Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and γ-ray Scintillators

Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields...

Full description

Saved in:
Bibliographic Details
Published inCrystals (Basel) Vol. 9; no. 2; p. 88
Main Authors Maddalena, Francesco, Tjahjana, Liliana, Xie, Aozhen, Arramel, Zeng, Shuwen, Wang, Hong, Coquet, Philippe, Drozdowski, Winicjusz, Dujardin, Christophe, Dang, Cuong, Birowosuto, Muhammad
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce 3 + , Pr 3 + and Nd 3 + lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu 3 + doped SrI 2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators.
AbstractList Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce 3 + , Pr 3 + and Nd 3 + lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu 3 + doped SrI 2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators.
Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high⁻light yield and fast response can be found in Ce 3 + , Pr 3 + and Nd 3 + lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu 3 + doped SrI 2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000⁻300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators.
Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce3+, Pr3+and Nd3+lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu3+doped SrI2. However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators.
Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce3+ , Pr3+ and Nd3+ lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu3+ doped SrI2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators
Author Dujardin, Christophe
Maddalena, Francesco
Tjahjana, Liliana
Dang, Cuong
Arramel
Wang, Hong
Coquet, Philippe
Birowosuto, Muhammad
Xie, Aozhen
Drozdowski, Winicjusz
Zeng, Shuwen
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0001-6246-8870
  surname: Maddalena
  fullname: Maddalena, Francesco
– sequence: 2
  givenname: Liliana
  orcidid: 0000-0003-0015-5582
  surname: Tjahjana
  fullname: Tjahjana, Liliana
– sequence: 3
  givenname: Aozhen
  orcidid: 0000-0003-3510-7177
  surname: Xie
  fullname: Xie, Aozhen
– sequence: 4
  orcidid: 0000-0003-4125-6099
  surname: Arramel
  fullname: Arramel
– sequence: 5
  givenname: Shuwen
  orcidid: 0000-0003-2188-7213
  surname: Zeng
  fullname: Zeng, Shuwen
– sequence: 6
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
– sequence: 7
  givenname: Philippe
  surname: Coquet
  fullname: Coquet, Philippe
– sequence: 8
  givenname: Winicjusz
  orcidid: 0000-0002-6207-4801
  surname: Drozdowski
  fullname: Drozdowski, Winicjusz
– sequence: 9
  givenname: Christophe
  surname: Dujardin
  fullname: Dujardin, Christophe
– sequence: 10
  givenname: Cuong
  orcidid: 0000-0001-6183-4082
  surname: Dang
  fullname: Dang, Cuong
– sequence: 11
  givenname: Muhammad
  orcidid: 0000-0002-9997-6841
  surname: Birowosuto
  fullname: Birowosuto, Muhammad
BackLink https://univ-lyon1.hal.science/hal-02285858$$DView record in HAL
BookMark eNptkd9qVDEQxg_SgrXtnQ8Q8Eroqfl3TnIuS7HuwtIKKuhVmJOT7GaNSZuklb3zHXyUvocP4ZM07Vqo4szFDMM3P_JlXjQ7IQbTNC8JPmZswG902uQyYIqxlM-aPYoFaznr6M6T_nlzmPMa1xA9FoLsNVfzENMSgtNH6OKxgTCh9ybFm_zVFYNm4N1kMvruygqdQ4jF6FWIPi43yMaEZm65-v3j56KWgr444yf0uX2A_LptE2zQB-1Ccd5DiSkfNLsWfDaHf-p-8-ns7cfTWbu4eDc_PVm0mmNSWokHxrCVBiyGrteCMyATsZThzvTGDjBqbIZO4t5UN9oyBnwktpfjQIXs2X4z33KnCGt1mdw3SBsVwamHQXWtIBWnvVEgrJCdYJQbzkfWj8TwyQDFICXlBCrr9Za1Av8XanayUPczTKnsat6Qqn211V6meHVtclHreJ1CtaooZ_XniWCyquhWpVPMORmrtCtQXAwlgfOKYHV_VfX0qnXp6J-lx7f8V34Hx8umdg
CitedBy_id crossref_primary_10_1021_acs_jpcc_3c00824
crossref_primary_10_3390_cryst13081157
crossref_primary_10_30970_jps_24_2201
crossref_primary_10_1088_2053_1591_ac9270
crossref_primary_10_1002_adma_202301612
crossref_primary_10_1002_ange_202401833
crossref_primary_10_1002_ijch_202100052
crossref_primary_10_1038_s41567_020_01073_3
crossref_primary_10_1021_acs_inorgchem_3c00270
crossref_primary_10_1039_D4MH00142G
crossref_primary_10_1039_D1TC01595H
crossref_primary_10_1063_5_0236524
crossref_primary_10_1039_D1NA00815C
crossref_primary_10_1002_lpor_202300860
crossref_primary_10_1002_adfm_202413755
crossref_primary_10_1016_j_inoche_2022_109711
crossref_primary_10_3390_cryst14121077
crossref_primary_10_1002_open_202100285
crossref_primary_10_1039_D2CE01263D
crossref_primary_10_1039_D5SC00061K
crossref_primary_10_1007_s10854_024_13529_w
crossref_primary_10_1088_2399_1984_ac9568
crossref_primary_10_1002_smtd_202000506
crossref_primary_10_1016_j_nima_2021_165620
crossref_primary_10_1007_s11426_024_2589_9
crossref_primary_10_1038_s41567_020_01080_4
crossref_primary_10_1002_slct_202301851
crossref_primary_10_1021_acs_jpcc_4c07165
crossref_primary_10_1155_2022_7008940
crossref_primary_10_1002_adfm_202104879
crossref_primary_10_1039_D2TC05277F
crossref_primary_10_1039_D1NR03996B
crossref_primary_10_1063_5_0176763
crossref_primary_10_1016_j_optmat_2024_116383
crossref_primary_10_1109_TNS_2023_3265414
crossref_primary_10_1002_anie_202208440
crossref_primary_10_1021_jacs_4c12872
crossref_primary_10_1016_j_flatc_2024_100701
crossref_primary_10_1021_acscentsci_0c01153
crossref_primary_10_1021_acsnano_2c08047
crossref_primary_10_1016_j_nanoen_2020_105437
crossref_primary_10_1039_D0DT00974A
crossref_primary_10_1039_D1CE01422F
crossref_primary_10_1021_acsami_1c16171
crossref_primary_10_1063_1_5125999
crossref_primary_10_3390_cryst13050759
crossref_primary_10_1016_j_nima_2024_169322
crossref_primary_10_1002_adma_202309588
crossref_primary_10_1002_adom_202202668
crossref_primary_10_1063_5_0014953
crossref_primary_10_34133_research_0125
crossref_primary_10_1021_acsami_0c02589
crossref_primary_10_1016_j_omx_2019_100021
crossref_primary_10_1021_acsmaterialslett_0c00133
crossref_primary_10_3390_cryst11121531
crossref_primary_10_1016_j_jlumin_2024_120547
crossref_primary_10_1038_s41598_020_65672_z
crossref_primary_10_1021_acsaom_2c00166
crossref_primary_10_1002_ange_202208440
crossref_primary_10_1071_CH21311
crossref_primary_10_1002_adom_202101297
crossref_primary_10_1007_s10854_020_04592_0
crossref_primary_10_1039_D0TC05647B
crossref_primary_10_1007_s12596_023_01646_4
crossref_primary_10_1016_j_ijbiomac_2024_135608
crossref_primary_10_1021_acsami_9b15791
crossref_primary_10_1016_j_jcrysgro_2021_126339
crossref_primary_10_1016_j_matpr_2024_02_039
crossref_primary_10_1021_acsenergylett_0c02430
crossref_primary_10_1021_acs_jpclett_0c00161
crossref_primary_10_1063_5_0230622
crossref_primary_10_1016_j_optmat_2021_111241
crossref_primary_10_1016_j_jlumin_2021_118157
crossref_primary_10_1007_s11426_022_1334_0
crossref_primary_10_1016_j_radmeas_2023_106933
crossref_primary_10_1016_j_radphyschem_2020_109133
crossref_primary_10_1039_D2TC01483A
crossref_primary_10_1039_D3TC03977C
crossref_primary_10_3788_LOP232161
crossref_primary_10_1007_s10853_022_07288_4
crossref_primary_10_1126_sciadv_adq6325
crossref_primary_10_30970_jps_25_1201
crossref_primary_10_1002_er_8539
crossref_primary_10_1002_adom_202302063
crossref_primary_10_1021_acsami_4c01741
crossref_primary_10_1021_acsenergylett_3c01396
crossref_primary_10_1039_D1TC00671A
crossref_primary_10_1038_s41563_021_01132_x
crossref_primary_10_1364_PRJ_501477
crossref_primary_10_1134_S1063783421100048
crossref_primary_10_1021_acsnano_3c12381
crossref_primary_10_1016_j_mattod_2021_05_020
crossref_primary_10_1364_PRJ_439744
crossref_primary_10_3390_cryst12070887
crossref_primary_10_1021_acs_jpcc_1c03392
crossref_primary_10_1002_advs_202003728
crossref_primary_10_1016_j_jlumin_2021_118046
crossref_primary_10_1039_D2TC01646J
crossref_primary_10_1002_lpor_202401802
crossref_primary_10_1021_acsomega_2c01712
crossref_primary_10_1002_adma_202205458
crossref_primary_10_1016_j_jlumin_2023_120012
crossref_primary_10_1016_j_optmat_2024_116049
crossref_primary_10_1002_adom_202302376
crossref_primary_10_1021_acs_jpcc_1c08178
crossref_primary_10_1002_pssr_202200175
crossref_primary_10_1021_acs_chemrev_2c00404
crossref_primary_10_1021_jacs_9b09969
crossref_primary_10_1039_D1TC04072C
crossref_primary_10_1002_adma_202309410
crossref_primary_10_1016_j_mtchem_2023_101455
crossref_primary_10_1016_j_mtener_2021_100759
crossref_primary_10_1088_1361_6463_aba461
crossref_primary_10_1039_D4NR02401J
crossref_primary_10_3390_cryst10020096
crossref_primary_10_1021_acs_chemmater_2c02830
crossref_primary_10_1039_C9CP03041G
crossref_primary_10_1088_2516_1091_acdc70
crossref_primary_10_1016_j_optmat_2023_114251
crossref_primary_10_1088_2399_1984_ac421c
crossref_primary_10_1109_TNS_2023_3267636
crossref_primary_10_1002_adma_202104749
crossref_primary_10_1039_D1TC01318A
crossref_primary_10_1002_advs_202003584
crossref_primary_10_1002_adom_202300221
crossref_primary_10_1007_s40820_025_01671_x
crossref_primary_10_1002_anie_202401833
crossref_primary_10_1016_j_jallcom_2025_178667
crossref_primary_10_1021_acs_chemmater_0c02789
crossref_primary_10_1021_acsmaterialslett_2c00099
crossref_primary_10_1021_acsphotonics_0c01394
crossref_primary_10_1016_j_ceramint_2022_07_032
crossref_primary_10_1021_acsaem_3c00340
crossref_primary_10_3390_cryst10060429
crossref_primary_10_3390_en14196186
crossref_primary_10_1039_D1TC00525A
crossref_primary_10_1021_acsnano_0c08903
crossref_primary_10_1063_5_0217068
crossref_primary_10_1134_S1063778824100193
crossref_primary_10_1002_adfm_202316449
crossref_primary_10_1021_acsami_9b14772
crossref_primary_10_1021_acsomega_4c04077
crossref_primary_10_1016_j_jcrysgro_2024_127717
crossref_primary_10_1038_s41377_023_01208_0
crossref_primary_10_1016_j_matpr_2022_07_221
crossref_primary_10_1016_j_cej_2024_153077
crossref_primary_10_1021_acsami_2c14582
crossref_primary_10_1038_s41467_024_53263_9
crossref_primary_10_3390_nano12132141
crossref_primary_10_1016_j_jlumin_2024_120511
crossref_primary_10_1038_s43246_023_00348_5
crossref_primary_10_1016_j_jlumin_2024_120993
crossref_primary_10_1039_D0CC05389A
crossref_primary_10_1021_acsanm_4c00404
crossref_primary_10_1016_j_jpowsour_2020_228443
crossref_primary_10_1039_D1RA01123E
crossref_primary_10_1002_adpr_202200011
crossref_primary_10_1002_adma_202413182
crossref_primary_10_1007_s10894_022_00334_8
crossref_primary_10_1016_j_cclet_2022_03_085
crossref_primary_10_1021_acsami_2c09732
crossref_primary_10_1016_j_jallcom_2022_167503
crossref_primary_10_1016_j_sna_2024_115828
crossref_primary_10_1002_admt_202301894
crossref_primary_10_1016_j_jlumin_2023_120216
crossref_primary_10_1016_j_prostr_2020_06_002
crossref_primary_10_1039_D2MA00258B
crossref_primary_10_1021_acsphotonics_2c01235
crossref_primary_10_1002_lpor_202200848
crossref_primary_10_1021_acs_jpcc_4c00197
crossref_primary_10_1039_D2TC04631H
crossref_primary_10_1039_D3CS00116D
crossref_primary_10_3390_cryst9070343
crossref_primary_10_1016_j_radphyschem_2024_112178
crossref_primary_10_1021_acs_nanolett_3c00503
crossref_primary_10_1002_adma_202310663
crossref_primary_10_1021_acs_chemmater_4c03162
crossref_primary_10_1002_pssr_202400298
crossref_primary_10_1021_acsmaterialslett_1c00725
crossref_primary_10_1016_j_inoche_2021_109182
crossref_primary_10_1063_5_0093606
crossref_primary_10_3390_cryst9050234
crossref_primary_10_1002_chem_202403772
crossref_primary_10_1021_acsami_1c21055
Cites_doi 10.1109/23.322800
10.1002/adma.201801743
10.1016/S0022-2313(02)00423-4
10.1109/23.322798
10.1088/0034-4885/18/1/301
10.1016/j.nima.2006.01.127
10.1016/j.jcrysgro.2006.04.048
10.1016/j.jlumin.2013.01.017
10.1063/1.3059562
10.1109/TNS.2008.2000845
10.1109/TNS.2007.902372
10.1038/nature24032
10.1109/23.159663
10.1016/j.nima.2004.08.016
10.1016/0168-9002(93)91170-R
10.1016/j.radphyschem.2005.10.008
10.1016/j.nima.2004.07.224
10.1016/j.jcrysgro.2005.11.023
10.1002/adom.201400571
10.1039/C5TA06398A
10.1109/23.159655
10.1142/S0217751X14300701
10.1063/1.2207689
10.1038/nphoton.2015.82
10.1016/j.nima.2015.03.090
10.1109/TNS.2009.2020165
10.1109/TNS.1987.4337375
10.1021/acs.jpcc.8b03622
10.37549/AR2291
10.1109/TNS.2005.852630
10.1007/s12274-016-1401-6
10.1016/j.jlumin.2015.09.013
10.1038/nphoton.2017.43
10.1063/1.4803440
10.1038/nnano.2014.149
10.1201/9781351228251
10.1021/nl5048779
10.1002/adma.201604268
10.1088/0953-8984/10/13/022
10.1016/j.jlumin.2006.05.004
10.1016/j.matchemphys.2013.11.037
10.1002/pssa.200723669
10.1109/TNS.2004.834957
10.1103/PhysRevB.20.2255
10.1016/j.nima.2013.07.077
10.1038/s41586-018-0451-1
10.1016/j.nima.2010.09.156
10.1109/TNS.2005.862975
10.1016/j.jcrysgro.2012.01.014
10.1039/C8EE00293B
10.1016/0029-554X(66)90041-3
10.1093/rpd/nch532
10.1109/23.914446
10.1007/s00330-008-0948-3
10.1016/S1350-4487(01)00045-2
10.1063/1.1745679
10.1007/BF01173347
10.1038/nphoton.2017.94
10.1103/RevModPhys.8.358
10.1016/j.jallcom.2006.06.075
10.1007/BF03167640
10.1016/0168-9002(90)90746-S
10.1109/TNS.2010.2045513
10.1021/cm00003a005
10.1016/j.nima.2005.07.052
10.1103/PhysRev.74.100
10.1016/j.jcrysgro.2012.02.025
10.1016/0167-5087(83)90194-1
10.1063/1.4922699
10.1016/j.jcrysgro.2013.02.020
10.1109/TNS.2011.2166999
10.1109/TNS.2013.2253330
10.2118/20494-PA
10.1007/978-3-319-45522-8
10.1364/OME.4.001207
10.1016/S0030-4018(01)01039-2
10.1016/j.apradiso.2013.03.053
10.1088/0957-0233/17/4/R01
10.1109/TNS.2007.908581
10.1109/23.12684
10.1126/science.3.59.227
10.1117/1.601530
10.1007/BF01379812
10.1063/1.4940578
10.1063/1.1715998
10.1016/j.nima.2005.10.107
10.1088/0370-1298/64/10/303
10.1007/b136169
10.3390/photonics5020014
10.1016/0167-5087(83)91254-1
10.1016/S0168-9002(97)01115-7
10.1002/pssb.2221870102
10.1109/23.256586
10.1109/TNS.2018.2840160
10.1063/1.3143786
10.1021/cm00045a002
10.1088/0953-8984/15/29/326
10.1016/j.nima.2014.12.031
10.1038/nmat4927
10.1016/j.nima.2015.08.041
10.1088/1748-0221/12/06/C06026
10.1088/0953-8984/19/25/256209
10.1055/b-0036-140231
10.1109/23.106619
10.1109/23.682433
10.3390/cryst8020078
10.1063/1.3589366
10.1088/0953-8984/18/26/031
10.1109/23.940077
10.1016/S0022-2313(99)00170-2
10.1016/0029-554X(67)90107-3
10.1007/BF01596341
10.1088/0031-9155/42/1/001
10.1002/cphc.201601190
10.1016/S0168-583X(02)00671-7
10.1109/TNS.2013.2296101
10.1117/12.738973
10.1109/TNS.2013.2269700
10.1021/acsphotonics.8b01655
10.1126/science.283.5402.663
10.1002/adma.201605003
10.1103/PhysRevA.2.415
10.1016/S0168-9002(96)00875-3
10.1109/TNS.2012.2184556
10.1063/1.355825
10.1063/1.1308053
10.1039/C4NR07444K
10.1016/j.nima.2007.10.038
10.1021/cg501005s
10.1063/1.2885728
10.1016/j.jlumin.2005.09.001
10.1016/j.nima.2010.08.093
10.1063/1.2432306
10.1109/TNS.2008.922826
10.1063/1.55052
10.1016/S0168-9002(97)01151-0
10.1063/1.1385342
10.1109/TNS.2010.2098045
10.1118/1.2008407
10.1038/s41598-017-15268-x
10.1038/srep37254
10.1364/OL.42.000987
10.1109/23.256679
10.1038/lsa.2015.117
10.1016/0029-554X(79)90729-8
10.1021/acs.chemrev.6b00290
10.1016/0168-9002(88)90780-2
10.1038/nphoton.2016.41
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SR
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOA
DOI 10.3390/cryst9020088
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2073-4352
ExternalDocumentID oai_doaj_org_article_a7f7857324e44b36b1e4dea20a88241a
oai_HAL_hal_02285858v1
10_3390_cryst9020088
GroupedDBID .4S
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
EDO
GROUPED_DOAJ
HCIFZ
IAO
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
TUS
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
IGS
IPNFZ
ITC
RIG
VOOES
PUEGO
ID FETCH-LOGICAL-c401t-809330f8eaf0a56c743a1d1f2305e6ef9abc0e95806e076cf33a4b1f68b927863
IEDL.DBID DOA
ISSN 2073-4352
IngestDate Wed Aug 27 01:30:33 EDT 2025
Fri May 09 12:22:33 EDT 2025
Tue Jul 15 09:40:46 EDT 2025
Thu Apr 24 22:55:59 EDT 2025
Tue Jul 01 03:49:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords perovskite
X-ray
inorganic
organic
scintillator
γ-ray
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-809330f8eaf0a56c743a1d1f2305e6ef9abc0e95806e076cf33a4b1f68b927863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9997-6841
0000-0003-3510-7177
0000-0003-2188-7213
0000-0001-6183-4082
0000-0002-6207-4801
0000-0001-6246-8870
0000-0003-0015-5582
0000-0003-4125-6099
0000-0002-0205-9837
OpenAccessLink https://doaj.org/article/a7f7857324e44b36b1e4dea20a88241a
PQID 2430071738
PQPubID 2032412
ParticipantIDs doaj_primary_oai_doaj_org_article_a7f7857324e44b36b1e4dea20a88241a
hal_primary_oai_HAL_hal_02285858v1
proquest_journals_2430071738
crossref_citationtrail_10_3390_cryst9020088
crossref_primary_10_3390_cryst9020088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Crystals (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Weber (ref_18) 2002; 100
Cherepy (ref_132) 2009; 56
Yang (ref_138) 2011; 5
Bauer (ref_62) 1967; 55
Birowosuto (ref_109) 2008; 55
Birowosuto (ref_89) 2006; 99
Shimizu (ref_122) 2006; 53
Melcher (ref_42) 1992; 39
Cherepy (ref_140) 2008; 92
Birowosuto (ref_90) 2005; 52
Leblans (ref_44) 2000; 13
Zych (ref_82) 2003; 15
ref_10
Yu (ref_81) 2015; 4
Birowosuto (ref_110) 2008; 55
Adrova (ref_79) 1957; 6
Pourdavoud (ref_162) 2017; 29
Atac (ref_52) 1998; 422
Schotanus (ref_93) 1988; 272
Nikl (ref_8) 2006; 17
Moszynski (ref_61) 2005; 553
Casey (ref_91) 2004; 45
Melcher (ref_41) 2000; 41
Shepherd (ref_35) 1997; 36
Jacquier (ref_118) 1988; 38
Hall (ref_29) 1936; 29
Pauwels (ref_116) 2000; 47
Bross (ref_53) 2000; 229–232
ref_23
Kawano (ref_153) 2017; 7
ref_21
Knapitsch (ref_156) 2014; 29
ref_124
Drozdowski (ref_117) 2014; 4
Frenkel (ref_33) 1926; 35
Glodo (ref_100) 2005; 52
Dorenbos (ref_28) 2005; 202
Neitzel (ref_45) 2005; 114
Dorenbos (ref_97) 2001; 48
Yakunin (ref_145) 2015; 9
Birowosuto (ref_107) 2006; 18
Derenzo (ref_129) 2011; 652
Xu (ref_167) 2016; 116
Yanagida (ref_74) 2015; 784
(ref_111) 1995; Volume 1
Eperon (ref_154) 2015; 3
Dorenbos (ref_108) 2005; 537
Gundiah (ref_126) 2013; 138
Birks (ref_76) 1951; 64
ref_155
Brooks (ref_19) 1979; 162
Dorenbos (ref_94) 1993; 40
ref_157
ref_73
Xie (ref_141) 2018; 122
Kinchin (ref_32) 1955; 18
Ma (ref_152) 2017; 10
Wei (ref_142) 2016; 10
Selling (ref_123) 2007; 101
Moses (ref_92) 1990; 299
Kinloch (ref_69) 1994; 41
ref_160
Yaffe (ref_165) 1997; 42
Burke (ref_168) 2016; 1706
Rodnyi (ref_27) 1995; 187
Grippa (ref_136) 2013; 371
Gholipour (ref_163) 2017; 29
Glodo (ref_98) 2011; 58
Schaart (ref_40) 2014; 61
Blahuta (ref_58) 2013; 60
Kawamura (ref_121) 2007; 54
Liu (ref_158) 2017; 42
Smeltzer (ref_78) 1950; 21
Birowosuto (ref_22) 2016; 6
Gundiah (ref_125) 2010; 57
Annenkov (ref_54) 2008; 584
Blasse (ref_36) 1989; 3
Lempicki (ref_26) 1993; 333
Heo (ref_171) 2018; 30
Dorenbos (ref_64) 2001; 33
Dorenbos (ref_101) 1999; 85
Grajo (ref_11) 2016; 45
Raue (ref_72) 1994; 75
Lecoq (ref_20) 2016; 809
Zhu (ref_161) 2015; 106
Crookes (ref_55) 1903; 87
Kim (ref_143) 2017; 550
Laval (ref_67) 1983; 206
Wei (ref_147) 2017; 16
Grippa (ref_131) 2013; 729
Kerisit (ref_37) 2009; 105
Anger (ref_12) 1958; 29
Kang (ref_166) 2011; 98
Wolski (ref_84) 1997; 385
Cherginets (ref_137) 2014; 143
Derenzo (ref_68) 1990; 37
Borade (ref_133) 2011; 652
Wei (ref_144) 2017; 11
Moretti (ref_60) 2017; 18
Kapusta (ref_70) 1998; 404
Bessiere (ref_99) 2004; 51
Kishimoto (ref_151) 2008; 93
Dorenbos (ref_103) 2001; 79
Allemand (ref_66) 1983; 205
Stand (ref_139) 2016; 169
Nikl (ref_115) 2006; 292
Dorenbos (ref_25) 1994; 41
Tian (ref_43) 2007; 433
(ref_24) 1993; 21
Neitzel (ref_47) 2008; 18
Wegh (ref_80) 1999; 283
Protesescu (ref_169) 2015; 15
Birowosuto (ref_96) 2007; 19
Dorenbos (ref_105) 2001; 189
Birowosuto (ref_106) 2007; 204
Schotanus (ref_71) 1992; 39
Dujardin (ref_14) 2018; 65
Birowosuto (ref_83) 2009; 206
Dorenbos (ref_95) 2000; 77
(ref_120) 1995; Volume 1
Alekhin (ref_86) 2013; 102
Zhuravleva (ref_135) 2012; 352
Karim (ref_34) 1979; 20
Rocha (ref_49) 2006; 556
Glodo (ref_104) 2005; 1
Shibuya (ref_150) 2002; 194
Ogino (ref_114) 2006; 287
Rowe (ref_134) 2013; 60
Hubbell (ref_31) 2006; 75
Chin (ref_149) 2018; 11
Chen (ref_170) 2018; 561
Kapusta (ref_112) 1998; 404
Blasse (ref_16) 1994; 6
Zaitseva (ref_77) 2015; 789
ref_39
Bass (ref_75) 2013; 77
Knapitsch (ref_159) 2012; 59
Drozdowski (ref_85) 2006; 562
Drozdowski (ref_119) 2008; 55
Bulin (ref_164) 2015; 7
Sawant (ref_46) 2005; 32
Yin (ref_102) 1997; Volume 2
Porter (ref_57) 1966; 39
Eisenberg (ref_30) 1970; 2
Dujardin (ref_38) 1998; 10
Sakai (ref_65) 1987; 34
MacAllister (ref_13) 1993; 3
ref_1
Takahashi (ref_50) 1993; 40
Hofstadter (ref_56) 1948; 74
ref_3
Nikl (ref_113) 2007; 126
ref_2
Birowosuto (ref_88) 2006; 118
Tan (ref_148) 2014; 9
Bessiere (ref_87) 2005; 537
Shrestha (ref_146) 2017; 11
ref_48
ref_9
Biswas (ref_51) 2017; 12
Bizarri (ref_128) 2011; 58
ref_5
Bizarri (ref_127) 2012; 352
ref_4
Nikl (ref_15) 2015; 3
ref_7
(ref_17) 1896; 3
Nagarkar (ref_63) 1998; 45
Holl (ref_130) 1988; 35
ref_6
Nikl (ref_59) 2014; 14
References_xml – volume: 41
  start-page: 752
  year: 1994
  ident: ref_69
  article-title: New developments in cadmium tungstate
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.322800
– volume: 30
  start-page: 1801743
  year: 2018
  ident: ref_171
  article-title: High-Performance Next-Generation Perovskite Nanocrystal Scintillator for Nondestructive X-ray Imaging
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801743
– volume: 87
  start-page: 241
  year: 1903
  ident: ref_55
  article-title: Certain Properties of the Emanations of Radium
  publication-title: Chem. News
– volume: 100
  start-page: 35
  year: 2002
  ident: ref_18
  article-title: Inorganic scintillators: Today and tomorrow
  publication-title: J. Lumin.
  doi: 10.1016/S0022-2313(02)00423-4
– volume: 41
  start-page: 738
  year: 1994
  ident: ref_25
  article-title: Nd3+ and Pr3+ doped inorganic scintillators
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.322798
– volume: 18
  start-page: 1
  year: 1955
  ident: ref_32
  article-title: The Displacement of Atoms in Solids by Radiation
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/18/1/301
– volume: 562
  start-page: 254
  year: 2006
  ident: ref_85
  article-title: Scintillation properties of LuAP and LuYAP crystals activated with Cerium and Molybdenum
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2006.01.127
– volume: 292
  start-page: 416
  year: 2006
  ident: ref_115
  article-title: Development of novel scintillator crystals
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2006.04.048
– volume: 41
  start-page: 1501
  year: 2000
  ident: ref_41
  article-title: Scintillation Crystals for PET
  publication-title: J. Nucl. Med.
– volume: 138
  start-page: 143
  year: 2013
  ident: ref_126
  article-title: Structure and scintillation of Eu2+-activated BaBrCl and solid solutions in the BaCl2–BaBr2 system
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2013.01.017
– volume: 93
  start-page: 261901
  year: 2008
  ident: ref_151
  article-title: Subnanosecond time-resolved X-ray measurements using an organic-inorganic perovskite scintillator
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3059562
– ident: ref_39
– volume: 55
  start-page: 2420
  year: 2008
  ident: ref_119
  article-title: Scintillation Properties of Praseodymium Activated Lu3Al5O12 Single Crystals
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2008.2000845
– volume: 54
  start-page: 1383
  year: 2007
  ident: ref_121
  article-title: Floating Zone Growth and Scintillation Characteristics of Cerium-Doped Gadolinium Pyrosilicate Single Crystals
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2007.902372
– volume: 550
  start-page: 87
  year: 2017
  ident: ref_143
  article-title: Printable organometallic perovskite enables large-area, low-dose X-ray imaging
  publication-title: Nature
  doi: 10.1038/nature24032
– volume: 39
  start-page: 546
  year: 1992
  ident: ref_71
  article-title: Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.159663
– volume: 537
  start-page: 232
  year: 2005
  ident: ref_108
  article-title: Scintillation properties of K2LaX5:Ce3+ (X = Cl, Br, I)
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2004.08.016
– ident: ref_1
– volume: 333
  start-page: 304
  year: 1993
  ident: ref_26
  article-title: Fundamental limits of scintillator performance
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/0168-9002(93)91170-R
– volume: 75
  start-page: 614
  year: 2006
  ident: ref_31
  article-title: Electron–positron pair production by photons: A historical overview
  publication-title: Rad. Phys. Chem.
  doi: 10.1016/j.radphyschem.2005.10.008
– volume: 537
  start-page: 22
  year: 2005
  ident: ref_87
  article-title: Luminescence and scintillation properties of the small bandgap compound LaI3:Ce3+
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2004.07.224
– volume: 287
  start-page: 335
  year: 2006
  ident: ref_114
  article-title: Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals
  publication-title: J. Crys. Growth
  doi: 10.1016/j.jcrysgro.2005.11.023
– volume: 3
  start-page: 463
  year: 2015
  ident: ref_15
  article-title: Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201400571
– volume: 3
  start-page: 19688
  year: 2015
  ident: ref_154
  article-title: Inorganic caesium lead iodide perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06398A
– volume: 39
  start-page: 502
  year: 1992
  ident: ref_42
  article-title: Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.159655
– volume: 202
  start-page: 195
  year: 2005
  ident: ref_28
  article-title: Scintillation mechanisms in Ce3+ doped halide scintillators
  publication-title: Phys. Stat. Sol. A
– volume: 29
  start-page: 1430070
  year: 2014
  ident: ref_156
  article-title: Review on photonic crystal coatings for scintillators
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X14300701
– volume: 99
  start-page: 123520
  year: 2006
  ident: ref_89
  article-title: High-light-output scintillator for photodiode readout: LuI3:Ce3+
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2207689
– volume: 9
  start-page: 444
  year: 2015
  ident: ref_145
  article-title: Detection of X-ray photons by solution-processed lead halide perovskites
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2015.82
– volume: 789
  start-page: 8
  year: 2015
  ident: ref_77
  article-title: Scintillation properties of solution-grown trans-stilbene single crystals
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2015.03.090
– volume: 56
  start-page: 873
  year: 2009
  ident: ref_132
  article-title: Scintillators With Potential to Supersede Lanthanum Bromide
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2009.2020165
– volume: 34
  start-page: 418
  year: 1987
  ident: ref_65
  article-title: Recent Measurements on Scintillator-Photodetector Systems
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.1987.4337375
– volume: 204
  start-page: 850
  year: 2007
  ident: ref_106
  article-title: Scintillation and luminescence properties of Ce3+ doped ternary cesium rare-earth halides
  publication-title: Phys. Stat. Sol. A
– volume: 122
  start-page: 16265
  year: 2018
  ident: ref_141
  article-title: Thermal Quenching and Dose Studies of X-ray Luminescence in Single Crystals of Halide Perovskites
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03622
– ident: ref_48
– volume: 45
  start-page: 6
  year: 2016
  ident: ref_11
  article-title: Dual energy CT in practice: Basic principles and applications
  publication-title: Appl. Rad.
  doi: 10.37549/AR2291
– volume: 52
  start-page: 1114
  year: 2005
  ident: ref_90
  article-title: Scintillation properties of LuI3:Ce3+-high–light yield scintillators
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2005.852630
– volume: 10
  start-page: 2117
  year: 2017
  ident: ref_152
  article-title: Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1401-6
– volume: 169
  start-page: 301
  year: 2016
  ident: ref_139
  article-title: Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2015.09.013
– volume: 11
  start-page: 315
  year: 2017
  ident: ref_144
  article-title: Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.43
– volume: Volume 1
  start-page: 29
  year: 1995
  ident: ref_111
  article-title: Phospors in X-ray Computed Tomography and for the gamma-ray Anger Camera
  publication-title: Proceedings of the International Conference on Inorganic Scintillators and Their Applications
– volume: Volume 1
  start-page: 309
  year: 1995
  ident: ref_120
  article-title: Crystal growth and scintillation properties of the rare earth orthosilicates
  publication-title: Proceedings of the International Conference on Inorganic Scintillators and Their Applications
– volume: 102
  start-page: 161915
  year: 2013
  ident: ref_86
  article-title: Improvement of γ-ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4803440
– volume: 9
  start-page: 687
  year: 2014
  ident: ref_148
  article-title: Bright light-emitting diodes based on organometal halide perovskite
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.149
– ident: ref_4
  doi: 10.1201/9781351228251
– volume: 15
  start-page: 3692
  year: 2015
  ident: ref_169
  article-title: Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
  publication-title: Nano Lett.
  doi: 10.1021/nl5048779
– volume: 29
  start-page: 1604268
  year: 2017
  ident: ref_163
  article-title: Organometallic Perovskite Metasurfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604268
– volume: 5
  start-page: 43
  year: 2011
  ident: ref_138
  article-title: Crystal growth and characterization of CsSrI3:Eu2+ high–light yield scintillators
  publication-title: Phys. Stat. Sol.
– volume: 10
  start-page: 3061
  year: 1998
  ident: ref_38
  article-title: Optical and scintillation properties of large crystals
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/10/13/022
– volume: 126
  start-page: 77
  year: 2007
  ident: ref_113
  article-title: Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2006.05.004
– volume: 143
  start-page: 1296
  year: 2014
  ident: ref_137
  article-title: Scintillation properties of CsSrX3:Eu2+ (X = Cl, Br) single crystals grown by the Bridgman method
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.11.037
– volume: 206
  start-page: 9
  year: 2009
  ident: ref_83
  article-title: Novel γ- and X-ray Scintillator Research: On the Emission Wavelength, Light Yield and Time Response of Ce3+ Doped Halide Scintillators
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.200723669
– volume: 51
  start-page: 2970
  year: 2004
  ident: ref_99
  article-title: New thermal neutron scintillators: Cs2LiYCl6:Ce3+ and Cs2LiYBr6:Ce3+
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2004.834957
– volume: 20
  start-page: 2255
  year: 1979
  ident: ref_34
  article-title: Localized level hopping transport in La(Sr)CrO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.20.2255
– volume: 729
  start-page: 356
  year: 2013
  ident: ref_131
  article-title: Scintillation properties of CaBr2 crystals doped with Eu2+ ions
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2013.07.077
– volume: 561
  start-page: 88
  year: 2018
  ident: ref_170
  article-title: All-inorganic perovskite nanocrystal scintillators
  publication-title: Nature
  doi: 10.1038/s41586-018-0451-1
– volume: 652
  start-page: 247
  year: 2011
  ident: ref_129
  article-title: New scintillators discovered by high-throughput screening
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2010.09.156
– volume: 53
  start-page: 14
  year: 2006
  ident: ref_122
  article-title: Scintillation properties of Lu0.4Gd1.6SiO5: Ce (LGSO) crystal
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2005.862975
– volume: 352
  start-page: 78
  year: 2012
  ident: ref_127
  article-title: Crystal growth and characterization of alkali-earth halide scintillators
  publication-title: J. Crys. Growth
  doi: 10.1016/j.jcrysgro.2012.01.014
– volume: 11
  start-page: 1770
  year: 2018
  ident: ref_149
  article-title: Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00293B
– volume: 39
  start-page: 35
  year: 1966
  ident: ref_57
  article-title: Response of NaI, anthracene and plastic scintillators to electrons and the problems of detecting low energy electrons with scintillation counters
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/0029-554X(66)90041-3
– volume: 114
  start-page: 32
  year: 2005
  ident: ref_45
  article-title: Status and prospects of digital detector technology for CR and DR
  publication-title: Radiat. Prot. Dosim.
  doi: 10.1093/rpd/nch532
– ident: ref_73
– volume: 47
  start-page: 1787
  year: 2000
  ident: ref_116
  article-title: A novel inorganic scintillator: Lu2Si2O7:Ce3+ (LPS)
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.914446
– volume: 18
  start-page: 1818
  year: 2008
  ident: ref_47
  article-title: Digital chest radiography: an update on modern technology, dose containment and control of image quality
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-008-0948-3
– volume: 33
  start-page: 521
  year: 2001
  ident: ref_64
  article-title: Energy resolution of some new inorganic-scintillator gamma-ray detectors
  publication-title: Rad. Meas.
  doi: 10.1016/S1350-4487(01)00045-2
– volume: 21
  start-page: 669
  year: 1950
  ident: ref_78
  article-title: Energy Dependence of the Naphthalene Scintillation Detector
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1745679
– volume: 6
  start-page: 394
  year: 1957
  ident: ref_79
  article-title: Preparation of 2,5-diphenyloxazole and its. scintillation efficiency in plastics
  publication-title: Bull. Acad. Sci. USSR
  doi: 10.1007/BF01173347
– volume: 11
  start-page: 436
  year: 2017
  ident: ref_146
  article-title: High-Performance Direct Conversion X-ray Detectors Based on Sintered Hybrid Lead Triiodide Perovskite Wafers
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.94
– volume: 29
  start-page: 358
  year: 1936
  ident: ref_29
  article-title: The Theory of Photoelectric Absorption for X-rays and y-Rays
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.8.358
– volume: 433
  start-page: 313
  year: 2007
  ident: ref_43
  article-title: Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2006.06.075
– ident: ref_6
– volume: 13
  start-page: 117
  year: 2000
  ident: ref_44
  article-title: A new needle-crystalline computed radiography detector
  publication-title: J. Digit. Imaging
  doi: 10.1007/BF03167640
– volume: 299
  start-page: 51
  year: 1990
  ident: ref_92
  article-title: The scintillation properties of cerium-doped lanthanum fluoride
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/0168-9002(90)90746-S
– volume: 57
  start-page: 3
  year: 2010
  ident: ref_125
  article-title: Scintillation properties of Eu2+-activated barium fluoroiodide
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2010.2045513
– volume: 3
  start-page: 294
  year: 1989
  ident: ref_36
  article-title: New Luminescent Materials
  publication-title: Chem. Mater.
  doi: 10.1021/cm00003a005
– volume: 553
  start-page: 578
  year: 2005
  ident: ref_61
  article-title: Characterization of CaWO4 Scintillator at Room and Liquid Nitrogen Temperatures
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2005.07.052
– volume: 1
  start-page: 98
  year: 2005
  ident: ref_104
  article-title: LaBr3:Pr3+—A new red-emitting scintillator
  publication-title: IEEE Nucl. Sci. Symp. Conf. Rec.
– volume: 74
  start-page: 100
  year: 1948
  ident: ref_56
  article-title: Alkali Halide Scintillation Counters
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.74.100
– volume: 229–232
  start-page: 363
  year: 2000
  ident: ref_53
  article-title: Applications for Large Solid Scintillator Detectors in Neutrino and Particle Astrophysics
  publication-title: Nucl. Phys. B Proc. Suppl.
– volume: 352
  start-page: 115
  year: 2012
  ident: ref_135
  article-title: New single crystal scintillators: CsCaCl3:Eu and CsCaI3:Eu
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2012.02.025
– volume: 205
  start-page: 239
  year: 1983
  ident: ref_66
  article-title: Recent progress in fast timing with CsF scintillators in application to time-of-flight positron tomography in medicine
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/0167-5087(83)90194-1
– volume: 106
  start-page: 241901
  year: 2015
  ident: ref_161
  article-title: Enhanced light extraction of scintillator using large-area photonic crystal structures fabricated by soft-X-ray interference lithography
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4922699
– volume: 371
  start-page: 112
  year: 2013
  ident: ref_136
  article-title: Crystal growth and scintillation properties of CsCaBr3:Eu2+
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2013.02.020
– volume: Volume 2
  start-page: 330
  year: 1997
  ident: ref_102
  article-title: RbGd2Cl7:Ce3+ and RbGd2Br7: Ce3+: New Scintillators with a High Light Yield
  publication-title: Proceedings of the International Conference on Inorganic Scintillators and their Applications
– volume: 58
  start-page: 3403
  year: 2011
  ident: ref_128
  article-title: Scintillation and Optical Properties BaBrI:Eu2+ and CsBa2I5:Eu2+
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2011.2166999
– volume: 60
  start-page: 1057
  year: 2013
  ident: ref_134
  article-title: A New Lanthanide Activator for Iodide Based Scintillators:Yb2+
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2013.2253330
– volume: 3
  start-page: 184
  year: 1993
  ident: ref_13
  article-title: Application of X-ray CT scanning to determine gas/water relative permeabilities
  publication-title: SPE Form. Eval.
  doi: 10.2118/20494-PA
– ident: ref_3
  doi: 10.1007/978-3-319-45522-8
– ident: ref_5
– volume: 4
  start-page: 1207
  year: 2014
  ident: ref_117
  article-title: 33000 photons per MeV from mixed (Lu0.75Y0.25)3Al5O12:Pr scintillator crystals
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.4.001207
– volume: 189
  start-page: 297
  year: 2001
  ident: ref_105
  article-title: Optical and scintillation properties of pure and Ce3+ doped GdBr3
  publication-title: Opt. Comm.
  doi: 10.1016/S0030-4018(01)01039-2
– volume: 77
  start-page: 130
  year: 2013
  ident: ref_75
  article-title: Characterization of a 6Li-loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2013.03.053
– volume: 17
  start-page: R37
  year: 2006
  ident: ref_8
  article-title: Scintillation detectors for X-rays
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/4/R01
– volume: 55
  start-page: 1164
  year: 2008
  ident: ref_110
  article-title: Temperature dependent scintillation and luminescence characteristics of GdI3: Ce3+
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2007.908581
– volume: 35
  start-page: 105
  year: 1988
  ident: ref_130
  article-title: A measurement of the light yield of common inorganic scintillators
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.12684
– volume: 3
  start-page: 227
  year: 1896
  ident: ref_17
  article-title: On a New Kind of Rays
  publication-title: Science
  doi: 10.1126/science.3.59.227
– volume: 36
  start-page: 36
  year: 1997
  ident: ref_35
  article-title: Study of afterglow in X-ray phosphors for use on fast-framing charge-coupled device detectors
  publication-title: Opt. Eng.
  doi: 10.1117/1.601530
– volume: 35
  start-page: 652
  year: 1926
  ident: ref_33
  article-title: Über die Wärmebewegung in festen und flüssigen Körpern
  publication-title: Z. Phys.
  doi: 10.1007/BF01379812
– volume: 1706
  start-page: 110007
  year: 2016
  ident: ref_168
  article-title: Scintillating quantum dots for imaging X-rays (SQDIX) for aircraft inspection
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4940578
– volume: 29
  start-page: 27
  year: 1958
  ident: ref_12
  article-title: Scintillation Camera
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1715998
– ident: ref_23
– volume: 556
  start-page: 281
  year: 2006
  ident: ref_49
  article-title: Optical coupling between scintillators and standard CMOS detectors
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2005.10.107
– volume: 64
  start-page: 874
  year: 1951
  ident: ref_76
  article-title: Scintillations from Organic Crystals: Specific Fluorescence and Relative Response to Different Radiations
  publication-title: Proc. Phys. Soc. Sect. A
  doi: 10.1088/0370-1298/64/10/303
– ident: ref_9
  doi: 10.1007/b136169
– ident: ref_155
  doi: 10.3390/photonics5020014
– volume: 206
  start-page: 169
  year: 1983
  ident: ref_67
  article-title: Barium fluoride—Inorganic scintillator for subnanosecond timing
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/0167-5087(83)91254-1
– volume: 404
  start-page: 157
  year: 1998
  ident: ref_112
  article-title: Properties of the YAP: Ce scintillator
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/S0168-9002(97)01115-7
– volume: 187
  start-page: 15
  year: 1995
  ident: ref_27
  article-title: Energy Loss in Inorganic Scintillators
  publication-title: Phys. Stat. Sol. B
  doi: 10.1002/pssb.2221870102
– volume: 40
  start-page: 388
  year: 1993
  ident: ref_94
  article-title: Scintillation properties of some Ce3+ and Pr3+ doped inorganic crystals
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.256586
– volume: 65
  start-page: 1977
  year: 2018
  ident: ref_14
  article-title: Needs, Trends, and Advances in Inorganic Scintillators
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2018.2840160
– volume: 105
  start-page: 114915
  year: 2009
  ident: ref_37
  article-title: Computer simulation of the light yield nonlinearity of inorganic scintillators
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3143786
– volume: 6
  start-page: 1465
  year: 1994
  ident: ref_16
  article-title: Scintillator Materials
  publication-title: Chem. Mater.
  doi: 10.1021/cm00045a002
– volume: 15
  start-page: 5145
  year: 2003
  ident: ref_82
  article-title: Quantum efficiency of europium emission from nanocrystalline powders of Lu2O3:Eu
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/29/326
– volume: 784
  start-page: 111
  year: 2015
  ident: ref_74
  article-title: Comparative study of neutron and gamma-ray pulse shape discrimination of anthracene, stilbene, and p-terphenyl
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2014.12.031
– volume: 16
  start-page: 826
  year: 2017
  ident: ref_147
  article-title: Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4927
– volume: 809
  start-page: 130
  year: 2016
  ident: ref_20
  article-title: Development of new scintillators for medical applications
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/j.nima.2015.08.041
– volume: 12
  start-page: C06026
  year: 2017
  ident: ref_51
  article-title: Development of scintillator detector for detection of cosmic ray shower
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/12/06/C06026
– volume: 19
  start-page: 256209
  year: 2007
  ident: ref_96
  article-title: Thermal Quenching of Ce3+ Emission in PrX3 (X = Cl, Br) by Intervalence Charge Transfer
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/19/25/256209
– ident: ref_10
  doi: 10.1055/b-0036-140231
– volume: 37
  start-page: 203
  year: 1990
  ident: ref_68
  article-title: Prospects for new inorganic scintillators
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.106619
– volume: 45
  start-page: 492
  year: 1998
  ident: ref_63
  article-title: Structured CsI(Tl) scintillators for X-ray imaging applications
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.682433
– ident: ref_157
  doi: 10.3390/cryst8020078
– volume: 98
  start-page: 181914
  year: 2011
  ident: ref_166
  article-title: CdTe quantum dots and polymer nanocomposites for X-ray scintillation and imaging
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3589366
– volume: 18
  start-page: 6133
  year: 2006
  ident: ref_107
  article-title: Scintillation properties and anomalous Ce3+ emission of Cs2NaREBr6:Ce3+ (RE = La, Y, Lu)
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/18/26/031
– ident: ref_7
– volume: 48
  start-page: 341
  year: 2001
  ident: ref_97
  article-title: Scintillation properties of LaCl3:Ce3+ crystals: fast, efficient, and high-energy resolution scintillators
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.940077
– volume: 85
  start-page: 1
  year: 1999
  ident: ref_101
  article-title: Scintillation and luminescence properties of Ce3+ doped K2LaCl5
  publication-title: J. Lumin.
  doi: 10.1016/S0022-2313(99)00170-2
– volume: 55
  start-page: 55
  year: 1967
  ident: ref_62
  article-title: Fabrication of thin NaI(TI) scintillation layers for low energy X-ray detection
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/0029-554X(67)90107-3
– volume: 38
  start-page: 802
  year: 1988
  ident: ref_118
  article-title: Fluorescence decays and lifetimes of Nd3+, Ce3+ and Cr3+ in YAG
  publication-title: Czech. J. Phys. B
  doi: 10.1007/BF01596341
– volume: 42
  start-page: 1
  year: 1997
  ident: ref_165
  article-title: X-ray detectors for digital radiography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/42/1/001
– volume: 52
  start-page: 1819
  year: 2005
  ident: ref_100
  article-title: Optical and scintillation properties of Cs2LiYCl6:Ce3+ and Cs2LiYCl6:Pr3+ crystals
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 18
  start-page: 493
  year: 2017
  ident: ref_60
  article-title: Consequences of Ca Codoping in YAlO3:Ce Single Crystals
  publication-title: Chem. Phys. Chem.
  doi: 10.1002/cphc.201601190
– volume: 194
  start-page: 207
  year: 2002
  ident: ref_150
  article-title: Scintillation Properties of (C6H13NH3)2PbI4: Exciton Luminescence of an Organic/Inorganic Multiple Quantum Well Structure Compound Induced by 2.0 MeV protons
  publication-title: Nucl. Instrum. Methods Phys. Res. B
  doi: 10.1016/S0168-583X(02)00671-7
– volume: 61
  start-page: 683
  year: 2014
  ident: ref_40
  article-title: The Effect of Self-Absorption on the Scintillation Properties of Ce3+ Activated LaBr3 and CeBr3
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2013.2296101
– ident: ref_124
  doi: 10.1117/12.738973
– volume: 60
  start-page: 3134
  year: 2013
  ident: ref_58
  article-title: Evidence and Consequences of Ce4+ in LYSO: Ce, Ca and LYSO: Ce, Mg Single Crystals for Medical Imaging Applications
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2013.2269700
– ident: ref_160
  doi: 10.1021/acsphotonics.8b01655
– volume: 45
  start-page: 822
  year: 2004
  ident: ref_91
  article-title: NEMA NU 2 performance tests for scanners with intrinsic radioactivity
  publication-title: J. Nucl. Med.
– volume: 283
  start-page: 663
  year: 1999
  ident: ref_80
  article-title: Visible Quantum Cutting in LiGdF4:Eu3+ Through Downconversion
  publication-title: Science
  doi: 10.1126/science.283.5402.663
– volume: 29
  start-page: 1605003
  year: 2017
  ident: ref_162
  article-title: Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organo-Metal Halide Perovskites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605003
– volume: 2
  start-page: 415
  year: 1970
  ident: ref_30
  article-title: Compton Scattering of X Rays from Bound Electrons
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.2.415
– volume: 385
  start-page: 123
  year: 1997
  ident: ref_84
  article-title: Properties of the new LuAP:Ce scintillator
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/S0168-9002(96)00875-3
– volume: 59
  start-page: 2334
  year: 2012
  ident: ref_159
  article-title: Results of Photonic Crystal Enhanced Light Extraction on Heavy Inorganic Scintillators
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2012.2184556
– ident: ref_21
– volume: 75
  start-page: 481
  year: 1994
  ident: ref_72
  article-title: Saturation of ZnS:Ag and Al under cathode X-ray excitation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.355825
– volume: 77
  start-page: 1467
  year: 2000
  ident: ref_95
  article-title: High-energy-resolution scintillator:Ce3+ activated LaCl3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1308053
– volume: 7
  start-page: 5744
  year: 2015
  ident: ref_164
  article-title: Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect
  publication-title: Nanoscale
  doi: 10.1039/C4NR07444K
– volume: 584
  start-page: 334
  year: 2008
  ident: ref_54
  article-title: Development of CaMoO4 crystal scintillators for double beta decay experiment with 100-Mo
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2007.10.038
– volume: 21
  start-page: 5
  year: 1993
  ident: ref_24
  article-title: Fast scintillators and their applications
  publication-title: Radiat. Meas.
– volume: 14
  start-page: 4827
  year: 2014
  ident: ref_59
  article-title: Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg501005s
– volume: 92
  start-page: 90
  year: 2008
  ident: ref_140
  article-title: Strontium and barium iodide high–light yield scintillators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2885728
– volume: 118
  start-page: 308
  year: 2006
  ident: ref_88
  article-title: Optical Spectroscopy and Luminescence Quenching of LuI3:Ce3+
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2005.09.001
– volume: 652
  start-page: 260
  year: 2011
  ident: ref_133
  article-title: Scintillation properties of CsBa2Br5:Eu2+
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2010.08.093
– volume: 101
  start-page: 034901
  year: 2007
  ident: ref_123
  article-title: Europium-doped barium halide scintillators for X-ray and gamma-ray detections
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2432306
– volume: 55
  start-page: 1152
  year: 2008
  ident: ref_109
  article-title: Li-Based Thermal Neutron Scintillator Research; Rb2LiYBr6:Ce3+ and Other Elpasolites
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2008.922826
– ident: ref_2
– volume: 422
  start-page: 251
  year: 1998
  ident: ref_52
  article-title: Detection of cosmic ray tracks using scintillating fibers and position sensitive multi-anode photomultipliers
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.55052
– volume: 404
  start-page: 413
  year: 1998
  ident: ref_70
  article-title: Comparison of YAP and BGO for high-resolution PET detectors
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/S0168-9002(97)01151-0
– volume: 79
  start-page: 1573
  year: 2001
  ident: ref_103
  article-title: High-energy-resolution scintillator:Ce3+ activated LaBr3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1385342
– volume: 58
  start-page: 333
  year: 2011
  ident: ref_98
  article-title: Selected Properties of Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6 Scintillators
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2010.2098045
– volume: 32
  start-page: 3067
  year: 2005
  ident: ref_46
  article-title: Segmented crystalline scintillators: An initial investigation of high quantum efficiency detectors for megavoltage X-ray imaging
  publication-title: Med. Phys.
  doi: 10.1118/1.2008407
– volume: 7
  start-page: 14754
  year: 2017
  ident: ref_153
  article-title: Scintillating Organic-Inorganic Layered Perovskite-Type Compounds and the Gamma-Ray Detection Capabilities
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15268-x
– volume: 6
  start-page: 37254
  year: 2016
  ident: ref_22
  article-title: X-ray Scintillation in Lead Halide Perovskite Crystals
  publication-title: Sci. Rep.
  doi: 10.1038/srep37254
– volume: 42
  start-page: 987
  year: 2017
  ident: ref_158
  article-title: Modified timing characteristic of a scintillation detection system with photonic crystal structures
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000987
– volume: 40
  start-page: 890
  year: 1993
  ident: ref_50
  article-title: Newly developed low background hard X-ray/gamma-ray telescope with the well-type phoswich counters
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.256679
– volume: 4
  start-page: e344
  year: 2015
  ident: ref_81
  article-title: Multi-photon quantum cutting in Gd2O2S:Tm3+ to enhance the photo-response of solar cells
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2015.117
– volume: 162
  start-page: 477
  year: 1979
  ident: ref_19
  article-title: Development of organic scintillators
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/0029-554X(79)90729-8
– volume: 116
  start-page: 12234
  year: 2016
  ident: ref_167
  article-title: New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00290
– volume: 272
  start-page: 913
  year: 1988
  ident: ref_93
  article-title: Detection of LaF3:Nd3+ scintillation light in a photosensitive multiwire chamber
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/0168-9002(88)90780-2
– volume: 10
  start-page: 333
  year: 2016
  ident: ref_142
  article-title: Sensitive X-ray Detectors Made of Methylammonium Lead Tribromide Perovskite Single Crystals
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2016.41
SSID ssj0000760771
Score 2.5445082
Snippet Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 88
SubjectTerms Absorption cross sections
Atoms & subatomic particles
Cerium
Chemical Sciences
Collaboration
Conversion
Crystal growth
Energy dissipation
Engineering Sciences
High temperature
inorganic
Lead compounds
Low temperature
Medical imaging
Metal halides
Nanocrystals
Nanotechnology
organic
perovskite
Perovskites
Photoluminescence
Photons
Physics
Quantum dots
R&D
Research & development
Scintillation
Scintillation counters
scintillator
Sensors
Single crystals
Tomography
X ray absorption
X-ray
X-rays
γ-ray
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7B9gIHxK9YWpCF4ARW7SR2nBNqUasFlVIhKi2nyHZs9YCy7SZU6q3vwKPwHjwET8JM4l1aJLhFjmVFM_b4-2YmMwAvhBIhy6TlIuiKF94IbnwpeaNzJGIE4Yf_uD8c6tlx8X6u5snh1qW0ypVNHAx1s_DkI9_OinwMGZs3p2ecukZRdDW10LgJG2iCjZnAxu7e4dGntZeF4k5lKceM9xz5_bZfXnR9JSjsb67dRUPJfrxhTigh8i-7PFw2-3fhTkKJbGdU6z24Edr7cPtK7cAHcPauHTsy-dfs4-rBtg07CsvFeUdOWTZDkN2EjpGzlaEdXfRrRzpDsMooyePX5fcDIujsC-WysTkfFvn5gy_tBcOT3_bUl4h68jyE4_29z29nPPVP4B5ZU4-XD3krogk2Cqu0R7BgZSMjsg4VdIiVdV6EShmhAwrKxzy3hZNRG1dlpdH5I5i0izY8BoZLBAROTkWfFy4qF6wzCA-aylOBGTWFVytJ1j4VF6ceF19rJBkk9_qq3Kfwcj37dCyq8Y95u6SU9RwqhT0MoHzrdLJqW8bSqBKBIX6hy7WToWiCzYRF8lBIO4XnqNJra8x2Dmoao9o_SJfMuZzC1krjdTrEXf1nyz35_-tNuIXbuhqTubdg0i-_haeIVXr3LG3I35q46rE
  priority: 102
  providerName: ProQuest
Title Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and γ-ray Scintillators
URI https://www.proquest.com/docview/2430071738
https://univ-lyon1.hal.science/hal-02285858
https://doaj.org/article/a7f7857324e44b36b1e4dea20a88241a
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BucAB8VextKwsVE4Q1U5sxzluoctSbUsFVNqeItuxxQFlYTet1BvvwKPwHjwET8JMkl1tkRAXToksy7LGY8_3OZNvAPa44iFNhU140EUiveGJ8blIKp0hESMI3_7HfXyiJ2fyaKZmG6W-KCeskwfuDLdv85gblWPcD1K6TDsRZBVsyi1iQylaaIQxb4NMtWdwrnmeiy7TPUNev-8XV8um4PS531yLQa1UP0aWT5QI-cd53AaZ8T2426NDNupmdR9uhPoB3NnQDHwIX9_WXSUm_5K9W73YumKnYTG_XNJlLJsguK7CktElK8Pzc96sL9AZglRGyR2_vn2fEjFn55TDxmZJO8jPH8nCXjHc8XVD9YioFs8jOBsffnw1Sfq6CYlHttRg0KFbimiCjdwq7REkWFGJiGxDBR1iYZ3noVCG64CG8jHLrHQiauOKNDc624atel6Hx8BwCDS7cCr6TLqoXLDOICyoCk_CMmoAL1aWLH0vKk61LT6XSC7I7uWm3QfwfN37Syem8Zd-B7Qo6z4kgd02oH3L3jHKfznGAJ7hkl4bYzKaltRGmj9Ik8ylGMDuasXLfvMuy1RmXXaCefI_JrIDt9Hpiy7Vexe2msVFeIpIpnFDuGnGb4Zwa_T6ePoBnweHJ6fvh60r_wY5V_WX
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xUMBC9ARW7fw4zgGh8rNk6bZwaKXllNqOIw4o225C0d54B96DC-_BQ_AkzORnaZHg1ltkW1Y0M575ZjyeAXgsYuGDQBouvEp55LTg2iWSFypER4wgfPuOe3dPZQfR21k8W4Pvw1sYSqscdGKrqIu5oxj5VhCF3ZWxfn50zKlrFN2uDi00OrHY8csv6LLVzyavkL-bQTB-vf8y431XAe7Ql2hQJZMPX2pvSmFi5dCEGlnIErF47JUvU2Od8GmshfLo5LsyDE1kZam0TYNEqxD3vQAXoxAtOb1MH79ZxXTolitJZJdfj_Niyy2WdZMKSjLQZyxf2yAA7dlHSr_8ywq0pm18Da72mJRtd0J0HdZ8dQOunKpUeBOOJ1XX_8k9Ze-GD1MV7L1fzE9qCgGzDCF94WtGoV2GWnverML2DKExo5SSX1-_TSkcwD5Q5hyb8XaTnz_4wiwZ6pmqoS5I1AHoFhycC11vw3o1r_wdYLiFR5hm49KFkS1j643VCEaK1FE5m3gETwZK5q4vZU4dNT7l6NIQ3fPTdB_B5mr1UVfC4x_rXhBTVmuo8HY7gPTN-3Ocm6RMdJwgDMU_tKGy0keFN4Ew6KpE0ozgEbL0zB7Z9jSnMao0hM6ZPpEj2Bg4nvcqo87_CPjd_08_hEvZ_u40n072du7BZTxQaZdGvgHrzeKzv48oqbEPWtFkcHjeZ-E3K8klog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJwQPyKlAIWoidYxd5f7wGhljZKaAgRolI4LbbXFodq02aXotx4Bx6FGw_BQ_AkzOxPaJHg1ttq17JWM_bM943HMwBPecSt7wvlcRunXmgk96RJhJfHARIxgvD1Pe4303h0FL6eR_MN-NHdhaG0ys4m1oY6XxiKkQ_8MGiOjOXAtWkRs_3hy5NTjzpI0Ulr106jWSKHdvUF6Vv5YryPut7x_eHB-1cjr-0w4BnkFRWaZ-LzTlrluIpig-5UiVw4xOWRja1LlTbcppHksUXCb1wQqFALF0ud-omMA5z3CmwmxIp6sLl3MJ29W0d46MwrSUSTbR8EKR-Y5aqsUk4pB_KCH6zbBaB3-0TJmH_5hNrRDW_CjRahst1mSd2CDVvchuvn6hbegdNx0XSDMs_Z2-5BFTmb2eXirKSAMBshwM9tySjQy9CGL6p1EJ8hUGaUYPLr67cJBQfYB8qjY3OvnuTnd2-pVgytTlFRTyTqB3QXji5FsvegVywKex8YTmERtOnImSDULtJWaYnQJE8NFbeJ-vCsk2Rm2sLm1F_jOEOCQ3LPzsu9Dzvr0SdNQY9_jNsjpazHUBnu-gXKN2t3daYSl8goQVCKf6iDWAsb5lb5XCFxCYXqwxNU6YU5RruTjN5R3SGkavJM9GG703jWGpAy-7Pct_7_-TFcxX2QTcbTwwdwDXdX2uSUb0OvWn62DxEyVfpRuzYZfLzs7fAbgwQrNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic%2C+Organic%2C+and+Perovskite+Halides+with+Nanotechnology+for+High%E2%80%93Light+Yield+X-+and+%CE%B3-ray+Scintillators&rft.jtitle=Crystals+%28Basel%29&rft.au=Francesco+Maddalena&rft.au=Liliana+Tjahjana&rft.au=Aozhen+Xie&rft.au=Arramel&rft.date=2019-02-01&rft.pub=MDPI+AG&rft.eissn=2073-4352&rft.volume=9&rft.issue=2&rft.spage=88&rft_id=info:doi/10.3390%2Fcryst9020088&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7f7857324e44b36b1e4dea20a88241a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon