Geographical discrimination of red garlic (Allium sativum L.) produced in Italy by means of multivariate statistical analysis of ICP-OES data
•The major mineral elements of red garlic were determined using ICP-OES analysis.•Geographical classification of Italian red garlic was performed.•We built and validated efficient class models for four red garlic varieties. Sixty-five samples of red garlic (Allium sativum L.) coming from four differ...
Saved in:
Published in | Food chemistry Vol. 275; pp. 333 - 338 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0308-8146 1873-7072 1873-7072 |
DOI | 10.1016/j.foodchem.2018.09.088 |
Cover
Abstract | •The major mineral elements of red garlic were determined using ICP-OES analysis.•Geographical classification of Italian red garlic was performed.•We built and validated efficient class models for four red garlic varieties.
Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr). Both classification and class modelling methods by using linear discriminant analysis (LDA) and soft independent model class analogy (SIMCA), respectively, were applied. Classification ability and modelling efficiency were evaluated on an external prediction set (21 garlic samples) designed by application of duplex Kennard-Stone algorithm. All the calibration and prediction samples were correctly classified by means of LDA. The class models developed using SIMCA exhibited high sensitivity (almost all the calibration and external samples were accepted by the respective classes) and good specificity (the majority of extraneous samples were refused by each class model). |
---|---|
AbstractList | •The major mineral elements of red garlic were determined using ICP-OES analysis.•Geographical classification of Italian red garlic was performed.•We built and validated efficient class models for four red garlic varieties.
Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr). Both classification and class modelling methods by using linear discriminant analysis (LDA) and soft independent model class analogy (SIMCA), respectively, were applied. Classification ability and modelling efficiency were evaluated on an external prediction set (21 garlic samples) designed by application of duplex Kennard-Stone algorithm. All the calibration and prediction samples were correctly classified by means of LDA. The class models developed using SIMCA exhibited high sensitivity (almost all the calibration and external samples were accepted by the respective classes) and good specificity (the majority of extraneous samples were refused by each class model). Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr). Both classification and class modelling methods by using linear discriminant analysis (LDA) and soft independent model class analogy (SIMCA), respectively, were applied. Classification ability and modelling efficiency were evaluated on an external prediction set (21 garlic samples) designed by application of duplex Kennard-Stone algorithm. All the calibration and prediction samples were correctly classified by means of LDA. The class models developed using SIMCA exhibited high sensitivity (almost all the calibration and external samples were accepted by the respective classes) and good specificity (the majority of extraneous samples were refused by each class model). Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr). Both classification and class modelling methods by using linear discriminant analysis (LDA) and soft independent model class analogy (SIMCA), respectively, were applied. Classification ability and modelling efficiency were evaluated on an external prediction set (21 garlic samples) designed by application of duplex Kennard-Stone algorithm. All the calibration and prediction samples were correctly classified by means of LDA. The class models developed using SIMCA exhibited high sensitivity (almost all the calibration and external samples were accepted by the respective classes) and good specificity (the majority of extraneous samples were refused by each class model).Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr). Both classification and class modelling methods by using linear discriminant analysis (LDA) and soft independent model class analogy (SIMCA), respectively, were applied. Classification ability and modelling efficiency were evaluated on an external prediction set (21 garlic samples) designed by application of duplex Kennard-Stone algorithm. All the calibration and prediction samples were correctly classified by means of LDA. The class models developed using SIMCA exhibited high sensitivity (almost all the calibration and external samples were accepted by the respective classes) and good specificity (the majority of extraneous samples were refused by each class model). |
Author | D'Archivio, Angelo Antonio Ruggieri, Fabrizio Foschi, Martina Aloia, Rosaria Maggi, Maria Anna Rossi, Leucio |
Author_xml | – sequence: 1 givenname: Angelo Antonio surname: D'Archivio fullname: D'Archivio, Angelo Antonio email: angeloantonio.darchivio@univaq.it organization: Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy – sequence: 2 givenname: Martina surname: Foschi fullname: Foschi, Martina organization: Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy – sequence: 3 givenname: Rosaria surname: Aloia fullname: Aloia, Rosaria organization: Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy – sequence: 4 givenname: Maria Anna surname: Maggi fullname: Maggi, Maria Anna organization: Hortus Novus, Via Aldo Moro 28 D, 67100 L'Aquila, Italy – sequence: 5 givenname: Leucio surname: Rossi fullname: Rossi, Leucio organization: Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy – sequence: 6 givenname: Fabrizio surname: Ruggieri fullname: Ruggieri, Fabrizio organization: Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30724204$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu2zAQRYkiReOk_YWAy3QhZSjqQQFdNDDS1ICBFGi7JmhylNCQRJekAvgj-s-l7HiTTbqaxZw7j3svyNnoRiTkikHOgNU327xzzugnHPICmMihzUGId2TBRMOzBprijCyAg8gEK-tzchHCFgBm9gM556lfFlAuyN97dI9e7Z6sVj01NmhvBzuqaN1IXUc9GvqofG81vb7tezsNNKTmc6rr_DPdeWcmnRg70lVU_Z5u9nRANYZZPEx9QpW3KiINMelCPOxRY0KDPUCr5Y_s4e4nNSqqj-R9p_qAn17qJfn97e7X8nu2frhfLW_XmS6BxUwUFW9Q67LhwEqDNWO8VEVVsw6ghabSrGRQ6U2NhdHYNl1Xa6UNr6ESrNL8klwf56b7_0wYohzS59j3akQ3BVmwthGiKoH_ByraikMtZvTqBZ02Axq5S1Yqv5cntxPw5Qho70Lw2Elt48Hq6JXtJQM5hyu38hSunAOT0MoUbpLXr-SnDW8Kvx6FmDx9tuhl0BbHlJv1qKM0zr414h943MJ7 |
CitedBy_id | crossref_primary_10_1016_j_saa_2023_122394 crossref_primary_10_3390_foods9070850 crossref_primary_10_1016_j_microc_2022_107327 crossref_primary_10_1016_j_jfca_2024_106731 crossref_primary_10_1016_j_foodchem_2022_132204 crossref_primary_10_1016_j_foodres_2020_109483 crossref_primary_10_1016_j_talanta_2021_122304 crossref_primary_10_1038_s41598_022_12556_z crossref_primary_10_1016_j_foodcont_2020_107438 crossref_primary_10_1016_j_heliyon_2024_e30248 crossref_primary_10_1016_j_foodcont_2021_108328 crossref_primary_10_1016_j_vibspec_2023_103509 crossref_primary_10_1002_jsfa_10392 crossref_primary_10_3390_f14020204 crossref_primary_10_1016_j_foodcont_2024_110976 crossref_primary_10_1016_j_sajb_2023_05_024 crossref_primary_10_1080_19440049_2025_2451629 crossref_primary_10_1007_s12161_021_02148_4 crossref_primary_10_1039_D3AY01802D crossref_primary_10_1016_j_jfca_2022_104948 crossref_primary_10_1002_fsn3_4397 crossref_primary_10_46756_001c_122061 crossref_primary_10_1016_j_foodcont_2021_108477 crossref_primary_10_1016_j_jfca_2022_105076 crossref_primary_10_1016_j_jfca_2024_107173 crossref_primary_10_1016_j_foodchem_2023_137836 crossref_primary_10_1016_j_jfca_2023_105229 crossref_primary_10_3390_antiox11112088 crossref_primary_10_1002_jsfa_10449 crossref_primary_10_1016_j_jfca_2021_103842 crossref_primary_10_1016_j_foodchem_2022_133557 crossref_primary_10_1080_10408398_2022_2055527 crossref_primary_10_1007_s10661_023_11601_2 crossref_primary_10_1016_j_foodcont_2020_107735 crossref_primary_10_2139_ssrn_4001300 crossref_primary_10_3390_molecules26226875 crossref_primary_10_3390_molecules28135127 crossref_primary_10_1002_jsfa_9982 crossref_primary_10_1016_j_jfca_2024_107088 crossref_primary_10_1016_j_fct_2019_110862 crossref_primary_10_1016_j_jhazmat_2021_127894 crossref_primary_10_1021_acs_analchem_9b03189 crossref_primary_10_1177_1934578X211045479 crossref_primary_10_1038_s41538_021_00100_8 crossref_primary_10_1007_s11694_023_01969_7 crossref_primary_10_1016_j_foodcont_2021_108339 crossref_primary_10_1016_j_foodres_2023_113676 crossref_primary_10_1002_slct_201902061 crossref_primary_10_3390_foods13071016 crossref_primary_10_1016_j_foodchem_2023_137809 crossref_primary_10_1016_j_foodchem_2020_127794 crossref_primary_10_1016_j_foodcont_2019_107064 crossref_primary_10_1016_j_jfca_2019_103351 |
Cites_doi | 10.1021/jf104494j 10.1016/j.fct.2011.07.064 10.1016/j.foodchem.2014.02.068 10.1080/00401706.1977.10489581 10.1016/j.scienta.2005.11.008 10.1016/S0889-1575(02)91064-1 10.1016/j.foodchem.2013.02.101 10.1016/j.chroma.2005.12.016 10.1021/jf062690h 10.1016/j.foodcont.2017.11.034 10.1016/j.foodchem.2012.05.032 10.1021/jf040166+ 10.1016/j.compag.2015.02.007 10.1016/S0944-7113(11)80011-5 10.1016/j.trac.2012.08.003 10.1016/j.foodchem.2011.04.004 10.1016/j.tifs.2007.07.011 10.1080/00401706.1969.10490666 10.1016/j.foodchem.2016.05.029 10.1021/jf201254f 10.1016/j.chemolab.2008.05.003 10.1111/1541-4337.12341 10.1002/ange.19921040906 10.1021/bk-1977-0052.ch012 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1016/j.foodchem.2018.09.088 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Chemistry Diet & Clinical Nutrition |
EISSN | 1873-7072 |
EndPage | 338 |
ExternalDocumentID | 30724204 10_1016_j_foodchem_2018_09_088 S0308814618316601 |
Genre | Journal Article |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM KZ1 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K WH7 ~G- ~KM 29H 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HVGLF HZ~ R2- SCB SEW SSH VH1 WUQ Y6R CGR CUY CVF ECM EIF NPM 7S9 EFKBS L.6 7X8 |
ID | FETCH-LOGICAL-c401t-82537ecc473014de61134a2561f009075c14105cb6e2dce97ff6cacd3605815c3 |
IEDL.DBID | AIKHN |
ISSN | 0308-8146 1873-7072 |
IngestDate | Fri Sep 05 10:04:24 EDT 2025 Fri Sep 05 07:35:50 EDT 2025 Wed Feb 19 02:33:21 EST 2025 Thu Apr 24 23:10:05 EDT 2025 Tue Jul 01 04:34:52 EDT 2025 Fri Feb 23 02:48:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Class-modelling Garlic Mineral composition Geographical classification ICP-OES |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-82537ecc473014de61134a2561f009075c14105cb6e2dce97ff6cacd3605815c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30724204 |
PQID | 2189530683 |
PQPubID | 24069 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2197885403 proquest_miscellaneous_2189530683 pubmed_primary_30724204 crossref_citationtrail_10_1016_j_foodchem_2018_09_088 crossref_primary_10_1016_j_foodchem_2018_09_088 elsevier_sciencedirect_doi_10_1016_j_foodchem_2018_09_088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 2019-03-00 2019-Mar-01 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Food chemistry |
PublicationTitleAlternate | Food Chem |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Trirongjitmoah, Juengmunkong, Srikulnath, Somboon (b0140) 2015; 113 Forina, Oliveri, Lanteri, Casale (b0065) 2008; 93 Granato, Putnik, Kovačević, Santos, Calado, Rocha, Pomerantsev (b0075) 2018 D’Archivio, Giannitto, Incani, Nisi (b0040) 2014; 157 Eurachem (b0055) 2014 Ritota, Casciani, Han, Cozzolino, Leita, Sequi, Valentini (b0120) 2012; 135 Khar, Banerjee, Jadhav, Lawande (b0095) 2011; 128 Block (b0020) 1992; 104 Di Giacomo, Del Signore, Giaccio (b0070) 2007; 55 Carta Geologica d’Italia alla scala 1:100.000. (1976). Retrieved February 4, 2018, from Kennard, Stone (b0090) 1969; 11 Drivelos, Georgiou (b0050) 2012 Forina, Lanteri, Armanino, Casolino, Casale, Oliveri (b0060) 2010 Lu, Ross, Powers, Aston, Rasco (b0105) 2011; 59 Smith (b0130) 2005; 53 Hrbek, Rektorisova, Chmelarova, Ovesna, Hajslova (b0085) 2017 Altundag, Tuzen (b0005) 2011; 49 Ballabio, Todeschini (b0015) 2009 Callao, Ruisánchez (b0025) 2018; 86 Baghalian, Naghavi, Ziai, Badi (b0010) 2006; 107 Dolan, Capar (b0045) 2002; 15 Montano, Manuel Beato, Mansilla, Orgaz (b0115) 2011; 59 Valentin, Watling (b0145) 2013; 141 . Snee (b0135) 1977; 19 Wold, Sjostrom (b0150) 1977 Martins, Petropoulos, Ferreira (b0110) 2016; 211 Lanzotti (b0100) 2006; 1112 Corzo-Martínez, Corzo, Villamiel (b0035) 2007; 18 Sendl (b0125) 1995 Sendl (10.1016/j.foodchem.2018.09.088_b0125) 1995 Altundag (10.1016/j.foodchem.2018.09.088_b0005) 2011; 49 Valentin (10.1016/j.foodchem.2018.09.088_b0145) 2013; 141 D’Archivio (10.1016/j.foodchem.2018.09.088_b0040) 2014; 157 Forina (10.1016/j.foodchem.2018.09.088_b0065) 2008; 93 Callao (10.1016/j.foodchem.2018.09.088_b0025) 2018; 86 Drivelos (10.1016/j.foodchem.2018.09.088_b0050) 2012 Forina (10.1016/j.foodchem.2018.09.088_b0060) 2010 Lanzotti (10.1016/j.foodchem.2018.09.088_b0100) 2006; 1112 Snee (10.1016/j.foodchem.2018.09.088_b0135) 1977; 19 Eurachem (10.1016/j.foodchem.2018.09.088_b0055) 2014 Hrbek (10.1016/j.foodchem.2018.09.088_b0085) 2017 Montano (10.1016/j.foodchem.2018.09.088_b0115) 2011; 59 Baghalian (10.1016/j.foodchem.2018.09.088_b0010) 2006; 107 Granato (10.1016/j.foodchem.2018.09.088_b0075) 2018 Smith (10.1016/j.foodchem.2018.09.088_b0130) 2005; 53 Kennard (10.1016/j.foodchem.2018.09.088_b0090) 1969; 11 Di Giacomo (10.1016/j.foodchem.2018.09.088_b0070) 2007; 55 Dolan (10.1016/j.foodchem.2018.09.088_b0045) 2002; 15 Khar (10.1016/j.foodchem.2018.09.088_b0095) 2011; 128 Block (10.1016/j.foodchem.2018.09.088_b0020) 1992; 104 Wold (10.1016/j.foodchem.2018.09.088_b0150) 1977 Trirongjitmoah (10.1016/j.foodchem.2018.09.088_b0140) 2015; 113 Martins (10.1016/j.foodchem.2018.09.088_b0110) 2016; 211 10.1016/j.foodchem.2018.09.088_b0030 Ballabio (10.1016/j.foodchem.2018.09.088_b0015) 2009 Corzo-Martínez (10.1016/j.foodchem.2018.09.088_b0035) 2007; 18 Ritota (10.1016/j.foodchem.2018.09.088_b0120) 2012; 135 Lu (10.1016/j.foodchem.2018.09.088_b0105) 2011; 59 |
References_xml | – volume: 59 start-page: 1301 year: 2011 end-page: 1307 ident: b0115 article-title: Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum L.) grown in Andalusia, Spain publication-title: Journal of Agricultural and Food Chemistry – volume: 1112 start-page: 3 year: 2006 end-page: 22 ident: b0100 article-title: The analysis of onion and garlic publication-title: Journal of Chromatography A – volume: 157 start-page: 485 year: 2014 end-page: 489 ident: b0040 article-title: Analysis of the mineral composition of Italian saffron by ICP-MS and classification of geographical origin publication-title: Food Chemistry – volume: 93 start-page: 132 year: 2008 end-page: 148 ident: b0065 article-title: Class-modeling techniques, classic and new, for old and new problems publication-title: Chemometrics and Intelligent Laboratory Systems – start-page: 243 year: 1977 ident: b0150 article-title: SIMCA: A method for analysing chemical data in terms of similarity and analogy publication-title: Chemometrics, theory and application. ACS Symposium Series – year: 2018 ident: b0075 article-title: Trends in chemometrics: Food authentication, microbiology, and effects of processing publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 59 start-page: 5215 year: 2011 end-page: 5221 ident: b0105 article-title: Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance-fourier transformed infrared spectroscopy publication-title: Journal of Agricultural and Food Chemistry – reference: Carta Geologica d’Italia alla scala 1:100.000. (1976). Retrieved February 4, 2018, from – volume: 128 start-page: 988 year: 2011 end-page: 996 ident: b0095 article-title: Evaluation of garlic ecotypes for allicin and other allyl thiosulphinates publication-title: Food Chemistry – volume: 113 start-page: 148 year: 2015 end-page: 153 ident: b0140 article-title: Classification of garlic cultivars using an electronic nose publication-title: Computers and Electronics in Agriculture – volume: 141 start-page: 98 year: 2013 end-page: 104 ident: b0145 article-title: Provenance establishment of coffee using solution ICP-MS and ICP-AES publication-title: Food Chemistry – volume: 53 start-page: 4041 year: 2005 end-page: 4045 ident: b0130 article-title: Determination of the country of origin, of garlic (Allium sativum) using trace metal profiling publication-title: Journal of Agricultural and Food Chemistry – volume: 107 start-page: 405 year: 2006 end-page: 410 ident: b0010 article-title: Post-planting evaluation of morphological characters and allicin content in Iranian garlic (Allium sativum L.) ecotypes publication-title: Scientia Horticulturae – start-page: 83 year: 2009 end-page: 104 ident: b0015 article-title: Multivariate classification for qualitative analysis publication-title: Infrared Spectroscopy for Food Quality Analysis and Control – volume: 211 start-page: 41 year: 2016 end-page: 50 ident: b0110 article-title: Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review publication-title: Food Chemistry – volume: 135 start-page: 684 year: 2012 end-page: 693 ident: b0120 article-title: Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis publication-title: Food Chemistry – volume: 55 start-page: 860 year: 2007 end-page: 866 ident: b0070 article-title: Determining the geographic origin of potatoes using mineral and trace element content publication-title: Journal of Agricultural and Food Chemistry – volume: 104 start-page: 1158 year: 1992 end-page: 1203 ident: b0020 article-title: The organosulfur chemistry of the genus “Allium”–Implications for organic sulfur chemistry publication-title: Angewandte Chemie International Edition – year: 2012 ident: b0050 article-title: Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union publication-title: TrAC - Trends in Analytical Chemistry – year: 2014 ident: b0055 article-title: Eurachem guide: The fitness for purpose of analytical methods – A laboratory guide to method validation and related topics – volume: 49 start-page: 2800 year: 2011 end-page: 2807 ident: b0005 article-title: Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES publication-title: Food and Chemical Toxicology – year: 2010 ident: b0060 article-title: V-PARVUS 2010. Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari – year: 2017 ident: b0085 article-title: Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry publication-title: Journal of Food Composition and Analysis – reference: . – year: 1995 ident: b0125 article-title: Allium sativum and Allium ursinum: Part 1 Chemistry, analysis, history, botany publication-title: Phytomedicine – volume: 15 start-page: 593 year: 2002 end-page: 615 ident: b0045 article-title: Multi-element analysis of food by microwave digestion and inductively coupled plasma-atomic emission spectrometry publication-title: Journal of Food Composition and Analysis – volume: 86 start-page: 283 year: 2018 end-page: 293 ident: b0025 article-title: An overview of multivariate qualitative methods for food fraud detection publication-title: Food Control – volume: 11 start-page: 137 year: 1969 end-page: 148 ident: b0090 article-title: Computer Aided design of experiments publication-title: Technometrics – volume: 19 start-page: 415 year: 1977 end-page: 428 ident: b0135 article-title: Validation of regression models: Methods and examples publication-title: Technometrics – volume: 18 start-page: 609 year: 2007 end-page: 625 ident: b0035 article-title: Biological properties of onions and garlic publication-title: Trends in Food Science and Technology – volume: 59 start-page: 1301 issue: 4 year: 2011 ident: 10.1016/j.foodchem.2018.09.088_b0115 article-title: Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum L.) grown in Andalusia, Spain publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf104494j – volume: 49 start-page: 2800 issue: 11 year: 2011 ident: 10.1016/j.foodchem.2018.09.088_b0005 article-title: Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES publication-title: Food and Chemical Toxicology doi: 10.1016/j.fct.2011.07.064 – volume: 157 start-page: 485 year: 2014 ident: 10.1016/j.foodchem.2018.09.088_b0040 article-title: Analysis of the mineral composition of Italian saffron by ICP-MS and classification of geographical origin publication-title: Food Chemistry doi: 10.1016/j.foodchem.2014.02.068 – volume: 19 start-page: 415 issue: 4 year: 1977 ident: 10.1016/j.foodchem.2018.09.088_b0135 article-title: Validation of regression models: Methods and examples publication-title: Technometrics doi: 10.1080/00401706.1977.10489581 – volume: 107 start-page: 405 issue: 4 year: 2006 ident: 10.1016/j.foodchem.2018.09.088_b0010 article-title: Post-planting evaluation of morphological characters and allicin content in Iranian garlic (Allium sativum L.) ecotypes publication-title: Scientia Horticulturae doi: 10.1016/j.scienta.2005.11.008 – volume: 15 start-page: 593 issue: 5 year: 2002 ident: 10.1016/j.foodchem.2018.09.088_b0045 article-title: Multi-element analysis of food by microwave digestion and inductively coupled plasma-atomic emission spectrometry publication-title: Journal of Food Composition and Analysis doi: 10.1016/S0889-1575(02)91064-1 – volume: 141 start-page: 98 issue: 1 year: 2013 ident: 10.1016/j.foodchem.2018.09.088_b0145 article-title: Provenance establishment of coffee using solution ICP-MS and ICP-AES publication-title: Food Chemistry doi: 10.1016/j.foodchem.2013.02.101 – volume: 1112 start-page: 3 issue: 1–2 year: 2006 ident: 10.1016/j.foodchem.2018.09.088_b0100 article-title: The analysis of onion and garlic publication-title: Journal of Chromatography A doi: 10.1016/j.chroma.2005.12.016 – volume: 55 start-page: 860 issue: 3 year: 2007 ident: 10.1016/j.foodchem.2018.09.088_b0070 article-title: Determining the geographic origin of potatoes using mineral and trace element content publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf062690h – year: 2017 ident: 10.1016/j.foodchem.2018.09.088_b0085 article-title: Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry publication-title: Journal of Food Composition and Analysis – volume: 86 start-page: 283 year: 2018 ident: 10.1016/j.foodchem.2018.09.088_b0025 article-title: An overview of multivariate qualitative methods for food fraud detection publication-title: Food Control doi: 10.1016/j.foodcont.2017.11.034 – year: 2014 ident: 10.1016/j.foodchem.2018.09.088_b0055 – volume: 135 start-page: 684 issue: 2 year: 2012 ident: 10.1016/j.foodchem.2018.09.088_b0120 article-title: Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis publication-title: Food Chemistry doi: 10.1016/j.foodchem.2012.05.032 – volume: 53 start-page: 4041 issue: 10 year: 2005 ident: 10.1016/j.foodchem.2018.09.088_b0130 article-title: Determination of the country of origin, of garlic (Allium sativum) using trace metal profiling publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf040166+ – volume: 113 start-page: 148 year: 2015 ident: 10.1016/j.foodchem.2018.09.088_b0140 article-title: Classification of garlic cultivars using an electronic nose publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2015.02.007 – year: 1995 ident: 10.1016/j.foodchem.2018.09.088_b0125 article-title: Allium sativum and Allium ursinum: Part 1 Chemistry, analysis, history, botany publication-title: Phytomedicine doi: 10.1016/S0944-7113(11)80011-5 – year: 2012 ident: 10.1016/j.foodchem.2018.09.088_b0050 article-title: Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union publication-title: TrAC - Trends in Analytical Chemistry doi: 10.1016/j.trac.2012.08.003 – start-page: 83 year: 2009 ident: 10.1016/j.foodchem.2018.09.088_b0015 article-title: Multivariate classification for qualitative analysis – volume: 128 start-page: 988 issue: 4 year: 2011 ident: 10.1016/j.foodchem.2018.09.088_b0095 article-title: Evaluation of garlic ecotypes for allicin and other allyl thiosulphinates publication-title: Food Chemistry doi: 10.1016/j.foodchem.2011.04.004 – volume: 18 start-page: 609 issue: 12 year: 2007 ident: 10.1016/j.foodchem.2018.09.088_b0035 article-title: Biological properties of onions and garlic publication-title: Trends in Food Science and Technology doi: 10.1016/j.tifs.2007.07.011 – volume: 11 start-page: 137 issue: 1 year: 1969 ident: 10.1016/j.foodchem.2018.09.088_b0090 article-title: Computer Aided design of experiments publication-title: Technometrics doi: 10.1080/00401706.1969.10490666 – year: 2010 ident: 10.1016/j.foodchem.2018.09.088_b0060 – volume: 211 start-page: 41 year: 2016 ident: 10.1016/j.foodchem.2018.09.088_b0110 article-title: Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.05.029 – volume: 59 start-page: 5215 issue: 10 year: 2011 ident: 10.1016/j.foodchem.2018.09.088_b0105 article-title: Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance-fourier transformed infrared spectroscopy publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf201254f – volume: 93 start-page: 132 issue: 2 year: 2008 ident: 10.1016/j.foodchem.2018.09.088_b0065 article-title: Class-modeling techniques, classic and new, for old and new problems publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2008.05.003 – year: 2018 ident: 10.1016/j.foodchem.2018.09.088_b0075 article-title: Trends in chemometrics: Food authentication, microbiology, and effects of processing publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12341 – volume: 104 start-page: 1158 year: 1992 ident: 10.1016/j.foodchem.2018.09.088_b0020 article-title: The organosulfur chemistry of the genus “Allium”–Implications for organic sulfur chemistry publication-title: Angewandte Chemie International Edition doi: 10.1002/ange.19921040906 – ident: 10.1016/j.foodchem.2018.09.088_b0030 – start-page: 243 year: 1977 ident: 10.1016/j.foodchem.2018.09.088_b0150 article-title: SIMCA: A method for analysing chemical data in terms of similarity and analogy doi: 10.1021/bk-1977-0052.ch012 |
SSID | ssj0002018 |
Score | 2.50532 |
Snippet | •The major mineral elements of red garlic were determined using ICP-OES analysis.•Geographical classification of Italian red garlic was performed.•We built and... Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 333 |
SubjectTerms | Algorithms Allium sativum atomic absorption spectrometry barium calcium Calibration Class-modelling Discriminant Analysis Garlic Garlic - chemistry Geographical classification ICP-OES iron Italy magnesium manganese Mineral composition Models, Statistical Multivariate Analysis prediction provenance sodium Spectrum Analysis - methods Spectrum Analysis - statistics & numerical data strontium Trace Elements - analysis |
Title | Geographical discrimination of red garlic (Allium sativum L.) produced in Italy by means of multivariate statistical analysis of ICP-OES data |
URI | https://dx.doi.org/10.1016/j.foodchem.2018.09.088 https://www.ncbi.nlm.nih.gov/pubmed/30724204 https://www.proquest.com/docview/2189530683 https://www.proquest.com/docview/2197885403 |
Volume | 275 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBa69LBdhrZ7ZV0LDRiG7eDEimXZPgZpi2SPbEBXoDfBluTOhWsHaVKgl_2D_eeRshR0wLYedgocULBg0uRHi_xIyJtRmLORTqKgwGI_HisTZDrUAfjjJNYqLJnA5uTPczE94x_O4_MtMvG9MFhW6Xx_59Ott3b_DN3THC6qaniKTCv4AQuMkgmBPVzboygTcY9sj2cfp_ONQ4YYl3aHCan94nWnUfhyULathseDTekstZSndgjLH2PU3zCojUUnO-SxA5F03O1zl2yZZo88nPjZbXukf1SZFX1LHetnTeeedB_kfC_y9RPy081A_26FsEO3m_KFkrQt6dJoepEv60rRd-O6rtZXFKt_buD30-A9XVi6WJCpGjoDFH9Li1t6ZSD64WJbq3gDuTjAWYqNS5YTGu6TOyIUFJpNvgZfjk8pVqo-JWcnx98m08ANaAgUpGWrALLLKAEb4OgmuDaCsYjnAKJYCdANwIiyVaSqEGaklcmSshQqVzrCs1gWq-gZ6TVtY14QmoSKaYBiOWTHvOBlGsZlmKUiLQudJJr3SexVIpVjL8chGrX0ZWqX0qtSoiplmElQZZ8MN-sWHX_HvSsyr3H5myVKCDL3rn3tTUSCxvHsJW9Mu76WgKSyGNKzNPqXDKT0KUBokHne2ddmz-CKAUyF_OV_7G6fPIKrrKuge0V6q-XaHACkWhWH5MHgBzt0L84vfEUghA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4heqCXikIfoQ-2UlW1ByfeeP06ohSUtCGtBEjcVvY-WiNjRyFB4sI_4D93Zr0LrUTLoadIzqy88oxnvvF-M0PI-2FYsKFKo6BEsh-PpQ5yFaoA_HEaKxkalmBx8uEsGZ_wL6fx6RoZ-VoYpFU639_5dOut3ZWBe5qDeVUNjrDTCn7AAqNkSYI1XI94HKXI6-tf3_E8IMJl3VFCZr93_VYmfNY3bavg4WBJOstsw1M7guXeCPU3BGoj0cEmeeIgJN3rdvmUrOlmi2yM_OS2LdL7XOkl_UBdz8-aznzLfZDzlcgX2-TGTUD_aYWwPreb8YWStDV0oRX9USzqStKPe3Vdrc4pcn8u4Xfa_0TntlksyFQNnQCGv6LlFT3XEPtwsWUqXkImDmCWYtmS7QgN9ylcGxQUmoy-B9_2jyjyVJ-Rk4P949E4cOMZAglJ2TKA3DJKwQI4OgmudMJYxAuAUMwAcAMoIi2HVJaJHiqp89SYRBZSRXgSy2IZPSfrTdvol4SmoWQKgFgBuTEvucnC2IR5lmSmVGmqeI_EXiVCut7lOEKjFp6kdia8KgWqUoS5AFX2yOB23bzr3vHgitxrXPxhhwJCzINr33kTEaBxPHkpGt2uLgTgqDyG5CyL_iUDCX0GABpkXnT2dbtncMQApUK-8x-72yUb4-PDqZhOZl9fkcfwT95x6V6T9eVipd8AuFqWb-3L8wvyaSFP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geographical+discrimination+of+red+garlic+%28Allium+sativum+L.%29+produced+in+Italy+by+means+of+multivariate+statistical+analysis+of+ICP-OES+data&rft.jtitle=Food+chemistry&rft.au=D%27Archivio%2C+Angelo+Antonio&rft.au=Foschi%2C+Martina&rft.au=Aloia%2C+Rosaria&rft.au=Maggi%2C+Maria+Anna&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0308-8146&rft.eissn=1873-7072&rft.volume=275&rft.spage=333&rft.epage=338&rft_id=info:doi/10.1016%2Fj.foodchem.2018.09.088&rft.externalDocID=S0308814618316601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon |