and hybridization of the 3d orbitals of Ca with the σ orbitals of H 2. Double-sided Ca-decorated graphene doped with individual boron atoms of 12 at.% can theoretically reach a gravimetric capacity of 8.38 wt.% hydrogen.
AbstractList Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was shown that individual calcium atoms are not stable on pure graphene, and formation of aggregates is favorable. Substitutional boron doping can eliminate the clustering problem for Ca atoms on graphene. Up to four hydrogen molecules can stably bind to a Ca atom on a graphene plane with substitutional doping of a single boron atom. The average binding energy of similar to 0.4 eV/H sub(2) is in the range that permits H sub(2) recycling at ambient conditions. Two binding mechanisms contribute to the adsorption of H sub(2) molecules: polarization of the H sub(2) molecule under the electric field produced by the Ca-graphene dipole, and hybridization of the 3d orbitals of Ca with the sigma orbitals of H sub(2). Double-sided Ca-decorated graphene doped with individual boron atoms of 12 at.% can theoretically reach a gravimetric capacity of 8.38 wt.% hydrogen.
Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was shown that individual calcium atoms are not stable on pure graphene, and formation of aggregates is favorable. Substitutional boron doping can eliminate the clustering problem for Ca atoms on graphene. Up to four hydrogen molecules can stably bind to a Ca atom on a graphene plane with substitutional doping of a single boron atom. The average binding energy of ∼0.4eV/H₂ is in the range that permits H₂ recycling at ambient conditions. Two binding mechanisms contribute to the adsorption of H₂ molecules: polarization of the H₂ molecule under the electric field produced by the Ca–graphene dipole, and hybridization of the 3d orbitals of Ca with the σ orbitals of H₂. Double-sided Ca-decorated graphene doped with individual boron atoms of 12at.% can theoretically reach a gravimetric capacity of 8.38wt.% hydrogen.
Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was shown that individual calcium atoms are not stable on pure graphene, and formation of aggregates is favorable. Substitutional boron doping can eliminate the clustering problem for Ca atoms on graphene. Up to four hydrogen molecules can stably bind to a Ca atom on a graphene plane with substitutional doping of a single boron atom. The average binding energy of ∼0.4 eV/H 2 is in the range that permits H 2 recycling at ambient conditions. Two binding mechanisms contribute to the adsorption of H 2 molecules: polarization of the H 2 molecule under the electric field produced by the Ca–graphene dipole, and hybridization of the 3d orbitals of Ca with the σ orbitals of H 2. Double-sided Ca-decorated graphene doped with individual boron atoms of 12 at.% can theoretically reach a gravimetric capacity of 8.38 wt.% hydrogen.
Author Beheshti, Elham
Nojeh, Alireza
Servati, Peyman
Author_xml – sequence: 1
  givenname: Elham
  surname: Beheshti
  fullname: Beheshti, Elham
– sequence: 2
  givenname: Alireza
  surname: Nojeh
  fullname: Nojeh, Alireza
– sequence: 3
  givenname: Peyman
  surname: Servati
  fullname: Servati, Peyman
  email: peymans@ece.ubc.ca
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23861179$$DView record in Pascal Francis
BookMark eNqFkc9rHCEYhqWk0E3a_6AHL6U9dDZ-6sw4PRRC6I9AIJf0LI5-s-syq1N1A_vf12VDDz2kJ1Ge5xXe95JchBiQkPfA1sCgu96trUljDGvOTk98zbh4RVagetEINcAFWTHGVNNxLt6Qy5x39SoVyBWZbujkUy7Nknywfpkx01wO7kjjRK2ZrT_sG4c2JlPQfaZjTDE0Li7o6CaZZYsB6RQT3frNtgqLsb4c6fboUtxgqFnV3OBb8noyc8Z3z-cV-fX92-Ptz-b-4cfd7c19YyWD0ihEZE6MA3QjuB6EG93YK8laZlpUlnOwVoAaJmcNiHaQo0CQ3dDK0Q5mEFfk4zl3SfH3AXPRe58tzrMJGA9Zqw7aSgtRyU8vktCzVnat6mVFPzyjJtdKpmRqU1nXxvYmHTUXNRX60-fyzNkUc044_UWA6dNQeqfPQ-nTUBq4rkNV7cs_Wq3QFB9DScbP_5O_nmWsrT55TDpbj8Gi8wlt0S76lwP-AGCos7I
CODEN CRBNAH
CitedBy_id crossref_primary_10_1016_j_rinp_2024_107488
crossref_primary_10_1063_1_4759235
crossref_primary_10_1039_D4TA00717D
crossref_primary_10_1021_jp208423y
crossref_primary_10_1016_j_ijhydene_2022_04_113
crossref_primary_10_1016_j_ijhydene_2017_01_121
crossref_primary_10_1007_s10853_024_10054_3
crossref_primary_10_1088_1757_899X_432_1_012051
crossref_primary_10_1016_j_ijhydene_2013_11_083
crossref_primary_10_1016_j_ijhydene_2018_10_205
crossref_primary_10_1016_j_ijhydene_2016_03_118
crossref_primary_10_1016_j_energy_2016_02_148
crossref_primary_10_1080_07391102_2018_1546233
crossref_primary_10_1016_j_physe_2014_09_022
crossref_primary_10_1080_08927022_2018_1517413
crossref_primary_10_1016_j_ijhydene_2019_01_010
crossref_primary_10_1103_PhysRevB_87_014102
crossref_primary_10_1016_j_ijhydene_2018_01_071
crossref_primary_10_1039_C6RA24890J
crossref_primary_10_1038_srep16797
crossref_primary_10_1007_s00894_012_1642_6
crossref_primary_10_1016_j_spmi_2014_01_013
crossref_primary_10_1021_acs_jpcc_5b06164
crossref_primary_10_1016_j_matchemphys_2016_06_028
crossref_primary_10_1016_j_flatc_2024_100661
crossref_primary_10_1016_j_actamat_2021_117040
crossref_primary_10_1016_j_mtcomm_2024_108186
crossref_primary_10_1016_j_ijhydene_2014_04_063
crossref_primary_10_1016_j_ijhydene_2015_07_083
crossref_primary_10_1016_j_rser_2017_02_052
crossref_primary_10_1016_j_ijhydene_2017_02_023
crossref_primary_10_1002_aenm_201600510
crossref_primary_10_1016_j_apsusc_2016_04_057
crossref_primary_10_1063_1_4711038
crossref_primary_10_1016_j_jpowsour_2024_234881
crossref_primary_10_1039_C6RA16604K
crossref_primary_10_1021_acsomega_1c06149
crossref_primary_10_1016_j_apsusc_2021_149484
crossref_primary_10_1021_acsaem_3c02070
crossref_primary_10_1016_j_ijhydene_2016_11_039
crossref_primary_10_1021_acsnano_6b00554
crossref_primary_10_1016_j_apsusc_2017_03_057
crossref_primary_10_1016_j_apsusc_2014_01_087
crossref_primary_10_1021_acsomega_1c02452
crossref_primary_10_1039_C6TA09169E
crossref_primary_10_1016_j_mtcomm_2021_102322
crossref_primary_10_1063_1_3660325
crossref_primary_10_1088_1674_1056_27_9_097311
crossref_primary_10_1088_1755_1315_463_1_012103
crossref_primary_10_1139_cjp_2023_0072
crossref_primary_10_1016_j_apsusc_2016_02_223
crossref_primary_10_1016_j_colsurfa_2015_10_046
crossref_primary_10_1016_j_ijhydene_2021_03_103
crossref_primary_10_1039_C7CP07995H
crossref_primary_10_1016_j_ijhydene_2024_09_376
crossref_primary_10_1016_j_ijhydene_2024_02_305
crossref_primary_10_1016_j_ijhydene_2020_02_025
crossref_primary_10_3938_jkps_66_1649
crossref_primary_10_1016_j_cplett_2013_06_061
crossref_primary_10_1016_j_jiec_2018_03_010
crossref_primary_10_1016_j_diamond_2021_108583
crossref_primary_10_1039_C8NR00747K
crossref_primary_10_3390_ma14102499
crossref_primary_10_1063_1_5063895
crossref_primary_10_1002_aesr_202400362
crossref_primary_10_1016_j_apsusc_2018_02_106
crossref_primary_10_1016_j_ijhydene_2022_08_172
crossref_primary_10_1039_C4CP03069A
crossref_primary_10_1016_j_jssc_2012_09_004
crossref_primary_10_1016_j_ijhydene_2017_03_057
crossref_primary_10_1038_s41598_020_68765_x
crossref_primary_10_1016_j_est_2024_113053
crossref_primary_10_1016_j_jpcs_2016_07_006
crossref_primary_10_1016_j_ijhydene_2024_03_089
crossref_primary_10_1088_0022_3727_46_49_495307
crossref_primary_10_1007_s10562_015_1567_7
crossref_primary_10_1016_j_fuel_2024_132340
crossref_primary_10_1016_j_ijhydene_2022_01_216
crossref_primary_10_1016_j_apsusc_2016_09_032
crossref_primary_10_1016_j_pnsc_2012_11_006
crossref_primary_10_1016_j_ijhydene_2021_04_128
crossref_primary_10_1021_acs_jpcc_7b04886
crossref_primary_10_1016_j_physe_2012_09_010
crossref_primary_10_1016_j_physe_2017_09_012
crossref_primary_10_1021_jp512920f
crossref_primary_10_1016_j_ijhydene_2019_01_222
crossref_primary_10_1016_j_apsusc_2020_147267
crossref_primary_10_1039_D0TA03392H
crossref_primary_10_1016_j_cja_2021_12_014
crossref_primary_10_3390_molecules24132382
crossref_primary_10_1016_j_rinp_2023_106616
crossref_primary_10_1080_00268976_2022_2086182
crossref_primary_10_1088_1757_899X_422_1_012010
crossref_primary_10_1177_096739111402200209
crossref_primary_10_1007_s00894_018_3734_4
crossref_primary_10_1016_j_apsusc_2016_03_119
crossref_primary_10_1016_j_ijhydene_2013_07_098
crossref_primary_10_1039_C7RA01406F
crossref_primary_10_1016_j_apsusc_2012_05_107
crossref_primary_10_1088_0256_307X_30_10_107306
crossref_primary_10_1016_j_flatc_2024_100727
crossref_primary_10_1016_j_apsusc_2021_151000
crossref_primary_10_1039_C5CP04391C
crossref_primary_10_1080_00268976_2015_1039090
crossref_primary_10_1016_j_cjph_2019_01_009
crossref_primary_10_1039_C7TC02894F
crossref_primary_10_1002_jccs_202200039
crossref_primary_10_1063_1_4812830
crossref_primary_10_1021_jp403552k
crossref_primary_10_1039_C4CS00141A
crossref_primary_10_1016_j_fuel_2021_121351
crossref_primary_10_1002_pssb_201552151
crossref_primary_10_1021_jp409594r
crossref_primary_10_1016_j_ijhydene_2020_07_278
crossref_primary_10_1007_s10853_019_04150_y
crossref_primary_10_1016_j_comptc_2014_05_012
crossref_primary_10_1007_s10904_022_02516_5
crossref_primary_10_1016_j_apsusc_2023_156947
crossref_primary_10_1016_j_micromeso_2019_04_046
crossref_primary_10_1016_j_ijhydene_2017_04_173
crossref_primary_10_1016_j_heliyon_2023_e14279
crossref_primary_10_1016_j_cis_2013_03_009
crossref_primary_10_1002_adts_202100187
crossref_primary_10_1016_j_rinp_2023_106263
crossref_primary_10_1063_1_4751249
crossref_primary_10_1016_j_ijhydene_2013_01_180
crossref_primary_10_1016_j_ijhydene_2017_12_068
crossref_primary_10_1063_1_4931630
crossref_primary_10_1016_j_ijhydene_2018_04_103
crossref_primary_10_1016_j_ijhydene_2019_08_186
crossref_primary_10_1063_1_4893177
crossref_primary_10_1002_er_4631
crossref_primary_10_1080_15435075_2023_2297770
crossref_primary_10_1016_j_cplett_2022_139853
crossref_primary_10_1016_j_ijhydene_2019_12_151
crossref_primary_10_1016_j_physe_2019_113576
crossref_primary_10_1021_acs_chemrev_6b00037
crossref_primary_10_1016_j_cplett_2021_138849
crossref_primary_10_4236_msce_2015_312013
crossref_primary_10_3390_molecules29020436
crossref_primary_10_1016_j_ijhydene_2018_03_078
crossref_primary_10_1016_j_ijhydene_2012_05_029
crossref_primary_10_1016_j_carbon_2014_02_048
crossref_primary_10_1016_j_ijhydene_2024_12_415
crossref_primary_10_1016_j_comptc_2023_114402
crossref_primary_10_1016_j_cplett_2018_02_022
crossref_primary_10_3390_nano13040647
crossref_primary_10_1021_acs_jpca_5b12739
crossref_primary_10_1021_acs_langmuir_4c02243
crossref_primary_10_1016_j_apsusc_2017_10_196
crossref_primary_10_1016_j_diamond_2022_109248
crossref_primary_10_1039_c2jm16608a
crossref_primary_10_1016_j_commatsci_2016_07_021
crossref_primary_10_1103_PhysRevMaterials_7_035402
crossref_primary_10_1016_j_surfin_2023_103444
crossref_primary_10_1016_j_rser_2016_11_118
crossref_primary_10_1016_j_cplett_2018_05_014
crossref_primary_10_1039_C6RA21329D
crossref_primary_10_1039_D0SE01920H
crossref_primary_10_1039_C8EE01085D
crossref_primary_10_1149_2_018310jss
crossref_primary_10_1016_j_jscs_2017_07_006
crossref_primary_10_1016_j_comptc_2013_10_011
crossref_primary_10_1021_acsaem_3c01020
crossref_primary_10_1016_j_ijhydene_2014_05_068
crossref_primary_10_1021_acs_jpcc_5b02312
crossref_primary_10_1016_j_cplett_2012_11_015
crossref_primary_10_1016_j_physe_2018_04_007
crossref_primary_10_1016_j_ijhydene_2018_07_052
crossref_primary_10_1016_j_energy_2017_02_129
crossref_primary_10_1016_j_ijhydene_2014_05_184
crossref_primary_10_1016_j_ijhydene_2022_12_305
crossref_primary_10_1002_er_8634
crossref_primary_10_1016_j_comptc_2020_113006
crossref_primary_10_1039_C5CP00977D
crossref_primary_10_1016_j_ijhydene_2017_04_240
crossref_primary_10_1016_j_jpowsour_2012_03_059
crossref_primary_10_1016_j_carbon_2015_03_046
crossref_primary_10_1039_C4CP02638A
crossref_primary_10_1016_j_ijhydene_2016_11_069
crossref_primary_10_1021_jp4017536
crossref_primary_10_1016_j_commatsci_2016_07_002
crossref_primary_10_1016_j_ijhydene_2014_12_071
crossref_primary_10_1016_j_ijhydene_2019_11_184
crossref_primary_10_1016_j_carbon_2017_12_014
crossref_primary_10_1039_C7TA08748A
crossref_primary_10_1140_epjp_s13360_020_00708_x
crossref_primary_10_1016_j_ijhydene_2024_03_133
crossref_primary_10_1016_j_materresbull_2014_10_049
crossref_primary_10_1016_j_apsusc_2016_10_097
crossref_primary_10_1016_j_mssp_2022_106884
crossref_primary_10_1016_j_rechem_2024_101792
crossref_primary_10_1038_s41699_023_00425_w
crossref_primary_10_1039_D4TA07170K
crossref_primary_10_1016_j_physe_2019_01_015
crossref_primary_10_1016_j_ijhydene_2016_10_031
crossref_primary_10_1063_1_4770482
crossref_primary_10_1039_C7TA05068B
crossref_primary_10_1016_j_diamond_2012_07_009
crossref_primary_10_1016_j_pmatsci_2014_10_004
crossref_primary_10_2139_ssrn_3995870
crossref_primary_10_1016_j_ijhydene_2023_05_117
Cites_doi 10.1103/PhysRevLett.94.155504
10.1016/S0008-6223(99)00279-1
10.1126/science.285.5424.91
10.1103/PhysRevB.77.085405
10.1039/b316209e
10.1103/PhysRevLett.94.175501
10.1016/S0009-2614(00)01162-3
10.1103/PhysRevLett.48.1425
10.1103/PhysRevLett.96.016102
10.1103/PhysRevB.26.1738
10.1103/PhysRevB.72.155404
10.1063/1.3182796
10.1103/PhysRevLett.45.566
10.1039/b515409j
10.1103/PhysRevB.43.1993
10.1088/0953-8984/14/11/302
10.1103/PhysRevB.46.1697
10.1021/jp980114l
10.1126/science.286.5442.1127
10.1103/PhysRevLett.77.3865
10.1021/jp003435h
10.1021/la0523816
10.1016/S0925-8388(01)01643-7
10.1103/PhysRevB.23.5048
10.1103/PhysRevB.79.041406
10.1038/386377a0
10.1016/j.carbon.2005.03.037
10.1103/PhysRevB.80.115412
10.1126/science.1102896
10.1016/S0360-3199(01)00108-2
10.1016/S0008-6223(99)00273-0
10.1139/p80-159
10.1103/PhysRevLett.97.226102
10.1063/1.1469680
10.1021/nl900116q
10.1103/PhysRev.46.618
10.1103/PhysRevB.13.5188
10.1038/35104634
10.1103/PhysRevLett.100.206806
10.1103/PhysRevB.79.075431
10.1103/PhysRevB.66.155410
10.1021/ar00147a005
10.1103/PhysRevB.78.085408
10.1021/ja0550125
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
7QP
DOI 10.1016/j.carbon.2010.12.023
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Calcium & Calcified Tissue Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Calcium & Calcified Tissue Abstracts
DatabaseTitleList Calcium & Calcified Tissue Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3891
EndPage 1567
ExternalDocumentID 23861179
10_1016_j_carbon_2010_12_023
S0008622310009024
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
L.6
7QP
ID FETCH-LOGICAL-c401t-8eee0d3b916b1d713dbdb784050a5e8c221cc3189fdca13594b3e146954bc9a93
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 01:35:22 EDT 2025
Fri Jul 11 07:34:40 EDT 2025
Mon Jul 21 09:18:14 EDT 2025
Tue Jul 01 01:14:19 EDT 2025
Thu Apr 24 22:50:48 EDT 2025
Fri Feb 23 02:28:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Binding
Polarization
Gradient
Calcium
Dipoles
Hydrogen
Doping
Hybridization
Mechanism
Boron
Storage
Adsorption
Simulation
Binding energy
Density functional method
Recycling
Aggregate
Electric fields
Orbital
Local density approximation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-8eee0d3b916b1d713dbdb784050a5e8c221cc3189fdca13594b3e146954bc9a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1705465874
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_861569533
proquest_miscellaneous_1705465874
pascalfrancis_primary_23861179
crossref_primary_10_1016_j_carbon_2010_12_023
crossref_citationtrail_10_1016_j_carbon_2010_12_023
elsevier_sciencedirect_doi_10_1016_j_carbon_2010_12_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Carbon (New York)
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Li, Li, Zhou, Shen, Chen (b0110) 2009; 9
Züttel, Sudan, Mauron, Kiyobayashi, Emmenegger, Schlapbach (b0140) 2002; 27
Chambers, Park, Baker, Rodriguez (b0025) 1998; 102
Liu, Fan, Liu, Cong, Cheng, Dresselhaus (b0030) 1999; 286
Durgun, Ciraci, Yildirim (b0065) 2008; 77
Yang, Zhang, Ni (b0125) 2009; 79
03, Revision C.02. 2004. Gaussian, Inc., Wallingford, CT.
Dillon, Jones, Bekkedahl, Kiang, Bethune, Heben (b0020) 1997; 386
Panella, Hirscher, Roth (b0045) 2005; 43
Ritschel, Uhlemann, Gutfleisch, Leonhardt, Graff, Täschner (b0035) 2002; 80
Lee, Ihm, Cohen, Louie (b0115) 2009; 80
Heine, Zhechkov, Seifert (b0215) 2004; 6
Moller, Plesset (b0190) 1934; 46
Lochan, Head-Gordon (b0015) 2006; 8
Zhao, Kim, Dillon, Heben, Zhang (b0060) 2005; 94
Kubas (b0075) 1988; 21
Hirscher, Becher, Haluska, Quintel, Skakalova, Choi (b0040) 2002; 330
Sun, Wang, Jena, Kawazoe (b0080) 2005; 127
Kim, Zhao, Williamson, Heben, Zhang (b0185) 2006; 96
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos (b0135) 2004; 306
Monkhorst, Pack (b0205) 1976; 13
Kleinman, Bylander (b0160) 1982; 48
Ceperley, Alder (b0230) 1980; 45
Zhang, Franklin, Chen, Dai (b0050) 2000; 331
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. G
Troullier, Martins (b0165) 1991; 43
Michael, Mingos (b0070) 2001; 635
Machón, Reich, Thomsen, Sánchez-Portal, Ordejón (b0200) 2002; 66
Vosko, Wilk, Nusair (b0225) 1980; 58
Yoon, Yang, Hicke, Wang, Geohegan, Zhang (b0105) 2008; 100
Kim, Jhi, Park, Louie, Cohen (b0210) 2008; 78
Dag, Ozturk, Ciraci, Yildirim (b0100) 2005; 72
Durgun, Ciraci, Zhou, Yildirim (b0085) 2006; 97
Yang (b0095) 2000; 38
Sun, Lee, Kim, Zhang (b0130) 2009; 95
Chen, Wu, Lin, Tan (b0090) 1999; 285
Way, Dahn, Tiedje, Myrtle, Kasrai (b0145) 1992; 46
Shirasaki, Derré, Ménétrier, Tressaud, Flandrois (b0150) 2000; 38
Soler, Artacho, Gale, García, Junquera, Ordejón (b0155) 2002; 14
Schlapbach, Züttel (b0005) 2001; 414
Yildirim, Ciraci (b0055) 2005; 94
Perdew, Burke, Ernzerhof (b0175) 1996; 77
Okamoto, Miyamoto (b0180) 2001; 105
Perdew, Zunger (b0170) 1981; 23
Ataca, Aktürk, Ciraci (b0120) 2009; 79
Louie, Froyen, Cohen (b0195) 1982; 26
Bhatia, Myers (b0010) 2006; 22
Zhang (10.1016/j.carbon.2010.12.023_b0050) 2000; 331
Durgun (10.1016/j.carbon.2010.12.023_b0065) 2008; 77
Chen (10.1016/j.carbon.2010.12.023_b0090) 1999; 285
Kleinman (10.1016/j.carbon.2010.12.023_b0160) 1982; 48
Lochan (10.1016/j.carbon.2010.12.023_b0015) 2006; 8
Sun (10.1016/j.carbon.2010.12.023_b0080) 2005; 127
Ceperley (10.1016/j.carbon.2010.12.023_b0230) 1980; 45
Vosko (10.1016/j.carbon.2010.12.023_b0225) 1980; 58
Liu (10.1016/j.carbon.2010.12.023_b0030) 1999; 286
Monkhorst (10.1016/j.carbon.2010.12.023_b0205) 1976; 13
Yang (10.1016/j.carbon.2010.12.023_b0125) 2009; 79
Soler (10.1016/j.carbon.2010.12.023_b0155) 2002; 14
Yildirim (10.1016/j.carbon.2010.12.023_b0055) 2005; 94
Lee (10.1016/j.carbon.2010.12.023_b0115) 2009; 80
Züttel (10.1016/j.carbon.2010.12.023_b0140) 2002; 27
Troullier (10.1016/j.carbon.2010.12.023_b0165) 1991; 43
Bhatia (10.1016/j.carbon.2010.12.023_b0010) 2006; 22
Novoselov (10.1016/j.carbon.2010.12.023_b0135) 2004; 306
Sun (10.1016/j.carbon.2010.12.023_b0130) 2009; 95
Kubas (10.1016/j.carbon.2010.12.023_b0075) 1988; 21
Dillon (10.1016/j.carbon.2010.12.023_b0020) 1997; 386
Ritschel (10.1016/j.carbon.2010.12.023_b0035) 2002; 80
Ataca (10.1016/j.carbon.2010.12.023_b0120) 2009; 79
Moller (10.1016/j.carbon.2010.12.023_b0190) 1934; 46
10.1016/j.carbon.2010.12.023_b0220
Shirasaki (10.1016/j.carbon.2010.12.023_b0150) 2000; 38
Chambers (10.1016/j.carbon.2010.12.023_b0025) 1998; 102
Louie (10.1016/j.carbon.2010.12.023_b0195) 1982; 26
Hirscher (10.1016/j.carbon.2010.12.023_b0040) 2002; 330
Dag (10.1016/j.carbon.2010.12.023_b0100) 2005; 72
Li (10.1016/j.carbon.2010.12.023_b0110) 2009; 9
Okamoto (10.1016/j.carbon.2010.12.023_b0180) 2001; 105
Zhao (10.1016/j.carbon.2010.12.023_b0060) 2005; 94
Yang (10.1016/j.carbon.2010.12.023_b0095) 2000; 38
Way (10.1016/j.carbon.2010.12.023_b0145) 1992; 46
Kim (10.1016/j.carbon.2010.12.023_b0210) 2008; 78
Machón (10.1016/j.carbon.2010.12.023_b0200) 2002; 66
Panella (10.1016/j.carbon.2010.12.023_b0045) 2005; 43
Heine (10.1016/j.carbon.2010.12.023_b0215) 2004; 6
Schlapbach (10.1016/j.carbon.2010.12.023_b0005) 2001; 414
Yoon (10.1016/j.carbon.2010.12.023_b0105) 2008; 100
Perdew (10.1016/j.carbon.2010.12.023_b0175) 1996; 77
Durgun (10.1016/j.carbon.2010.12.023_b0085) 2006; 97
Perdew (10.1016/j.carbon.2010.12.023_b0170) 1981; 23
Michael (10.1016/j.carbon.2010.12.023_b0070) 2001; 635
Kim (10.1016/j.carbon.2010.12.023_b0185) 2006; 96
References_xml – volume: 285
  start-page: 91
  year: 1999
  end-page: 93
  ident: b0090
  article-title: High H
  publication-title: Science
– volume: 77
  start-page: 085405
  year: 2008
  ident: b0065
  article-title: Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage
  publication-title: Phys Rev B
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5191
  ident: b0205
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys Rev B
– volume: 58
  start-page: 1200
  year: 1980
  end-page: 1211
  ident: b0225
  article-title: Accurate spin–dependent electron liquid correlation energies for local spin density calculations: a critical analysis
  publication-title: Can J Phys
– volume: 43
  start-page: 1993
  year: 1991
  end-page: 2006
  ident: b0165
  article-title: Efficient pseudopotentials for plane-wave calculations
  publication-title: Phys Rev B
– volume: 386
  start-page: 377
  year: 1997
  end-page: 379
  ident: b0020
  article-title: Storage of hydrogen in single-walled carbon nanotubes
  publication-title: Nature
– volume: 22
  start-page: 1688
  year: 2006
  end-page: 1700
  ident: b0010
  article-title: Optimum conditions for adsorptive storage
  publication-title: Langmuir
– volume: 80
  start-page: 115412
  year: 2009
  ident: b0115
  article-title: Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: first-principles calculations
  publication-title: Phys Rev B
– volume: 95
  start-page: 033109
  year: 2009
  ident: b0130
  article-title: Ab initio design of Ca-decorated organic frameworks for high capacity molecular hydrogen storage with enhanced binding
  publication-title: Appl Phys Lett
– volume: 38
  start-page: 1461
  year: 2000
  end-page: 1467
  ident: b0150
  article-title: Synthesis and characterization of boron-substituted carbons
  publication-title: Carbon
– volume: 97
  start-page: 226102
  year: 2006
  ident: b0085
  article-title: Transition-metal-ethylene complexes as high-capacity hydrogen-storage media
  publication-title: Phys Rev Lett
– volume: 8
  start-page: 1357
  year: 2006
  end-page: 1370
  ident: b0015
  article-title: Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions
  publication-title: Phys Chem Chem Phys
– volume: 46
  start-page: 618
  year: 1934
  end-page: 622
  ident: b0190
  article-title: Note on an approximation treatment for many-electron systems
  publication-title: Phys Rev
– volume: 26
  start-page: 1738
  year: 1982
  end-page: 1742
  ident: b0195
  article-title: Nonlinear ionic pseudopotentials in spin–density–functional calculations
  publication-title: Phys Rev B
– volume: 23
  start-page: 5048
  year: 1981
  end-page: 5079
  ident: b0170
  article-title: Self-interaction correction to density-functional approximations for many-electron systems
  publication-title: Phys Rev B
– volume: 286
  start-page: 1127
  year: 1999
  end-page: 1129
  ident: b0030
  article-title: Hydrogen storage in single-walled carbon nanotubes at room temperature
  publication-title: Science
– volume: 127
  start-page: 14582
  year: 2005
  end-page: 14583
  ident: b0080
  article-title: Clustering of Ti on a C
  publication-title: J Am Chem Soc
– volume: 21
  start-page: 120
  year: 1988
  end-page: 128
  ident: b0075
  article-title: Molecular hydrogen complexes: coordination of a
  publication-title: Acc Chem Res
– volume: 78
  start-page: 085408
  year: 2008
  ident: b0210
  article-title: Optimization of metal dispersion in doped graphitic materials for hydrogen storage
  publication-title: Phys Rev B
– volume: 38
  start-page: 623
  year: 2000
  end-page: 641
  ident: b0095
  article-title: Hydrogen storage by alkali-doped carbon nanotubes revisited
  publication-title: Carbon
– volume: 48
  start-page: 1425
  year: 1982
  end-page: 1428
  ident: b0160
  article-title: Efficacious form for model pseudopotentials
  publication-title: Phys Rev Lett
– volume: 414
  start-page: 353
  year: 2001
  end-page: 358
  ident: b0005
  article-title: Hydrogen-storage materials for mobile applications
  publication-title: Nature
– volume: 331
  start-page: 35
  year: 2000
  end-page: 41
  ident: b0050
  article-title: Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction
  publication-title: Chem Phys Lett
– volume: 635
  start-page: 1
  year: 2001
  end-page: 8
  ident: b0070
  article-title: A historical perspective on Dewar’s landmark contribution to organometallic chemistry
  publication-title: J Organomet Chem
– volume: 94
  start-page: 155504
  year: 2005
  ident: b0060
  article-title: Hydrogen storage in novel organometallic buckyballs
  publication-title: Phys Rev Lett
– volume: 72
  start-page: 155404
  year: 2005
  ident: b0100
  article-title: Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes
  publication-title: Phys Rev B
– volume: 80
  start-page: 2985
  year: 2002
  end-page: 2987
  ident: b0035
  article-title: Hydrogen storage in different carbon nanostructures
  publication-title: Appl Phys Lett
– volume: 105
  start-page: 3470
  year: 2001
  end-page: 3474
  ident: b0180
  article-title: Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes
  publication-title: J Phys Chem B
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0175
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev Lett
– volume: 14
  start-page: 2745
  year: 2002
  end-page: 2779
  ident: b0155
  article-title: The SIESTA method for ab initio order-N materials simulation
  publication-title: J Phys-Condens Matter
– volume: 9
  start-page: 1944
  year: 2009
  end-page: 1948
  ident: b0110
  article-title: Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials
  publication-title: Nano Lett
– volume: 6
  start-page: 980
  year: 2004
  end-page: 984
  ident: b0215
  article-title: Hydrogen storage by physisorption on nanostructured graphite platelets
  publication-title: Phys Chem Chem Phys
– volume: 46
  start-page: 1697
  year: 1992
  end-page: 1702
  ident: b0145
  article-title: Preparation and characterization of B
  publication-title: Phys Rev B
– volume: 43
  start-page: 2209
  year: 2005
  end-page: 2214
  ident: b0045
  article-title: Hydrogen adsorption in different carbon nanostructures
  publication-title: Carbon
– volume: 27
  start-page: 203
  year: 2002
  end-page: 212
  ident: b0140
  article-title: Hydrogen storage in carbon nanostructures
  publication-title: Int J Hydrogen Energy
– volume: 79
  start-page: 041406
  year: 2009
  ident: b0120
  article-title: Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations
  publication-title: Phys Rev B
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: b0135
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 100
  start-page: 206806
  year: 2008
  ident: b0105
  article-title: Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage
  publication-title: Phys Rev Lett
– volume: 96
  start-page: 016102
  year: 2006
  ident: b0185
  article-title: Nondissociative adsorption of H
  publication-title: Phys Rev Lett
– reference: Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. G
– reference: 03, Revision C.02. 2004. Gaussian, Inc., Wallingford, CT.
– volume: 102
  start-page: 4253
  year: 1998
  end-page: 4256
  ident: b0025
  article-title: Hydrogen storage in graphite nanofibers
  publication-title: J Phys Chem B
– volume: 94
  start-page: 175501
  year: 2005
  ident: b0055
  article-title: Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium
  publication-title: Phys Rev Lett
– volume: 66
  start-page: 155410
  year: 2002
  ident: b0200
  article-title: Ab initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes
  publication-title: Phys Rev B
– volume: 45
  start-page: 566
  year: 1980
  end-page: 569
  ident: b0230
  article-title: Ground state of the electron–gas by a stochastic method
  publication-title: Phys Rev Lett
– volume: 330
  start-page: 654
  year: 2002
  end-page: 658
  ident: b0040
  article-title: Hydrogen storage in carbon nanostructures
  publication-title: J Alloys Compd
– volume: 79
  start-page: 075431
  year: 2009
  ident: b0125
  article-title: Stable calcium adsorbates on carbon nanostructures: applications for high-capacity hydrogen storage
  publication-title: Phys Rev B
– volume: 94
  start-page: 155504
  issue: 15
  year: 2005
  ident: 10.1016/j.carbon.2010.12.023_b0060
  article-title: Hydrogen storage in novel organometallic buckyballs
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.94.155504
– volume: 38
  start-page: 1461
  issue: 10
  year: 2000
  ident: 10.1016/j.carbon.2010.12.023_b0150
  article-title: Synthesis and characterization of boron-substituted carbons
  publication-title: Carbon
  doi: 10.1016/S0008-6223(99)00279-1
– volume: 285
  start-page: 91
  issue: 5424
  year: 1999
  ident: 10.1016/j.carbon.2010.12.023_b0090
  article-title: High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures
  publication-title: Science
  doi: 10.1126/science.285.5424.91
– volume: 77
  start-page: 085405
  issue: 8
  year: 2008
  ident: 10.1016/j.carbon.2010.12.023_b0065
  article-title: Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.77.085405
– volume: 6
  start-page: 980
  issue: 5
  year: 2004
  ident: 10.1016/j.carbon.2010.12.023_b0215
  article-title: Hydrogen storage by physisorption on nanostructured graphite platelets
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b316209e
– volume: 94
  start-page: 175501
  issue: 17
  year: 2005
  ident: 10.1016/j.carbon.2010.12.023_b0055
  article-title: Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.94.175501
– volume: 331
  start-page: 35
  issue: 1
  year: 2000
  ident: 10.1016/j.carbon.2010.12.023_b0050
  article-title: Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction
  publication-title: Chem Phys Lett
  doi: 10.1016/S0009-2614(00)01162-3
– volume: 48
  start-page: 1425
  issue: 20
  year: 1982
  ident: 10.1016/j.carbon.2010.12.023_b0160
  article-title: Efficacious form for model pseudopotentials
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.48.1425
– volume: 96
  start-page: 016102
  issue: 1
  year: 2006
  ident: 10.1016/j.carbon.2010.12.023_b0185
  article-title: Nondissociative adsorption of H2 molecules in light-element-doped fullerenes
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.96.016102
– volume: 26
  start-page: 1738
  issue: 4
  year: 1982
  ident: 10.1016/j.carbon.2010.12.023_b0195
  article-title: Nonlinear ionic pseudopotentials in spin–density–functional calculations
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.26.1738
– volume: 72
  start-page: 155404
  issue: 15
  year: 2005
  ident: 10.1016/j.carbon.2010.12.023_b0100
  article-title: Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.72.155404
– volume: 95
  start-page: 033109
  issue: 3
  year: 2009
  ident: 10.1016/j.carbon.2010.12.023_b0130
  article-title: Ab initio design of Ca-decorated organic frameworks for high capacity molecular hydrogen storage with enhanced binding
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3182796
– volume: 45
  start-page: 566
  issue: 7
  year: 1980
  ident: 10.1016/j.carbon.2010.12.023_b0230
  article-title: Ground state of the electron–gas by a stochastic method
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.45.566
– volume: 8
  start-page: 1357
  issue: 12
  year: 2006
  ident: 10.1016/j.carbon.2010.12.023_b0015
  article-title: Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b515409j
– volume: 43
  start-page: 1993
  issue: 3
  year: 1991
  ident: 10.1016/j.carbon.2010.12.023_b0165
  article-title: Efficient pseudopotentials for plane-wave calculations
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.43.1993
– volume: 14
  start-page: 2745
  issue: 11
  year: 2002
  ident: 10.1016/j.carbon.2010.12.023_b0155
  article-title: The SIESTA method for ab initio order-N materials simulation
  publication-title: J Phys-Condens Matter
  doi: 10.1088/0953-8984/14/11/302
– volume: 46
  start-page: 1697
  issue: 3
  year: 1992
  ident: 10.1016/j.carbon.2010.12.023_b0145
  article-title: Preparation and characterization of BxC1−x thin films with the graphite structure
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.46.1697
– volume: 102
  start-page: 4253
  issue: 22
  year: 1998
  ident: 10.1016/j.carbon.2010.12.023_b0025
  article-title: Hydrogen storage in graphite nanofibers
  publication-title: J Phys Chem B
  doi: 10.1021/jp980114l
– volume: 286
  start-page: 1127
  issue: 5442
  year: 1999
  ident: 10.1016/j.carbon.2010.12.023_b0030
  article-title: Hydrogen storage in single-walled carbon nanotubes at room temperature
  publication-title: Science
  doi: 10.1126/science.286.5442.1127
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 10.1016/j.carbon.2010.12.023_b0175
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.77.3865
– volume: 105
  start-page: 3470
  issue: 17
  year: 2001
  ident: 10.1016/j.carbon.2010.12.023_b0180
  article-title: Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes
  publication-title: J Phys Chem B
  doi: 10.1021/jp003435h
– volume: 22
  start-page: 1688
  issue: 4
  year: 2006
  ident: 10.1016/j.carbon.2010.12.023_b0010
  article-title: Optimum conditions for adsorptive storage
  publication-title: Langmuir
  doi: 10.1021/la0523816
– volume: 330
  start-page: 654
  year: 2002
  ident: 10.1016/j.carbon.2010.12.023_b0040
  article-title: Hydrogen storage in carbon nanostructures
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(01)01643-7
– volume: 23
  start-page: 5048
  issue: 10
  year: 1981
  ident: 10.1016/j.carbon.2010.12.023_b0170
  article-title: Self-interaction correction to density-functional approximations for many-electron systems
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.23.5048
– ident: 10.1016/j.carbon.2010.12.023_b0220
– volume: 79
  start-page: 041406
  issue: 4
  year: 2009
  ident: 10.1016/j.carbon.2010.12.023_b0120
  article-title: Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.79.041406
– volume: 386
  start-page: 377
  issue: 6623
  year: 1997
  ident: 10.1016/j.carbon.2010.12.023_b0020
  article-title: Storage of hydrogen in single-walled carbon nanotubes
  publication-title: Nature
  doi: 10.1038/386377a0
– volume: 43
  start-page: 2209
  issue: 10
  year: 2005
  ident: 10.1016/j.carbon.2010.12.023_b0045
  article-title: Hydrogen adsorption in different carbon nanostructures
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.03.037
– volume: 80
  start-page: 115412
  issue: 11
  year: 2009
  ident: 10.1016/j.carbon.2010.12.023_b0115
  article-title: Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: first-principles calculations
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.80.115412
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  ident: 10.1016/j.carbon.2010.12.023_b0135
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 27
  start-page: 203
  year: 2002
  ident: 10.1016/j.carbon.2010.12.023_b0140
  article-title: Hydrogen storage in carbon nanostructures
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/S0360-3199(01)00108-2
– volume: 38
  start-page: 623
  issue: 4
  year: 2000
  ident: 10.1016/j.carbon.2010.12.023_b0095
  article-title: Hydrogen storage by alkali-doped carbon nanotubes revisited
  publication-title: Carbon
  doi: 10.1016/S0008-6223(99)00273-0
– volume: 58
  start-page: 1200
  issue: 8
  year: 1980
  ident: 10.1016/j.carbon.2010.12.023_b0225
  article-title: Accurate spin–dependent electron liquid correlation energies for local spin density calculations: a critical analysis
  publication-title: Can J Phys
  doi: 10.1139/p80-159
– volume: 97
  start-page: 226102
  issue: 22
  year: 2006
  ident: 10.1016/j.carbon.2010.12.023_b0085
  article-title: Transition-metal-ethylene complexes as high-capacity hydrogen-storage media
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.97.226102
– volume: 80
  start-page: 2985
  issue: 6
  year: 2002
  ident: 10.1016/j.carbon.2010.12.023_b0035
  article-title: Hydrogen storage in different carbon nanostructures
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1469680
– volume: 9
  start-page: 1944
  issue: 5
  year: 2009
  ident: 10.1016/j.carbon.2010.12.023_b0110
  article-title: Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials
  publication-title: Nano Lett
  doi: 10.1021/nl900116q
– volume: 46
  start-page: 618
  issue: 7
  year: 1934
  ident: 10.1016/j.carbon.2010.12.023_b0190
  article-title: Note on an approximation treatment for many-electron systems
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.46.618
– volume: 13
  start-page: 5188
  issue: 12
  year: 1976
  ident: 10.1016/j.carbon.2010.12.023_b0205
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.13.5188
– volume: 414
  start-page: 353
  year: 2001
  ident: 10.1016/j.carbon.2010.12.023_b0005
  article-title: Hydrogen-storage materials for mobile applications
  publication-title: Nature
  doi: 10.1038/35104634
– volume: 100
  start-page: 206806
  issue: 20
  year: 2008
  ident: 10.1016/j.carbon.2010.12.023_b0105
  article-title: Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.100.206806
– volume: 79
  start-page: 075431
  issue: 7
  year: 2009
  ident: 10.1016/j.carbon.2010.12.023_b0125
  article-title: Stable calcium adsorbates on carbon nanostructures: applications for high-capacity hydrogen storage
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.79.075431
– volume: 66
  start-page: 155410
  issue: 15
  year: 2002
  ident: 10.1016/j.carbon.2010.12.023_b0200
  article-title: Ab initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.66.155410
– volume: 21
  start-page: 120
  year: 1988
  ident: 10.1016/j.carbon.2010.12.023_b0075
  article-title: Molecular hydrogen complexes: coordination of a σ bond to transition metals
  publication-title: Acc Chem Res
  doi: 10.1021/ar00147a005
– volume: 78
  start-page: 085408
  issue: 8
  year: 2008
  ident: 10.1016/j.carbon.2010.12.023_b0210
  article-title: Optimization of metal dispersion in doped graphitic materials for hydrogen storage
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.78.085408
– volume: 127
  start-page: 14582
  issue: 42
  year: 2005
  ident: 10.1016/j.carbon.2010.12.023_b0080
  article-title: Clustering of Ti on a C60 surface and its effect on hydrogen storage
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0550125
– volume: 635
  start-page: 1
  issue: 1–2
  year: 2001
  ident: 10.1016/j.carbon.2010.12.023_b0070
  article-title: A historical perspective on Dewar’s landmark contribution to organometallic chemistry
  publication-title: J Organomet Chem
SSID ssj0004814
Score 2.4623709
Snippet Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1561
SubjectTerms adsorption
boron
calcium
Chemistry
Cross-disciplinary physics: materials science; rheology
electric field
energy
Exact sciences and technology
Fullerenes and related materials; diamonds, graphite
General and physical chemistry
graphene
hydrogen
Materials science
Physics
recycling
Specific materials
Surface physical chemistry
Title A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage
URI https://dx.doi.org/10.1016/j.carbon.2010.12.023
https://www.proquest.com/docview/1705465874
https://www.proquest.com/docview/861569533
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6IHhREXHFchggejXZJlxyHwWFU9KTgLTRLcUTbMsvBi7_d97ooIiJ4LUlT8r2-973kLQCnSYJGT1vNPekkF3EccC29FL0URD_Og8gklDt8exePH8T1Y_S4BMMuF4bCKlvd3-j0Wlu3Ty7a3byoJhPK8SU6HtQn1BJNDWWwi4Sk_Pz9K8xDpE19b7rmp9Fd-lwd42WyqS6LJsCLDgWD8DfztF5lM9y0vOl28UNx19ZotAkbLY1kg-ZLt2DJFduwOuy6t-1APmD5BJkdr7rT9BmrS8myMme4hJksXrkl3xPJpj1jmioZcFtWzrK6iDXqQIaEllE9Y5yArjXydfb0ZqclyhyjoEpURbvwMLq8H45521OBG_Sk5jx1znk21MgKtW_RQ7UIVIJeXuRlkUtNEPjG4H8uc2syP4yk0KFDbSojoY3MZLgHy0VZuH1gWhsX5jrz_FQLT9vM12hwkU7knjSoY3sQdlupTFtwnPpevKgusuxZNQAoAkD5gUIAesA_Z1VNwY0_xicdSuqb4Ci0CX_M7H8D9XM5ZDG1qPbgpENZIXp0k5IVrlzMFNUgEsjdEtED9ssYfEcUU_Duwb-_8BDWmiNsChQ6guX5dOGOkQPNdb8W8j6sDK5uxncf5vsHzQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50fVAQ8cT1WCP4aLB3m8dlUXY99knBt9AcxRVtyx4P_ntneqyIiOBrSZqSL535Jpn5AnARx-j0lFHcEVbwIIo8roSTYJSC6EeZF-qYaocfxtHwKbh9Dp9XYNDWwlBaZWP7a5teWevmyVUzm1flZEI1vkTHvWqHWqCrWYU1UqcKO7DWH90Nx1_lkUkt8U0n_dShraCr0rx0OlVFXud40b6g5__moTbLdIbzltUXXvyw3ZVDutmGrYZJsn79sTuwYvNdWB-0F7jtQdZn2QTJHS_bDfUZq9RkWZExHEJPFu_cUPiJfNNcMkViBtwUpTWs0rFGM8iQ0zKSNMYOGF0jZWcvH2Za4LJjlFeJ1mgfnm6uHwdD3lyrwDUGU3OeWGsd4yskhso1GKQaxCrGQC900tAm2vNcrfFXF5nRqeuHIlC-RYMqwkBpkQr_ADp5kdtDYEpp62cqddxEBY4yqavQ5yKjyByh0cx2wW-nUupGc5yuvniTbXLZq6wBkASAdD2JAHSBL3uVtebGH-3jFiX5be1IdAt_9Ox9A3U5HBKZarV24bxFWSJ6dJiS5rZYzCTJEAVI3-KgC-yXNviOMKL83aN_f-EZrA8fH-7l_Wh8dwwb9Y425Q2dQGc-XdhTpERz1WuW_CfiXAp-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+first-principles+study+of+calcium-decorated%2C+boron-doped+graphene+for+high+capacity+hydrogen+storage&rft.jtitle=Carbon+%28New+York%29&rft.au=Beheshti%2C+Elham&rft.au=Nojeh%2C+Alireza&rft.au=Servati%2C+Peyman&rft.date=2011-04-01&rft.issn=0008-6223&rft.volume=49&rft.issue=5+p.1561-1567&rft.spage=1561&rft.epage=1567&rft_id=info:doi/10.1016%2Fj.carbon.2010.12.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon