Geographical discrimination of red garlic (Allium sativum L.) produced in Italy by means of multivariate statistical analysis of ICP-OES data

•The major mineral elements of red garlic were determined using ICP-OES analysis.•Geographical classification of Italian red garlic was performed.•We built and validated efficient class models for four red garlic varieties. Sixty-five samples of red garlic (Allium sativum L.) coming from four differ...

Full description

Saved in:
Bibliographic Details
Published inFood chemistry Vol. 275; pp. 333 - 338
Main Authors D'Archivio, Angelo Antonio, Foschi, Martina, Aloia, Rosaria, Maggi, Maria Anna, Rossi, Leucio, Ruggieri, Fabrizio
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2019
Subjects
Online AccessGet full text
ISSN0308-8146
1873-7072
1873-7072
DOI10.1016/j.foodchem.2018.09.088

Cover

Abstract •The major mineral elements of red garlic were determined using ICP-OES analysis.•Geographical classification of Italian red garlic was performed.•We built and validated efficient class models for four red garlic varieties. Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr). Both classification and class modelling methods by using linear discriminant analysis (LDA) and soft independent model class analogy (SIMCA), respectively, were applied. Classification ability and modelling efficiency were evaluated on an external prediction set (21 garlic samples) designed by application of duplex Kennard-Stone algorithm. All the calibration and prediction samples were correctly classified by means of LDA. The class models developed using SIMCA exhibited high sensitivity (almost all the calibration and external samples were accepted by the respective classes) and good specificity (the majority of extraneous samples were refused by each class model).
AbstractList •The major mineral elements of red garlic were determined using ICP-OES analysis.•Geographical classification of Italian red garlic was performed.•We built and validated efficient class models for four red garlic varieties. Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr). Both classification and class modelling methods by using linear discriminant analysis (LDA) and soft independent model class analogy (SIMCA), respectively, were applied. Classification ability and modelling efficiency were evaluated on an external prediction set (21 garlic samples) designed by application of duplex Kennard-Stone algorithm. All the calibration and prediction samples were correctly classified by means of LDA. The class models developed using SIMCA exhibited high sensitivity (almost all the calibration and external samples were accepted by the respective classes) and good specificity (the majority of extraneous samples were refused by each class model).
Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr). Both classification and class modelling methods by using linear discriminant analysis (LDA) and soft independent model class analogy (SIMCA), respectively, were applied. Classification ability and modelling efficiency were evaluated on an external prediction set (21 garlic samples) designed by application of duplex Kennard-Stone algorithm. All the calibration and prediction samples were correctly classified by means of LDA. The class models developed using SIMCA exhibited high sensitivity (almost all the calibration and external samples were accepted by the respective classes) and good specificity (the majority of extraneous samples were refused by each class model).
Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr). Both classification and class modelling methods by using linear discriminant analysis (LDA) and soft independent model class analogy (SIMCA), respectively, were applied. Classification ability and modelling efficiency were evaluated on an external prediction set (21 garlic samples) designed by application of duplex Kennard-Stone algorithm. All the calibration and prediction samples were correctly classified by means of LDA. The class models developed using SIMCA exhibited high sensitivity (almost all the calibration and external samples were accepted by the respective classes) and good specificity (the majority of extraneous samples were refused by each class model).Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr). Both classification and class modelling methods by using linear discriminant analysis (LDA) and soft independent model class analogy (SIMCA), respectively, were applied. Classification ability and modelling efficiency were evaluated on an external prediction set (21 garlic samples) designed by application of duplex Kennard-Stone algorithm. All the calibration and prediction samples were correctly classified by means of LDA. The class models developed using SIMCA exhibited high sensitivity (almost all the calibration and external samples were accepted by the respective classes) and good specificity (the majority of extraneous samples were refused by each class model).
Author D'Archivio, Angelo Antonio
Ruggieri, Fabrizio
Foschi, Martina
Aloia, Rosaria
Maggi, Maria Anna
Rossi, Leucio
Author_xml – sequence: 1
  givenname: Angelo Antonio
  surname: D'Archivio
  fullname: D'Archivio, Angelo Antonio
  email: angeloantonio.darchivio@univaq.it
  organization: Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy
– sequence: 2
  givenname: Martina
  surname: Foschi
  fullname: Foschi, Martina
  organization: Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy
– sequence: 3
  givenname: Rosaria
  surname: Aloia
  fullname: Aloia, Rosaria
  organization: Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy
– sequence: 4
  givenname: Maria Anna
  surname: Maggi
  fullname: Maggi, Maria Anna
  organization: Hortus Novus, Via Aldo Moro 28 D, 67100 L'Aquila, Italy
– sequence: 5
  givenname: Leucio
  surname: Rossi
  fullname: Rossi, Leucio
  organization: Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy
– sequence: 6
  givenname: Fabrizio
  surname: Ruggieri
  fullname: Ruggieri, Fabrizio
  organization: Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30724204$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu2zAQRYkiReOk_YWAy3QhZSjqQQFdNDDS1ICBFGi7JmhylNCQRJekAvgj-s-l7HiTTbqaxZw7j3svyNnoRiTkikHOgNU327xzzugnHPICmMihzUGId2TBRMOzBprijCyAg8gEK-tzchHCFgBm9gM556lfFlAuyN97dI9e7Z6sVj01NmhvBzuqaN1IXUc9GvqofG81vb7tezsNNKTmc6rr_DPdeWcmnRg70lVU_Z5u9nRANYZZPEx9QpW3KiINMelCPOxRY0KDPUCr5Y_s4e4nNSqqj-R9p_qAn17qJfn97e7X8nu2frhfLW_XmS6BxUwUFW9Q67LhwEqDNWO8VEVVsw6ghabSrGRQ6U2NhdHYNl1Xa6UNr6ESrNL8klwf56b7_0wYohzS59j3akQ3BVmwthGiKoH_ByraikMtZvTqBZ02Axq5S1Yqv5cntxPw5Qho70Lw2Elt48Hq6JXtJQM5hyu38hSunAOT0MoUbpLXr-SnDW8Kvx6FmDx9tuhl0BbHlJv1qKM0zr414h943MJ7
CitedBy_id crossref_primary_10_1016_j_saa_2023_122394
crossref_primary_10_3390_foods9070850
crossref_primary_10_1016_j_microc_2022_107327
crossref_primary_10_1016_j_jfca_2024_106731
crossref_primary_10_1016_j_foodchem_2022_132204
crossref_primary_10_1016_j_foodres_2020_109483
crossref_primary_10_1016_j_talanta_2021_122304
crossref_primary_10_1038_s41598_022_12556_z
crossref_primary_10_1016_j_foodcont_2020_107438
crossref_primary_10_1016_j_heliyon_2024_e30248
crossref_primary_10_1016_j_foodcont_2021_108328
crossref_primary_10_1016_j_vibspec_2023_103509
crossref_primary_10_1002_jsfa_10392
crossref_primary_10_3390_f14020204
crossref_primary_10_1016_j_foodcont_2024_110976
crossref_primary_10_1016_j_sajb_2023_05_024
crossref_primary_10_1080_19440049_2025_2451629
crossref_primary_10_1007_s12161_021_02148_4
crossref_primary_10_1039_D3AY01802D
crossref_primary_10_1016_j_jfca_2022_104948
crossref_primary_10_1002_fsn3_4397
crossref_primary_10_46756_001c_122061
crossref_primary_10_1016_j_foodcont_2021_108477
crossref_primary_10_1016_j_jfca_2022_105076
crossref_primary_10_1016_j_jfca_2024_107173
crossref_primary_10_1016_j_foodchem_2023_137836
crossref_primary_10_1016_j_jfca_2023_105229
crossref_primary_10_3390_antiox11112088
crossref_primary_10_1002_jsfa_10449
crossref_primary_10_1016_j_jfca_2021_103842
crossref_primary_10_1016_j_foodchem_2022_133557
crossref_primary_10_1080_10408398_2022_2055527
crossref_primary_10_1007_s10661_023_11601_2
crossref_primary_10_1016_j_foodcont_2020_107735
crossref_primary_10_2139_ssrn_4001300
crossref_primary_10_3390_molecules26226875
crossref_primary_10_3390_molecules28135127
crossref_primary_10_1002_jsfa_9982
crossref_primary_10_1016_j_jfca_2024_107088
crossref_primary_10_1016_j_fct_2019_110862
crossref_primary_10_1016_j_jhazmat_2021_127894
crossref_primary_10_1021_acs_analchem_9b03189
crossref_primary_10_1177_1934578X211045479
crossref_primary_10_1038_s41538_021_00100_8
crossref_primary_10_1007_s11694_023_01969_7
crossref_primary_10_1016_j_foodcont_2021_108339
crossref_primary_10_1016_j_foodres_2023_113676
crossref_primary_10_1002_slct_201902061
crossref_primary_10_3390_foods13071016
crossref_primary_10_1016_j_foodchem_2023_137809
crossref_primary_10_1016_j_foodchem_2020_127794
crossref_primary_10_1016_j_foodcont_2019_107064
crossref_primary_10_1016_j_jfca_2019_103351
Cites_doi 10.1021/jf104494j
10.1016/j.fct.2011.07.064
10.1016/j.foodchem.2014.02.068
10.1080/00401706.1977.10489581
10.1016/j.scienta.2005.11.008
10.1016/S0889-1575(02)91064-1
10.1016/j.foodchem.2013.02.101
10.1016/j.chroma.2005.12.016
10.1021/jf062690h
10.1016/j.foodcont.2017.11.034
10.1016/j.foodchem.2012.05.032
10.1021/jf040166+
10.1016/j.compag.2015.02.007
10.1016/S0944-7113(11)80011-5
10.1016/j.trac.2012.08.003
10.1016/j.foodchem.2011.04.004
10.1016/j.tifs.2007.07.011
10.1080/00401706.1969.10490666
10.1016/j.foodchem.2016.05.029
10.1021/jf201254f
10.1016/j.chemolab.2008.05.003
10.1111/1541-4337.12341
10.1002/ange.19921040906
10.1021/bk-1977-0052.ch012
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1016/j.foodchem.2018.09.088
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
EndPage 338
ExternalDocumentID 30724204
10_1016_j_foodchem_2018_09_088
S0308814618316601
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
SSH
VH1
WUQ
Y6R
CGR
CUY
CVF
ECM
EIF
NPM
7S9
EFKBS
L.6
7X8
ID FETCH-LOGICAL-c401t-82537ecc473014de61134a2561f009075c14105cb6e2dce97ff6cacd3605815c3
IEDL.DBID AIKHN
ISSN 0308-8146
1873-7072
IngestDate Fri Sep 05 10:04:24 EDT 2025
Fri Sep 05 07:35:50 EDT 2025
Wed Feb 19 02:33:21 EST 2025
Thu Apr 24 23:10:05 EDT 2025
Tue Jul 01 04:34:52 EDT 2025
Fri Feb 23 02:48:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Class-modelling
Garlic
Mineral composition
Geographical classification
ICP-OES
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-82537ecc473014de61134a2561f009075c14105cb6e2dce97ff6cacd3605815c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30724204
PQID 2189530683
PQPubID 24069
PageCount 6
ParticipantIDs proquest_miscellaneous_2197885403
proquest_miscellaneous_2189530683
pubmed_primary_30724204
crossref_citationtrail_10_1016_j_foodchem_2018_09_088
crossref_primary_10_1016_j_foodchem_2018_09_088
elsevier_sciencedirect_doi_10_1016_j_foodchem_2018_09_088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
2019-03-00
2019-Mar-01
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Trirongjitmoah, Juengmunkong, Srikulnath, Somboon (b0140) 2015; 113
Forina, Oliveri, Lanteri, Casale (b0065) 2008; 93
Granato, Putnik, Kovačević, Santos, Calado, Rocha, Pomerantsev (b0075) 2018
D’Archivio, Giannitto, Incani, Nisi (b0040) 2014; 157
Eurachem (b0055) 2014
Ritota, Casciani, Han, Cozzolino, Leita, Sequi, Valentini (b0120) 2012; 135
Khar, Banerjee, Jadhav, Lawande (b0095) 2011; 128
Block (b0020) 1992; 104
Di Giacomo, Del Signore, Giaccio (b0070) 2007; 55
Carta Geologica d’Italia alla scala 1:100.000. (1976). Retrieved February 4, 2018, from
Kennard, Stone (b0090) 1969; 11
Drivelos, Georgiou (b0050) 2012
Forina, Lanteri, Armanino, Casolino, Casale, Oliveri (b0060) 2010
Lu, Ross, Powers, Aston, Rasco (b0105) 2011; 59
Smith (b0130) 2005; 53
Hrbek, Rektorisova, Chmelarova, Ovesna, Hajslova (b0085) 2017
Altundag, Tuzen (b0005) 2011; 49
Ballabio, Todeschini (b0015) 2009
Callao, Ruisánchez (b0025) 2018; 86
Baghalian, Naghavi, Ziai, Badi (b0010) 2006; 107
Dolan, Capar (b0045) 2002; 15
Montano, Manuel Beato, Mansilla, Orgaz (b0115) 2011; 59
Valentin, Watling (b0145) 2013; 141
.
Snee (b0135) 1977; 19
Wold, Sjostrom (b0150) 1977
Martins, Petropoulos, Ferreira (b0110) 2016; 211
Lanzotti (b0100) 2006; 1112
Corzo-Martínez, Corzo, Villamiel (b0035) 2007; 18
Sendl (b0125) 1995
Sendl (10.1016/j.foodchem.2018.09.088_b0125) 1995
Altundag (10.1016/j.foodchem.2018.09.088_b0005) 2011; 49
Valentin (10.1016/j.foodchem.2018.09.088_b0145) 2013; 141
D’Archivio (10.1016/j.foodchem.2018.09.088_b0040) 2014; 157
Forina (10.1016/j.foodchem.2018.09.088_b0065) 2008; 93
Callao (10.1016/j.foodchem.2018.09.088_b0025) 2018; 86
Drivelos (10.1016/j.foodchem.2018.09.088_b0050) 2012
Forina (10.1016/j.foodchem.2018.09.088_b0060) 2010
Lanzotti (10.1016/j.foodchem.2018.09.088_b0100) 2006; 1112
Snee (10.1016/j.foodchem.2018.09.088_b0135) 1977; 19
Eurachem (10.1016/j.foodchem.2018.09.088_b0055) 2014
Hrbek (10.1016/j.foodchem.2018.09.088_b0085) 2017
Montano (10.1016/j.foodchem.2018.09.088_b0115) 2011; 59
Baghalian (10.1016/j.foodchem.2018.09.088_b0010) 2006; 107
Granato (10.1016/j.foodchem.2018.09.088_b0075) 2018
Smith (10.1016/j.foodchem.2018.09.088_b0130) 2005; 53
Kennard (10.1016/j.foodchem.2018.09.088_b0090) 1969; 11
Di Giacomo (10.1016/j.foodchem.2018.09.088_b0070) 2007; 55
Dolan (10.1016/j.foodchem.2018.09.088_b0045) 2002; 15
Khar (10.1016/j.foodchem.2018.09.088_b0095) 2011; 128
Block (10.1016/j.foodchem.2018.09.088_b0020) 1992; 104
Wold (10.1016/j.foodchem.2018.09.088_b0150) 1977
Trirongjitmoah (10.1016/j.foodchem.2018.09.088_b0140) 2015; 113
Martins (10.1016/j.foodchem.2018.09.088_b0110) 2016; 211
10.1016/j.foodchem.2018.09.088_b0030
Ballabio (10.1016/j.foodchem.2018.09.088_b0015) 2009
Corzo-Martínez (10.1016/j.foodchem.2018.09.088_b0035) 2007; 18
Ritota (10.1016/j.foodchem.2018.09.088_b0120) 2012; 135
Lu (10.1016/j.foodchem.2018.09.088_b0105) 2011; 59
References_xml – volume: 59
  start-page: 1301
  year: 2011
  end-page: 1307
  ident: b0115
  article-title: Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum L.) grown in Andalusia, Spain
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 1112
  start-page: 3
  year: 2006
  end-page: 22
  ident: b0100
  article-title: The analysis of onion and garlic
  publication-title: Journal of Chromatography A
– volume: 157
  start-page: 485
  year: 2014
  end-page: 489
  ident: b0040
  article-title: Analysis of the mineral composition of Italian saffron by ICP-MS and classification of geographical origin
  publication-title: Food Chemistry
– volume: 93
  start-page: 132
  year: 2008
  end-page: 148
  ident: b0065
  article-title: Class-modeling techniques, classic and new, for old and new problems
  publication-title: Chemometrics and Intelligent Laboratory Systems
– start-page: 243
  year: 1977
  ident: b0150
  article-title: SIMCA: A method for analysing chemical data in terms of similarity and analogy
  publication-title: Chemometrics, theory and application. ACS Symposium Series
– year: 2018
  ident: b0075
  article-title: Trends in chemometrics: Food authentication, microbiology, and effects of processing
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 59
  start-page: 5215
  year: 2011
  end-page: 5221
  ident: b0105
  article-title: Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance-fourier transformed infrared spectroscopy
  publication-title: Journal of Agricultural and Food Chemistry
– reference: Carta Geologica d’Italia alla scala 1:100.000. (1976). Retrieved February 4, 2018, from
– volume: 128
  start-page: 988
  year: 2011
  end-page: 996
  ident: b0095
  article-title: Evaluation of garlic ecotypes for allicin and other allyl thiosulphinates
  publication-title: Food Chemistry
– volume: 113
  start-page: 148
  year: 2015
  end-page: 153
  ident: b0140
  article-title: Classification of garlic cultivars using an electronic nose
  publication-title: Computers and Electronics in Agriculture
– volume: 141
  start-page: 98
  year: 2013
  end-page: 104
  ident: b0145
  article-title: Provenance establishment of coffee using solution ICP-MS and ICP-AES
  publication-title: Food Chemistry
– volume: 53
  start-page: 4041
  year: 2005
  end-page: 4045
  ident: b0130
  article-title: Determination of the country of origin, of garlic (Allium sativum) using trace metal profiling
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 107
  start-page: 405
  year: 2006
  end-page: 410
  ident: b0010
  article-title: Post-planting evaluation of morphological characters and allicin content in Iranian garlic (Allium sativum L.) ecotypes
  publication-title: Scientia Horticulturae
– start-page: 83
  year: 2009
  end-page: 104
  ident: b0015
  article-title: Multivariate classification for qualitative analysis
  publication-title: Infrared Spectroscopy for Food Quality Analysis and Control
– volume: 211
  start-page: 41
  year: 2016
  end-page: 50
  ident: b0110
  article-title: Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review
  publication-title: Food Chemistry
– volume: 135
  start-page: 684
  year: 2012
  end-page: 693
  ident: b0120
  article-title: Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis
  publication-title: Food Chemistry
– volume: 55
  start-page: 860
  year: 2007
  end-page: 866
  ident: b0070
  article-title: Determining the geographic origin of potatoes using mineral and trace element content
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 104
  start-page: 1158
  year: 1992
  end-page: 1203
  ident: b0020
  article-title: The organosulfur chemistry of the genus “Allium”–Implications for organic sulfur chemistry
  publication-title: Angewandte Chemie International Edition
– year: 2012
  ident: b0050
  article-title: Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union
  publication-title: TrAC - Trends in Analytical Chemistry
– year: 2014
  ident: b0055
  article-title: Eurachem guide: The fitness for purpose of analytical methods – A laboratory guide to method validation and related topics
– volume: 49
  start-page: 2800
  year: 2011
  end-page: 2807
  ident: b0005
  article-title: Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES
  publication-title: Food and Chemical Toxicology
– year: 2010
  ident: b0060
  article-title: V-PARVUS 2010. Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari
– year: 2017
  ident: b0085
  article-title: Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry
  publication-title: Journal of Food Composition and Analysis
– reference: .
– year: 1995
  ident: b0125
  article-title: Allium sativum and Allium ursinum: Part 1 Chemistry, analysis, history, botany
  publication-title: Phytomedicine
– volume: 15
  start-page: 593
  year: 2002
  end-page: 615
  ident: b0045
  article-title: Multi-element analysis of food by microwave digestion and inductively coupled plasma-atomic emission spectrometry
  publication-title: Journal of Food Composition and Analysis
– volume: 86
  start-page: 283
  year: 2018
  end-page: 293
  ident: b0025
  article-title: An overview of multivariate qualitative methods for food fraud detection
  publication-title: Food Control
– volume: 11
  start-page: 137
  year: 1969
  end-page: 148
  ident: b0090
  article-title: Computer Aided design of experiments
  publication-title: Technometrics
– volume: 19
  start-page: 415
  year: 1977
  end-page: 428
  ident: b0135
  article-title: Validation of regression models: Methods and examples
  publication-title: Technometrics
– volume: 18
  start-page: 609
  year: 2007
  end-page: 625
  ident: b0035
  article-title: Biological properties of onions and garlic
  publication-title: Trends in Food Science and Technology
– volume: 59
  start-page: 1301
  issue: 4
  year: 2011
  ident: 10.1016/j.foodchem.2018.09.088_b0115
  article-title: Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum L.) grown in Andalusia, Spain
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf104494j
– volume: 49
  start-page: 2800
  issue: 11
  year: 2011
  ident: 10.1016/j.foodchem.2018.09.088_b0005
  article-title: Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES
  publication-title: Food and Chemical Toxicology
  doi: 10.1016/j.fct.2011.07.064
– volume: 157
  start-page: 485
  year: 2014
  ident: 10.1016/j.foodchem.2018.09.088_b0040
  article-title: Analysis of the mineral composition of Italian saffron by ICP-MS and classification of geographical origin
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.02.068
– volume: 19
  start-page: 415
  issue: 4
  year: 1977
  ident: 10.1016/j.foodchem.2018.09.088_b0135
  article-title: Validation of regression models: Methods and examples
  publication-title: Technometrics
  doi: 10.1080/00401706.1977.10489581
– volume: 107
  start-page: 405
  issue: 4
  year: 2006
  ident: 10.1016/j.foodchem.2018.09.088_b0010
  article-title: Post-planting evaluation of morphological characters and allicin content in Iranian garlic (Allium sativum L.) ecotypes
  publication-title: Scientia Horticulturae
  doi: 10.1016/j.scienta.2005.11.008
– volume: 15
  start-page: 593
  issue: 5
  year: 2002
  ident: 10.1016/j.foodchem.2018.09.088_b0045
  article-title: Multi-element analysis of food by microwave digestion and inductively coupled plasma-atomic emission spectrometry
  publication-title: Journal of Food Composition and Analysis
  doi: 10.1016/S0889-1575(02)91064-1
– volume: 141
  start-page: 98
  issue: 1
  year: 2013
  ident: 10.1016/j.foodchem.2018.09.088_b0145
  article-title: Provenance establishment of coffee using solution ICP-MS and ICP-AES
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2013.02.101
– volume: 1112
  start-page: 3
  issue: 1–2
  year: 2006
  ident: 10.1016/j.foodchem.2018.09.088_b0100
  article-title: The analysis of onion and garlic
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2005.12.016
– volume: 55
  start-page: 860
  issue: 3
  year: 2007
  ident: 10.1016/j.foodchem.2018.09.088_b0070
  article-title: Determining the geographic origin of potatoes using mineral and trace element content
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf062690h
– year: 2017
  ident: 10.1016/j.foodchem.2018.09.088_b0085
  article-title: Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry
  publication-title: Journal of Food Composition and Analysis
– volume: 86
  start-page: 283
  year: 2018
  ident: 10.1016/j.foodchem.2018.09.088_b0025
  article-title: An overview of multivariate qualitative methods for food fraud detection
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2017.11.034
– year: 2014
  ident: 10.1016/j.foodchem.2018.09.088_b0055
– volume: 135
  start-page: 684
  issue: 2
  year: 2012
  ident: 10.1016/j.foodchem.2018.09.088_b0120
  article-title: Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2012.05.032
– volume: 53
  start-page: 4041
  issue: 10
  year: 2005
  ident: 10.1016/j.foodchem.2018.09.088_b0130
  article-title: Determination of the country of origin, of garlic (Allium sativum) using trace metal profiling
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf040166+
– volume: 113
  start-page: 148
  year: 2015
  ident: 10.1016/j.foodchem.2018.09.088_b0140
  article-title: Classification of garlic cultivars using an electronic nose
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.02.007
– year: 1995
  ident: 10.1016/j.foodchem.2018.09.088_b0125
  article-title: Allium sativum and Allium ursinum: Part 1 Chemistry, analysis, history, botany
  publication-title: Phytomedicine
  doi: 10.1016/S0944-7113(11)80011-5
– year: 2012
  ident: 10.1016/j.foodchem.2018.09.088_b0050
  article-title: Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union
  publication-title: TrAC - Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2012.08.003
– start-page: 83
  year: 2009
  ident: 10.1016/j.foodchem.2018.09.088_b0015
  article-title: Multivariate classification for qualitative analysis
– volume: 128
  start-page: 988
  issue: 4
  year: 2011
  ident: 10.1016/j.foodchem.2018.09.088_b0095
  article-title: Evaluation of garlic ecotypes for allicin and other allyl thiosulphinates
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2011.04.004
– volume: 18
  start-page: 609
  issue: 12
  year: 2007
  ident: 10.1016/j.foodchem.2018.09.088_b0035
  article-title: Biological properties of onions and garlic
  publication-title: Trends in Food Science and Technology
  doi: 10.1016/j.tifs.2007.07.011
– volume: 11
  start-page: 137
  issue: 1
  year: 1969
  ident: 10.1016/j.foodchem.2018.09.088_b0090
  article-title: Computer Aided design of experiments
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490666
– year: 2010
  ident: 10.1016/j.foodchem.2018.09.088_b0060
– volume: 211
  start-page: 41
  year: 2016
  ident: 10.1016/j.foodchem.2018.09.088_b0110
  article-title: Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.05.029
– volume: 59
  start-page: 5215
  issue: 10
  year: 2011
  ident: 10.1016/j.foodchem.2018.09.088_b0105
  article-title: Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance-fourier transformed infrared spectroscopy
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf201254f
– volume: 93
  start-page: 132
  issue: 2
  year: 2008
  ident: 10.1016/j.foodchem.2018.09.088_b0065
  article-title: Class-modeling techniques, classic and new, for old and new problems
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2008.05.003
– year: 2018
  ident: 10.1016/j.foodchem.2018.09.088_b0075
  article-title: Trends in chemometrics: Food authentication, microbiology, and effects of processing
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12341
– volume: 104
  start-page: 1158
  year: 1992
  ident: 10.1016/j.foodchem.2018.09.088_b0020
  article-title: The organosulfur chemistry of the genus “Allium”–Implications for organic sulfur chemistry
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/ange.19921040906
– ident: 10.1016/j.foodchem.2018.09.088_b0030
– start-page: 243
  year: 1977
  ident: 10.1016/j.foodchem.2018.09.088_b0150
  article-title: SIMCA: A method for analysing chemical data in terms of similarity and analogy
  doi: 10.1021/bk-1977-0052.ch012
SSID ssj0002018
Score 2.50532
Snippet •The major mineral elements of red garlic were determined using ICP-OES analysis.•Geographical classification of Italian red garlic was performed.•We built and...
Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 333
SubjectTerms Algorithms
Allium sativum
atomic absorption spectrometry
barium
calcium
Calibration
Class-modelling
Discriminant Analysis
Garlic
Garlic - chemistry
Geographical classification
ICP-OES
iron
Italy
magnesium
manganese
Mineral composition
Models, Statistical
Multivariate Analysis
prediction
provenance
sodium
Spectrum Analysis - methods
Spectrum Analysis - statistics & numerical data
strontium
Trace Elements - analysis
Title Geographical discrimination of red garlic (Allium sativum L.) produced in Italy by means of multivariate statistical analysis of ICP-OES data
URI https://dx.doi.org/10.1016/j.foodchem.2018.09.088
https://www.ncbi.nlm.nih.gov/pubmed/30724204
https://www.proquest.com/docview/2189530683
https://www.proquest.com/docview/2197885403
Volume 275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBa69LBdhrZ7ZV0LDRiG7eDEimXZPgZpi2SPbEBXoDfBluTOhWsHaVKgl_2D_eeRshR0wLYedgocULBg0uRHi_xIyJtRmLORTqKgwGI_HisTZDrUAfjjJNYqLJnA5uTPczE94x_O4_MtMvG9MFhW6Xx_59Ott3b_DN3THC6qaniKTCv4AQuMkgmBPVzboygTcY9sj2cfp_ONQ4YYl3aHCan94nWnUfhyULathseDTekstZSndgjLH2PU3zCojUUnO-SxA5F03O1zl2yZZo88nPjZbXukf1SZFX1LHetnTeeedB_kfC_y9RPy081A_26FsEO3m_KFkrQt6dJoepEv60rRd-O6rtZXFKt_buD30-A9XVi6WJCpGjoDFH9Li1t6ZSD64WJbq3gDuTjAWYqNS5YTGu6TOyIUFJpNvgZfjk8pVqo-JWcnx98m08ANaAgUpGWrALLLKAEb4OgmuDaCsYjnAKJYCdANwIiyVaSqEGaklcmSshQqVzrCs1gWq-gZ6TVtY14QmoSKaYBiOWTHvOBlGsZlmKUiLQudJJr3SexVIpVjL8chGrX0ZWqX0qtSoiplmElQZZ8MN-sWHX_HvSsyr3H5myVKCDL3rn3tTUSCxvHsJW9Mu76WgKSyGNKzNPqXDKT0KUBokHne2ddmz-CKAUyF_OV_7G6fPIKrrKuge0V6q-XaHACkWhWH5MHgBzt0L84vfEUghA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4heqCXikIfoQ-2UlW1ByfeeP06ohSUtCGtBEjcVvY-WiNjRyFB4sI_4D93Zr0LrUTLoadIzqy88oxnvvF-M0PI-2FYsKFKo6BEsh-PpQ5yFaoA_HEaKxkalmBx8uEsGZ_wL6fx6RoZ-VoYpFU639_5dOut3ZWBe5qDeVUNjrDTCn7AAqNkSYI1XI94HKXI6-tf3_E8IMJl3VFCZr93_VYmfNY3bavg4WBJOstsw1M7guXeCPU3BGoj0cEmeeIgJN3rdvmUrOlmi2yM_OS2LdL7XOkl_UBdz8-aznzLfZDzlcgX2-TGTUD_aYWwPreb8YWStDV0oRX9USzqStKPe3Vdrc4pcn8u4Xfa_0TntlksyFQNnQCGv6LlFT3XEPtwsWUqXkImDmCWYtmS7QgN9ylcGxQUmoy-B9_2jyjyVJ-Rk4P949E4cOMZAglJ2TKA3DJKwQI4OgmudMJYxAuAUMwAcAMoIi2HVJaJHiqp89SYRBZSRXgSy2IZPSfrTdvol4SmoWQKgFgBuTEvucnC2IR5lmSmVGmqeI_EXiVCut7lOEKjFp6kdia8KgWqUoS5AFX2yOB23bzr3vHgitxrXPxhhwJCzINr33kTEaBxPHkpGt2uLgTgqDyG5CyL_iUDCX0GABpkXnT2dbtncMQApUK-8x-72yUb4-PDqZhOZl9fkcfwT95x6V6T9eVipd8AuFqWb-3L8wvyaSFP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geographical+discrimination+of+red+garlic+%28Allium+sativum+L.%29+produced+in+Italy+by+means+of+multivariate+statistical+analysis+of+ICP-OES+data&rft.jtitle=Food+chemistry&rft.au=D%27Archivio%2C+Angelo+Antonio&rft.au=Foschi%2C+Martina&rft.au=Aloia%2C+Rosaria&rft.au=Maggi%2C+Maria+Anna&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0308-8146&rft.eissn=1873-7072&rft.volume=275&rft.spage=333&rft.epage=338&rft_id=info:doi/10.1016%2Fj.foodchem.2018.09.088&rft.externalDocID=S0308814618316601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon