A combined wavelet analysis-quantile mapping (WA-QM) method for bias correction: capturing the intra-annual temporal patterns in climate model precipitation simulations and projections

Despite recent improvements, global climate models (GCMs) still have biases that prevent their direct application. Quantile mapping (QM) has been widely used in bias correction (BC) due to its effectiveness in aligning the cumulative density function of climate model data with observations. However,...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research letters Vol. 20; no. 2; pp. 24049 - 24059
Main Authors Wu, Xia, Liu, Zhu, Duan, Qingyun
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite recent improvements, global climate models (GCMs) still have biases that prevent their direct application. Quantile mapping (QM) has been widely used in bias correction (BC) due to its effectiveness in aligning the cumulative density function of climate model data with observations. However, QM has a significant limitation: it fails to consider the temporal correspondence between the model data and observations, which restricts its ability to represent intra-annual temporal patterns. To address this issue, this study integrated wavelet analysis (WA) into QM to develop a combined method termed WA-QM, which aimed to preserve QM’s efficacy in overall BC and preservation of climate change signals, while capturing the intra-annual temporal patterns. The effectiveness of WA-QM was investigated using monthly precipitation data from five Coupled Model Intercomparison Project Phase 6 models in the Pan Third Pole region, which includes Central Asia (CA), Southeast Asia, and the Tibetan Plateau. Quantile delta mapping (QDM) and scaled distribution mapping (SDM) served as the benchmark methods for assessment. The results indicated that integrating WA into QDM or SDM did not compromise the ability of QDM or SDM to correct overall biases and preserve the model’s climate change signal. Furthermore, WA could be an effective tool to overcome QM’s limitation in capturing intra-annual temporal patterns. The WA approach employed discrete wavelet transformation to decompose GCM data into various frequency bands and then adjusted their standard deviations and signs to ensure that their relative relationships were consistent with those in observations. Compared to the standalone QM approach, WA-QM showed greater accuracy in monthly statistical metrics. In the CA region, WA-SDM reduced the monthly root mean square error of the mean by 25.2%, the standard deviation by 17.6%, and the 90th percentile by 26.7% compared to SDM. The effectiveness of WA-QM was demonstrated across different data periods, spatial areas, and GCMs.
AbstractList Despite recent improvements, global climate models (GCMs) still have biases that prevent their direct application. Quantile mapping (QM) has been widely used in bias correction (BC) due to its effectiveness in aligning the cumulative density function of climate model data with observations. However, QM has a significant limitation: it fails to consider the temporal correspondence between the model data and observations, which restricts its ability to represent intra-annual temporal patterns. To address this issue, this study integrated wavelet analysis (WA) into QM to develop a combined method termed WA-QM, which aimed to preserve QM’s efficacy in overall BC and preservation of climate change signals, while capturing the intra-annual temporal patterns. The effectiveness of WA-QM was investigated using monthly precipitation data from five Coupled Model Intercomparison Project Phase 6 models in the Pan Third Pole region, which includes Central Asia (CA), Southeast Asia, and the Tibetan Plateau. Quantile delta mapping (QDM) and scaled distribution mapping (SDM) served as the benchmark methods for assessment. The results indicated that integrating WA into QDM or SDM did not compromise the ability of QDM or SDM to correct overall biases and preserve the model’s climate change signal. Furthermore, WA could be an effective tool to overcome QM’s limitation in capturing intra-annual temporal patterns. The WA approach employed discrete wavelet transformation to decompose GCM data into various frequency bands and then adjusted their standard deviations and signs to ensure that their relative relationships were consistent with those in observations. Compared to the standalone QM approach, WA-QM showed greater accuracy in monthly statistical metrics. In the CA region, WA-SDM reduced the monthly root mean square error of the mean by 25.2%, the standard deviation by 17.6%, and the 90th percentile by 26.7% compared to SDM. The effectiveness of WA-QM was demonstrated across different data periods, spatial areas, and GCMs.
Author Liu, Zhu
Duan, Qingyun
Wu, Xia
Author_xml – sequence: 1
  givenname: Xia
  orcidid: 0000-0001-7451-4838
  surname: Wu
  fullname: Wu, Xia
  organization: Hohai University China Meteorological Administration Hydro-Meteorology Key Laboratory, Nanjing 210098, People’s Republic of China
– sequence: 2
  givenname: Zhu
  orcidid: 0000-0001-9426-985X
  surname: Liu
  fullname: Liu, Zhu
  organization: Hohai University China Meteorological Administration Hydro-Meteorology Key Laboratory, Nanjing 210098, People’s Republic of China
– sequence: 3
  givenname: Qingyun
  orcidid: 0000-0001-9955-1512
  surname: Duan
  fullname: Duan, Qingyun
  organization: Hohai University China Meteorological Administration Hydro-Meteorology Key Laboratory, Nanjing 210098, People’s Republic of China
BookMark eNp9kctu1TAQhiNUJNrCnqUlFoBEqG9JHHZHFZdKRQgJxNKaxOPWR4md2g6ob8bj4dOgwgKx8mjmn29m_J9URz54rKqnjL5mVKkz1klV94K3Z2AAuXhQHd-njv6KH1UnKe0pbWTTqePq546MYR6cR0N-wHecMBPwMN0ml-qbFXx2E5IZlsX5K_Li267-_PElmTFfB0NsiGRwkAoiRhyzC_4NGWHJazyo8zUS53OEGrxfYSIZ5yXEEiyQM0afSpmMk5shlxnBYKkUjltchgOMJDev012YylamVMN-m5MeVw8tTAmf_H5Pq6_v3n45_1Bffnp_cb67rEdJWa5VN3SsbS3lQpmSUUxIbkU_MCO6oRk4Qw50RDMyJUYJA2WSN22Hyna9YJ04rS42rgmw10ssy8ZbHcDpu0SIVxpiduOEuueNgUYK7ISVnHYwMEuRChCgoBG2sJ5trHLHzYop631YY_ntpAVrhVRtL_uioptqjCGliPZ-KqP64LU-mKkPZurN69LyamtxYfnD_I_8-T_kGCfNqeaackllrxdjxS8b970w
CODEN ERLNAL
Cites_doi 10.1016/j.envdev.2012.04.002
10.1175/2011BAMS3110.1
10.1016/j.jhydrol.2010.10.024
10.1002/joc.2168
10.1175/JCLI-D-21-1020.1
10.1029/2021GL092953
10.1029/2019wr026962
10.1080/19942060.2018.1564702
10.5194/hess-21-1693-2017
10.1016/j.atmosres.2021.105576
10.1038/d41586-022-01667-2
10.1007/s00382-023-06778-8
10.2166/nh.2019.127
10.5194/cp-16-1493-2020
10.1016/S0022-1694(03)00252-X
10.1002/joc.6775
10.2307/1907187
10.5194/hess-16-3391-2012
10.1007/s00382-022-06345-7
10.1002/2014JD022635
10.1029/2009JD012882
10.1029/2002JD002928
10.1016/j.atmosres.2015.12.017
10.1002/asl2.454
10.1016/j.agrformet.2012.04.007
10.1038/s41597-020-00681-1
10.1038/s41597-020-0453-3
10.1016/j.wace.2022.100435
10.1016/j.jhydrol.2022.128550
10.5194/hess-21-2649-2017
10.1007/s40641-016-0050-x
10.1007/s13351-021-1012-3
10.1175/JCLI-D-14-00754.1
10.1515/jwld-2016-0003
10.1111/j.1752-1688.2009.00327.x
10.5194/gmd-9-1937-2016
10.1029/2022EF002963
10.1007/s10584-023-03597-y
10.1175/JCLI-D-10-05024.1
10.1016/j.agwat.2014.03.014
10.1029/2012JD018192
10.1038/nclimate3418
10.1029/2020JD032824
10.1029/2022GL100550
10.5194/gmd-12-3055-2019
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd
2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd
– notice: 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.1088/1748-9326/adae23
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1748-9326
ExternalDocumentID oai_doaj_org_article_925da543e73f4207ab1f0e03a3a8a53f
10_1088_1748_9326_adae23
erladae23
GrantInformation_xml – fundername: Key Scientific and Technological Project of the Ministry of Water Resources
  grantid: SKS- 2022001
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20220992
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 42401146; 52109015
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: B220202030
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: Key R&D Program of China
  grantid: 2021YFC3201102
– fundername: Jiangsu Postdoctoral Research Funding
  grantid: 2021K046A
GroupedDBID 1JI
29G
2WC
5B3
5GY
5PX
5VS
7.Q
AAFWJ
AAHBH
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AEUYN
AFKRA
AFPKN
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATCPS
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
BHPHI
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KNG
KQ8
LAP
M7S
M~E
N5L
N9A
O3W
OK1
P2P
PATMY
PIMPY
PJBAE
PTHSS
PYCSY
RIN
RNS
RO9
SY9
T37
TR2
TSCCA
W28
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
AEINN
PUEGO
ID FETCH-LOGICAL-c401t-87b7166f0238d40181342f39b1d37b5b21e2a0cedc183c4ab0142567e8f793173
IEDL.DBID DOA
ISSN 1748-9326
IngestDate Wed Aug 27 01:30:06 EDT 2025
Fri Jul 25 11:27:11 EDT 2025
Tue Jul 01 04:05:49 EDT 2025
Tue Feb 11 23:46:10 EST 2025
Tue Feb 11 23:46:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-87b7166f0238d40181342f39b1d37b5b21e2a0cedc183c4ab0142567e8f793173
Notes ERL-119841.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7451-4838
0000-0001-9426-985X
0000-0001-9955-1512
OpenAccessLink https://doaj.org/article/925da543e73f4207ab1f0e03a3a8a53f
PQID 3163486949
PQPubID 4998671
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_925da543e73f4207ab1f0e03a3a8a53f
proquest_journals_3163486949
iop_journals_10_1088_1748_9326_adae23
crossref_primary_10_1088_1748_9326_adae23
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Environmental research letters
PublicationTitleAbbrev ERL
PublicationTitleAlternate Environ. Res. Lett
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ghamariadyan (erladae23bib12) 2021; 41
Shafaei (erladae23bib36) 2016; 28
Piani (erladae23bib34) 2010; 395
Kusumastuti (erladae23bib23) 2022; 49
Xu (erladae23bib44) 2022; 35
Ehret (erladae23bib9) 2012; 16
Chen (erladae23bib7) 2015; 120
Hawkins (erladae23bib15) 2013; 170
Watanabe (erladae23bib41) 2012; 117
Kusumastuti (erladae23bib22) 2021; 48
Liu (erladae23bib27) 2023; 60
Switanek (erladae23bib37) 2017; 21
Hay (erladae23bib16) 2003; 282
Dinh (erladae23bib8) 2023; 176
Cannon (erladae23bib6) 2015; 28
Maraun (erladae23bib29) 2016; 2
Qasem (erladae23bib35) 2019; 13
John (erladae23bib19) 2022; 36
Li (erladae23bib26) 2023; 61
Percival (erladae23bib33) 2000
Belayneh (erladae23bib3) 2016; 172
Harris (erladae23bib14) 2020; 7
Themeßl (erladae23bib38) 2011; 31
Wang (erladae23bib40) 2014; 15
Lange (erladae23bib24) 2019; 12
Maraun (erladae23bib31) 2021; 126
Guglielmi (erladae23bib13) 2022
Kendall (erladae23bib20) 1975
Mishra (erladae23bib32) 2020; 7
Mann (erladae23bib28) 1945; 13
Ho (erladae23bib17) 2012; 93
Block (erladae23bib5) 2009; 45
Wu (erladae23bib43) 2022; 10
Kim (erladae23bib21) 2019; 50
Jiang (erladae23bib18) 2020; 56
Li (erladae23bib25) 2010; 115
Eyring (erladae23bib10) 2016; 9
Falamarzi (erladae23bib11) 2014; 140
Maraun (erladae23bib30) 2017; 7
Volosciuk (erladae23bib39) 2017; 21
Bağçaci (erladae23bib2) 2021; 256
Watterson (erladae23bib42) 2003; 108
Yao (erladae23bib46) 2012; 3
Beyer (erladae23bib4) 2020; 16
Amengual (erladae23bib1) 2012; 25
Xue (erladae23bib45) 2022; 614
Zhang (erladae23bib47) 2021; 35
References_xml – volume: 3
  start-page: 52
  year: 2012
  ident: erladae23bib46
  article-title: Third pole environment (TPE)
  publication-title: Environ. Dev.
  doi: 10.1016/j.envdev.2012.04.002
– volume: 93
  start-page: 21
  year: 2012
  ident: erladae23bib17
  article-title: Calibration strategies: a source of additional uncertainty in climate change projections
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2011BAMS3110.1
– volume: 395
  start-page: 199
  year: 2010
  ident: erladae23bib34
  article-title: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.10.024
– volume: 31
  start-page: 1530
  year: 2011
  ident: erladae23bib38
  article-title: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.2168
– volume: 35
  start-page: 6395
  year: 2022
  ident: erladae23bib44
  article-title: Variations of summer extreme and total precipitation over Southeast Asia and associated atmospheric and oceanic features
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-21-1020.1
– volume: 48
  year: 2021
  ident: erladae23bib22
  article-title: A signal processing approach to correct systematic bias in trend and variability in climate model simulations
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL092953
– volume: 56
  year: 2020
  ident: erladae23bib18
  article-title: Refining predictor spectral representation using wavelet theory for improved natural system modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/2019wr026962
– volume: 13
  start-page: 177
  year: 2019
  ident: erladae23bib35
  article-title: Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates
  publication-title: Eng. Appl. Comput. Fluid Mech.
  doi: 10.1080/19942060.2018.1564702
– volume: 21
  start-page: 1693
  year: 2017
  ident: erladae23bib39
  article-title: A combined statistical bias correction and stochastic downscaling method for precipitation
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-1693-2017
– volume: 256
  year: 2021
  ident: erladae23bib2
  article-title: Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: a Mediterranean hot spot case, Turkey
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2021.105576
– year: 2022
  ident: erladae23bib13
  article-title: Climate change is turning more of Central Asia into desert
  publication-title: Nature
  doi: 10.1038/d41586-022-01667-2
– volume: 61
  start-page: 3893
  year: 2023
  ident: erladae23bib26
  article-title: Evaluation of bias correction techniques for generating high-resolution daily temperature projections from CMIP6 models
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-023-06778-8
– volume: 50
  start-page: 1138
  year: 2019
  ident: erladae23bib21
  article-title: Bias correction of daily precipitation over South Korea from the long-term reanalysis using a composite Gamma-Pareto distribution approach
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2019.127
– volume: 16
  start-page: 1493
  year: 2020
  ident: erladae23bib4
  article-title: An empirical evaluation of bias correction methods for palaeoclimate simulations
  publication-title: Clim. Past
  doi: 10.5194/cp-16-1493-2020
– volume: 282
  start-page: 56
  year: 2003
  ident: erladae23bib16
  article-title: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(03)00252-X
– volume: 41
  start-page: E1396
  year: 2021
  ident: erladae23bib12
  article-title: A wavelet artificial neural network method for medium-term rainfall prediction in Queensland (Australia) and the comparisons with conventional methods
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6775
– volume: 13
  start-page: 245
  year: 1945
  ident: erladae23bib28
  article-title: Nonparametric tests against trend
  publication-title: Econometrica
  doi: 10.2307/1907187
– volume: 16
  start-page: 3391
  year: 2012
  ident: erladae23bib9
  article-title: HESS opinions “Should we apply bias correction to global and regional climate model data?
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-3391-2012
– volume: 60
  start-page: 767
  year: 2023
  ident: erladae23bib27
  article-title: Bayesian retro- and prospective assessment of CMIP6 climatology in Pan Third Pole region
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-022-06345-7
– volume: 120
  start-page: 1123
  year: 2015
  ident: erladae23bib7
  article-title: Assessing the limits of bias-correcting climate model outputs for climate change impact studies
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2014JD022635
– volume: 115
  year: 2010
  ident: erladae23bib25
  article-title: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JD012882
– volume: 108
  year: 2003
  ident: erladae23bib42
  article-title: Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2002JD002928
– volume: 172
  start-page: 37
  year: 2016
  ident: erladae23bib3
  article-title: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.12.017
– volume: 15
  start-page: 1
  year: 2014
  ident: erladae23bib40
  article-title: Equiratio cumulative distribution function matching as an improvement to the equidistant approach in bias correction of precipitation
  publication-title: Atmos. Sci. Lett.
  doi: 10.1002/asl2.454
– volume: 170
  start-page: 19
  year: 2013
  ident: erladae23bib15
  article-title: Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.04.007
– volume: 7
  start-page: 338
  year: 2020
  ident: erladae23bib32
  article-title: Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00681-1
– volume: 7
  start-page: 109
  year: 2020
  ident: erladae23bib14
  article-title: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0453-3
– volume: 36
  year: 2022
  ident: erladae23bib19
  article-title: Quantifying CMIP6 model uncertainties in extreme precipitation projections
  publication-title: Weather Clim. Extrem.
  doi: 10.1016/j.wace.2022.100435
– volume: 614
  year: 2022
  ident: erladae23bib45
  article-title: Climate variability impacts on runoff projection under quantile mapping bias correction in the support CMIP6: an investigation in Lushi basin of China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128550
– volume: 21
  start-page: 2649
  year: 2017
  ident: erladae23bib37
  article-title: Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-2649-2017
– volume: 2
  start-page: 211
  year: 2016
  ident: erladae23bib29
  article-title: Bias correcting climate change simulations—a critical review
  publication-title: Curr. Clim. Change Rep.
  doi: 10.1007/s40641-016-0050-x
– volume: 35
  start-page: 646
  year: 2021
  ident: erladae23bib47
  article-title: Uncertainty in projection of climate extremes: a comparison of CMIP5 and CMIP6
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-021-1012-3
– volume: 28
  start-page: 6938
  year: 2015
  ident: erladae23bib6
  article-title: Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes?
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-14-00754.1
– year: 2000
  ident: erladae23bib33
– volume: 28
  start-page: 27
  year: 2016
  ident: erladae23bib36
  article-title: A wavelet-SARIMA-ANN hybrid model for precipitation forecasting
  publication-title: J. Water Land Dev.
  doi: 10.1515/jwld-2016-0003
– volume: 45
  start-page: 828
  year: 2009
  ident: erladae23bib5
  article-title: A streamflow forecasting framework using multiple climate and hydrological models1
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2009.00327.x
– volume: 9
  start-page: 1937
  year: 2016
  ident: erladae23bib10
  article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-1937-2016
– volume: 10
  year: 2022
  ident: erladae23bib43
  article-title: Quantifying the uncertainty sources of future climate projections and narrowing uncertainties with bias correction techniques
  publication-title: Earth’s Future
  doi: 10.1029/2022EF002963
– volume: 176
  start-page: 140
  year: 2023
  ident: erladae23bib8
  article-title: Revisiting the bias correction of climate models for impact studies
  publication-title: Clim. Change
  doi: 10.1007/s10584-023-03597-y
– volume: 25
  start-page: 939
  year: 2012
  ident: erladae23bib1
  article-title: A statistical adjustment of regional climate model outputs to local scales: application to Platja de Palma, Spain
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-10-05024.1
– volume: 140
  start-page: 26
  year: 2014
  ident: erladae23bib11
  article-title: Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs)
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2014.03.014
– volume: 117
  year: 2012
  ident: erladae23bib41
  article-title: Intercomparison of bias‐correction methods for monthly temperature and precipitation simulated by multiple climate models
  publication-title: J. Geophys. Res.
  doi: 10.1029/2012JD018192
– year: 1975
  ident: erladae23bib20
– volume: 7
  start-page: 764
  year: 2017
  ident: erladae23bib30
  article-title: Towards process-informed bias correction of climate change simulations
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3418
– volume: 126
  year: 2021
  ident: erladae23bib31
  article-title: Regional climate model biases, their dependence on synoptic circulation biases and the potential for bias adjustment: a process-oriented evaluation of the Austrian regional climate projections
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2020JD032824
– volume: 49
  year: 2022
  ident: erladae23bib23
  article-title: Correcting systematic bias in climate model simulations in the time‐frequency domain
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2022GL100550
– volume: 12
  start-page: 3055
  year: 2019
  ident: erladae23bib24
  article-title: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0)
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-12-3055-2019
SSID ssj0054578
Score 2.4255073
Snippet Despite recent improvements, global climate models (GCMs) still have biases that prevent their direct application. Quantile mapping (QM) has been widely used...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24049
SubjectTerms Annual precipitation
Bias
bias correction
Climate change
Climate models
CMIP6
Density functions
Discrete Wavelet Transform
Effectiveness
Frequencies
Global climate
Global climate models
Hydrologic data
Mapping
Precipitation
quantile mapping
Quantiles
Spatial data
Standard deviation
temporal patterns
Wavelet analysis
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBUKhYKNUcQKKH0MSPxKGnpWpVIRWERNXerPEjaKVtNmxS8df4eYwTb6sKhLjl4WSszMPf2PE3jL1xwoemRJGVovCZrNCTS2GRBS9Lm0trlYy7kc8_l2cX8tOVutpiR7d7YVZdCv3v6XAiCp4-YfohTh8ShiYfJdhxiB4DFw_YQ6FLHTOvL-JyE4YJGVQ6rUv-7al749BI10-jC4n8IyaPA83pE_Y4IUSYT_15yrZCu8N2T-42pNHN5JH9M_ZrDmQzlN4GDz8xVpEYABPRSPbjhr4buT1cY6Rh-A7vLufZ1_MDmOpGAwFWsAvs6RXrMfKt2g_gsBvGvYtA2BAWcfI3m5hLIfFYLaEbWTnbnm6DWy4I9ZKMWFMHusiW0SXib-gX16k8WE-98pDmfeL5c3ZxevLt-CxL1RgyRznYQGHTUm5VNnGQ9zLyfAnJG1HbwovKKsuLwDF3wTuKEk6ipeSL8FQVdEMxoKjELttuV214wUArVWKRiyBlBHC1rlE5Z51wSBGkKmfsYKMb002kG2ZcLNfaRD2aqEcz6XHGPkbl3baLdNnjBTIdk0zH1Fx5VFKESjSS5xXaoslDLlCgRiWaGXtLqjfJfft_CIN77cJ6aXhuuIlMcbI2nadX7W3s566dINQrdVnL-uV_SnrFHvFYaXj8P3yPbQ_rm_Ca4M9g90cz_w2SDwOj
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBvCq2FDQHkOgh2iR2XlzQFm1VIbUCREVv1viRKtI2STep-Gv8PGayXlYVUo-JLecxns_f-PGNEO-tdL7OUUa5TFykCnTkUphE3qncxMqYTPFp5POL_OxSfb3KrsKE2xC2VW4xcQJq11meI59LIg6qzCtVfe5vI84axaurIYXGY7FPEFxS8LV_srz49mOLxUQPijIsTpI7zYl-k3sTY5mjQ5_Ke4PRpNlPQ0zT9f8B8zTanD4TTwNNhMXGrs_FI9--EAfL3ak0KgxuObwUfxZAH0ExrnfwGzmVxAgY1Eai2zv6eeT7cIOsxXANH38tou_nx7BJHg3EWsE0OFAT6wn-uvYTWOzH6QAjEEGEhmeAo418KQQxqxX0kzRnO1Ax2FVD1JeewYl1oGfJjD6of8PQ3IQcYQO9lYMw-cPXr8Tl6fLnl7MopGSILAViI2GnoQArr3mkd4rFvqRKa1mZxMnCZCZNfIqx9c4SVFiFhiIwIlWFL2sCgqSQB2Kv7Vr_WkCZZTkmsfRKMYurygoza42VFglGinwmjre20f1GeUNPK-ZlqdmOmu2oN3aciRM23r96rJk93ejW1zq4oK7SzGGmpC9krdK4QJPUsY8lSiwxk_VMfCDT6-DDwwMPg3v1_Hql01inmuXiVKV7R00dbfvPrt6uBx8-XPxGPEk5y_C0N_xI7I3rO_-WqM9o3oX-_Ret8AZ-
  priority: 102
  providerName: ProQuest
Title A combined wavelet analysis-quantile mapping (WA-QM) method for bias correction: capturing the intra-annual temporal patterns in climate model precipitation simulations and projections
URI https://iopscience.iop.org/article/10.1088/1748-9326/adae23
https://www.proquest.com/docview/3163486949
https://doaj.org/article/925da543e73f4207ab1f0e03a3a8a53f
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggXhULZTUHkOgh2iR2Xty2aJeC1AeIqr1Z40dQpG023aTqX-PnMXa8lAoJLlwsJbFiK_P6xo6_YeyN5sbWOfIo54mJRIGGTAqTyBqRq1golQl3GvnoOD88E58vsovfSn25f8JGeuDxw82qNDOYCW4LXos0LlAldWxjjhxLzHjtvC_FvG0yNfpgggVFGTYlyYxmBLvJrAmpzNCgTfmdIOS5-im0NOvuD4fso8zyMXsU4CHMx2k9Yfds-5TtLm5Po9HDYI79M_ZjDqQwlNtaAzfoSkgMgIFlJLq6po9GNg-X6DgYvsO783n05WgfxqLRQGgVVIM9vWLj3d66fQ8au8EfXAQChtC4ld9opC2FQGK1gs5TcrY9PQa9agjy0hiuoA50jiqjC6zf0DeXoTZYT7MyEBZ93PVzdrZcfPtwGIVSDJGmBGwgn6koscprF-GNcCRfXKQ1r1RieKEylSY2xVhbo8lFaIGKMi8CU4Uta3IAScF32U67bu0LBmWW5ZjE3Arh0FtVVphprTTXSO6jyCdsfysb2Y2MG9LvlJeldHKUTo5ylOOEHTjh_ernuLL9DdIgGTRI_kuDJuwtiV4G2-3_Mhjc6Wc3K5nGMpWOJk5UsjP0qr2t_tz24wR5RZlXonr5P6b7ij1MXQ1i_-f4HtsZNtf2NQGjQU3Z_XL5ccoeHCyOT79OvUVQ--nklNoTfv4TYnoR_A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAF8arYUmAOVKKHaBPbeSEhtECXLe1WQmpFb8avVJG2SbrZquJPcebnMU4cVhVSbz3u2nJWOzPffGPH3xDyVjNji0SyIGGRCXgqDYaUjAJreKJCrlTM3W3k-XEyO-XfzuKzDfJ7uAvjXqscMLEDalNrt0c-ZkgceJbkPP_YXAaua5Q7XR1aaPRucWh_XWPJ1n44-IL23aV0un_yeRb4rgKBxlpiheGvsEZICpesDHd6VYzTguUqMixVsaKRpTLU1mj0ds2lwiICeUFqswJ9OUoZrnuP3OeM5S6isunXAfmRjKSZPwrF4B0j2UcwQX40lkZaym6kvq5DACa0sm7-SwNdbps-Jo88KYVJ70VPyIatnpKt_fUdOBz0INA-I38mgH8ZVtTWwLV0jStWIL22SXB5haZCpIEL6ZQfzuHdj0nwfb4HfatqQI4MqpQtLrHswLau3oOWzaq7LglIR6F0-81BL5YKXjprAU0nBFq1OAx6USLRxme4Nj7QOIGOxmuNQ1te-I5kLf4qA36ryX1-Tk7vxFRbZLOqK_uCQBbHiYxCZjl3nDHPchlrrTTTEkErTUZkb7CNaHqdD9Gdz2eZcHYUzo6it-OIfHLG-zfPKXR3X9TLc-EDXuQ0NjLmzKas4DRMpYqK0IZMMpnJmBUjsoumFx4x2lseBjfm2eVC0FBQ4cTpeC4ag0vtDP6znreOl-3bh9-QB7OT-ZE4Ojg-fEkeUtffuHsrfYdsrpZX9hWSrpV63Xk6kJ93HVp_AVABP7g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgLKo-KhQJzAIkewiax4yTcFuiqPFpAompv1viRaqVtNmxS9a_x8xg7XqoKhLglsZOxMg9_fn3D2AvDrWsk8kTyzCaiREsuhVnirJA6FVoXwp9GPjySB8fi42lxGvOchrMwqy6G_td0ORIFj78wboirpoShyUcJdkzRosv5tLPNTXar4FL63A1f-MkmFBM6KKu4Nvm3N6_1RYGyn3oYEvtHXA6dzXyb3Y0oEWZjm-6xG669z3b2rw6lUWH0yv4B-zkDshsa4joLl-gzSQyAkWwk-XFB_45cH87RUzGcwauTWfLtcA_G3NFAoBX0Anv6xDpEv1X7Bgx2Qzi_CIQPYeEngJORvRQil9USusDM2fZUDGa5IORLMnxeHeg8Y0YXyb-hX5zHFGE9tcpCnPvx9w_Z8Xz_-7uDJGZkSAyNwwYKnZrGV7LxHb0VnuuLi7zhtc4sL3Wh88zlmBpnDUUKI1DTAIwwVemqhuJAVvIdttWuWveIQVUUErOUOyE8iKurGgtjtOEGKYqUcsL2NrpR3Ui8ocKCeVUpr0fl9ahGPU7YW6-83_U8ZXZ4QOajovmoOi8sFoK7kjciT0vUWZO6lCPHCgveTNhLUr2KLtz_Qxhcq-fWS5WnKleeLU7UiqxxwnY39nNVjxPyFZWsRf34PyU9Z7e_vp-rzx-OPj1hd3KfeDhsF99lW8P6wj0lNDToZ8HifwF53geS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combined+wavelet+analysis-quantile+mapping+%28WA-QM%29+method+for+bias+correction%3A+capturing+the+intra-annual+temporal+patterns+in+climate+model+precipitation+simulations+and+projections&rft.jtitle=Environmental+research+letters&rft.au=Xia+Wu&rft.au=Zhu+Liu&rft.au=Qingyun+Duan&rft.date=2025-02-01&rft.pub=IOP+Publishing&rft.eissn=1748-9326&rft.volume=20&rft.issue=2&rft.spage=024049&rft_id=info:doi/10.1088%2F1748-9326%2Fadae23&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_925da543e73f4207ab1f0e03a3a8a53f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon