A combined wavelet analysis-quantile mapping (WA-QM) method for bias correction: capturing the intra-annual temporal patterns in climate model precipitation simulations and projections
Despite recent improvements, global climate models (GCMs) still have biases that prevent their direct application. Quantile mapping (QM) has been widely used in bias correction (BC) due to its effectiveness in aligning the cumulative density function of climate model data with observations. However,...
Saved in:
Published in | Environmental research letters Vol. 20; no. 2; pp. 24049 - 24059 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite recent improvements, global climate models (GCMs) still have biases that prevent their direct application. Quantile mapping (QM) has been widely used in bias correction (BC) due to its effectiveness in aligning the cumulative density function of climate model data with observations. However, QM has a significant limitation: it fails to consider the temporal correspondence between the model data and observations, which restricts its ability to represent intra-annual temporal patterns. To address this issue, this study integrated wavelet analysis (WA) into QM to develop a combined method termed WA-QM, which aimed to preserve QM’s efficacy in overall BC and preservation of climate change signals, while capturing the intra-annual temporal patterns. The effectiveness of WA-QM was investigated using monthly precipitation data from five Coupled Model Intercomparison Project Phase 6 models in the Pan Third Pole region, which includes Central Asia (CA), Southeast Asia, and the Tibetan Plateau. Quantile delta mapping (QDM) and scaled distribution mapping (SDM) served as the benchmark methods for assessment. The results indicated that integrating WA into QDM or SDM did not compromise the ability of QDM or SDM to correct overall biases and preserve the model’s climate change signal. Furthermore, WA could be an effective tool to overcome QM’s limitation in capturing intra-annual temporal patterns. The WA approach employed discrete wavelet transformation to decompose GCM data into various frequency bands and then adjusted their standard deviations and signs to ensure that their relative relationships were consistent with those in observations. Compared to the standalone QM approach, WA-QM showed greater accuracy in monthly statistical metrics. In the CA region, WA-SDM reduced the monthly root mean square error of the mean by 25.2%, the standard deviation by 17.6%, and the 90th percentile by 26.7% compared to SDM. The effectiveness of WA-QM was demonstrated across different data periods, spatial areas, and GCMs. |
---|---|
AbstractList | Despite recent improvements, global climate models (GCMs) still have biases that prevent their direct application. Quantile mapping (QM) has been widely used in bias correction (BC) due to its effectiveness in aligning the cumulative density function of climate model data with observations. However, QM has a significant limitation: it fails to consider the temporal correspondence between the model data and observations, which restricts its ability to represent intra-annual temporal patterns. To address this issue, this study integrated wavelet analysis (WA) into QM to develop a combined method termed WA-QM, which aimed to preserve QM’s efficacy in overall BC and preservation of climate change signals, while capturing the intra-annual temporal patterns. The effectiveness of WA-QM was investigated using monthly precipitation data from five Coupled Model Intercomparison Project Phase 6 models in the Pan Third Pole region, which includes Central Asia (CA), Southeast Asia, and the Tibetan Plateau. Quantile delta mapping (QDM) and scaled distribution mapping (SDM) served as the benchmark methods for assessment. The results indicated that integrating WA into QDM or SDM did not compromise the ability of QDM or SDM to correct overall biases and preserve the model’s climate change signal. Furthermore, WA could be an effective tool to overcome QM’s limitation in capturing intra-annual temporal patterns. The WA approach employed discrete wavelet transformation to decompose GCM data into various frequency bands and then adjusted their standard deviations and signs to ensure that their relative relationships were consistent with those in observations. Compared to the standalone QM approach, WA-QM showed greater accuracy in monthly statistical metrics. In the CA region, WA-SDM reduced the monthly root mean square error of the mean by 25.2%, the standard deviation by 17.6%, and the 90th percentile by 26.7% compared to SDM. The effectiveness of WA-QM was demonstrated across different data periods, spatial areas, and GCMs. |
Author | Liu, Zhu Duan, Qingyun Wu, Xia |
Author_xml | – sequence: 1 givenname: Xia orcidid: 0000-0001-7451-4838 surname: Wu fullname: Wu, Xia organization: Hohai University China Meteorological Administration Hydro-Meteorology Key Laboratory, Nanjing 210098, People’s Republic of China – sequence: 2 givenname: Zhu orcidid: 0000-0001-9426-985X surname: Liu fullname: Liu, Zhu organization: Hohai University China Meteorological Administration Hydro-Meteorology Key Laboratory, Nanjing 210098, People’s Republic of China – sequence: 3 givenname: Qingyun orcidid: 0000-0001-9955-1512 surname: Duan fullname: Duan, Qingyun organization: Hohai University China Meteorological Administration Hydro-Meteorology Key Laboratory, Nanjing 210098, People’s Republic of China |
BookMark | eNp9kctu1TAQhiNUJNrCnqUlFoBEqG9JHHZHFZdKRQgJxNKaxOPWR4md2g6ob8bj4dOgwgKx8mjmn29m_J9URz54rKqnjL5mVKkz1klV94K3Z2AAuXhQHd-njv6KH1UnKe0pbWTTqePq546MYR6cR0N-wHecMBPwMN0ml-qbFXx2E5IZlsX5K_Li267-_PElmTFfB0NsiGRwkAoiRhyzC_4NGWHJazyo8zUS53OEGrxfYSIZ5yXEEiyQM0afSpmMk5shlxnBYKkUjltchgOMJDev012YylamVMN-m5MeVw8tTAmf_H5Pq6_v3n45_1Bffnp_cb67rEdJWa5VN3SsbS3lQpmSUUxIbkU_MCO6oRk4Qw50RDMyJUYJA2WSN22Hyna9YJ04rS42rgmw10ssy8ZbHcDpu0SIVxpiduOEuueNgUYK7ISVnHYwMEuRChCgoBG2sJ5trHLHzYop631YY_ntpAVrhVRtL_uioptqjCGliPZ-KqP64LU-mKkPZurN69LyamtxYfnD_I_8-T_kGCfNqeaackllrxdjxS8b970w |
CODEN | ERLNAL |
Cites_doi | 10.1016/j.envdev.2012.04.002 10.1175/2011BAMS3110.1 10.1016/j.jhydrol.2010.10.024 10.1002/joc.2168 10.1175/JCLI-D-21-1020.1 10.1029/2021GL092953 10.1029/2019wr026962 10.1080/19942060.2018.1564702 10.5194/hess-21-1693-2017 10.1016/j.atmosres.2021.105576 10.1038/d41586-022-01667-2 10.1007/s00382-023-06778-8 10.2166/nh.2019.127 10.5194/cp-16-1493-2020 10.1016/S0022-1694(03)00252-X 10.1002/joc.6775 10.2307/1907187 10.5194/hess-16-3391-2012 10.1007/s00382-022-06345-7 10.1002/2014JD022635 10.1029/2009JD012882 10.1029/2002JD002928 10.1016/j.atmosres.2015.12.017 10.1002/asl2.454 10.1016/j.agrformet.2012.04.007 10.1038/s41597-020-00681-1 10.1038/s41597-020-0453-3 10.1016/j.wace.2022.100435 10.1016/j.jhydrol.2022.128550 10.5194/hess-21-2649-2017 10.1007/s40641-016-0050-x 10.1007/s13351-021-1012-3 10.1175/JCLI-D-14-00754.1 10.1515/jwld-2016-0003 10.1111/j.1752-1688.2009.00327.x 10.5194/gmd-9-1937-2016 10.1029/2022EF002963 10.1007/s10584-023-03597-y 10.1175/JCLI-D-10-05024.1 10.1016/j.agwat.2014.03.014 10.1029/2012JD018192 10.1038/nclimate3418 10.1029/2020JD032824 10.1029/2022GL100550 10.5194/gmd-12-3055-2019 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published by IOP Publishing Ltd 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Published by IOP Publishing Ltd – notice: 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.1088/1748-9326/adae23 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1748-9326 |
ExternalDocumentID | oai_doaj_org_article_925da543e73f4207ab1f0e03a3a8a53f 10_1088_1748_9326_adae23 erladae23 |
GrantInformation_xml | – fundername: Key Scientific and Technological Project of the Ministry of Water Resources grantid: SKS- 2022001 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20220992 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 42401146; 52109015 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: B220202030 funderid: http://dx.doi.org/10.13039/501100012226 – fundername: Key R&D Program of China grantid: 2021YFC3201102 – fundername: Jiangsu Postdoctoral Research Funding grantid: 2021K046A |
GroupedDBID | 1JI 29G 2WC 5B3 5GY 5PX 5VS 7.Q AAFWJ AAHBH AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AEUYN AFKRA AFPKN AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATCPS ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ BHPHI CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KNG KQ8 LAP M7S M~E N5L N9A O3W OK1 P2P PATMY PIMPY PJBAE PTHSS PYCSY RIN RNS RO9 SY9 T37 TR2 TSCCA W28 ~02 AAYXX CITATION OVT PHGZM PHGZT 8FE 8FG ABUWG AZQEC DWQXO GNUQQ L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS AEINN PUEGO |
ID | FETCH-LOGICAL-c401t-87b7166f0238d40181342f39b1d37b5b21e2a0cedc183c4ab0142567e8f793173 |
IEDL.DBID | DOA |
ISSN | 1748-9326 |
IngestDate | Wed Aug 27 01:30:06 EDT 2025 Fri Jul 25 11:27:11 EDT 2025 Tue Jul 01 04:05:49 EDT 2025 Tue Feb 11 23:46:10 EST 2025 Tue Feb 11 23:46:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-87b7166f0238d40181342f39b1d37b5b21e2a0cedc183c4ab0142567e8f793173 |
Notes | ERL-119841.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7451-4838 0000-0001-9426-985X 0000-0001-9955-1512 |
OpenAccessLink | https://doaj.org/article/925da543e73f4207ab1f0e03a3a8a53f |
PQID | 3163486949 |
PQPubID | 4998671 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_925da543e73f4207ab1f0e03a3a8a53f proquest_journals_3163486949 iop_journals_10_1088_1748_9326_adae23 crossref_primary_10_1088_1748_9326_adae23 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Environmental research letters |
PublicationTitleAbbrev | ERL |
PublicationTitleAlternate | Environ. Res. Lett |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Ghamariadyan (erladae23bib12) 2021; 41 Shafaei (erladae23bib36) 2016; 28 Piani (erladae23bib34) 2010; 395 Kusumastuti (erladae23bib23) 2022; 49 Xu (erladae23bib44) 2022; 35 Ehret (erladae23bib9) 2012; 16 Chen (erladae23bib7) 2015; 120 Hawkins (erladae23bib15) 2013; 170 Watanabe (erladae23bib41) 2012; 117 Kusumastuti (erladae23bib22) 2021; 48 Liu (erladae23bib27) 2023; 60 Switanek (erladae23bib37) 2017; 21 Hay (erladae23bib16) 2003; 282 Dinh (erladae23bib8) 2023; 176 Cannon (erladae23bib6) 2015; 28 Maraun (erladae23bib29) 2016; 2 Qasem (erladae23bib35) 2019; 13 John (erladae23bib19) 2022; 36 Li (erladae23bib26) 2023; 61 Percival (erladae23bib33) 2000 Belayneh (erladae23bib3) 2016; 172 Harris (erladae23bib14) 2020; 7 Themeßl (erladae23bib38) 2011; 31 Wang (erladae23bib40) 2014; 15 Lange (erladae23bib24) 2019; 12 Maraun (erladae23bib31) 2021; 126 Guglielmi (erladae23bib13) 2022 Kendall (erladae23bib20) 1975 Mishra (erladae23bib32) 2020; 7 Mann (erladae23bib28) 1945; 13 Ho (erladae23bib17) 2012; 93 Block (erladae23bib5) 2009; 45 Wu (erladae23bib43) 2022; 10 Kim (erladae23bib21) 2019; 50 Jiang (erladae23bib18) 2020; 56 Li (erladae23bib25) 2010; 115 Eyring (erladae23bib10) 2016; 9 Falamarzi (erladae23bib11) 2014; 140 Maraun (erladae23bib30) 2017; 7 Volosciuk (erladae23bib39) 2017; 21 Bağçaci (erladae23bib2) 2021; 256 Watterson (erladae23bib42) 2003; 108 Yao (erladae23bib46) 2012; 3 Beyer (erladae23bib4) 2020; 16 Amengual (erladae23bib1) 2012; 25 Xue (erladae23bib45) 2022; 614 Zhang (erladae23bib47) 2021; 35 |
References_xml | – volume: 3 start-page: 52 year: 2012 ident: erladae23bib46 article-title: Third pole environment (TPE) publication-title: Environ. Dev. doi: 10.1016/j.envdev.2012.04.002 – volume: 93 start-page: 21 year: 2012 ident: erladae23bib17 article-title: Calibration strategies: a source of additional uncertainty in climate change projections publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/2011BAMS3110.1 – volume: 395 start-page: 199 year: 2010 ident: erladae23bib34 article-title: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.10.024 – volume: 31 start-page: 1530 year: 2011 ident: erladae23bib38 article-title: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models publication-title: Int. J. Climatol. doi: 10.1002/joc.2168 – volume: 35 start-page: 6395 year: 2022 ident: erladae23bib44 article-title: Variations of summer extreme and total precipitation over Southeast Asia and associated atmospheric and oceanic features publication-title: J. Clim. doi: 10.1175/JCLI-D-21-1020.1 – volume: 48 year: 2021 ident: erladae23bib22 article-title: A signal processing approach to correct systematic bias in trend and variability in climate model simulations publication-title: Geophys. Res. Lett. doi: 10.1029/2021GL092953 – volume: 56 year: 2020 ident: erladae23bib18 article-title: Refining predictor spectral representation using wavelet theory for improved natural system modeling publication-title: Water Resour. Res. doi: 10.1029/2019wr026962 – volume: 13 start-page: 177 year: 2019 ident: erladae23bib35 article-title: Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates publication-title: Eng. Appl. Comput. Fluid Mech. doi: 10.1080/19942060.2018.1564702 – volume: 21 start-page: 1693 year: 2017 ident: erladae23bib39 article-title: A combined statistical bias correction and stochastic downscaling method for precipitation publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-1693-2017 – volume: 256 year: 2021 ident: erladae23bib2 article-title: Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: a Mediterranean hot spot case, Turkey publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2021.105576 – year: 2022 ident: erladae23bib13 article-title: Climate change is turning more of Central Asia into desert publication-title: Nature doi: 10.1038/d41586-022-01667-2 – volume: 61 start-page: 3893 year: 2023 ident: erladae23bib26 article-title: Evaluation of bias correction techniques for generating high-resolution daily temperature projections from CMIP6 models publication-title: Clim. Dyn. doi: 10.1007/s00382-023-06778-8 – volume: 50 start-page: 1138 year: 2019 ident: erladae23bib21 article-title: Bias correction of daily precipitation over South Korea from the long-term reanalysis using a composite Gamma-Pareto distribution approach publication-title: Hydrol. Res. doi: 10.2166/nh.2019.127 – volume: 16 start-page: 1493 year: 2020 ident: erladae23bib4 article-title: An empirical evaluation of bias correction methods for palaeoclimate simulations publication-title: Clim. Past doi: 10.5194/cp-16-1493-2020 – volume: 282 start-page: 56 year: 2003 ident: erladae23bib16 article-title: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States publication-title: J. Hydrol. doi: 10.1016/S0022-1694(03)00252-X – volume: 41 start-page: E1396 year: 2021 ident: erladae23bib12 article-title: A wavelet artificial neural network method for medium-term rainfall prediction in Queensland (Australia) and the comparisons with conventional methods publication-title: Int. J. Climatol. doi: 10.1002/joc.6775 – volume: 13 start-page: 245 year: 1945 ident: erladae23bib28 article-title: Nonparametric tests against trend publication-title: Econometrica doi: 10.2307/1907187 – volume: 16 start-page: 3391 year: 2012 ident: erladae23bib9 article-title: HESS opinions “Should we apply bias correction to global and regional climate model data? publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-3391-2012 – volume: 60 start-page: 767 year: 2023 ident: erladae23bib27 article-title: Bayesian retro- and prospective assessment of CMIP6 climatology in Pan Third Pole region publication-title: Clim. Dyn. doi: 10.1007/s00382-022-06345-7 – volume: 120 start-page: 1123 year: 2015 ident: erladae23bib7 article-title: Assessing the limits of bias-correcting climate model outputs for climate change impact studies publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2014JD022635 – volume: 115 year: 2010 ident: erladae23bib25 article-title: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching publication-title: J. Geophys. Res. doi: 10.1029/2009JD012882 – volume: 108 year: 2003 ident: erladae23bib42 article-title: Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2002JD002928 – volume: 172 start-page: 37 year: 2016 ident: erladae23bib3 article-title: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.12.017 – volume: 15 start-page: 1 year: 2014 ident: erladae23bib40 article-title: Equiratio cumulative distribution function matching as an improvement to the equidistant approach in bias correction of precipitation publication-title: Atmos. Sci. Lett. doi: 10.1002/asl2.454 – volume: 170 start-page: 19 year: 2013 ident: erladae23bib15 article-title: Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.04.007 – volume: 7 start-page: 338 year: 2020 ident: erladae23bib32 article-title: Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6 publication-title: Sci. Data doi: 10.1038/s41597-020-00681-1 – volume: 7 start-page: 109 year: 2020 ident: erladae23bib14 article-title: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset publication-title: Sci. Data doi: 10.1038/s41597-020-0453-3 – volume: 36 year: 2022 ident: erladae23bib19 article-title: Quantifying CMIP6 model uncertainties in extreme precipitation projections publication-title: Weather Clim. Extrem. doi: 10.1016/j.wace.2022.100435 – volume: 614 year: 2022 ident: erladae23bib45 article-title: Climate variability impacts on runoff projection under quantile mapping bias correction in the support CMIP6: an investigation in Lushi basin of China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128550 – volume: 21 start-page: 2649 year: 2017 ident: erladae23bib37 article-title: Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-2649-2017 – volume: 2 start-page: 211 year: 2016 ident: erladae23bib29 article-title: Bias correcting climate change simulations—a critical review publication-title: Curr. Clim. Change Rep. doi: 10.1007/s40641-016-0050-x – volume: 35 start-page: 646 year: 2021 ident: erladae23bib47 article-title: Uncertainty in projection of climate extremes: a comparison of CMIP5 and CMIP6 publication-title: J. Meteorol. Res. doi: 10.1007/s13351-021-1012-3 – volume: 28 start-page: 6938 year: 2015 ident: erladae23bib6 article-title: Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? publication-title: J. Clim. doi: 10.1175/JCLI-D-14-00754.1 – year: 2000 ident: erladae23bib33 – volume: 28 start-page: 27 year: 2016 ident: erladae23bib36 article-title: A wavelet-SARIMA-ANN hybrid model for precipitation forecasting publication-title: J. Water Land Dev. doi: 10.1515/jwld-2016-0003 – volume: 45 start-page: 828 year: 2009 ident: erladae23bib5 article-title: A streamflow forecasting framework using multiple climate and hydrological models1 publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2009.00327.x – volume: 9 start-page: 1937 year: 2016 ident: erladae23bib10 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1937-2016 – volume: 10 year: 2022 ident: erladae23bib43 article-title: Quantifying the uncertainty sources of future climate projections and narrowing uncertainties with bias correction techniques publication-title: Earth’s Future doi: 10.1029/2022EF002963 – volume: 176 start-page: 140 year: 2023 ident: erladae23bib8 article-title: Revisiting the bias correction of climate models for impact studies publication-title: Clim. Change doi: 10.1007/s10584-023-03597-y – volume: 25 start-page: 939 year: 2012 ident: erladae23bib1 article-title: A statistical adjustment of regional climate model outputs to local scales: application to Platja de Palma, Spain publication-title: J. Clim. doi: 10.1175/JCLI-D-10-05024.1 – volume: 140 start-page: 26 year: 2014 ident: erladae23bib11 article-title: Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs) publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2014.03.014 – volume: 117 year: 2012 ident: erladae23bib41 article-title: Intercomparison of bias‐correction methods for monthly temperature and precipitation simulated by multiple climate models publication-title: J. Geophys. Res. doi: 10.1029/2012JD018192 – year: 1975 ident: erladae23bib20 – volume: 7 start-page: 764 year: 2017 ident: erladae23bib30 article-title: Towards process-informed bias correction of climate change simulations publication-title: Nat. Clim. Change doi: 10.1038/nclimate3418 – volume: 126 year: 2021 ident: erladae23bib31 article-title: Regional climate model biases, their dependence on synoptic circulation biases and the potential for bias adjustment: a process-oriented evaluation of the Austrian regional climate projections publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2020JD032824 – volume: 49 year: 2022 ident: erladae23bib23 article-title: Correcting systematic bias in climate model simulations in the time‐frequency domain publication-title: Geophys. Res. Lett. doi: 10.1029/2022GL100550 – volume: 12 start-page: 3055 year: 2019 ident: erladae23bib24 article-title: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0) publication-title: Geosci. Model Dev. doi: 10.5194/gmd-12-3055-2019 |
SSID | ssj0054578 |
Score | 2.4255073 |
Snippet | Despite recent improvements, global climate models (GCMs) still have biases that prevent their direct application. Quantile mapping (QM) has been widely used... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 24049 |
SubjectTerms | Annual precipitation Bias bias correction Climate change Climate models CMIP6 Density functions Discrete Wavelet Transform Effectiveness Frequencies Global climate Global climate models Hydrologic data Mapping Precipitation quantile mapping Quantiles Spatial data Standard deviation temporal patterns Wavelet analysis |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBUKhYKNUcQKKH0MSPxKGnpWpVIRWERNXerPEjaKVtNmxS8df4eYwTb6sKhLjl4WSszMPf2PE3jL1xwoemRJGVovCZrNCTS2GRBS9Lm0trlYy7kc8_l2cX8tOVutpiR7d7YVZdCv3v6XAiCp4-YfohTh8ShiYfJdhxiB4DFw_YQ6FLHTOvL-JyE4YJGVQ6rUv-7al749BI10-jC4n8IyaPA83pE_Y4IUSYT_15yrZCu8N2T-42pNHN5JH9M_ZrDmQzlN4GDz8xVpEYABPRSPbjhr4buT1cY6Rh-A7vLufZ1_MDmOpGAwFWsAvs6RXrMfKt2g_gsBvGvYtA2BAWcfI3m5hLIfFYLaEbWTnbnm6DWy4I9ZKMWFMHusiW0SXib-gX16k8WE-98pDmfeL5c3ZxevLt-CxL1RgyRznYQGHTUm5VNnGQ9zLyfAnJG1HbwovKKsuLwDF3wTuKEk6ipeSL8FQVdEMxoKjELttuV214wUArVWKRiyBlBHC1rlE5Z51wSBGkKmfsYKMb002kG2ZcLNfaRD2aqEcz6XHGPkbl3baLdNnjBTIdk0zH1Fx5VFKESjSS5xXaoslDLlCgRiWaGXtLqjfJfft_CIN77cJ6aXhuuIlMcbI2nadX7W3s566dINQrdVnL-uV_SnrFHvFYaXj8P3yPbQ_rm_Ca4M9g90cz_w2SDwOj priority: 102 providerName: IOP Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBvCq2FDQHkOgh2iR2XlzQFm1VIbUCREVv1viRKtI2STep-Gv8PGayXlYVUo-JLecxns_f-PGNEO-tdL7OUUa5TFykCnTkUphE3qncxMqYTPFp5POL_OxSfb3KrsKE2xC2VW4xcQJq11meI59LIg6qzCtVfe5vI84axaurIYXGY7FPEFxS8LV_srz49mOLxUQPijIsTpI7zYl-k3sTY5mjQ5_Ke4PRpNlPQ0zT9f8B8zTanD4TTwNNhMXGrs_FI9--EAfL3ak0KgxuObwUfxZAH0ExrnfwGzmVxAgY1Eai2zv6eeT7cIOsxXANH38tou_nx7BJHg3EWsE0OFAT6wn-uvYTWOzH6QAjEEGEhmeAo418KQQxqxX0kzRnO1Ax2FVD1JeewYl1oGfJjD6of8PQ3IQcYQO9lYMw-cPXr8Tl6fLnl7MopGSILAViI2GnoQArr3mkd4rFvqRKa1mZxMnCZCZNfIqx9c4SVFiFhiIwIlWFL2sCgqSQB2Kv7Vr_WkCZZTkmsfRKMYurygoza42VFglGinwmjre20f1GeUNPK-ZlqdmOmu2oN3aciRM23r96rJk93ejW1zq4oK7SzGGmpC9krdK4QJPUsY8lSiwxk_VMfCDT6-DDwwMPg3v1_Hql01inmuXiVKV7R00dbfvPrt6uBx8-XPxGPEk5y_C0N_xI7I3rO_-WqM9o3oX-_Ret8AZ- priority: 102 providerName: ProQuest |
Title | A combined wavelet analysis-quantile mapping (WA-QM) method for bias correction: capturing the intra-annual temporal patterns in climate model precipitation simulations and projections |
URI | https://iopscience.iop.org/article/10.1088/1748-9326/adae23 https://www.proquest.com/docview/3163486949 https://doaj.org/article/925da543e73f4207ab1f0e03a3a8a53f |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggXhULZTUHkOgh2iR2Xty2aJeC1AeIqr1Z40dQpG023aTqX-PnMXa8lAoJLlwsJbFiK_P6xo6_YeyN5sbWOfIo54mJRIGGTAqTyBqRq1golQl3GvnoOD88E58vsovfSn25f8JGeuDxw82qNDOYCW4LXos0LlAldWxjjhxLzHjtvC_FvG0yNfpgggVFGTYlyYxmBLvJrAmpzNCgTfmdIOS5-im0NOvuD4fso8zyMXsU4CHMx2k9Yfds-5TtLm5Po9HDYI79M_ZjDqQwlNtaAzfoSkgMgIFlJLq6po9GNg-X6DgYvsO783n05WgfxqLRQGgVVIM9vWLj3d66fQ8au8EfXAQChtC4ld9opC2FQGK1gs5TcrY9PQa9agjy0hiuoA50jiqjC6zf0DeXoTZYT7MyEBZ93PVzdrZcfPtwGIVSDJGmBGwgn6koscprF-GNcCRfXKQ1r1RieKEylSY2xVhbo8lFaIGKMi8CU4Uta3IAScF32U67bu0LBmWW5ZjE3Arh0FtVVphprTTXSO6jyCdsfysb2Y2MG9LvlJeldHKUTo5ylOOEHTjh_ernuLL9DdIgGTRI_kuDJuwtiV4G2-3_Mhjc6Wc3K5nGMpWOJk5UsjP0qr2t_tz24wR5RZlXonr5P6b7ij1MXQ1i_-f4HtsZNtf2NQGjQU3Z_XL5ccoeHCyOT79OvUVQ--nklNoTfv4TYnoR_A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAF8arYUmAOVKKHaBPbeSEhtECXLe1WQmpFb8avVJG2SbrZquJPcebnMU4cVhVSbz3u2nJWOzPffGPH3xDyVjNji0SyIGGRCXgqDYaUjAJreKJCrlTM3W3k-XEyO-XfzuKzDfJ7uAvjXqscMLEDalNrt0c-ZkgceJbkPP_YXAaua5Q7XR1aaPRucWh_XWPJ1n44-IL23aV0un_yeRb4rgKBxlpiheGvsEZICpesDHd6VYzTguUqMixVsaKRpTLU1mj0ds2lwiICeUFqswJ9OUoZrnuP3OeM5S6isunXAfmRjKSZPwrF4B0j2UcwQX40lkZaym6kvq5DACa0sm7-SwNdbps-Jo88KYVJ70VPyIatnpKt_fUdOBz0INA-I38mgH8ZVtTWwLV0jStWIL22SXB5haZCpIEL6ZQfzuHdj0nwfb4HfatqQI4MqpQtLrHswLau3oOWzaq7LglIR6F0-81BL5YKXjprAU0nBFq1OAx6USLRxme4Nj7QOIGOxmuNQ1te-I5kLf4qA36ryX1-Tk7vxFRbZLOqK_uCQBbHiYxCZjl3nDHPchlrrTTTEkErTUZkb7CNaHqdD9Gdz2eZcHYUzo6it-OIfHLG-zfPKXR3X9TLc-EDXuQ0NjLmzKas4DRMpYqK0IZMMpnJmBUjsoumFx4x2lseBjfm2eVC0FBQ4cTpeC4ag0vtDP6znreOl-3bh9-QB7OT-ZE4Ojg-fEkeUtffuHsrfYdsrpZX9hWSrpV63Xk6kJ93HVp_AVABP7g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgLKo-KhQJzAIkewiax4yTcFuiqPFpAompv1viRaqVtNmxS9a_x8xg7XqoKhLglsZOxMg9_fn3D2AvDrWsk8kTyzCaiREsuhVnirJA6FVoXwp9GPjySB8fi42lxGvOchrMwqy6G_td0ORIFj78wboirpoShyUcJdkzRosv5tLPNTXar4FL63A1f-MkmFBM6KKu4Nvm3N6_1RYGyn3oYEvtHXA6dzXyb3Y0oEWZjm-6xG669z3b2rw6lUWH0yv4B-zkDshsa4joLl-gzSQyAkWwk-XFB_45cH87RUzGcwauTWfLtcA_G3NFAoBX0Anv6xDpEv1X7Bgx2Qzi_CIQPYeEngJORvRQil9USusDM2fZUDGa5IORLMnxeHeg8Y0YXyb-hX5zHFGE9tcpCnPvx9w_Z8Xz_-7uDJGZkSAyNwwYKnZrGV7LxHb0VnuuLi7zhtc4sL3Wh88zlmBpnDUUKI1DTAIwwVemqhuJAVvIdttWuWveIQVUUErOUOyE8iKurGgtjtOEGKYqUcsL2NrpR3Ui8ocKCeVUpr0fl9ahGPU7YW6-83_U8ZXZ4QOajovmoOi8sFoK7kjciT0vUWZO6lCPHCgveTNhLUr2KLtz_Qxhcq-fWS5WnKleeLU7UiqxxwnY39nNVjxPyFZWsRf34PyU9Z7e_vp-rzx-OPj1hd3KfeDhsF99lW8P6wj0lNDToZ8HifwF53geS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combined+wavelet+analysis-quantile+mapping+%28WA-QM%29+method+for+bias+correction%3A+capturing+the+intra-annual+temporal+patterns+in+climate+model+precipitation+simulations+and+projections&rft.jtitle=Environmental+research+letters&rft.au=Xia+Wu&rft.au=Zhu+Liu&rft.au=Qingyun+Duan&rft.date=2025-02-01&rft.pub=IOP+Publishing&rft.eissn=1748-9326&rft.volume=20&rft.issue=2&rft.spage=024049&rft_id=info:doi/10.1088%2F1748-9326%2Fadae23&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_925da543e73f4207ab1f0e03a3a8a53f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon |