A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage
Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was s...
Saved in:
Published in | Carbon (New York) Vol. 49; no. 5; pp. 1561 - 1567 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.04.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was shown that individual calcium atoms are not stable on pure graphene, and formation of aggregates is favorable. Substitutional boron doping can eliminate the clustering problem for Ca atoms on graphene. Up to four hydrogen molecules can stably bind to a Ca atom on a graphene plane with substitutional doping of a single boron atom. The average binding energy of ∼0.4
eV/H
2 is in the range that permits H
2 recycling at ambient conditions. Two binding mechanisms contribute to the adsorption of H
2 molecules: polarization of the H
2 molecule under the electric field produced by the Ca–graphene dipole, and hybridization of the
3d orbitals of Ca with the
σ orbitals of H
2. Double-sided Ca-decorated graphene doped with individual boron atoms of 12
at.% can theoretically reach a gravimetric capacity of 8.38
wt.% hydrogen. |
---|---|
AbstractList | Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was shown that individual calcium atoms are not stable on pure graphene, and formation of aggregates is favorable. Substitutional boron doping can eliminate the clustering problem for Ca atoms on graphene. Up to four hydrogen molecules can stably bind to a Ca atom on a graphene plane with substitutional doping of a single boron atom. The average binding energy of similar to 0.4 eV/H sub(2) is in the range that permits H sub(2) recycling at ambient conditions. Two binding mechanisms contribute to the adsorption of H sub(2) molecules: polarization of the H sub(2) molecule under the electric field produced by the Ca-graphene dipole, and hybridization of the 3d orbitals of Ca with the sigma orbitals of H sub(2). Double-sided Ca-decorated graphene doped with individual boron atoms of 12 at.% can theoretically reach a gravimetric capacity of 8.38 wt.% hydrogen. Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was shown that individual calcium atoms are not stable on pure graphene, and formation of aggregates is favorable. Substitutional boron doping can eliminate the clustering problem for Ca atoms on graphene. Up to four hydrogen molecules can stably bind to a Ca atom on a graphene plane with substitutional doping of a single boron atom. The average binding energy of ∼0.4eV/H₂ is in the range that permits H₂ recycling at ambient conditions. Two binding mechanisms contribute to the adsorption of H₂ molecules: polarization of the H₂ molecule under the electric field produced by the Ca–graphene dipole, and hybridization of the 3d orbitals of Ca with the σ orbitals of H₂. Double-sided Ca-decorated graphene doped with individual boron atoms of 12at.% can theoretically reach a gravimetric capacity of 8.38wt.% hydrogen. Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was shown that individual calcium atoms are not stable on pure graphene, and formation of aggregates is favorable. Substitutional boron doping can eliminate the clustering problem for Ca atoms on graphene. Up to four hydrogen molecules can stably bind to a Ca atom on a graphene plane with substitutional doping of a single boron atom. The average binding energy of ∼0.4 eV/H 2 is in the range that permits H 2 recycling at ambient conditions. Two binding mechanisms contribute to the adsorption of H 2 molecules: polarization of the H 2 molecule under the electric field produced by the Ca–graphene dipole, and hybridization of the 3d orbitals of Ca with the σ orbitals of H 2. Double-sided Ca-decorated graphene doped with individual boron atoms of 12 at.% can theoretically reach a gravimetric capacity of 8.38 wt.% hydrogen. |
Author | Beheshti, Elham Nojeh, Alireza Servati, Peyman |
Author_xml | – sequence: 1 givenname: Elham surname: Beheshti fullname: Beheshti, Elham – sequence: 2 givenname: Alireza surname: Nojeh fullname: Nojeh, Alireza – sequence: 3 givenname: Peyman surname: Servati fullname: Servati, Peyman email: peymans@ece.ubc.ca |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23861179$$DView record in Pascal Francis |
BookMark | eNqFkc9rHCEYhqWk0E3a_6AHL6U9dDZ-6sw4PRRC6I9AIJf0LI5-s-syq1N1A_vf12VDDz2kJ1Ge5xXe95JchBiQkPfA1sCgu96trUljDGvOTk98zbh4RVagetEINcAFWTHGVNNxLt6Qy5x39SoVyBWZbujkUy7Nknywfpkx01wO7kjjRK2ZrT_sG4c2JlPQfaZjTDE0Li7o6CaZZYsB6RQT3frNtgqLsb4c6fboUtxgqFnV3OBb8noyc8Z3z-cV-fX92-Ptz-b-4cfd7c19YyWD0ihEZE6MA3QjuB6EG93YK8laZlpUlnOwVoAaJmcNiHaQo0CQ3dDK0Q5mEFfk4zl3SfH3AXPRe58tzrMJGA9Zqw7aSgtRyU8vktCzVnat6mVFPzyjJtdKpmRqU1nXxvYmHTUXNRX60-fyzNkUc044_UWA6dNQeqfPQ-nTUBq4rkNV7cs_Wq3QFB9DScbP_5O_nmWsrT55TDpbj8Gi8wlt0S76lwP-AGCos7I |
CODEN | CRBNAH |
CitedBy_id | crossref_primary_10_1016_j_rinp_2024_107488 crossref_primary_10_1063_1_4759235 crossref_primary_10_1039_D4TA00717D crossref_primary_10_1021_jp208423y crossref_primary_10_1016_j_ijhydene_2022_04_113 crossref_primary_10_1016_j_ijhydene_2017_01_121 crossref_primary_10_1007_s10853_024_10054_3 crossref_primary_10_1088_1757_899X_432_1_012051 crossref_primary_10_1016_j_ijhydene_2013_11_083 crossref_primary_10_1016_j_ijhydene_2018_10_205 crossref_primary_10_1016_j_ijhydene_2016_03_118 crossref_primary_10_1016_j_energy_2016_02_148 crossref_primary_10_1080_07391102_2018_1546233 crossref_primary_10_1016_j_physe_2014_09_022 crossref_primary_10_1080_08927022_2018_1517413 crossref_primary_10_1016_j_ijhydene_2019_01_010 crossref_primary_10_1103_PhysRevB_87_014102 crossref_primary_10_1016_j_ijhydene_2018_01_071 crossref_primary_10_1039_C6RA24890J crossref_primary_10_1038_srep16797 crossref_primary_10_1007_s00894_012_1642_6 crossref_primary_10_1016_j_spmi_2014_01_013 crossref_primary_10_1021_acs_jpcc_5b06164 crossref_primary_10_1016_j_matchemphys_2016_06_028 crossref_primary_10_1016_j_flatc_2024_100661 crossref_primary_10_1016_j_actamat_2021_117040 crossref_primary_10_1016_j_mtcomm_2024_108186 crossref_primary_10_1016_j_ijhydene_2014_04_063 crossref_primary_10_1016_j_ijhydene_2015_07_083 crossref_primary_10_1016_j_rser_2017_02_052 crossref_primary_10_1016_j_ijhydene_2017_02_023 crossref_primary_10_1002_aenm_201600510 crossref_primary_10_1016_j_apsusc_2016_04_057 crossref_primary_10_1063_1_4711038 crossref_primary_10_1016_j_jpowsour_2024_234881 crossref_primary_10_1039_C6RA16604K crossref_primary_10_1021_acsomega_1c06149 crossref_primary_10_1016_j_apsusc_2021_149484 crossref_primary_10_1021_acsaem_3c02070 crossref_primary_10_1016_j_ijhydene_2016_11_039 crossref_primary_10_1021_acsnano_6b00554 crossref_primary_10_1016_j_apsusc_2017_03_057 crossref_primary_10_1016_j_apsusc_2014_01_087 crossref_primary_10_1021_acsomega_1c02452 crossref_primary_10_1039_C6TA09169E crossref_primary_10_1016_j_mtcomm_2021_102322 crossref_primary_10_1063_1_3660325 crossref_primary_10_1088_1674_1056_27_9_097311 crossref_primary_10_1088_1755_1315_463_1_012103 crossref_primary_10_1139_cjp_2023_0072 crossref_primary_10_1016_j_apsusc_2016_02_223 crossref_primary_10_1016_j_colsurfa_2015_10_046 crossref_primary_10_1016_j_ijhydene_2021_03_103 crossref_primary_10_1039_C7CP07995H crossref_primary_10_1016_j_ijhydene_2024_09_376 crossref_primary_10_1016_j_ijhydene_2024_02_305 crossref_primary_10_1016_j_ijhydene_2020_02_025 crossref_primary_10_3938_jkps_66_1649 crossref_primary_10_1016_j_cplett_2013_06_061 crossref_primary_10_1016_j_jiec_2018_03_010 crossref_primary_10_1016_j_diamond_2021_108583 crossref_primary_10_1039_C8NR00747K crossref_primary_10_3390_ma14102499 crossref_primary_10_1063_1_5063895 crossref_primary_10_1002_aesr_202400362 crossref_primary_10_1016_j_apsusc_2018_02_106 crossref_primary_10_1016_j_ijhydene_2022_08_172 crossref_primary_10_1039_C4CP03069A crossref_primary_10_1016_j_jssc_2012_09_004 crossref_primary_10_1016_j_ijhydene_2017_03_057 crossref_primary_10_1038_s41598_020_68765_x crossref_primary_10_1016_j_est_2024_113053 crossref_primary_10_1016_j_jpcs_2016_07_006 crossref_primary_10_1016_j_ijhydene_2024_03_089 crossref_primary_10_1088_0022_3727_46_49_495307 crossref_primary_10_1007_s10562_015_1567_7 crossref_primary_10_1016_j_fuel_2024_132340 crossref_primary_10_1016_j_ijhydene_2022_01_216 crossref_primary_10_1016_j_apsusc_2016_09_032 crossref_primary_10_1016_j_pnsc_2012_11_006 crossref_primary_10_1016_j_ijhydene_2021_04_128 crossref_primary_10_1021_acs_jpcc_7b04886 crossref_primary_10_1016_j_physe_2012_09_010 crossref_primary_10_1016_j_physe_2017_09_012 crossref_primary_10_1021_jp512920f crossref_primary_10_1016_j_ijhydene_2019_01_222 crossref_primary_10_1016_j_apsusc_2020_147267 crossref_primary_10_1039_D0TA03392H crossref_primary_10_1016_j_cja_2021_12_014 crossref_primary_10_3390_molecules24132382 crossref_primary_10_1016_j_rinp_2023_106616 crossref_primary_10_1080_00268976_2022_2086182 crossref_primary_10_1088_1757_899X_422_1_012010 crossref_primary_10_1177_096739111402200209 crossref_primary_10_1007_s00894_018_3734_4 crossref_primary_10_1016_j_apsusc_2016_03_119 crossref_primary_10_1016_j_ijhydene_2013_07_098 crossref_primary_10_1039_C7RA01406F crossref_primary_10_1016_j_apsusc_2012_05_107 crossref_primary_10_1088_0256_307X_30_10_107306 crossref_primary_10_1016_j_flatc_2024_100727 crossref_primary_10_1016_j_apsusc_2021_151000 crossref_primary_10_1039_C5CP04391C crossref_primary_10_1080_00268976_2015_1039090 crossref_primary_10_1016_j_cjph_2019_01_009 crossref_primary_10_1039_C7TC02894F crossref_primary_10_1002_jccs_202200039 crossref_primary_10_1063_1_4812830 crossref_primary_10_1021_jp403552k crossref_primary_10_1039_C4CS00141A crossref_primary_10_1016_j_fuel_2021_121351 crossref_primary_10_1002_pssb_201552151 crossref_primary_10_1021_jp409594r crossref_primary_10_1016_j_ijhydene_2020_07_278 crossref_primary_10_1007_s10853_019_04150_y crossref_primary_10_1016_j_comptc_2014_05_012 crossref_primary_10_1007_s10904_022_02516_5 crossref_primary_10_1016_j_apsusc_2023_156947 crossref_primary_10_1016_j_micromeso_2019_04_046 crossref_primary_10_1016_j_ijhydene_2017_04_173 crossref_primary_10_1016_j_heliyon_2023_e14279 crossref_primary_10_1016_j_cis_2013_03_009 crossref_primary_10_1002_adts_202100187 crossref_primary_10_1016_j_rinp_2023_106263 crossref_primary_10_1063_1_4751249 crossref_primary_10_1016_j_ijhydene_2013_01_180 crossref_primary_10_1016_j_ijhydene_2017_12_068 crossref_primary_10_1063_1_4931630 crossref_primary_10_1016_j_ijhydene_2018_04_103 crossref_primary_10_1016_j_ijhydene_2019_08_186 crossref_primary_10_1063_1_4893177 crossref_primary_10_1002_er_4631 crossref_primary_10_1080_15435075_2023_2297770 crossref_primary_10_1016_j_cplett_2022_139853 crossref_primary_10_1016_j_ijhydene_2019_12_151 crossref_primary_10_1016_j_physe_2019_113576 crossref_primary_10_1021_acs_chemrev_6b00037 crossref_primary_10_1016_j_cplett_2021_138849 crossref_primary_10_4236_msce_2015_312013 crossref_primary_10_3390_molecules29020436 crossref_primary_10_1016_j_ijhydene_2018_03_078 crossref_primary_10_1016_j_ijhydene_2012_05_029 crossref_primary_10_1016_j_carbon_2014_02_048 crossref_primary_10_1016_j_ijhydene_2024_12_415 crossref_primary_10_1016_j_comptc_2023_114402 crossref_primary_10_1016_j_cplett_2018_02_022 crossref_primary_10_3390_nano13040647 crossref_primary_10_1021_acs_jpca_5b12739 crossref_primary_10_1021_acs_langmuir_4c02243 crossref_primary_10_1016_j_apsusc_2017_10_196 crossref_primary_10_1016_j_diamond_2022_109248 crossref_primary_10_1039_c2jm16608a crossref_primary_10_1016_j_commatsci_2016_07_021 crossref_primary_10_1103_PhysRevMaterials_7_035402 crossref_primary_10_1016_j_surfin_2023_103444 crossref_primary_10_1016_j_rser_2016_11_118 crossref_primary_10_1016_j_cplett_2018_05_014 crossref_primary_10_1039_C6RA21329D crossref_primary_10_1039_D0SE01920H crossref_primary_10_1039_C8EE01085D crossref_primary_10_1149_2_018310jss crossref_primary_10_1016_j_jscs_2017_07_006 crossref_primary_10_1016_j_comptc_2013_10_011 crossref_primary_10_1021_acsaem_3c01020 crossref_primary_10_1016_j_ijhydene_2014_05_068 crossref_primary_10_1021_acs_jpcc_5b02312 crossref_primary_10_1016_j_cplett_2012_11_015 crossref_primary_10_1016_j_physe_2018_04_007 crossref_primary_10_1016_j_ijhydene_2018_07_052 crossref_primary_10_1016_j_energy_2017_02_129 crossref_primary_10_1016_j_ijhydene_2014_05_184 crossref_primary_10_1016_j_ijhydene_2022_12_305 crossref_primary_10_1002_er_8634 crossref_primary_10_1016_j_comptc_2020_113006 crossref_primary_10_1039_C5CP00977D crossref_primary_10_1016_j_ijhydene_2017_04_240 crossref_primary_10_1016_j_jpowsour_2012_03_059 crossref_primary_10_1016_j_carbon_2015_03_046 crossref_primary_10_1039_C4CP02638A crossref_primary_10_1016_j_ijhydene_2016_11_069 crossref_primary_10_1021_jp4017536 crossref_primary_10_1016_j_commatsci_2016_07_002 crossref_primary_10_1016_j_ijhydene_2014_12_071 crossref_primary_10_1016_j_ijhydene_2019_11_184 crossref_primary_10_1016_j_carbon_2017_12_014 crossref_primary_10_1039_C7TA08748A crossref_primary_10_1140_epjp_s13360_020_00708_x crossref_primary_10_1016_j_ijhydene_2024_03_133 crossref_primary_10_1016_j_materresbull_2014_10_049 crossref_primary_10_1016_j_apsusc_2016_10_097 crossref_primary_10_1016_j_mssp_2022_106884 crossref_primary_10_1016_j_rechem_2024_101792 crossref_primary_10_1038_s41699_023_00425_w crossref_primary_10_1039_D4TA07170K crossref_primary_10_1016_j_physe_2019_01_015 crossref_primary_10_1016_j_ijhydene_2016_10_031 crossref_primary_10_1063_1_4770482 crossref_primary_10_1039_C7TA05068B crossref_primary_10_1016_j_diamond_2012_07_009 crossref_primary_10_1016_j_pmatsci_2014_10_004 crossref_primary_10_2139_ssrn_3995870 crossref_primary_10_1016_j_ijhydene_2023_05_117 |
Cites_doi | 10.1103/PhysRevLett.94.155504 10.1016/S0008-6223(99)00279-1 10.1126/science.285.5424.91 10.1103/PhysRevB.77.085405 10.1039/b316209e 10.1103/PhysRevLett.94.175501 10.1016/S0009-2614(00)01162-3 10.1103/PhysRevLett.48.1425 10.1103/PhysRevLett.96.016102 10.1103/PhysRevB.26.1738 10.1103/PhysRevB.72.155404 10.1063/1.3182796 10.1103/PhysRevLett.45.566 10.1039/b515409j 10.1103/PhysRevB.43.1993 10.1088/0953-8984/14/11/302 10.1103/PhysRevB.46.1697 10.1021/jp980114l 10.1126/science.286.5442.1127 10.1103/PhysRevLett.77.3865 10.1021/jp003435h 10.1021/la0523816 10.1016/S0925-8388(01)01643-7 10.1103/PhysRevB.23.5048 10.1103/PhysRevB.79.041406 10.1038/386377a0 10.1016/j.carbon.2005.03.037 10.1103/PhysRevB.80.115412 10.1126/science.1102896 10.1016/S0360-3199(01)00108-2 10.1016/S0008-6223(99)00273-0 10.1139/p80-159 10.1103/PhysRevLett.97.226102 10.1063/1.1469680 10.1021/nl900116q 10.1103/PhysRev.46.618 10.1103/PhysRevB.13.5188 10.1038/35104634 10.1103/PhysRevLett.100.206806 10.1103/PhysRevB.79.075431 10.1103/PhysRevB.66.155410 10.1021/ar00147a005 10.1103/PhysRevB.78.085408 10.1021/ja0550125 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 7QP |
DOI | 10.1016/j.carbon.2010.12.023 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Calcium & Calcified Tissue Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3891 |
EndPage | 1567 |
ExternalDocumentID | 23861179 10_1016_j_carbon_2010_12_023 S0008622310009024 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 7QP |
ID | FETCH-LOGICAL-c401t-8eee0d3b916b1d713dbdb784050a5e8c221cc3189fdca13594b3e146954bc9a93 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 01:35:22 EDT 2025 Fri Jul 11 07:34:40 EDT 2025 Mon Jul 21 09:18:14 EDT 2025 Tue Jul 01 01:14:19 EDT 2025 Thu Apr 24 22:50:48 EDT 2025 Fri Feb 23 02:28:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Binding Polarization Gradient Calcium Dipoles Hydrogen Doping Hybridization Mechanism Boron Storage Adsorption Simulation Binding energy Density functional method Recycling Aggregate Electric fields Orbital Local density approximation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-8eee0d3b916b1d713dbdb784050a5e8c221cc3189fdca13594b3e146954bc9a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1705465874 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_861569533 proquest_miscellaneous_1705465874 pascalfrancis_primary_23861179 crossref_primary_10_1016_j_carbon_2010_12_023 crossref_citationtrail_10_1016_j_carbon_2010_12_023 elsevier_sciencedirect_doi_10_1016_j_carbon_2010_12_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-01 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Carbon (New York) |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Li, Li, Zhou, Shen, Chen (b0110) 2009; 9 Züttel, Sudan, Mauron, Kiyobayashi, Emmenegger, Schlapbach (b0140) 2002; 27 Chambers, Park, Baker, Rodriguez (b0025) 1998; 102 Liu, Fan, Liu, Cong, Cheng, Dresselhaus (b0030) 1999; 286 Durgun, Ciraci, Yildirim (b0065) 2008; 77 Yang, Zhang, Ni (b0125) 2009; 79 03, Revision C.02. 2004. Gaussian, Inc., Wallingford, CT. Dillon, Jones, Bekkedahl, Kiang, Bethune, Heben (b0020) 1997; 386 Panella, Hirscher, Roth (b0045) 2005; 43 Ritschel, Uhlemann, Gutfleisch, Leonhardt, Graff, Täschner (b0035) 2002; 80 Lee, Ihm, Cohen, Louie (b0115) 2009; 80 Heine, Zhechkov, Seifert (b0215) 2004; 6 Moller, Plesset (b0190) 1934; 46 Lochan, Head-Gordon (b0015) 2006; 8 Zhao, Kim, Dillon, Heben, Zhang (b0060) 2005; 94 Kubas (b0075) 1988; 21 Hirscher, Becher, Haluska, Quintel, Skakalova, Choi (b0040) 2002; 330 Sun, Wang, Jena, Kawazoe (b0080) 2005; 127 Kim, Zhao, Williamson, Heben, Zhang (b0185) 2006; 96 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos (b0135) 2004; 306 Monkhorst, Pack (b0205) 1976; 13 Kleinman, Bylander (b0160) 1982; 48 Ceperley, Alder (b0230) 1980; 45 Zhang, Franklin, Chen, Dai (b0050) 2000; 331 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. G Troullier, Martins (b0165) 1991; 43 Michael, Mingos (b0070) 2001; 635 Machón, Reich, Thomsen, Sánchez-Portal, Ordejón (b0200) 2002; 66 Vosko, Wilk, Nusair (b0225) 1980; 58 Yoon, Yang, Hicke, Wang, Geohegan, Zhang (b0105) 2008; 100 Kim, Jhi, Park, Louie, Cohen (b0210) 2008; 78 Dag, Ozturk, Ciraci, Yildirim (b0100) 2005; 72 Durgun, Ciraci, Zhou, Yildirim (b0085) 2006; 97 Yang (b0095) 2000; 38 Sun, Lee, Kim, Zhang (b0130) 2009; 95 Chen, Wu, Lin, Tan (b0090) 1999; 285 Way, Dahn, Tiedje, Myrtle, Kasrai (b0145) 1992; 46 Shirasaki, Derré, Ménétrier, Tressaud, Flandrois (b0150) 2000; 38 Soler, Artacho, Gale, García, Junquera, Ordejón (b0155) 2002; 14 Schlapbach, Züttel (b0005) 2001; 414 Yildirim, Ciraci (b0055) 2005; 94 Perdew, Burke, Ernzerhof (b0175) 1996; 77 Okamoto, Miyamoto (b0180) 2001; 105 Perdew, Zunger (b0170) 1981; 23 Ataca, Aktürk, Ciraci (b0120) 2009; 79 Louie, Froyen, Cohen (b0195) 1982; 26 Bhatia, Myers (b0010) 2006; 22 Zhang (10.1016/j.carbon.2010.12.023_b0050) 2000; 331 Durgun (10.1016/j.carbon.2010.12.023_b0065) 2008; 77 Chen (10.1016/j.carbon.2010.12.023_b0090) 1999; 285 Kleinman (10.1016/j.carbon.2010.12.023_b0160) 1982; 48 Lochan (10.1016/j.carbon.2010.12.023_b0015) 2006; 8 Sun (10.1016/j.carbon.2010.12.023_b0080) 2005; 127 Ceperley (10.1016/j.carbon.2010.12.023_b0230) 1980; 45 Vosko (10.1016/j.carbon.2010.12.023_b0225) 1980; 58 Liu (10.1016/j.carbon.2010.12.023_b0030) 1999; 286 Monkhorst (10.1016/j.carbon.2010.12.023_b0205) 1976; 13 Yang (10.1016/j.carbon.2010.12.023_b0125) 2009; 79 Soler (10.1016/j.carbon.2010.12.023_b0155) 2002; 14 Yildirim (10.1016/j.carbon.2010.12.023_b0055) 2005; 94 Lee (10.1016/j.carbon.2010.12.023_b0115) 2009; 80 Züttel (10.1016/j.carbon.2010.12.023_b0140) 2002; 27 Troullier (10.1016/j.carbon.2010.12.023_b0165) 1991; 43 Bhatia (10.1016/j.carbon.2010.12.023_b0010) 2006; 22 Novoselov (10.1016/j.carbon.2010.12.023_b0135) 2004; 306 Sun (10.1016/j.carbon.2010.12.023_b0130) 2009; 95 Kubas (10.1016/j.carbon.2010.12.023_b0075) 1988; 21 Dillon (10.1016/j.carbon.2010.12.023_b0020) 1997; 386 Ritschel (10.1016/j.carbon.2010.12.023_b0035) 2002; 80 Ataca (10.1016/j.carbon.2010.12.023_b0120) 2009; 79 Moller (10.1016/j.carbon.2010.12.023_b0190) 1934; 46 10.1016/j.carbon.2010.12.023_b0220 Shirasaki (10.1016/j.carbon.2010.12.023_b0150) 2000; 38 Chambers (10.1016/j.carbon.2010.12.023_b0025) 1998; 102 Louie (10.1016/j.carbon.2010.12.023_b0195) 1982; 26 Hirscher (10.1016/j.carbon.2010.12.023_b0040) 2002; 330 Dag (10.1016/j.carbon.2010.12.023_b0100) 2005; 72 Li (10.1016/j.carbon.2010.12.023_b0110) 2009; 9 Okamoto (10.1016/j.carbon.2010.12.023_b0180) 2001; 105 Zhao (10.1016/j.carbon.2010.12.023_b0060) 2005; 94 Yang (10.1016/j.carbon.2010.12.023_b0095) 2000; 38 Way (10.1016/j.carbon.2010.12.023_b0145) 1992; 46 Kim (10.1016/j.carbon.2010.12.023_b0210) 2008; 78 Machón (10.1016/j.carbon.2010.12.023_b0200) 2002; 66 Panella (10.1016/j.carbon.2010.12.023_b0045) 2005; 43 Heine (10.1016/j.carbon.2010.12.023_b0215) 2004; 6 Schlapbach (10.1016/j.carbon.2010.12.023_b0005) 2001; 414 Yoon (10.1016/j.carbon.2010.12.023_b0105) 2008; 100 Perdew (10.1016/j.carbon.2010.12.023_b0175) 1996; 77 Durgun (10.1016/j.carbon.2010.12.023_b0085) 2006; 97 Perdew (10.1016/j.carbon.2010.12.023_b0170) 1981; 23 Michael (10.1016/j.carbon.2010.12.023_b0070) 2001; 635 Kim (10.1016/j.carbon.2010.12.023_b0185) 2006; 96 |
References_xml | – volume: 285 start-page: 91 year: 1999 end-page: 93 ident: b0090 article-title: High H publication-title: Science – volume: 77 start-page: 085405 year: 2008 ident: b0065 article-title: Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage publication-title: Phys Rev B – volume: 13 start-page: 5188 year: 1976 end-page: 5191 ident: b0205 article-title: Special points for Brillouin-zone integrations publication-title: Phys Rev B – volume: 58 start-page: 1200 year: 1980 end-page: 1211 ident: b0225 article-title: Accurate spin–dependent electron liquid correlation energies for local spin density calculations: a critical analysis publication-title: Can J Phys – volume: 43 start-page: 1993 year: 1991 end-page: 2006 ident: b0165 article-title: Efficient pseudopotentials for plane-wave calculations publication-title: Phys Rev B – volume: 386 start-page: 377 year: 1997 end-page: 379 ident: b0020 article-title: Storage of hydrogen in single-walled carbon nanotubes publication-title: Nature – volume: 22 start-page: 1688 year: 2006 end-page: 1700 ident: b0010 article-title: Optimum conditions for adsorptive storage publication-title: Langmuir – volume: 80 start-page: 115412 year: 2009 ident: b0115 article-title: Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: first-principles calculations publication-title: Phys Rev B – volume: 95 start-page: 033109 year: 2009 ident: b0130 article-title: Ab initio design of Ca-decorated organic frameworks for high capacity molecular hydrogen storage with enhanced binding publication-title: Appl Phys Lett – volume: 38 start-page: 1461 year: 2000 end-page: 1467 ident: b0150 article-title: Synthesis and characterization of boron-substituted carbons publication-title: Carbon – volume: 97 start-page: 226102 year: 2006 ident: b0085 article-title: Transition-metal-ethylene complexes as high-capacity hydrogen-storage media publication-title: Phys Rev Lett – volume: 8 start-page: 1357 year: 2006 end-page: 1370 ident: b0015 article-title: Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions publication-title: Phys Chem Chem Phys – volume: 46 start-page: 618 year: 1934 end-page: 622 ident: b0190 article-title: Note on an approximation treatment for many-electron systems publication-title: Phys Rev – volume: 26 start-page: 1738 year: 1982 end-page: 1742 ident: b0195 article-title: Nonlinear ionic pseudopotentials in spin–density–functional calculations publication-title: Phys Rev B – volume: 23 start-page: 5048 year: 1981 end-page: 5079 ident: b0170 article-title: Self-interaction correction to density-functional approximations for many-electron systems publication-title: Phys Rev B – volume: 286 start-page: 1127 year: 1999 end-page: 1129 ident: b0030 article-title: Hydrogen storage in single-walled carbon nanotubes at room temperature publication-title: Science – volume: 127 start-page: 14582 year: 2005 end-page: 14583 ident: b0080 article-title: Clustering of Ti on a C publication-title: J Am Chem Soc – volume: 21 start-page: 120 year: 1988 end-page: 128 ident: b0075 article-title: Molecular hydrogen complexes: coordination of a publication-title: Acc Chem Res – volume: 78 start-page: 085408 year: 2008 ident: b0210 article-title: Optimization of metal dispersion in doped graphitic materials for hydrogen storage publication-title: Phys Rev B – volume: 38 start-page: 623 year: 2000 end-page: 641 ident: b0095 article-title: Hydrogen storage by alkali-doped carbon nanotubes revisited publication-title: Carbon – volume: 48 start-page: 1425 year: 1982 end-page: 1428 ident: b0160 article-title: Efficacious form for model pseudopotentials publication-title: Phys Rev Lett – volume: 414 start-page: 353 year: 2001 end-page: 358 ident: b0005 article-title: Hydrogen-storage materials for mobile applications publication-title: Nature – volume: 331 start-page: 35 year: 2000 end-page: 41 ident: b0050 article-title: Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction publication-title: Chem Phys Lett – volume: 635 start-page: 1 year: 2001 end-page: 8 ident: b0070 article-title: A historical perspective on Dewar’s landmark contribution to organometallic chemistry publication-title: J Organomet Chem – volume: 94 start-page: 155504 year: 2005 ident: b0060 article-title: Hydrogen storage in novel organometallic buckyballs publication-title: Phys Rev Lett – volume: 72 start-page: 155404 year: 2005 ident: b0100 article-title: Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes publication-title: Phys Rev B – volume: 80 start-page: 2985 year: 2002 end-page: 2987 ident: b0035 article-title: Hydrogen storage in different carbon nanostructures publication-title: Appl Phys Lett – volume: 105 start-page: 3470 year: 2001 end-page: 3474 ident: b0180 article-title: Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes publication-title: J Phys Chem B – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0175 article-title: Generalized gradient approximation made simple publication-title: Phys Rev Lett – volume: 14 start-page: 2745 year: 2002 end-page: 2779 ident: b0155 article-title: The SIESTA method for ab initio order-N materials simulation publication-title: J Phys-Condens Matter – volume: 9 start-page: 1944 year: 2009 end-page: 1948 ident: b0110 article-title: Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials publication-title: Nano Lett – volume: 6 start-page: 980 year: 2004 end-page: 984 ident: b0215 article-title: Hydrogen storage by physisorption on nanostructured graphite platelets publication-title: Phys Chem Chem Phys – volume: 46 start-page: 1697 year: 1992 end-page: 1702 ident: b0145 article-title: Preparation and characterization of B publication-title: Phys Rev B – volume: 43 start-page: 2209 year: 2005 end-page: 2214 ident: b0045 article-title: Hydrogen adsorption in different carbon nanostructures publication-title: Carbon – volume: 27 start-page: 203 year: 2002 end-page: 212 ident: b0140 article-title: Hydrogen storage in carbon nanostructures publication-title: Int J Hydrogen Energy – volume: 79 start-page: 041406 year: 2009 ident: b0120 article-title: Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations publication-title: Phys Rev B – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: b0135 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 100 start-page: 206806 year: 2008 ident: b0105 article-title: Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage publication-title: Phys Rev Lett – volume: 96 start-page: 016102 year: 2006 ident: b0185 article-title: Nondissociative adsorption of H publication-title: Phys Rev Lett – reference: Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. G – reference: 03, Revision C.02. 2004. Gaussian, Inc., Wallingford, CT. – volume: 102 start-page: 4253 year: 1998 end-page: 4256 ident: b0025 article-title: Hydrogen storage in graphite nanofibers publication-title: J Phys Chem B – volume: 94 start-page: 175501 year: 2005 ident: b0055 article-title: Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium publication-title: Phys Rev Lett – volume: 66 start-page: 155410 year: 2002 ident: b0200 article-title: Ab initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes publication-title: Phys Rev B – volume: 45 start-page: 566 year: 1980 end-page: 569 ident: b0230 article-title: Ground state of the electron–gas by a stochastic method publication-title: Phys Rev Lett – volume: 330 start-page: 654 year: 2002 end-page: 658 ident: b0040 article-title: Hydrogen storage in carbon nanostructures publication-title: J Alloys Compd – volume: 79 start-page: 075431 year: 2009 ident: b0125 article-title: Stable calcium adsorbates on carbon nanostructures: applications for high-capacity hydrogen storage publication-title: Phys Rev B – volume: 94 start-page: 155504 issue: 15 year: 2005 ident: 10.1016/j.carbon.2010.12.023_b0060 article-title: Hydrogen storage in novel organometallic buckyballs publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.94.155504 – volume: 38 start-page: 1461 issue: 10 year: 2000 ident: 10.1016/j.carbon.2010.12.023_b0150 article-title: Synthesis and characterization of boron-substituted carbons publication-title: Carbon doi: 10.1016/S0008-6223(99)00279-1 – volume: 285 start-page: 91 issue: 5424 year: 1999 ident: 10.1016/j.carbon.2010.12.023_b0090 article-title: High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures publication-title: Science doi: 10.1126/science.285.5424.91 – volume: 77 start-page: 085405 issue: 8 year: 2008 ident: 10.1016/j.carbon.2010.12.023_b0065 article-title: Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage publication-title: Phys Rev B doi: 10.1103/PhysRevB.77.085405 – volume: 6 start-page: 980 issue: 5 year: 2004 ident: 10.1016/j.carbon.2010.12.023_b0215 article-title: Hydrogen storage by physisorption on nanostructured graphite platelets publication-title: Phys Chem Chem Phys doi: 10.1039/b316209e – volume: 94 start-page: 175501 issue: 17 year: 2005 ident: 10.1016/j.carbon.2010.12.023_b0055 article-title: Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.94.175501 – volume: 331 start-page: 35 issue: 1 year: 2000 ident: 10.1016/j.carbon.2010.12.023_b0050 article-title: Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction publication-title: Chem Phys Lett doi: 10.1016/S0009-2614(00)01162-3 – volume: 48 start-page: 1425 issue: 20 year: 1982 ident: 10.1016/j.carbon.2010.12.023_b0160 article-title: Efficacious form for model pseudopotentials publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.48.1425 – volume: 96 start-page: 016102 issue: 1 year: 2006 ident: 10.1016/j.carbon.2010.12.023_b0185 article-title: Nondissociative adsorption of H2 molecules in light-element-doped fullerenes publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.96.016102 – volume: 26 start-page: 1738 issue: 4 year: 1982 ident: 10.1016/j.carbon.2010.12.023_b0195 article-title: Nonlinear ionic pseudopotentials in spin–density–functional calculations publication-title: Phys Rev B doi: 10.1103/PhysRevB.26.1738 – volume: 72 start-page: 155404 issue: 15 year: 2005 ident: 10.1016/j.carbon.2010.12.023_b0100 article-title: Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes publication-title: Phys Rev B doi: 10.1103/PhysRevB.72.155404 – volume: 95 start-page: 033109 issue: 3 year: 2009 ident: 10.1016/j.carbon.2010.12.023_b0130 article-title: Ab initio design of Ca-decorated organic frameworks for high capacity molecular hydrogen storage with enhanced binding publication-title: Appl Phys Lett doi: 10.1063/1.3182796 – volume: 45 start-page: 566 issue: 7 year: 1980 ident: 10.1016/j.carbon.2010.12.023_b0230 article-title: Ground state of the electron–gas by a stochastic method publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.45.566 – volume: 8 start-page: 1357 issue: 12 year: 2006 ident: 10.1016/j.carbon.2010.12.023_b0015 article-title: Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions publication-title: Phys Chem Chem Phys doi: 10.1039/b515409j – volume: 43 start-page: 1993 issue: 3 year: 1991 ident: 10.1016/j.carbon.2010.12.023_b0165 article-title: Efficient pseudopotentials for plane-wave calculations publication-title: Phys Rev B doi: 10.1103/PhysRevB.43.1993 – volume: 14 start-page: 2745 issue: 11 year: 2002 ident: 10.1016/j.carbon.2010.12.023_b0155 article-title: The SIESTA method for ab initio order-N materials simulation publication-title: J Phys-Condens Matter doi: 10.1088/0953-8984/14/11/302 – volume: 46 start-page: 1697 issue: 3 year: 1992 ident: 10.1016/j.carbon.2010.12.023_b0145 article-title: Preparation and characterization of BxC1−x thin films with the graphite structure publication-title: Phys Rev B doi: 10.1103/PhysRevB.46.1697 – volume: 102 start-page: 4253 issue: 22 year: 1998 ident: 10.1016/j.carbon.2010.12.023_b0025 article-title: Hydrogen storage in graphite nanofibers publication-title: J Phys Chem B doi: 10.1021/jp980114l – volume: 286 start-page: 1127 issue: 5442 year: 1999 ident: 10.1016/j.carbon.2010.12.023_b0030 article-title: Hydrogen storage in single-walled carbon nanotubes at room temperature publication-title: Science doi: 10.1126/science.286.5442.1127 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 10.1016/j.carbon.2010.12.023_b0175 article-title: Generalized gradient approximation made simple publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.77.3865 – volume: 105 start-page: 3470 issue: 17 year: 2001 ident: 10.1016/j.carbon.2010.12.023_b0180 article-title: Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes publication-title: J Phys Chem B doi: 10.1021/jp003435h – volume: 22 start-page: 1688 issue: 4 year: 2006 ident: 10.1016/j.carbon.2010.12.023_b0010 article-title: Optimum conditions for adsorptive storage publication-title: Langmuir doi: 10.1021/la0523816 – volume: 330 start-page: 654 year: 2002 ident: 10.1016/j.carbon.2010.12.023_b0040 article-title: Hydrogen storage in carbon nanostructures publication-title: J Alloys Compd doi: 10.1016/S0925-8388(01)01643-7 – volume: 23 start-page: 5048 issue: 10 year: 1981 ident: 10.1016/j.carbon.2010.12.023_b0170 article-title: Self-interaction correction to density-functional approximations for many-electron systems publication-title: Phys Rev B doi: 10.1103/PhysRevB.23.5048 – ident: 10.1016/j.carbon.2010.12.023_b0220 – volume: 79 start-page: 041406 issue: 4 year: 2009 ident: 10.1016/j.carbon.2010.12.023_b0120 article-title: Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations publication-title: Phys Rev B doi: 10.1103/PhysRevB.79.041406 – volume: 386 start-page: 377 issue: 6623 year: 1997 ident: 10.1016/j.carbon.2010.12.023_b0020 article-title: Storage of hydrogen in single-walled carbon nanotubes publication-title: Nature doi: 10.1038/386377a0 – volume: 43 start-page: 2209 issue: 10 year: 2005 ident: 10.1016/j.carbon.2010.12.023_b0045 article-title: Hydrogen adsorption in different carbon nanostructures publication-title: Carbon doi: 10.1016/j.carbon.2005.03.037 – volume: 80 start-page: 115412 issue: 11 year: 2009 ident: 10.1016/j.carbon.2010.12.023_b0115 article-title: Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: first-principles calculations publication-title: Phys Rev B doi: 10.1103/PhysRevB.80.115412 – volume: 306 start-page: 666 issue: 5696 year: 2004 ident: 10.1016/j.carbon.2010.12.023_b0135 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 27 start-page: 203 year: 2002 ident: 10.1016/j.carbon.2010.12.023_b0140 article-title: Hydrogen storage in carbon nanostructures publication-title: Int J Hydrogen Energy doi: 10.1016/S0360-3199(01)00108-2 – volume: 38 start-page: 623 issue: 4 year: 2000 ident: 10.1016/j.carbon.2010.12.023_b0095 article-title: Hydrogen storage by alkali-doped carbon nanotubes revisited publication-title: Carbon doi: 10.1016/S0008-6223(99)00273-0 – volume: 58 start-page: 1200 issue: 8 year: 1980 ident: 10.1016/j.carbon.2010.12.023_b0225 article-title: Accurate spin–dependent electron liquid correlation energies for local spin density calculations: a critical analysis publication-title: Can J Phys doi: 10.1139/p80-159 – volume: 97 start-page: 226102 issue: 22 year: 2006 ident: 10.1016/j.carbon.2010.12.023_b0085 article-title: Transition-metal-ethylene complexes as high-capacity hydrogen-storage media publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.97.226102 – volume: 80 start-page: 2985 issue: 6 year: 2002 ident: 10.1016/j.carbon.2010.12.023_b0035 article-title: Hydrogen storage in different carbon nanostructures publication-title: Appl Phys Lett doi: 10.1063/1.1469680 – volume: 9 start-page: 1944 issue: 5 year: 2009 ident: 10.1016/j.carbon.2010.12.023_b0110 article-title: Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials publication-title: Nano Lett doi: 10.1021/nl900116q – volume: 46 start-page: 618 issue: 7 year: 1934 ident: 10.1016/j.carbon.2010.12.023_b0190 article-title: Note on an approximation treatment for many-electron systems publication-title: Phys Rev doi: 10.1103/PhysRev.46.618 – volume: 13 start-page: 5188 issue: 12 year: 1976 ident: 10.1016/j.carbon.2010.12.023_b0205 article-title: Special points for Brillouin-zone integrations publication-title: Phys Rev B doi: 10.1103/PhysRevB.13.5188 – volume: 414 start-page: 353 year: 2001 ident: 10.1016/j.carbon.2010.12.023_b0005 article-title: Hydrogen-storage materials for mobile applications publication-title: Nature doi: 10.1038/35104634 – volume: 100 start-page: 206806 issue: 20 year: 2008 ident: 10.1016/j.carbon.2010.12.023_b0105 article-title: Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.100.206806 – volume: 79 start-page: 075431 issue: 7 year: 2009 ident: 10.1016/j.carbon.2010.12.023_b0125 article-title: Stable calcium adsorbates on carbon nanostructures: applications for high-capacity hydrogen storage publication-title: Phys Rev B doi: 10.1103/PhysRevB.79.075431 – volume: 66 start-page: 155410 issue: 15 year: 2002 ident: 10.1016/j.carbon.2010.12.023_b0200 article-title: Ab initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes publication-title: Phys Rev B doi: 10.1103/PhysRevB.66.155410 – volume: 21 start-page: 120 year: 1988 ident: 10.1016/j.carbon.2010.12.023_b0075 article-title: Molecular hydrogen complexes: coordination of a σ bond to transition metals publication-title: Acc Chem Res doi: 10.1021/ar00147a005 – volume: 78 start-page: 085408 issue: 8 year: 2008 ident: 10.1016/j.carbon.2010.12.023_b0210 article-title: Optimization of metal dispersion in doped graphitic materials for hydrogen storage publication-title: Phys Rev B doi: 10.1103/PhysRevB.78.085408 – volume: 127 start-page: 14582 issue: 42 year: 2005 ident: 10.1016/j.carbon.2010.12.023_b0080 article-title: Clustering of Ti on a C60 surface and its effect on hydrogen storage publication-title: J Am Chem Soc doi: 10.1021/ja0550125 – volume: 635 start-page: 1 issue: 1–2 year: 2001 ident: 10.1016/j.carbon.2010.12.023_b0070 article-title: A historical perspective on Dewar’s landmark contribution to organometallic chemistry publication-title: J Organomet Chem |
SSID | ssj0004814 |
Score | 2.4623709 |
Snippet | Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1561 |
SubjectTerms | adsorption boron calcium Chemistry Cross-disciplinary physics: materials science; rheology electric field energy Exact sciences and technology Fullerenes and related materials; diamonds, graphite General and physical chemistry graphene hydrogen Materials science Physics recycling Specific materials Surface physical chemistry |
Title | A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage |
URI | https://dx.doi.org/10.1016/j.carbon.2010.12.023 https://www.proquest.com/docview/1705465874 https://www.proquest.com/docview/861569533 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6IHhREXHFchggejXZJlxyHwWFU9KTgLTRLcUTbMsvBi7_d97ooIiJ4LUlT8r2-973kLQCnSYJGT1vNPekkF3EccC29FL0URD_Og8gklDt8exePH8T1Y_S4BMMuF4bCKlvd3-j0Wlu3Ty7a3byoJhPK8SU6HtQn1BJNDWWwi4Sk_Pz9K8xDpE19b7rmp9Fd-lwd42WyqS6LJsCLDgWD8DfztF5lM9y0vOl28UNx19ZotAkbLY1kg-ZLt2DJFduwOuy6t-1APmD5BJkdr7rT9BmrS8myMme4hJksXrkl3xPJpj1jmioZcFtWzrK6iDXqQIaEllE9Y5yArjXydfb0ZqclyhyjoEpURbvwMLq8H45521OBG_Sk5jx1znk21MgKtW_RQ7UIVIJeXuRlkUtNEPjG4H8uc2syP4yk0KFDbSojoY3MZLgHy0VZuH1gWhsX5jrz_FQLT9vM12hwkU7knjSoY3sQdlupTFtwnPpevKgusuxZNQAoAkD5gUIAesA_Z1VNwY0_xicdSuqb4Ci0CX_M7H8D9XM5ZDG1qPbgpENZIXp0k5IVrlzMFNUgEsjdEtED9ssYfEcUU_Duwb-_8BDWmiNsChQ6guX5dOGOkQPNdb8W8j6sDK5uxncf5vsHzQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50fVAQ8cT1WCP4aLB3m8dlUXY99knBt9AcxRVtyx4P_ntneqyIiOBrSZqSL535Jpn5AnARx-j0lFHcEVbwIIo8roSTYJSC6EeZF-qYaocfxtHwKbh9Dp9XYNDWwlBaZWP7a5teWevmyVUzm1flZEI1vkTHvWqHWqCrWYU1UqcKO7DWH90Nx1_lkUkt8U0n_dShraCr0rx0OlVFXud40b6g5__moTbLdIbzltUXXvyw3ZVDutmGrYZJsn79sTuwYvNdWB-0F7jtQdZn2QTJHS_bDfUZq9RkWZExHEJPFu_cUPiJfNNcMkViBtwUpTWs0rFGM8iQ0zKSNMYOGF0jZWcvH2Za4LJjlFeJ1mgfnm6uHwdD3lyrwDUGU3OeWGsd4yskhso1GKQaxCrGQC900tAm2vNcrfFXF5nRqeuHIlC-RYMqwkBpkQr_ADp5kdtDYEpp62cqddxEBY4yqavQ5yKjyByh0cx2wW-nUupGc5yuvniTbXLZq6wBkASAdD2JAHSBL3uVtebGH-3jFiX5be1IdAt_9Ox9A3U5HBKZarV24bxFWSJ6dJiS5rZYzCTJEAVI3-KgC-yXNviOMKL83aN_f-EZrA8fH-7l_Wh8dwwb9Y425Q2dQGc-XdhTpERz1WuW_CfiXAp- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+first-principles+study+of+calcium-decorated%2C+boron-doped+graphene+for+high+capacity+hydrogen+storage&rft.jtitle=Carbon+%28New+York%29&rft.au=Beheshti%2C+Elham&rft.au=Nojeh%2C+Alireza&rft.au=Servati%2C+Peyman&rft.date=2011-04-01&rft.issn=0008-6223&rft.volume=49&rft.issue=5+p.1561-1567&rft.spage=1561&rft.epage=1567&rft_id=info:doi/10.1016%2Fj.carbon.2010.12.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |