Regularity of area minimizing currents mod p
We establish a first general partial regularity theorem for area minimizing currents mod ( p ) , for every p , in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m -dimensional area minimizing current mod ( p ) cannot be larger...
Saved in:
Published in | Geometric and functional analysis Vol. 30; no. 5; pp. 1224 - 1336 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We establish a first general partial regularity theorem for area minimizing currents
mod
(
p
)
, for every
p
, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an
m
-dimensional area minimizing current
mod
(
p
)
cannot be larger than
m
-
1
. Additionally, we show that, when
p
is odd, the interior singular set is
(
m
-
1
)
-rectifiable with locally finite
(
m
-
1
)
-dimensional measure. |
---|---|
AbstractList | We establish a first general partial regularity theorem for area minimizing currents
mod
(
p
)
, for every
p
, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an
m
-dimensional area minimizing current
mod
(
p
)
cannot be larger than
m
-
1
. Additionally, we show that, when
p
is odd, the interior singular set is
(
m
-
1
)
-rectifiable with locally finite
(
m
-
1
)
-dimensional measure. We establish a first general partial regularity theorem for area minimizing currents $${\mathrm{mod}}(p)$$ mod ( p ) , for every p , in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m -dimensional area minimizing current $${\mathrm{mod}}(p)$$ mod ( p ) cannot be larger than $$m-1$$ m - 1 . Additionally, we show that, when p is odd, the interior singular set is $$(m-1)$$ ( m - 1 ) -rectifiable with locally finite $$(m-1)$$ ( m - 1 ) -dimensional measure. |
Author | Stuvard, Salvatore Hirsch, Jonas Marchese, Andrea De Lellis, Camillo |
Author_xml | – sequence: 1 givenname: Camillo surname: De Lellis fullname: De Lellis, Camillo organization: School of Mathematics, Institute for Advanced Study, Institut für Mathematik, Universität Zürich – sequence: 2 givenname: Jonas surname: Hirsch fullname: Hirsch, Jonas organization: Mathematisches Institut, Universität Leipzig – sequence: 3 givenname: Andrea surname: Marchese fullname: Marchese, Andrea email: andrea.marchese@unitn.it organization: Dipartimento di Matematica, Università di Trento – sequence: 4 givenname: Salvatore surname: Stuvard fullname: Stuvard, Salvatore organization: Department of Mathematics, The University of Texas at Austin |
BookMark | eNp9j8tKAzEUhoNUsK2-gKt5AKMnt5nMUoo3KAii4C5kcikpnUxJZhb16Y3WlYuuzjlwvv_nW6BZHKJD6JrALQFo7jIAsBYDBQwgeI3hDM0JL6dsG5iVHUiNOWefF2iR87a8C8HFHN28uc200ymMh2rwlU5OV32IoQ9fIW4qM6Xk4pirfrDV_hKde73L7upvLtHH48P76hmvX59eVvdrbDiQEUvTsFZQZwglVlhgvumE47wRzHkr67rtJHSM2Q649mCcNq3rvKTUgpDUsiWix1yThpyT82qfQq_TQRFQP77q6KuKr_r1VVAg-Q8yYdRjGOKYdNidRtkRzaUnblxS22FKsSieor4BQAprrw |
CitedBy_id | crossref_primary_10_1093_imrn_rnae024 crossref_primary_10_1007_s00526_023_02569_5 crossref_primary_10_1002_cpa_22194 crossref_primary_10_1007_s00208_024_02970_1 crossref_primary_10_1007_s00526_019_1545_9 crossref_primary_10_1016_j_na_2024_113606 crossref_primary_10_1007_s00526_020_01909_z |
Cites_doi | 10.1007/BF01392299 10.1515/acv-2016-0040 10.1007/978-1-4613-9711-3_1 10.4310/SDG.1993.v2.n1.a5 10.1353/ajm.2012.0004 10.4007/annals.2016.183.2.3 10.1090/pspum/044/840292 10.1016/j.aim.2019.04.057 10.1007/978-0-8176-4679-0 10.1007/BF01403190 10.4310/jdg/1214454484 10.1215/00127094-2017-0035 10.4007/annals.2016.183.2.2 10.1016/j.jmaa.2014.04.024 10.1007/BF02392238 10.1007/BF02392711 10.2307/1970868 10.1017/CBO9780511623813 10.1090/S0002-9904-1970-12542-3 10.1093/oso/9780198502456.001.0001 10.1090/pspum/044/840290 10.1007/s00039-014-0306-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 |
Copyright_xml | – notice: The Author(s) 2020 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00039-020-00546-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1420-8970 |
EndPage | 1336 |
ExternalDocumentID | 10_1007_s00039_020_00546_0 |
GrantInformation_xml | – fundername: Università degli Studi di Trento |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OK1 P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I REI RHV RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c401t-8c73952ec121d5d03f7b5e44753efd8669b80b33db04af0ceac9ebf822d0582d3 |
IEDL.DBID | C6C |
ISSN | 1016-443X |
IngestDate | Tue Jul 01 02:31:07 EDT 2025 Thu Apr 24 23:03:04 EDT 2025 Fri Feb 21 02:33:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Area minimizing currents Minimal surfaces Center manifold 49N60 49Q05 49Q15 Regularity theory 35B65 Multiple valued functions Blow-up analysis 35J47 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-8c73952ec121d5d03f7b5e44753efd8669b80b33db04af0ceac9ebf822d0582d3 |
OpenAccessLink | https://doi.org/10.1007/s00039-020-00546-0 |
PageCount | 113 |
ParticipantIDs | crossref_primary_10_1007_s00039_020_00546_0 crossref_citationtrail_10_1007_s00039_020_00546_0 springer_journals_10_1007_s00039_020_00546_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201000 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSubtitle | GAFA |
PublicationTitle | Geometric and functional analysis |
PublicationTitleAbbrev | Geom. Funct. Anal |
PublicationYear | 2020 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | De LellisCamilloSpadaroEmanueleRegularity of area minimizing currents III: blow-upAnn. of Math. (2)20161832577617345048310.4007/annals.2016.183.2.3 De LellisCamilloSpadaroEmanuele NunzioRegularity of area minimizing currents II: center manifoldAnn. of Math. (2)20161832499575345048210.4007/annals.2016.183.2.2 SimonLCylindrical tangent cones and the singular set of minimal submanifoldsJournal of Differential Geometry1993383585652124378810.4310/jdg/1214454484 TaylorJean ERegularity of the singular sets of two-dimensional area-minimizing flat chains modulo 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document} in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{3}$$\end{document}Invent. Math.19732211915933390310.1007/BF01392299 WhiteBrianStratification of minimal surfaces, mean curvature flows, and harmonic mapsJ. Reine Angew. Math.199748813514653650874.58007 AmbrosioLuigiFuscoNicolaPallaraDiegoFunctions of bounded variation and free discontinuity problems2000Oxford University Press, New YorkOxford Mathematical Monographs. The Clarendon Press0957.49001 HerbertFederer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969. FrederickJ. Almgren, Jr. Multi-functions mod ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. In Geometric analysis and computer graphics (Berkeley, CA, 1988), volume 17 of Math. Sci. Res. Inst. Publ., pages 1–17. Springer, New York, 1991. SpolaorLucaAlmgren’s type regularity for semicalibrated currentsAdv. Math.2019350747815394868510.1016/j.aim.2019.04.057 KrantzSteven GParksHarold RGeometric integration theory2008Boston, MACornerstones. Birkhäuser Boston Inc10.1007/978-0-8176-4679-0 BrianWhite. A regularity theorem for minimizing hypersurfaces modulo p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}. In Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), volume 44 of Proc. Sympos. Pure Math., pages 413–427. Amer. Math. Soc., Providence, RI, 1986. MarcheseAndreaStuvardSalvatoreOn the structure of flat chains modulo p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}Adv. Calc. Var.2018113309323381952910.1515/acv-2016-0040 De PauwThierryHardtRobertRectifiable and flat G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} chains in a metric spaceAmer. J. Math.20121341169287613810.1353/ajm.2012.0004 YoungRobertQuantitative nonorientability of embedded cyclesDuke Math. J.2018167141108374369910.1215/00127094-2017-0035 De PauwThierryHardtRobertSome basic theorems on flat G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} chainsJ. Math. Anal. Appl.2014418210471061320669710.1016/j.jmaa.2014.04.024 CamilloDe Lellis, JonasHirsch, AndreaMarchese, and SalvatoreStuvard. Area minimizing currents mod 2Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2Q}$$\end{document}: linear regularity theory. Comm. Pure Appl. Math., to appear. arXiv:1909.03305. De LellisCamilloSpadaroEmanuele NunzioQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-valued functions revisitedMem. Amer. Math. Soc.2011211991vi+7926637351246.49001 Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS summer institute. In J. E. Brothers, editor, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), volume 44 of Proc. Sympos. Pure Math., pages 441–464. Amer. Math. Soc., Providence, RI, 1986. PerttiMattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. RichardSchoen, LeonSimon, and FrederickJ. Jr. Almgren. Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II. Acta Math., 139(3-4):217–265, 1977. De LellisCamilloSpadaroEmanueleRegularity of area minimizing currents I: gradient Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimatesGeom. Funct. Anal.201424618311884328392910.1007/s00039-014-0306-3 AmbrosioLuigiMetric space valued functions of bounded variationAnn. Scuola Norm. Sup. Pisa Cl. Sci. (4)199017343947910799850724.49027 AaronNaber and DanieleValtorta. The singular structure and regularity of stationary varifolds. J. Eur. Math. Soc. (JEMS), to appear. arXiv:1505.03428. LeonSimon. Rectifiability of the singular sets of multiplicity 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document} minimal surfaces and energy minimizing maps. In Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), pages 246–305. Int. Press, Cambridge, MA, 1995. De LellisCamilloSpadaroEmanueleMultiple valued functions and integral currentsAnn. Sc. Norm. Super. Pisa Cl. Sci. (5)20151441239126934676551343.49073 FedererHerbertThe singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimensionBull. Amer. Math. Soc.19707676777126098110.1090/S0002-9904-1970-12542-3 AmbrosioLuigiKirchheimBerndCurrents in metric spacesActa Math.20001851180179418510.1007/BF02392711 LeonSimon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. AllardWilliam KOn the first variation of a varifoldAnn. of Math.197229541749130701510.2307/1970868 WhiteBrianThe structure of minimizing hypersurfaces mod 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4$$\end{document}Invent. Math.1979531455853868310.1007/BF01403190 Brian White (546_CR27) 1979; 53 Brian White (546_CR29) 1997; 488 Herbert Federer (546_CR16) 1970; 76 Robert Young (546_CR30) 2018; 167 Thierry De Pauw (546_CR14) 2014; 418 546_CR1 546_CR21 546_CR3 546_CR20 Luigi Ambrosio (546_CR6) 2000; 185 546_CR23 Luigi Ambrosio (546_CR5) 2000 546_CR24 L Simon (546_CR22) 1993; 38 Luigi Ambrosio (546_CR4) 1990; 17 546_CR28 Camillo De Lellis (546_CR8) 2014; 24 Camillo De Lellis (546_CR12) 2011; 211 Andrea Marchese (546_CR18) 2018; 11 546_CR7 Camillo De Lellis (546_CR11) 2016; 183 Camillo De Lellis (546_CR10) 2016; 183 Steven G Krantz (546_CR17) 2008 Luca Spolaor (546_CR25) 2019; 350 William K Allard (546_CR2) 1972; 2 Camillo De Lellis (546_CR9) 2015; 14 Thierry De Pauw (546_CR13) 2012; 134 546_CR15 546_CR19 Jean E Taylor (546_CR26) 1973; 22 |
References_xml | – reference: LeonSimon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. – reference: AmbrosioLuigiMetric space valued functions of bounded variationAnn. Scuola Norm. Sup. Pisa Cl. Sci. (4)199017343947910799850724.49027 – reference: De LellisCamilloSpadaroEmanuele NunzioRegularity of area minimizing currents II: center manifoldAnn. of Math. (2)20161832499575345048210.4007/annals.2016.183.2.2 – reference: YoungRobertQuantitative nonorientability of embedded cyclesDuke Math. J.2018167141108374369910.1215/00127094-2017-0035 – reference: De LellisCamilloSpadaroEmanueleRegularity of area minimizing currents I: gradient Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimatesGeom. Funct. Anal.201424618311884328392910.1007/s00039-014-0306-3 – reference: AmbrosioLuigiFuscoNicolaPallaraDiegoFunctions of bounded variation and free discontinuity problems2000Oxford University Press, New YorkOxford Mathematical Monographs. The Clarendon Press0957.49001 – reference: BrianWhite. A regularity theorem for minimizing hypersurfaces modulo p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}. In Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), volume 44 of Proc. Sympos. Pure Math., pages 413–427. Amer. Math. Soc., Providence, RI, 1986. – reference: AllardWilliam KOn the first variation of a varifoldAnn. of Math.197229541749130701510.2307/1970868 – reference: AaronNaber and DanieleValtorta. The singular structure and regularity of stationary varifolds. J. Eur. Math. Soc. (JEMS), to appear. arXiv:1505.03428. – reference: De PauwThierryHardtRobertSome basic theorems on flat G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} chainsJ. Math. Anal. Appl.2014418210471061320669710.1016/j.jmaa.2014.04.024 – reference: LeonSimon. Rectifiability of the singular sets of multiplicity 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document} minimal surfaces and energy minimizing maps. In Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), pages 246–305. Int. Press, Cambridge, MA, 1995. – reference: HerbertFederer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969. – reference: MarcheseAndreaStuvardSalvatoreOn the structure of flat chains modulo p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}Adv. Calc. Var.2018113309323381952910.1515/acv-2016-0040 – reference: PerttiMattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. – reference: CamilloDe Lellis, JonasHirsch, AndreaMarchese, and SalvatoreStuvard. Area minimizing currents mod 2Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2Q}$$\end{document}: linear regularity theory. Comm. Pure Appl. Math., to appear. arXiv:1909.03305. – reference: Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS summer institute. In J. E. Brothers, editor, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), volume 44 of Proc. Sympos. Pure Math., pages 441–464. Amer. Math. Soc., Providence, RI, 1986. – reference: De LellisCamilloSpadaroEmanueleMultiple valued functions and integral currentsAnn. Sc. Norm. Super. Pisa Cl. Sci. (5)20151441239126934676551343.49073 – reference: SpolaorLucaAlmgren’s type regularity for semicalibrated currentsAdv. Math.2019350747815394868510.1016/j.aim.2019.04.057 – reference: RichardSchoen, LeonSimon, and FrederickJ. Jr. Almgren. Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II. Acta Math., 139(3-4):217–265, 1977. – reference: WhiteBrianStratification of minimal surfaces, mean curvature flows, and harmonic mapsJ. Reine Angew. Math.199748813514653650874.58007 – reference: KrantzSteven GParksHarold RGeometric integration theory2008Boston, MACornerstones. Birkhäuser Boston Inc10.1007/978-0-8176-4679-0 – reference: De LellisCamilloSpadaroEmanueleRegularity of area minimizing currents III: blow-upAnn. of Math. (2)20161832577617345048310.4007/annals.2016.183.2.3 – reference: FrederickJ. Almgren, Jr. Multi-functions mod ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. In Geometric analysis and computer graphics (Berkeley, CA, 1988), volume 17 of Math. Sci. Res. Inst. Publ., pages 1–17. Springer, New York, 1991. – reference: AmbrosioLuigiKirchheimBerndCurrents in metric spacesActa Math.20001851180179418510.1007/BF02392711 – reference: De LellisCamilloSpadaroEmanuele NunzioQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-valued functions revisitedMem. Amer. Math. Soc.2011211991vi+7926637351246.49001 – reference: De PauwThierryHardtRobertRectifiable and flat G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} chains in a metric spaceAmer. J. Math.20121341169287613810.1353/ajm.2012.0004 – reference: WhiteBrianThe structure of minimizing hypersurfaces mod 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4$$\end{document}Invent. Math.1979531455853868310.1007/BF01403190 – reference: FedererHerbertThe singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimensionBull. Amer. Math. Soc.19707676777126098110.1090/S0002-9904-1970-12542-3 – reference: SimonLCylindrical tangent cones and the singular set of minimal submanifoldsJournal of Differential Geometry1993383585652124378810.4310/jdg/1214454484 – reference: TaylorJean ERegularity of the singular sets of two-dimensional area-minimizing flat chains modulo 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document} in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{3}$$\end{document}Invent. Math.19732211915933390310.1007/BF01392299 – volume: 22 start-page: 119 year: 1973 ident: 546_CR26 publication-title: Invent. Math. doi: 10.1007/BF01392299 – volume: 11 start-page: 309 issue: 3 year: 2018 ident: 546_CR18 publication-title: Adv. Calc. Var. doi: 10.1515/acv-2016-0040 – ident: 546_CR3 doi: 10.1007/978-1-4613-9711-3_1 – ident: 546_CR24 doi: 10.4310/SDG.1993.v2.n1.a5 – ident: 546_CR20 – volume: 488 start-page: 1 year: 1997 ident: 546_CR29 publication-title: J. Reine Angew. Math. – volume: 134 start-page: 1 issue: 1 year: 2012 ident: 546_CR13 publication-title: Amer. J. Math. doi: 10.1353/ajm.2012.0004 – volume: 183 start-page: 577 issue: 2 year: 2016 ident: 546_CR11 publication-title: Ann. of Math. (2) doi: 10.4007/annals.2016.183.2.3 – ident: 546_CR1 doi: 10.1090/pspum/044/840292 – volume: 350 start-page: 747 year: 2019 ident: 546_CR25 publication-title: Adv. Math. doi: 10.1016/j.aim.2019.04.057 – volume-title: Geometric integration theory year: 2008 ident: 546_CR17 doi: 10.1007/978-0-8176-4679-0 – volume: 53 start-page: 45 issue: 1 year: 1979 ident: 546_CR27 publication-title: Invent. Math. doi: 10.1007/BF01403190 – volume: 211 start-page: vi+79 issue: 991 year: 2011 ident: 546_CR12 publication-title: Mem. Amer. Math. Soc. – volume: 17 start-page: 439 issue: 3 year: 1990 ident: 546_CR4 publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) – volume: 38 start-page: 585 issue: 3 year: 1993 ident: 546_CR22 publication-title: Journal of Differential Geometry doi: 10.4310/jdg/1214454484 – volume: 14 start-page: 1239 issue: 4 year: 2015 ident: 546_CR9 publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) – ident: 546_CR23 – volume: 167 start-page: 41 issue: 1 year: 2018 ident: 546_CR30 publication-title: Duke Math. J. doi: 10.1215/00127094-2017-0035 – volume: 183 start-page: 499 issue: 2 year: 2016 ident: 546_CR10 publication-title: Ann. of Math. (2) doi: 10.4007/annals.2016.183.2.2 – volume: 418 start-page: 1047 issue: 2 year: 2014 ident: 546_CR14 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.04.024 – ident: 546_CR21 doi: 10.1007/BF02392238 – volume: 185 start-page: 1 issue: 1 year: 2000 ident: 546_CR6 publication-title: Acta Math. doi: 10.1007/BF02392711 – volume: 2 start-page: 417 issue: 95 year: 1972 ident: 546_CR2 publication-title: Ann. of Math. doi: 10.2307/1970868 – ident: 546_CR19 doi: 10.1017/CBO9780511623813 – ident: 546_CR7 – ident: 546_CR15 – volume: 76 start-page: 767 year: 1970 ident: 546_CR16 publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0002-9904-1970-12542-3 – volume-title: Functions of bounded variation and free discontinuity problems year: 2000 ident: 546_CR5 doi: 10.1093/oso/9780198502456.001.0001 – ident: 546_CR28 doi: 10.1090/pspum/044/840290 – volume: 24 start-page: 1831 issue: 6 year: 2014 ident: 546_CR8 publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-014-0306-3 |
SSID | ssj0005545 |
Score | 2.3923247 |
Snippet | We establish a first general partial regularity theorem for area minimizing currents
mod
(
p
)
, for every
p
, in any dimension and codimension. More... We establish a first general partial regularity theorem for area minimizing currents $${\mathrm{mod}}(p)$$ mod ( p ) , for every p , in any dimension and... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1224 |
SubjectTerms | Analysis Mathematics Mathematics and Statistics |
Title | Regularity of area minimizing currents mod p |
URI | https://link.springer.com/article/10.1007/s00039-020-00546-0 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vejBR1Wsj7IHbzaw2Ue6ObaltSjtQSzUU9hXQLAPTL34691Jt5WKFLwkl0kC3-5kZpid70PoTluaWqZ0xIXyBYpi3ucUZVErSVKZ6FRSA7PDw1EyGPPHiZgEmhyYhfnVvweyT-hVQpED2YWvfvdRVcSsBTIN3aT7c5xDlILEUIxGnLNJGJD5-x3bQWi7A1oGlv4JOgoZIW6vlvAU7blZDR2H7BAH3ytq6HC4YVgtzlDzuRSRB-k5PM-x8rkfBpqQ6duX_wo2K9qlAk_nFi_O0bjfe-kOoqB8EBlf7ywjaaB_Rp2JaWyFJSxvaeGAm4-53EqPo5ZEM2Y14Sonxv89U6dzH-wtEZJadoEqs_nMXSKc2IQYK4hiUPmkXPLch2ljpWTKSS7qKF5DkZlACw7qFO_ZhtC4hC_z8GUlfBmpo_vNM4sVKcZO6-Ya4Sw4SLHD_Op_5tfogMLKlufrblBl-fHpbn2esNQNVG33O50R3B9en3qNcsP465i2vwFt3bOR |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HtSDj6pYnzl4swtpHtvssYilatuDtNDbkteCYB-49eKvN0mzlYII3rMb-JLJfMPMfANwpwzJDJUqYVy6AEVSZ3OS0KSdpplIVSaI9r3Dg2HaG7PnCZ_EprCyqnavUpLhpV43u4U-0sSHO55nuDh4G3YcGRD-Lo9J56ewg4fRxD4sTRijk9gq8_s_Nt3RZi40uJjuERxEbog6q8M8hi07q8Nh5IkoWmFZh_3BWmu1PIHmaxgn74fQoXmBpGOByAuGTN--3C5IrwSYSjSdG7Q4hXH3cfTQS-IMhES7yGeZCO0zacTqFmkZbjAt2opbr9JHbWGEQ1QJrCg1CjNZYO3e0cyqwrl9g7kghp5BbTaf2XNAqUmxNhxL6mOgjAlWOIetjRBUWsF4A1oVFLmOAuF-TsV7vpY2DvDlDr48wJfjBtyvv1ms5DH-XN2sEM6jqZR_LL_43_Jb2O2NBv28_zR8uYQ94k85VN1dQW358WmvHXtYqptwWb4B8vW2rw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1Wszz14s6FJdjfdHKVa6qNFxEJvYV8BwabFxIu_3t1NGi1IwfskgdnMznzMfN8AXAkVxgpz4RHKDUDh2MQcD7HXjaKYRSJmobTc4eEoGozJw4ROfrH43bT7oiVZchqsSlNWdOYq7dTEN8cp9Sz0sTWHwcTrsGGQSmDhVy_q_Qx5ULem2EJUjxA8qWgzf79jOTUt90VduunvwU5VJ6Kb8mD3YU1nTditakZURWTehO1hrbuaH0D7xa2Wtwvp0CxF3FSEyIqHTN--zFeQLMWYcjSdKTQ_hHH_7rU38Kp9CJ40KKjwmLRdtVDLIAwUVT5Ou4Jqq9iHdaqY8a5gvsBYCZ_w1JfmTo21SE0JoHzKQoWPoJHNMn0MKFKRLxX1ObZ4KCaMpCZ5S8UY5poR2oJg4YpEVmLhdmfFe1LLHDv3JcZ9iXNf4rfgun5mXkplrLRuLzycVGGTrzA_-Z_5JWw-3_aTp_vR4ylshfaQ3QDeGTSKj099bgqJQly4f-Ub_1O61Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularity+of+area+minimizing+currents+mod+p&rft.jtitle=Geometric+and+functional+analysis&rft.au=De%C2%A0Lellis%2C+Camillo&rft.au=Hirsch%2C+Jonas&rft.au=Marchese%2C+Andrea&rft.au=Stuvard%2C+Salvatore&rft.date=2020-10-01&rft.pub=Springer+International+Publishing&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=30&rft.issue=5&rft.spage=1224&rft.epage=1336&rft_id=info:doi/10.1007%2Fs00039-020-00546-0&rft.externalDocID=10_1007_s00039_020_00546_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon |