Regularity of area minimizing currents mod p

We establish a first general partial regularity theorem for area minimizing currents mod ( p ) , for every p , in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m -dimensional area minimizing current mod ( p ) cannot be larger...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 30; no. 5; pp. 1224 - 1336
Main Authors De Lellis, Camillo, Hirsch, Jonas, Marchese, Andrea, Stuvard, Salvatore
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We establish a first general partial regularity theorem for area minimizing currents mod ( p ) , for every p , in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m -dimensional area minimizing current mod ( p ) cannot be larger than m - 1 . Additionally, we show that, when p is odd, the interior singular set is ( m - 1 ) -rectifiable with locally finite ( m - 1 ) -dimensional measure.
AbstractList We establish a first general partial regularity theorem for area minimizing currents mod ( p ) , for every p , in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m -dimensional area minimizing current mod ( p ) cannot be larger than m - 1 . Additionally, we show that, when p is odd, the interior singular set is ( m - 1 ) -rectifiable with locally finite ( m - 1 ) -dimensional measure.
We establish a first general partial regularity theorem for area minimizing currents $${\mathrm{mod}}(p)$$ mod ( p ) , for every p , in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m -dimensional area minimizing current $${\mathrm{mod}}(p)$$ mod ( p ) cannot be larger than $$m-1$$ m - 1 . Additionally, we show that, when p is odd, the interior singular set is $$(m-1)$$ ( m - 1 ) -rectifiable with locally finite $$(m-1)$$ ( m - 1 ) -dimensional measure.
Author Stuvard, Salvatore
Hirsch, Jonas
Marchese, Andrea
De Lellis, Camillo
Author_xml – sequence: 1
  givenname: Camillo
  surname: De Lellis
  fullname: De Lellis, Camillo
  organization: School of Mathematics, Institute for Advanced Study, Institut für Mathematik, Universität Zürich
– sequence: 2
  givenname: Jonas
  surname: Hirsch
  fullname: Hirsch, Jonas
  organization: Mathematisches Institut, Universität Leipzig
– sequence: 3
  givenname: Andrea
  surname: Marchese
  fullname: Marchese, Andrea
  email: andrea.marchese@unitn.it
  organization: Dipartimento di Matematica, Università di Trento
– sequence: 4
  givenname: Salvatore
  surname: Stuvard
  fullname: Stuvard, Salvatore
  organization: Department of Mathematics, The University of Texas at Austin
BookMark eNp9j8tKAzEUhoNUsK2-gKt5AKMnt5nMUoo3KAii4C5kcikpnUxJZhb16Y3WlYuuzjlwvv_nW6BZHKJD6JrALQFo7jIAsBYDBQwgeI3hDM0JL6dsG5iVHUiNOWefF2iR87a8C8HFHN28uc200ymMh2rwlU5OV32IoQ9fIW4qM6Xk4pirfrDV_hKde73L7upvLtHH48P76hmvX59eVvdrbDiQEUvTsFZQZwglVlhgvumE47wRzHkr67rtJHSM2Q649mCcNq3rvKTUgpDUsiWix1yThpyT82qfQq_TQRFQP77q6KuKr_r1VVAg-Q8yYdRjGOKYdNidRtkRzaUnblxS22FKsSieor4BQAprrw
CitedBy_id crossref_primary_10_1093_imrn_rnae024
crossref_primary_10_1007_s00526_023_02569_5
crossref_primary_10_1002_cpa_22194
crossref_primary_10_1007_s00208_024_02970_1
crossref_primary_10_1007_s00526_019_1545_9
crossref_primary_10_1016_j_na_2024_113606
crossref_primary_10_1007_s00526_020_01909_z
Cites_doi 10.1007/BF01392299
10.1515/acv-2016-0040
10.1007/978-1-4613-9711-3_1
10.4310/SDG.1993.v2.n1.a5
10.1353/ajm.2012.0004
10.4007/annals.2016.183.2.3
10.1090/pspum/044/840292
10.1016/j.aim.2019.04.057
10.1007/978-0-8176-4679-0
10.1007/BF01403190
10.4310/jdg/1214454484
10.1215/00127094-2017-0035
10.4007/annals.2016.183.2.2
10.1016/j.jmaa.2014.04.024
10.1007/BF02392238
10.1007/BF02392711
10.2307/1970868
10.1017/CBO9780511623813
10.1090/S0002-9904-1970-12542-3
10.1093/oso/9780198502456.001.0001
10.1090/pspum/044/840290
10.1007/s00039-014-0306-3
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00039-020-00546-0
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1420-8970
EndPage 1336
ExternalDocumentID 10_1007_s00039_020_00546_0
GrantInformation_xml – fundername: Università degli Studi di Trento
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c401t-8c73952ec121d5d03f7b5e44753efd8669b80b33db04af0ceac9ebf822d0582d3
IEDL.DBID C6C
ISSN 1016-443X
IngestDate Tue Jul 01 02:31:07 EDT 2025
Thu Apr 24 23:03:04 EDT 2025
Fri Feb 21 02:33:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Area minimizing currents
Minimal surfaces
Center manifold
49N60
49Q05
49Q15
Regularity theory
35B65
Multiple valued functions
Blow-up analysis
35J47
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-8c73952ec121d5d03f7b5e44753efd8669b80b33db04af0ceac9ebf822d0582d3
OpenAccessLink https://doi.org/10.1007/s00039-020-00546-0
PageCount 113
ParticipantIDs crossref_primary_10_1007_s00039_020_00546_0
crossref_citationtrail_10_1007_s00039_020_00546_0
springer_journals_10_1007_s00039_020_00546_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle GAFA
PublicationTitle Geometric and functional analysis
PublicationTitleAbbrev Geom. Funct. Anal
PublicationYear 2020
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References De LellisCamilloSpadaroEmanueleRegularity of area minimizing currents III: blow-upAnn. of Math. (2)20161832577617345048310.4007/annals.2016.183.2.3
De LellisCamilloSpadaroEmanuele NunzioRegularity of area minimizing currents II: center manifoldAnn. of Math. (2)20161832499575345048210.4007/annals.2016.183.2.2
SimonLCylindrical tangent cones and the singular set of minimal submanifoldsJournal of Differential Geometry1993383585652124378810.4310/jdg/1214454484
TaylorJean ERegularity of the singular sets of two-dimensional area-minimizing flat chains modulo 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document} in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{3}$$\end{document}Invent. Math.19732211915933390310.1007/BF01392299
WhiteBrianStratification of minimal surfaces, mean curvature flows, and harmonic mapsJ. Reine Angew. Math.199748813514653650874.58007
AmbrosioLuigiFuscoNicolaPallaraDiegoFunctions of bounded variation and free discontinuity problems2000Oxford University Press, New YorkOxford Mathematical Monographs. The Clarendon Press0957.49001
HerbertFederer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
FrederickJ. Almgren, Jr. Multi-functions mod ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. In Geometric analysis and computer graphics (Berkeley, CA, 1988), volume 17 of Math. Sci. Res. Inst. Publ., pages 1–17. Springer, New York, 1991.
SpolaorLucaAlmgren’s type regularity for semicalibrated currentsAdv. Math.2019350747815394868510.1016/j.aim.2019.04.057
KrantzSteven GParksHarold RGeometric integration theory2008Boston, MACornerstones. Birkhäuser Boston Inc10.1007/978-0-8176-4679-0
BrianWhite. A regularity theorem for minimizing hypersurfaces modulo p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}. In Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), volume 44 of Proc. Sympos. Pure Math., pages 413–427. Amer. Math. Soc., Providence, RI, 1986.
MarcheseAndreaStuvardSalvatoreOn the structure of flat chains modulo p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}Adv. Calc. Var.2018113309323381952910.1515/acv-2016-0040
De PauwThierryHardtRobertRectifiable and flat G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} chains in a metric spaceAmer. J. Math.20121341169287613810.1353/ajm.2012.0004
YoungRobertQuantitative nonorientability of embedded cyclesDuke Math. J.2018167141108374369910.1215/00127094-2017-0035
De PauwThierryHardtRobertSome basic theorems on flat G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} chainsJ. Math. Anal. Appl.2014418210471061320669710.1016/j.jmaa.2014.04.024
CamilloDe Lellis, JonasHirsch, AndreaMarchese, and SalvatoreStuvard. Area minimizing currents mod 2Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2Q}$$\end{document}: linear regularity theory. Comm. Pure Appl. Math., to appear. arXiv:1909.03305.
De LellisCamilloSpadaroEmanuele NunzioQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-valued functions revisitedMem. Amer. Math. Soc.2011211991vi+7926637351246.49001
Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS summer institute. In J. E. Brothers, editor, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), volume 44 of Proc. Sympos. Pure Math., pages 441–464. Amer. Math. Soc., Providence, RI, 1986.
PerttiMattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.
RichardSchoen, LeonSimon, and FrederickJ. Jr. Almgren. Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II. Acta Math., 139(3-4):217–265, 1977.
De LellisCamilloSpadaroEmanueleRegularity of area minimizing currents I: gradient Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimatesGeom. Funct. Anal.201424618311884328392910.1007/s00039-014-0306-3
AmbrosioLuigiMetric space valued functions of bounded variationAnn. Scuola Norm. Sup. Pisa Cl. Sci. (4)199017343947910799850724.49027
AaronNaber and DanieleValtorta. The singular structure and regularity of stationary varifolds. J. Eur. Math. Soc. (JEMS), to appear. arXiv:1505.03428.
LeonSimon. Rectifiability of the singular sets of multiplicity 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document} minimal surfaces and energy minimizing maps. In Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), pages 246–305. Int. Press, Cambridge, MA, 1995.
De LellisCamilloSpadaroEmanueleMultiple valued functions and integral currentsAnn. Sc. Norm. Super. Pisa Cl. Sci. (5)20151441239126934676551343.49073
FedererHerbertThe singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimensionBull. Amer. Math. Soc.19707676777126098110.1090/S0002-9904-1970-12542-3
AmbrosioLuigiKirchheimBerndCurrents in metric spacesActa Math.20001851180179418510.1007/BF02392711
LeonSimon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.
AllardWilliam KOn the first variation of a varifoldAnn. of Math.197229541749130701510.2307/1970868
WhiteBrianThe structure of minimizing hypersurfaces mod 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4$$\end{document}Invent. Math.1979531455853868310.1007/BF01403190
Brian White (546_CR27) 1979; 53
Brian White (546_CR29) 1997; 488
Herbert Federer (546_CR16) 1970; 76
Robert Young (546_CR30) 2018; 167
Thierry De Pauw (546_CR14) 2014; 418
546_CR1
546_CR21
546_CR3
546_CR20
Luigi Ambrosio (546_CR6) 2000; 185
546_CR23
Luigi Ambrosio (546_CR5) 2000
546_CR24
L Simon (546_CR22) 1993; 38
Luigi Ambrosio (546_CR4) 1990; 17
546_CR28
Camillo De Lellis (546_CR8) 2014; 24
Camillo De Lellis (546_CR12) 2011; 211
Andrea Marchese (546_CR18) 2018; 11
546_CR7
Camillo De Lellis (546_CR11) 2016; 183
Camillo De Lellis (546_CR10) 2016; 183
Steven G Krantz (546_CR17) 2008
Luca Spolaor (546_CR25) 2019; 350
William K Allard (546_CR2) 1972; 2
Camillo De Lellis (546_CR9) 2015; 14
Thierry De Pauw (546_CR13) 2012; 134
546_CR15
546_CR19
Jean E Taylor (546_CR26) 1973; 22
References_xml – reference: LeonSimon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.
– reference: AmbrosioLuigiMetric space valued functions of bounded variationAnn. Scuola Norm. Sup. Pisa Cl. Sci. (4)199017343947910799850724.49027
– reference: De LellisCamilloSpadaroEmanuele NunzioRegularity of area minimizing currents II: center manifoldAnn. of Math. (2)20161832499575345048210.4007/annals.2016.183.2.2
– reference: YoungRobertQuantitative nonorientability of embedded cyclesDuke Math. J.2018167141108374369910.1215/00127094-2017-0035
– reference: De LellisCamilloSpadaroEmanueleRegularity of area minimizing currents I: gradient Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimatesGeom. Funct. Anal.201424618311884328392910.1007/s00039-014-0306-3
– reference: AmbrosioLuigiFuscoNicolaPallaraDiegoFunctions of bounded variation and free discontinuity problems2000Oxford University Press, New YorkOxford Mathematical Monographs. The Clarendon Press0957.49001
– reference: BrianWhite. A regularity theorem for minimizing hypersurfaces modulo p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}. In Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), volume 44 of Proc. Sympos. Pure Math., pages 413–427. Amer. Math. Soc., Providence, RI, 1986.
– reference: AllardWilliam KOn the first variation of a varifoldAnn. of Math.197229541749130701510.2307/1970868
– reference: AaronNaber and DanieleValtorta. The singular structure and regularity of stationary varifolds. J. Eur. Math. Soc. (JEMS), to appear. arXiv:1505.03428.
– reference: De PauwThierryHardtRobertSome basic theorems on flat G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} chainsJ. Math. Anal. Appl.2014418210471061320669710.1016/j.jmaa.2014.04.024
– reference: LeonSimon. Rectifiability of the singular sets of multiplicity 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document} minimal surfaces and energy minimizing maps. In Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), pages 246–305. Int. Press, Cambridge, MA, 1995.
– reference: HerbertFederer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
– reference: MarcheseAndreaStuvardSalvatoreOn the structure of flat chains modulo p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}Adv. Calc. Var.2018113309323381952910.1515/acv-2016-0040
– reference: PerttiMattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.
– reference: CamilloDe Lellis, JonasHirsch, AndreaMarchese, and SalvatoreStuvard. Area minimizing currents mod 2Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2Q}$$\end{document}: linear regularity theory. Comm. Pure Appl. Math., to appear. arXiv:1909.03305.
– reference: Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS summer institute. In J. E. Brothers, editor, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), volume 44 of Proc. Sympos. Pure Math., pages 441–464. Amer. Math. Soc., Providence, RI, 1986.
– reference: De LellisCamilloSpadaroEmanueleMultiple valued functions and integral currentsAnn. Sc. Norm. Super. Pisa Cl. Sci. (5)20151441239126934676551343.49073
– reference: SpolaorLucaAlmgren’s type regularity for semicalibrated currentsAdv. Math.2019350747815394868510.1016/j.aim.2019.04.057
– reference: RichardSchoen, LeonSimon, and FrederickJ. Jr. Almgren. Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II. Acta Math., 139(3-4):217–265, 1977.
– reference: WhiteBrianStratification of minimal surfaces, mean curvature flows, and harmonic mapsJ. Reine Angew. Math.199748813514653650874.58007
– reference: KrantzSteven GParksHarold RGeometric integration theory2008Boston, MACornerstones. Birkhäuser Boston Inc10.1007/978-0-8176-4679-0
– reference: De LellisCamilloSpadaroEmanueleRegularity of area minimizing currents III: blow-upAnn. of Math. (2)20161832577617345048310.4007/annals.2016.183.2.3
– reference: FrederickJ. Almgren, Jr. Multi-functions mod ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. In Geometric analysis and computer graphics (Berkeley, CA, 1988), volume 17 of Math. Sci. Res. Inst. Publ., pages 1–17. Springer, New York, 1991.
– reference: AmbrosioLuigiKirchheimBerndCurrents in metric spacesActa Math.20001851180179418510.1007/BF02392711
– reference: De LellisCamilloSpadaroEmanuele NunzioQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-valued functions revisitedMem. Amer. Math. Soc.2011211991vi+7926637351246.49001
– reference: De PauwThierryHardtRobertRectifiable and flat G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} chains in a metric spaceAmer. J. Math.20121341169287613810.1353/ajm.2012.0004
– reference: WhiteBrianThe structure of minimizing hypersurfaces mod 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4$$\end{document}Invent. Math.1979531455853868310.1007/BF01403190
– reference: FedererHerbertThe singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimensionBull. Amer. Math. Soc.19707676777126098110.1090/S0002-9904-1970-12542-3
– reference: SimonLCylindrical tangent cones and the singular set of minimal submanifoldsJournal of Differential Geometry1993383585652124378810.4310/jdg/1214454484
– reference: TaylorJean ERegularity of the singular sets of two-dimensional area-minimizing flat chains modulo 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document} in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{3}$$\end{document}Invent. Math.19732211915933390310.1007/BF01392299
– volume: 22
  start-page: 119
  year: 1973
  ident: 546_CR26
  publication-title: Invent. Math.
  doi: 10.1007/BF01392299
– volume: 11
  start-page: 309
  issue: 3
  year: 2018
  ident: 546_CR18
  publication-title: Adv. Calc. Var.
  doi: 10.1515/acv-2016-0040
– ident: 546_CR3
  doi: 10.1007/978-1-4613-9711-3_1
– ident: 546_CR24
  doi: 10.4310/SDG.1993.v2.n1.a5
– ident: 546_CR20
– volume: 488
  start-page: 1
  year: 1997
  ident: 546_CR29
  publication-title: J. Reine Angew. Math.
– volume: 134
  start-page: 1
  issue: 1
  year: 2012
  ident: 546_CR13
  publication-title: Amer. J. Math.
  doi: 10.1353/ajm.2012.0004
– volume: 183
  start-page: 577
  issue: 2
  year: 2016
  ident: 546_CR11
  publication-title: Ann. of Math. (2)
  doi: 10.4007/annals.2016.183.2.3
– ident: 546_CR1
  doi: 10.1090/pspum/044/840292
– volume: 350
  start-page: 747
  year: 2019
  ident: 546_CR25
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2019.04.057
– volume-title: Geometric integration theory
  year: 2008
  ident: 546_CR17
  doi: 10.1007/978-0-8176-4679-0
– volume: 53
  start-page: 45
  issue: 1
  year: 1979
  ident: 546_CR27
  publication-title: Invent. Math.
  doi: 10.1007/BF01403190
– volume: 211
  start-page: vi+79
  issue: 991
  year: 2011
  ident: 546_CR12
  publication-title: Mem. Amer. Math. Soc.
– volume: 17
  start-page: 439
  issue: 3
  year: 1990
  ident: 546_CR4
  publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
– volume: 38
  start-page: 585
  issue: 3
  year: 1993
  ident: 546_CR22
  publication-title: Journal of Differential Geometry
  doi: 10.4310/jdg/1214454484
– volume: 14
  start-page: 1239
  issue: 4
  year: 2015
  ident: 546_CR9
  publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
– ident: 546_CR23
– volume: 167
  start-page: 41
  issue: 1
  year: 2018
  ident: 546_CR30
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2017-0035
– volume: 183
  start-page: 499
  issue: 2
  year: 2016
  ident: 546_CR10
  publication-title: Ann. of Math. (2)
  doi: 10.4007/annals.2016.183.2.2
– volume: 418
  start-page: 1047
  issue: 2
  year: 2014
  ident: 546_CR14
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.04.024
– ident: 546_CR21
  doi: 10.1007/BF02392238
– volume: 185
  start-page: 1
  issue: 1
  year: 2000
  ident: 546_CR6
  publication-title: Acta Math.
  doi: 10.1007/BF02392711
– volume: 2
  start-page: 417
  issue: 95
  year: 1972
  ident: 546_CR2
  publication-title: Ann. of Math.
  doi: 10.2307/1970868
– ident: 546_CR19
  doi: 10.1017/CBO9780511623813
– ident: 546_CR7
– ident: 546_CR15
– volume: 76
  start-page: 767
  year: 1970
  ident: 546_CR16
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1970-12542-3
– volume-title: Functions of bounded variation and free discontinuity problems
  year: 2000
  ident: 546_CR5
  doi: 10.1093/oso/9780198502456.001.0001
– ident: 546_CR28
  doi: 10.1090/pspum/044/840290
– volume: 24
  start-page: 1831
  issue: 6
  year: 2014
  ident: 546_CR8
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-014-0306-3
SSID ssj0005545
Score 2.3923247
Snippet We establish a first general partial regularity theorem for area minimizing currents mod ( p ) , for every p , in any dimension and codimension. More...
We establish a first general partial regularity theorem for area minimizing currents $${\mathrm{mod}}(p)$$ mod ( p ) , for every p , in any dimension and...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1224
SubjectTerms Analysis
Mathematics
Mathematics and Statistics
Title Regularity of area minimizing currents mod p
URI https://link.springer.com/article/10.1007/s00039-020-00546-0
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vejBR1Wsj7IHbzaw2Ue6ObaltSjtQSzUU9hXQLAPTL34691Jt5WKFLwkl0kC3-5kZpid70PoTluaWqZ0xIXyBYpi3ucUZVErSVKZ6FRSA7PDw1EyGPPHiZgEmhyYhfnVvweyT-hVQpED2YWvfvdRVcSsBTIN3aT7c5xDlILEUIxGnLNJGJD5-x3bQWi7A1oGlv4JOgoZIW6vlvAU7blZDR2H7BAH3ytq6HC4YVgtzlDzuRSRB-k5PM-x8rkfBpqQ6duX_wo2K9qlAk_nFi_O0bjfe-kOoqB8EBlf7ywjaaB_Rp2JaWyFJSxvaeGAm4-53EqPo5ZEM2Y14Sonxv89U6dzH-wtEZJadoEqs_nMXSKc2IQYK4hiUPmkXPLch2ljpWTKSS7qKF5DkZlACw7qFO_ZhtC4hC_z8GUlfBmpo_vNM4sVKcZO6-Ya4Sw4SLHD_Op_5tfogMLKlufrblBl-fHpbn2esNQNVG33O50R3B9en3qNcsP465i2vwFt3bOR
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HtSDj6pYnzl4swtpHtvssYilatuDtNDbkteCYB-49eKvN0mzlYII3rMb-JLJfMPMfANwpwzJDJUqYVy6AEVSZ3OS0KSdpplIVSaI9r3Dg2HaG7PnCZ_EprCyqnavUpLhpV43u4U-0sSHO55nuDh4G3YcGRD-Lo9J56ewg4fRxD4sTRijk9gq8_s_Nt3RZi40uJjuERxEbog6q8M8hi07q8Nh5IkoWmFZh_3BWmu1PIHmaxgn74fQoXmBpGOByAuGTN--3C5IrwSYSjSdG7Q4hXH3cfTQS-IMhES7yGeZCO0zacTqFmkZbjAt2opbr9JHbWGEQ1QJrCg1CjNZYO3e0cyqwrl9g7kghp5BbTaf2XNAqUmxNhxL6mOgjAlWOIetjRBUWsF4A1oVFLmOAuF-TsV7vpY2DvDlDr48wJfjBtyvv1ms5DH-XN2sEM6jqZR_LL_43_Jb2O2NBv28_zR8uYQ94k85VN1dQW358WmvHXtYqptwWb4B8vW2rw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1Wszz14s6FJdjfdHKVa6qNFxEJvYV8BwabFxIu_3t1NGi1IwfskgdnMznzMfN8AXAkVxgpz4RHKDUDh2MQcD7HXjaKYRSJmobTc4eEoGozJw4ROfrH43bT7oiVZchqsSlNWdOYq7dTEN8cp9Sz0sTWHwcTrsGGQSmDhVy_q_Qx5ULem2EJUjxA8qWgzf79jOTUt90VduunvwU5VJ6Kb8mD3YU1nTditakZURWTehO1hrbuaH0D7xa2Wtwvp0CxF3FSEyIqHTN--zFeQLMWYcjSdKTQ_hHH_7rU38Kp9CJ40KKjwmLRdtVDLIAwUVT5Ou4Jqq9iHdaqY8a5gvsBYCZ_w1JfmTo21SE0JoHzKQoWPoJHNMn0MKFKRLxX1ObZ4KCaMpCZ5S8UY5poR2oJg4YpEVmLhdmfFe1LLHDv3JcZ9iXNf4rfgun5mXkplrLRuLzycVGGTrzA_-Z_5JWw-3_aTp_vR4ylshfaQ3QDeGTSKj099bgqJQly4f-Ub_1O61Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularity+of+area+minimizing+currents+mod+p&rft.jtitle=Geometric+and+functional+analysis&rft.au=De%C2%A0Lellis%2C+Camillo&rft.au=Hirsch%2C+Jonas&rft.au=Marchese%2C+Andrea&rft.au=Stuvard%2C+Salvatore&rft.date=2020-10-01&rft.pub=Springer+International+Publishing&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=30&rft.issue=5&rft.spage=1224&rft.epage=1336&rft_id=info:doi/10.1007%2Fs00039-020-00546-0&rft.externalDocID=10_1007_s00039_020_00546_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon