Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and γ-ray Scintillators
Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields...
Saved in:
Published in | Crystals (Basel) Vol. 9; no. 2; p. 88 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce 3 + , Pr 3 + and Nd 3 + lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu 3 + doped SrI 2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators. |
---|---|
AbstractList | Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce 3 + , Pr 3 + and Nd 3 + lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu 3 + doped SrI 2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators. Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high⁻light yield and fast response can be found in Ce 3 + , Pr 3 + and Nd 3 + lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu 3 + doped SrI 2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000⁻300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators. Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce3+, Pr3+and Nd3+lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu3+doped SrI2. However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators. Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce3+ , Pr3+ and Nd3+ lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu3+ doped SrI2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators |
Author | Dujardin, Christophe Maddalena, Francesco Tjahjana, Liliana Dang, Cuong Arramel Wang, Hong Coquet, Philippe Birowosuto, Muhammad Xie, Aozhen Drozdowski, Winicjusz Zeng, Shuwen |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0001-6246-8870 surname: Maddalena fullname: Maddalena, Francesco – sequence: 2 givenname: Liliana orcidid: 0000-0003-0015-5582 surname: Tjahjana fullname: Tjahjana, Liliana – sequence: 3 givenname: Aozhen orcidid: 0000-0003-3510-7177 surname: Xie fullname: Xie, Aozhen – sequence: 4 orcidid: 0000-0003-4125-6099 surname: Arramel fullname: Arramel – sequence: 5 givenname: Shuwen orcidid: 0000-0003-2188-7213 surname: Zeng fullname: Zeng, Shuwen – sequence: 6 givenname: Hong surname: Wang fullname: Wang, Hong – sequence: 7 givenname: Philippe surname: Coquet fullname: Coquet, Philippe – sequence: 8 givenname: Winicjusz orcidid: 0000-0002-6207-4801 surname: Drozdowski fullname: Drozdowski, Winicjusz – sequence: 9 givenname: Christophe surname: Dujardin fullname: Dujardin, Christophe – sequence: 10 givenname: Cuong orcidid: 0000-0001-6183-4082 surname: Dang fullname: Dang, Cuong – sequence: 11 givenname: Muhammad orcidid: 0000-0002-9997-6841 surname: Birowosuto fullname: Birowosuto, Muhammad |
BackLink | https://univ-lyon1.hal.science/hal-02285858$$DView record in HAL |
BookMark | eNptkd9qVDEQxg_SgrXtnQ8Q8Eroqfl3TnIuS7HuwtIKKuhVmJOT7GaNSZuklb3zHXyUvocP4ZM07Vqo4szFDMM3P_JlXjQ7IQbTNC8JPmZswG902uQyYIqxlM-aPYoFaznr6M6T_nlzmPMa1xA9FoLsNVfzENMSgtNH6OKxgTCh9ybFm_zVFYNm4N1kMvruygqdQ4jF6FWIPi43yMaEZm65-v3j56KWgr444yf0uX2A_LptE2zQB-1Ccd5DiSkfNLsWfDaHf-p-8-ns7cfTWbu4eDc_PVm0mmNSWokHxrCVBiyGrteCMyATsZThzvTGDjBqbIZO4t5UN9oyBnwktpfjQIXs2X4z33KnCGt1mdw3SBsVwamHQXWtIBWnvVEgrJCdYJQbzkfWj8TwyQDFICXlBCrr9Za1Av8XanayUPczTKnsat6Qqn211V6meHVtclHreJ1CtaooZ_XniWCyquhWpVPMORmrtCtQXAwlgfOKYHV_VfX0qnXp6J-lx7f8V34Hx8umdg |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_3c00824 crossref_primary_10_3390_cryst13081157 crossref_primary_10_30970_jps_24_2201 crossref_primary_10_1088_2053_1591_ac9270 crossref_primary_10_1002_adma_202301612 crossref_primary_10_1002_ange_202401833 crossref_primary_10_1002_ijch_202100052 crossref_primary_10_1038_s41567_020_01073_3 crossref_primary_10_1021_acs_inorgchem_3c00270 crossref_primary_10_1039_D4MH00142G crossref_primary_10_1039_D1TC01595H crossref_primary_10_1063_5_0236524 crossref_primary_10_1039_D1NA00815C crossref_primary_10_1002_lpor_202300860 crossref_primary_10_1002_adfm_202413755 crossref_primary_10_1016_j_inoche_2022_109711 crossref_primary_10_3390_cryst14121077 crossref_primary_10_1002_open_202100285 crossref_primary_10_1039_D2CE01263D crossref_primary_10_1039_D5SC00061K crossref_primary_10_1007_s10854_024_13529_w crossref_primary_10_1088_2399_1984_ac9568 crossref_primary_10_1002_smtd_202000506 crossref_primary_10_1016_j_nima_2021_165620 crossref_primary_10_1007_s11426_024_2589_9 crossref_primary_10_1038_s41567_020_01080_4 crossref_primary_10_1002_slct_202301851 crossref_primary_10_1021_acs_jpcc_4c07165 crossref_primary_10_1155_2022_7008940 crossref_primary_10_1002_adfm_202104879 crossref_primary_10_1039_D2TC05277F crossref_primary_10_1039_D1NR03996B crossref_primary_10_1063_5_0176763 crossref_primary_10_1016_j_optmat_2024_116383 crossref_primary_10_1109_TNS_2023_3265414 crossref_primary_10_1002_anie_202208440 crossref_primary_10_1021_jacs_4c12872 crossref_primary_10_1016_j_flatc_2024_100701 crossref_primary_10_1021_acscentsci_0c01153 crossref_primary_10_1021_acsnano_2c08047 crossref_primary_10_1016_j_nanoen_2020_105437 crossref_primary_10_1039_D0DT00974A crossref_primary_10_1039_D1CE01422F crossref_primary_10_1021_acsami_1c16171 crossref_primary_10_1063_1_5125999 crossref_primary_10_3390_cryst13050759 crossref_primary_10_1016_j_nima_2024_169322 crossref_primary_10_1002_adma_202309588 crossref_primary_10_1002_adom_202202668 crossref_primary_10_1063_5_0014953 crossref_primary_10_34133_research_0125 crossref_primary_10_1021_acsami_0c02589 crossref_primary_10_1016_j_omx_2019_100021 crossref_primary_10_1021_acsmaterialslett_0c00133 crossref_primary_10_3390_cryst11121531 crossref_primary_10_1016_j_jlumin_2024_120547 crossref_primary_10_1038_s41598_020_65672_z crossref_primary_10_1021_acsaom_2c00166 crossref_primary_10_1002_ange_202208440 crossref_primary_10_1071_CH21311 crossref_primary_10_1002_adom_202101297 crossref_primary_10_1007_s10854_020_04592_0 crossref_primary_10_1039_D0TC05647B crossref_primary_10_1007_s12596_023_01646_4 crossref_primary_10_1016_j_ijbiomac_2024_135608 crossref_primary_10_1021_acsami_9b15791 crossref_primary_10_1016_j_jcrysgro_2021_126339 crossref_primary_10_1016_j_matpr_2024_02_039 crossref_primary_10_1021_acsenergylett_0c02430 crossref_primary_10_1021_acs_jpclett_0c00161 crossref_primary_10_1063_5_0230622 crossref_primary_10_1016_j_optmat_2021_111241 crossref_primary_10_1016_j_jlumin_2021_118157 crossref_primary_10_1007_s11426_022_1334_0 crossref_primary_10_1016_j_radmeas_2023_106933 crossref_primary_10_1016_j_radphyschem_2020_109133 crossref_primary_10_1039_D2TC01483A crossref_primary_10_1039_D3TC03977C crossref_primary_10_3788_LOP232161 crossref_primary_10_1007_s10853_022_07288_4 crossref_primary_10_1126_sciadv_adq6325 crossref_primary_10_30970_jps_25_1201 crossref_primary_10_1002_er_8539 crossref_primary_10_1002_adom_202302063 crossref_primary_10_1021_acsami_4c01741 crossref_primary_10_1021_acsenergylett_3c01396 crossref_primary_10_1039_D1TC00671A crossref_primary_10_1038_s41563_021_01132_x crossref_primary_10_1364_PRJ_501477 crossref_primary_10_1134_S1063783421100048 crossref_primary_10_1021_acsnano_3c12381 crossref_primary_10_1016_j_mattod_2021_05_020 crossref_primary_10_1364_PRJ_439744 crossref_primary_10_3390_cryst12070887 crossref_primary_10_1021_acs_jpcc_1c03392 crossref_primary_10_1002_advs_202003728 crossref_primary_10_1016_j_jlumin_2021_118046 crossref_primary_10_1039_D2TC01646J crossref_primary_10_1002_lpor_202401802 crossref_primary_10_1021_acsomega_2c01712 crossref_primary_10_1002_adma_202205458 crossref_primary_10_1016_j_jlumin_2023_120012 crossref_primary_10_1016_j_optmat_2024_116049 crossref_primary_10_1002_adom_202302376 crossref_primary_10_1021_acs_jpcc_1c08178 crossref_primary_10_1002_pssr_202200175 crossref_primary_10_1021_acs_chemrev_2c00404 crossref_primary_10_1021_jacs_9b09969 crossref_primary_10_1039_D1TC04072C crossref_primary_10_1002_adma_202309410 crossref_primary_10_1016_j_mtchem_2023_101455 crossref_primary_10_1016_j_mtener_2021_100759 crossref_primary_10_1088_1361_6463_aba461 crossref_primary_10_1039_D4NR02401J crossref_primary_10_3390_cryst10020096 crossref_primary_10_1021_acs_chemmater_2c02830 crossref_primary_10_1039_C9CP03041G crossref_primary_10_1088_2516_1091_acdc70 crossref_primary_10_1016_j_optmat_2023_114251 crossref_primary_10_1088_2399_1984_ac421c crossref_primary_10_1109_TNS_2023_3267636 crossref_primary_10_1002_adma_202104749 crossref_primary_10_1039_D1TC01318A crossref_primary_10_1002_advs_202003584 crossref_primary_10_1002_adom_202300221 crossref_primary_10_1007_s40820_025_01671_x crossref_primary_10_1002_anie_202401833 crossref_primary_10_1016_j_jallcom_2025_178667 crossref_primary_10_1021_acs_chemmater_0c02789 crossref_primary_10_1021_acsmaterialslett_2c00099 crossref_primary_10_1021_acsphotonics_0c01394 crossref_primary_10_1016_j_ceramint_2022_07_032 crossref_primary_10_1021_acsaem_3c00340 crossref_primary_10_3390_cryst10060429 crossref_primary_10_3390_en14196186 crossref_primary_10_1039_D1TC00525A crossref_primary_10_1021_acsnano_0c08903 crossref_primary_10_1063_5_0217068 crossref_primary_10_1134_S1063778824100193 crossref_primary_10_1002_adfm_202316449 crossref_primary_10_1021_acsami_9b14772 crossref_primary_10_1021_acsomega_4c04077 crossref_primary_10_1016_j_jcrysgro_2024_127717 crossref_primary_10_1038_s41377_023_01208_0 crossref_primary_10_1016_j_matpr_2022_07_221 crossref_primary_10_1016_j_cej_2024_153077 crossref_primary_10_1021_acsami_2c14582 crossref_primary_10_1038_s41467_024_53263_9 crossref_primary_10_3390_nano12132141 crossref_primary_10_1016_j_jlumin_2024_120511 crossref_primary_10_1038_s43246_023_00348_5 crossref_primary_10_1016_j_jlumin_2024_120993 crossref_primary_10_1039_D0CC05389A crossref_primary_10_1021_acsanm_4c00404 crossref_primary_10_1016_j_jpowsour_2020_228443 crossref_primary_10_1039_D1RA01123E crossref_primary_10_1002_adpr_202200011 crossref_primary_10_1002_adma_202413182 crossref_primary_10_1007_s10894_022_00334_8 crossref_primary_10_1016_j_cclet_2022_03_085 crossref_primary_10_1021_acsami_2c09732 crossref_primary_10_1016_j_jallcom_2022_167503 crossref_primary_10_1016_j_sna_2024_115828 crossref_primary_10_1002_admt_202301894 crossref_primary_10_1016_j_jlumin_2023_120216 crossref_primary_10_1016_j_prostr_2020_06_002 crossref_primary_10_1039_D2MA00258B crossref_primary_10_1021_acsphotonics_2c01235 crossref_primary_10_1002_lpor_202200848 crossref_primary_10_1021_acs_jpcc_4c00197 crossref_primary_10_1039_D2TC04631H crossref_primary_10_1039_D3CS00116D crossref_primary_10_3390_cryst9070343 crossref_primary_10_1016_j_radphyschem_2024_112178 crossref_primary_10_1021_acs_nanolett_3c00503 crossref_primary_10_1002_adma_202310663 crossref_primary_10_1021_acs_chemmater_4c03162 crossref_primary_10_1002_pssr_202400298 crossref_primary_10_1021_acsmaterialslett_1c00725 crossref_primary_10_1016_j_inoche_2021_109182 crossref_primary_10_1063_5_0093606 crossref_primary_10_3390_cryst9050234 crossref_primary_10_1002_chem_202403772 crossref_primary_10_1021_acsami_1c21055 |
Cites_doi | 10.1109/23.322800 10.1002/adma.201801743 10.1016/S0022-2313(02)00423-4 10.1109/23.322798 10.1088/0034-4885/18/1/301 10.1016/j.nima.2006.01.127 10.1016/j.jcrysgro.2006.04.048 10.1016/j.jlumin.2013.01.017 10.1063/1.3059562 10.1109/TNS.2008.2000845 10.1109/TNS.2007.902372 10.1038/nature24032 10.1109/23.159663 10.1016/j.nima.2004.08.016 10.1016/0168-9002(93)91170-R 10.1016/j.radphyschem.2005.10.008 10.1016/j.nima.2004.07.224 10.1016/j.jcrysgro.2005.11.023 10.1002/adom.201400571 10.1039/C5TA06398A 10.1109/23.159655 10.1142/S0217751X14300701 10.1063/1.2207689 10.1038/nphoton.2015.82 10.1016/j.nima.2015.03.090 10.1109/TNS.2009.2020165 10.1109/TNS.1987.4337375 10.1021/acs.jpcc.8b03622 10.37549/AR2291 10.1109/TNS.2005.852630 10.1007/s12274-016-1401-6 10.1016/j.jlumin.2015.09.013 10.1038/nphoton.2017.43 10.1063/1.4803440 10.1038/nnano.2014.149 10.1201/9781351228251 10.1021/nl5048779 10.1002/adma.201604268 10.1088/0953-8984/10/13/022 10.1016/j.jlumin.2006.05.004 10.1016/j.matchemphys.2013.11.037 10.1002/pssa.200723669 10.1109/TNS.2004.834957 10.1103/PhysRevB.20.2255 10.1016/j.nima.2013.07.077 10.1038/s41586-018-0451-1 10.1016/j.nima.2010.09.156 10.1109/TNS.2005.862975 10.1016/j.jcrysgro.2012.01.014 10.1039/C8EE00293B 10.1016/0029-554X(66)90041-3 10.1093/rpd/nch532 10.1109/23.914446 10.1007/s00330-008-0948-3 10.1016/S1350-4487(01)00045-2 10.1063/1.1745679 10.1007/BF01173347 10.1038/nphoton.2017.94 10.1103/RevModPhys.8.358 10.1016/j.jallcom.2006.06.075 10.1007/BF03167640 10.1016/0168-9002(90)90746-S 10.1109/TNS.2010.2045513 10.1021/cm00003a005 10.1016/j.nima.2005.07.052 10.1103/PhysRev.74.100 10.1016/j.jcrysgro.2012.02.025 10.1016/0167-5087(83)90194-1 10.1063/1.4922699 10.1016/j.jcrysgro.2013.02.020 10.1109/TNS.2011.2166999 10.1109/TNS.2013.2253330 10.2118/20494-PA 10.1007/978-3-319-45522-8 10.1364/OME.4.001207 10.1016/S0030-4018(01)01039-2 10.1016/j.apradiso.2013.03.053 10.1088/0957-0233/17/4/R01 10.1109/TNS.2007.908581 10.1109/23.12684 10.1126/science.3.59.227 10.1117/1.601530 10.1007/BF01379812 10.1063/1.4940578 10.1063/1.1715998 10.1016/j.nima.2005.10.107 10.1088/0370-1298/64/10/303 10.1007/b136169 10.3390/photonics5020014 10.1016/0167-5087(83)91254-1 10.1016/S0168-9002(97)01115-7 10.1002/pssb.2221870102 10.1109/23.256586 10.1109/TNS.2018.2840160 10.1063/1.3143786 10.1021/cm00045a002 10.1088/0953-8984/15/29/326 10.1016/j.nima.2014.12.031 10.1038/nmat4927 10.1016/j.nima.2015.08.041 10.1088/1748-0221/12/06/C06026 10.1088/0953-8984/19/25/256209 10.1055/b-0036-140231 10.1109/23.106619 10.1109/23.682433 10.3390/cryst8020078 10.1063/1.3589366 10.1088/0953-8984/18/26/031 10.1109/23.940077 10.1016/S0022-2313(99)00170-2 10.1016/0029-554X(67)90107-3 10.1007/BF01596341 10.1088/0031-9155/42/1/001 10.1002/cphc.201601190 10.1016/S0168-583X(02)00671-7 10.1109/TNS.2013.2296101 10.1117/12.738973 10.1109/TNS.2013.2269700 10.1021/acsphotonics.8b01655 10.1126/science.283.5402.663 10.1002/adma.201605003 10.1103/PhysRevA.2.415 10.1016/S0168-9002(96)00875-3 10.1109/TNS.2012.2184556 10.1063/1.355825 10.1063/1.1308053 10.1039/C4NR07444K 10.1016/j.nima.2007.10.038 10.1021/cg501005s 10.1063/1.2885728 10.1016/j.jlumin.2005.09.001 10.1016/j.nima.2010.08.093 10.1063/1.2432306 10.1109/TNS.2008.922826 10.1063/1.55052 10.1016/S0168-9002(97)01151-0 10.1063/1.1385342 10.1109/TNS.2010.2098045 10.1118/1.2008407 10.1038/s41598-017-15268-x 10.1038/srep37254 10.1364/OL.42.000987 10.1109/23.256679 10.1038/lsa.2015.117 10.1016/0029-554X(79)90729-8 10.1021/acs.chemrev.6b00290 10.1016/0168-9002(88)90780-2 10.1038/nphoton.2016.41 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC VOOES DOA |
DOI | 10.3390/cryst9020088 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2073-4352 |
ExternalDocumentID | oai_doaj_org_article_a7f7857324e44b36b1e4dea20a88241a oai_HAL_hal_02285858v1 10_3390_cryst9020088 |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I EDO GROUPED_DOAJ HCIFZ IAO KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC TUS 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC IGS IPNFZ ITC RIG VOOES PUEGO |
ID | FETCH-LOGICAL-c401t-809330f8eaf0a56c743a1d1f2305e6ef9abc0e95806e076cf33a4b1f68b927863 |
IEDL.DBID | DOA |
ISSN | 2073-4352 |
IngestDate | Wed Aug 27 01:30:33 EDT 2025 Fri May 09 12:22:33 EDT 2025 Tue Jul 15 09:40:46 EDT 2025 Thu Apr 24 22:55:59 EDT 2025 Tue Jul 01 03:49:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | perovskite X-ray inorganic organic scintillator γ-ray |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-809330f8eaf0a56c743a1d1f2305e6ef9abc0e95806e076cf33a4b1f68b927863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9997-6841 0000-0003-3510-7177 0000-0003-2188-7213 0000-0001-6183-4082 0000-0002-6207-4801 0000-0001-6246-8870 0000-0003-0015-5582 0000-0003-4125-6099 0000-0002-0205-9837 |
OpenAccessLink | https://doaj.org/article/a7f7857324e44b36b1e4dea20a88241a |
PQID | 2430071738 |
PQPubID | 2032412 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7f7857324e44b36b1e4dea20a88241a hal_primary_oai_HAL_hal_02285858v1 proquest_journals_2430071738 crossref_citationtrail_10_3390_cryst9020088 crossref_primary_10_3390_cryst9020088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Crystals (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Weber (ref_18) 2002; 100 Cherepy (ref_132) 2009; 56 Yang (ref_138) 2011; 5 Bauer (ref_62) 1967; 55 Birowosuto (ref_109) 2008; 55 Birowosuto (ref_89) 2006; 99 Shimizu (ref_122) 2006; 53 Melcher (ref_42) 1992; 39 Cherepy (ref_140) 2008; 92 Birowosuto (ref_90) 2005; 52 Leblans (ref_44) 2000; 13 Zych (ref_82) 2003; 15 ref_10 Yu (ref_81) 2015; 4 Birowosuto (ref_110) 2008; 55 Adrova (ref_79) 1957; 6 Pourdavoud (ref_162) 2017; 29 Atac (ref_52) 1998; 422 Schotanus (ref_93) 1988; 272 Nikl (ref_8) 2006; 17 Moszynski (ref_61) 2005; 553 Casey (ref_91) 2004; 45 Melcher (ref_41) 2000; 41 Shepherd (ref_35) 1997; 36 Jacquier (ref_118) 1988; 38 Hall (ref_29) 1936; 29 Pauwels (ref_116) 2000; 47 Bross (ref_53) 2000; 229–232 ref_23 Kawano (ref_153) 2017; 7 ref_21 Knapitsch (ref_156) 2014; 29 ref_124 Drozdowski (ref_117) 2014; 4 Frenkel (ref_33) 1926; 35 Glodo (ref_100) 2005; 52 Dorenbos (ref_28) 2005; 202 Neitzel (ref_45) 2005; 114 Dorenbos (ref_97) 2001; 48 Yakunin (ref_145) 2015; 9 Birowosuto (ref_107) 2006; 18 Derenzo (ref_129) 2011; 652 Xu (ref_167) 2016; 116 Yanagida (ref_74) 2015; 784 (ref_111) 1995; Volume 1 Eperon (ref_154) 2015; 3 Dorenbos (ref_108) 2005; 537 Gundiah (ref_126) 2013; 138 Birks (ref_76) 1951; 64 ref_155 Brooks (ref_19) 1979; 162 Dorenbos (ref_94) 1993; 40 ref_157 ref_73 Xie (ref_141) 2018; 122 Kinchin (ref_32) 1955; 18 Ma (ref_152) 2017; 10 Wei (ref_142) 2016; 10 Selling (ref_123) 2007; 101 Moses (ref_92) 1990; 299 Kinloch (ref_69) 1994; 41 ref_160 Yaffe (ref_165) 1997; 42 Burke (ref_168) 2016; 1706 Rodnyi (ref_27) 1995; 187 Grippa (ref_136) 2013; 371 Gholipour (ref_163) 2017; 29 Glodo (ref_98) 2011; 58 Schaart (ref_40) 2014; 61 Blahuta (ref_58) 2013; 60 Kawamura (ref_121) 2007; 54 Liu (ref_158) 2017; 42 Smeltzer (ref_78) 1950; 21 Birowosuto (ref_22) 2016; 6 Gundiah (ref_125) 2010; 57 Annenkov (ref_54) 2008; 584 Blasse (ref_36) 1989; 3 Lempicki (ref_26) 1993; 333 Heo (ref_171) 2018; 30 Dorenbos (ref_64) 2001; 33 Dorenbos (ref_101) 1999; 85 Grajo (ref_11) 2016; 45 Raue (ref_72) 1994; 75 Lecoq (ref_20) 2016; 809 Zhu (ref_161) 2015; 106 Crookes (ref_55) 1903; 87 Kim (ref_143) 2017; 550 Laval (ref_67) 1983; 206 Wei (ref_147) 2017; 16 Grippa (ref_131) 2013; 729 Kerisit (ref_37) 2009; 105 Anger (ref_12) 1958; 29 Kang (ref_166) 2011; 98 Wolski (ref_84) 1997; 385 Cherginets (ref_137) 2014; 143 Derenzo (ref_68) 1990; 37 Borade (ref_133) 2011; 652 Wei (ref_144) 2017; 11 Moretti (ref_60) 2017; 18 Kapusta (ref_70) 1998; 404 Bessiere (ref_99) 2004; 51 Kishimoto (ref_151) 2008; 93 Dorenbos (ref_103) 2001; 79 Allemand (ref_66) 1983; 205 Stand (ref_139) 2016; 169 Nikl (ref_115) 2006; 292 Dorenbos (ref_25) 1994; 41 Tian (ref_43) 2007; 433 (ref_24) 1993; 21 Neitzel (ref_47) 2008; 18 Wegh (ref_80) 1999; 283 Protesescu (ref_169) 2015; 15 Birowosuto (ref_96) 2007; 19 Dorenbos (ref_105) 2001; 189 Birowosuto (ref_106) 2007; 204 Schotanus (ref_71) 1992; 39 Dujardin (ref_14) 2018; 65 Birowosuto (ref_83) 2009; 206 Dorenbos (ref_95) 2000; 77 (ref_120) 1995; Volume 1 Alekhin (ref_86) 2013; 102 Zhuravleva (ref_135) 2012; 352 Karim (ref_34) 1979; 20 Rocha (ref_49) 2006; 556 Glodo (ref_104) 2005; 1 Shibuya (ref_150) 2002; 194 Ogino (ref_114) 2006; 287 Rowe (ref_134) 2013; 60 Hubbell (ref_31) 2006; 75 Chin (ref_149) 2018; 11 Chen (ref_170) 2018; 561 Kapusta (ref_112) 1998; 404 Blasse (ref_16) 1994; 6 Zaitseva (ref_77) 2015; 789 ref_39 Bass (ref_75) 2013; 77 Knapitsch (ref_159) 2012; 59 Drozdowski (ref_85) 2006; 562 Drozdowski (ref_119) 2008; 55 Bulin (ref_164) 2015; 7 Sawant (ref_46) 2005; 32 Yin (ref_102) 1997; Volume 2 Porter (ref_57) 1966; 39 Eisenberg (ref_30) 1970; 2 Dujardin (ref_38) 1998; 10 Sakai (ref_65) 1987; 34 MacAllister (ref_13) 1993; 3 ref_1 Takahashi (ref_50) 1993; 40 Hofstadter (ref_56) 1948; 74 ref_3 Nikl (ref_113) 2007; 126 ref_2 Birowosuto (ref_88) 2006; 118 Tan (ref_148) 2014; 9 Bessiere (ref_87) 2005; 537 Shrestha (ref_146) 2017; 11 ref_48 ref_9 Biswas (ref_51) 2017; 12 Bizarri (ref_128) 2011; 58 ref_5 Bizarri (ref_127) 2012; 352 ref_4 Nikl (ref_15) 2015; 3 ref_7 (ref_17) 1896; 3 Nagarkar (ref_63) 1998; 45 Holl (ref_130) 1988; 35 ref_6 Nikl (ref_59) 2014; 14 |
References_xml | – volume: 41 start-page: 752 year: 1994 ident: ref_69 article-title: New developments in cadmium tungstate publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.322800 – volume: 30 start-page: 1801743 year: 2018 ident: ref_171 article-title: High-Performance Next-Generation Perovskite Nanocrystal Scintillator for Nondestructive X-ray Imaging publication-title: Adv. Mater. doi: 10.1002/adma.201801743 – volume: 87 start-page: 241 year: 1903 ident: ref_55 article-title: Certain Properties of the Emanations of Radium publication-title: Chem. News – volume: 100 start-page: 35 year: 2002 ident: ref_18 article-title: Inorganic scintillators: Today and tomorrow publication-title: J. Lumin. doi: 10.1016/S0022-2313(02)00423-4 – volume: 41 start-page: 738 year: 1994 ident: ref_25 article-title: Nd3+ and Pr3+ doped inorganic scintillators publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.322798 – volume: 18 start-page: 1 year: 1955 ident: ref_32 article-title: The Displacement of Atoms in Solids by Radiation publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/18/1/301 – volume: 562 start-page: 254 year: 2006 ident: ref_85 article-title: Scintillation properties of LuAP and LuYAP crystals activated with Cerium and Molybdenum publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2006.01.127 – volume: 292 start-page: 416 year: 2006 ident: ref_115 article-title: Development of novel scintillator crystals publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2006.04.048 – volume: 41 start-page: 1501 year: 2000 ident: ref_41 article-title: Scintillation Crystals for PET publication-title: J. Nucl. Med. – volume: 138 start-page: 143 year: 2013 ident: ref_126 article-title: Structure and scintillation of Eu2+-activated BaBrCl and solid solutions in the BaCl2–BaBr2 system publication-title: J. Lumin. doi: 10.1016/j.jlumin.2013.01.017 – volume: 93 start-page: 261901 year: 2008 ident: ref_151 article-title: Subnanosecond time-resolved X-ray measurements using an organic-inorganic perovskite scintillator publication-title: Appl. Phys. Lett. doi: 10.1063/1.3059562 – ident: ref_39 – volume: 55 start-page: 2420 year: 2008 ident: ref_119 article-title: Scintillation Properties of Praseodymium Activated Lu3Al5O12 Single Crystals publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2008.2000845 – volume: 54 start-page: 1383 year: 2007 ident: ref_121 article-title: Floating Zone Growth and Scintillation Characteristics of Cerium-Doped Gadolinium Pyrosilicate Single Crystals publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2007.902372 – volume: 550 start-page: 87 year: 2017 ident: ref_143 article-title: Printable organometallic perovskite enables large-area, low-dose X-ray imaging publication-title: Nature doi: 10.1038/nature24032 – volume: 39 start-page: 546 year: 1992 ident: ref_71 article-title: Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.159663 – volume: 537 start-page: 232 year: 2005 ident: ref_108 article-title: Scintillation properties of K2LaX5:Ce3+ (X = Cl, Br, I) publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2004.08.016 – ident: ref_1 – volume: 333 start-page: 304 year: 1993 ident: ref_26 article-title: Fundamental limits of scintillator performance publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/0168-9002(93)91170-R – volume: 75 start-page: 614 year: 2006 ident: ref_31 article-title: Electron–positron pair production by photons: A historical overview publication-title: Rad. Phys. Chem. doi: 10.1016/j.radphyschem.2005.10.008 – volume: 537 start-page: 22 year: 2005 ident: ref_87 article-title: Luminescence and scintillation properties of the small bandgap compound LaI3:Ce3+ publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2004.07.224 – volume: 287 start-page: 335 year: 2006 ident: ref_114 article-title: Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals publication-title: J. Crys. Growth doi: 10.1016/j.jcrysgro.2005.11.023 – volume: 3 start-page: 463 year: 2015 ident: ref_15 article-title: Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201400571 – volume: 3 start-page: 19688 year: 2015 ident: ref_154 article-title: Inorganic caesium lead iodide perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06398A – volume: 39 start-page: 502 year: 1992 ident: ref_42 article-title: Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.159655 – volume: 202 start-page: 195 year: 2005 ident: ref_28 article-title: Scintillation mechanisms in Ce3+ doped halide scintillators publication-title: Phys. Stat. Sol. A – volume: 29 start-page: 1430070 year: 2014 ident: ref_156 article-title: Review on photonic crystal coatings for scintillators publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X14300701 – volume: 99 start-page: 123520 year: 2006 ident: ref_89 article-title: High-light-output scintillator for photodiode readout: LuI3:Ce3+ publication-title: J. Appl. Phys. doi: 10.1063/1.2207689 – volume: 9 start-page: 444 year: 2015 ident: ref_145 article-title: Detection of X-ray photons by solution-processed lead halide perovskites publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.82 – volume: 789 start-page: 8 year: 2015 ident: ref_77 article-title: Scintillation properties of solution-grown trans-stilbene single crystals publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2015.03.090 – volume: 56 start-page: 873 year: 2009 ident: ref_132 article-title: Scintillators With Potential to Supersede Lanthanum Bromide publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2009.2020165 – volume: 34 start-page: 418 year: 1987 ident: ref_65 article-title: Recent Measurements on Scintillator-Photodetector Systems publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.1987.4337375 – volume: 204 start-page: 850 year: 2007 ident: ref_106 article-title: Scintillation and luminescence properties of Ce3+ doped ternary cesium rare-earth halides publication-title: Phys. Stat. Sol. A – volume: 122 start-page: 16265 year: 2018 ident: ref_141 article-title: Thermal Quenching and Dose Studies of X-ray Luminescence in Single Crystals of Halide Perovskites publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03622 – ident: ref_48 – volume: 45 start-page: 6 year: 2016 ident: ref_11 article-title: Dual energy CT in practice: Basic principles and applications publication-title: Appl. Rad. doi: 10.37549/AR2291 – volume: 52 start-page: 1114 year: 2005 ident: ref_90 article-title: Scintillation properties of LuI3:Ce3+-high–light yield scintillators publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2005.852630 – volume: 10 start-page: 2117 year: 2017 ident: ref_152 article-title: Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics publication-title: Nano Res. doi: 10.1007/s12274-016-1401-6 – volume: 169 start-page: 301 year: 2016 ident: ref_139 article-title: Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2015.09.013 – volume: 11 start-page: 315 year: 2017 ident: ref_144 article-title: Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.43 – volume: Volume 1 start-page: 29 year: 1995 ident: ref_111 article-title: Phospors in X-ray Computed Tomography and for the gamma-ray Anger Camera publication-title: Proceedings of the International Conference on Inorganic Scintillators and Their Applications – volume: Volume 1 start-page: 309 year: 1995 ident: ref_120 article-title: Crystal growth and scintillation properties of the rare earth orthosilicates publication-title: Proceedings of the International Conference on Inorganic Scintillators and Their Applications – volume: 102 start-page: 161915 year: 2013 ident: ref_86 article-title: Improvement of γ-ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping publication-title: Appl. Phys. Lett. doi: 10.1063/1.4803440 – volume: 9 start-page: 687 year: 2014 ident: ref_148 article-title: Bright light-emitting diodes based on organometal halide perovskite publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.149 – ident: ref_4 doi: 10.1201/9781351228251 – volume: 15 start-page: 3692 year: 2015 ident: ref_169 article-title: Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut publication-title: Nano Lett. doi: 10.1021/nl5048779 – volume: 29 start-page: 1604268 year: 2017 ident: ref_163 article-title: Organometallic Perovskite Metasurfaces publication-title: Adv. Mater. doi: 10.1002/adma.201604268 – volume: 5 start-page: 43 year: 2011 ident: ref_138 article-title: Crystal growth and characterization of CsSrI3:Eu2+ high–light yield scintillators publication-title: Phys. Stat. Sol. – volume: 10 start-page: 3061 year: 1998 ident: ref_38 article-title: Optical and scintillation properties of large crystals publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/10/13/022 – volume: 126 start-page: 77 year: 2007 ident: ref_113 article-title: Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics publication-title: J. Lumin. doi: 10.1016/j.jlumin.2006.05.004 – volume: 143 start-page: 1296 year: 2014 ident: ref_137 article-title: Scintillation properties of CsSrX3:Eu2+ (X = Cl, Br) single crystals grown by the Bridgman method publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.11.037 – volume: 206 start-page: 9 year: 2009 ident: ref_83 article-title: Novel γ- and X-ray Scintillator Research: On the Emission Wavelength, Light Yield and Time Response of Ce3+ Doped Halide Scintillators publication-title: Phys. Status Solidi A doi: 10.1002/pssa.200723669 – volume: 51 start-page: 2970 year: 2004 ident: ref_99 article-title: New thermal neutron scintillators: Cs2LiYCl6:Ce3+ and Cs2LiYBr6:Ce3+ publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2004.834957 – volume: 20 start-page: 2255 year: 1979 ident: ref_34 article-title: Localized level hopping transport in La(Sr)CrO3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.20.2255 – volume: 729 start-page: 356 year: 2013 ident: ref_131 article-title: Scintillation properties of CaBr2 crystals doped with Eu2+ ions publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2013.07.077 – volume: 561 start-page: 88 year: 2018 ident: ref_170 article-title: All-inorganic perovskite nanocrystal scintillators publication-title: Nature doi: 10.1038/s41586-018-0451-1 – volume: 652 start-page: 247 year: 2011 ident: ref_129 article-title: New scintillators discovered by high-throughput screening publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2010.09.156 – volume: 53 start-page: 14 year: 2006 ident: ref_122 article-title: Scintillation properties of Lu0.4Gd1.6SiO5: Ce (LGSO) crystal publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2005.862975 – volume: 352 start-page: 78 year: 2012 ident: ref_127 article-title: Crystal growth and characterization of alkali-earth halide scintillators publication-title: J. Crys. Growth doi: 10.1016/j.jcrysgro.2012.01.014 – volume: 11 start-page: 1770 year: 2018 ident: ref_149 article-title: Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00293B – volume: 39 start-page: 35 year: 1966 ident: ref_57 article-title: Response of NaI, anthracene and plastic scintillators to electrons and the problems of detecting low energy electrons with scintillation counters publication-title: Nucl. Instrum. Methods Phys. Res. doi: 10.1016/0029-554X(66)90041-3 – volume: 114 start-page: 32 year: 2005 ident: ref_45 article-title: Status and prospects of digital detector technology for CR and DR publication-title: Radiat. Prot. Dosim. doi: 10.1093/rpd/nch532 – ident: ref_73 – volume: 47 start-page: 1787 year: 2000 ident: ref_116 article-title: A novel inorganic scintillator: Lu2Si2O7:Ce3+ (LPS) publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.914446 – volume: 18 start-page: 1818 year: 2008 ident: ref_47 article-title: Digital chest radiography: an update on modern technology, dose containment and control of image quality publication-title: Eur. Radiol. doi: 10.1007/s00330-008-0948-3 – volume: 33 start-page: 521 year: 2001 ident: ref_64 article-title: Energy resolution of some new inorganic-scintillator gamma-ray detectors publication-title: Rad. Meas. doi: 10.1016/S1350-4487(01)00045-2 – volume: 21 start-page: 669 year: 1950 ident: ref_78 article-title: Energy Dependence of the Naphthalene Scintillation Detector publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1745679 – volume: 6 start-page: 394 year: 1957 ident: ref_79 article-title: Preparation of 2,5-diphenyloxazole and its. scintillation efficiency in plastics publication-title: Bull. Acad. Sci. USSR doi: 10.1007/BF01173347 – volume: 11 start-page: 436 year: 2017 ident: ref_146 article-title: High-Performance Direct Conversion X-ray Detectors Based on Sintered Hybrid Lead Triiodide Perovskite Wafers publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.94 – volume: 29 start-page: 358 year: 1936 ident: ref_29 article-title: The Theory of Photoelectric Absorption for X-rays and y-Rays publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.8.358 – volume: 433 start-page: 313 year: 2007 ident: ref_43 article-title: Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2006.06.075 – ident: ref_6 – volume: 13 start-page: 117 year: 2000 ident: ref_44 article-title: A new needle-crystalline computed radiography detector publication-title: J. Digit. Imaging doi: 10.1007/BF03167640 – volume: 299 start-page: 51 year: 1990 ident: ref_92 article-title: The scintillation properties of cerium-doped lanthanum fluoride publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/0168-9002(90)90746-S – volume: 57 start-page: 3 year: 2010 ident: ref_125 article-title: Scintillation properties of Eu2+-activated barium fluoroiodide publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2010.2045513 – volume: 3 start-page: 294 year: 1989 ident: ref_36 article-title: New Luminescent Materials publication-title: Chem. Mater. doi: 10.1021/cm00003a005 – volume: 553 start-page: 578 year: 2005 ident: ref_61 article-title: Characterization of CaWO4 Scintillator at Room and Liquid Nitrogen Temperatures publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2005.07.052 – volume: 1 start-page: 98 year: 2005 ident: ref_104 article-title: LaBr3:Pr3+—A new red-emitting scintillator publication-title: IEEE Nucl. Sci. Symp. Conf. Rec. – volume: 74 start-page: 100 year: 1948 ident: ref_56 article-title: Alkali Halide Scintillation Counters publication-title: Phys. Rev. doi: 10.1103/PhysRev.74.100 – volume: 229–232 start-page: 363 year: 2000 ident: ref_53 article-title: Applications for Large Solid Scintillator Detectors in Neutrino and Particle Astrophysics publication-title: Nucl. Phys. B Proc. Suppl. – volume: 352 start-page: 115 year: 2012 ident: ref_135 article-title: New single crystal scintillators: CsCaCl3:Eu and CsCaI3:Eu publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2012.02.025 – volume: 205 start-page: 239 year: 1983 ident: ref_66 article-title: Recent progress in fast timing with CsF scintillators in application to time-of-flight positron tomography in medicine publication-title: Nucl. Instrum. Methods Phys. Res. doi: 10.1016/0167-5087(83)90194-1 – volume: 106 start-page: 241901 year: 2015 ident: ref_161 article-title: Enhanced light extraction of scintillator using large-area photonic crystal structures fabricated by soft-X-ray interference lithography publication-title: Appl. Phys. Lett. doi: 10.1063/1.4922699 – volume: 371 start-page: 112 year: 2013 ident: ref_136 article-title: Crystal growth and scintillation properties of CsCaBr3:Eu2+ publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2013.02.020 – volume: Volume 2 start-page: 330 year: 1997 ident: ref_102 article-title: RbGd2Cl7:Ce3+ and RbGd2Br7: Ce3+: New Scintillators with a High Light Yield publication-title: Proceedings of the International Conference on Inorganic Scintillators and their Applications – volume: 58 start-page: 3403 year: 2011 ident: ref_128 article-title: Scintillation and Optical Properties BaBrI:Eu2+ and CsBa2I5:Eu2+ publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2011.2166999 – volume: 60 start-page: 1057 year: 2013 ident: ref_134 article-title: A New Lanthanide Activator for Iodide Based Scintillators:Yb2+ publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2013.2253330 – volume: 3 start-page: 184 year: 1993 ident: ref_13 article-title: Application of X-ray CT scanning to determine gas/water relative permeabilities publication-title: SPE Form. Eval. doi: 10.2118/20494-PA – ident: ref_3 doi: 10.1007/978-3-319-45522-8 – ident: ref_5 – volume: 4 start-page: 1207 year: 2014 ident: ref_117 article-title: 33000 photons per MeV from mixed (Lu0.75Y0.25)3Al5O12:Pr scintillator crystals publication-title: Opt. Mater. Express doi: 10.1364/OME.4.001207 – volume: 189 start-page: 297 year: 2001 ident: ref_105 article-title: Optical and scintillation properties of pure and Ce3+ doped GdBr3 publication-title: Opt. Comm. doi: 10.1016/S0030-4018(01)01039-2 – volume: 77 start-page: 130 year: 2013 ident: ref_75 article-title: Characterization of a 6Li-loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2013.03.053 – volume: 17 start-page: R37 year: 2006 ident: ref_8 article-title: Scintillation detectors for X-rays publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/4/R01 – volume: 55 start-page: 1164 year: 2008 ident: ref_110 article-title: Temperature dependent scintillation and luminescence characteristics of GdI3: Ce3+ publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2007.908581 – volume: 35 start-page: 105 year: 1988 ident: ref_130 article-title: A measurement of the light yield of common inorganic scintillators publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.12684 – volume: 3 start-page: 227 year: 1896 ident: ref_17 article-title: On a New Kind of Rays publication-title: Science doi: 10.1126/science.3.59.227 – volume: 36 start-page: 36 year: 1997 ident: ref_35 article-title: Study of afterglow in X-ray phosphors for use on fast-framing charge-coupled device detectors publication-title: Opt. Eng. doi: 10.1117/1.601530 – volume: 35 start-page: 652 year: 1926 ident: ref_33 article-title: Über die Wärmebewegung in festen und flüssigen Körpern publication-title: Z. Phys. doi: 10.1007/BF01379812 – volume: 1706 start-page: 110007 year: 2016 ident: ref_168 article-title: Scintillating quantum dots for imaging X-rays (SQDIX) for aircraft inspection publication-title: AIP Conf. Proc. doi: 10.1063/1.4940578 – volume: 29 start-page: 27 year: 1958 ident: ref_12 article-title: Scintillation Camera publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1715998 – ident: ref_23 – volume: 556 start-page: 281 year: 2006 ident: ref_49 article-title: Optical coupling between scintillators and standard CMOS detectors publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2005.10.107 – volume: 64 start-page: 874 year: 1951 ident: ref_76 article-title: Scintillations from Organic Crystals: Specific Fluorescence and Relative Response to Different Radiations publication-title: Proc. Phys. Soc. Sect. A doi: 10.1088/0370-1298/64/10/303 – ident: ref_9 doi: 10.1007/b136169 – ident: ref_155 doi: 10.3390/photonics5020014 – volume: 206 start-page: 169 year: 1983 ident: ref_67 article-title: Barium fluoride—Inorganic scintillator for subnanosecond timing publication-title: Nucl. Instrum. Methods Phys. Res. doi: 10.1016/0167-5087(83)91254-1 – volume: 404 start-page: 157 year: 1998 ident: ref_112 article-title: Properties of the YAP: Ce scintillator publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/S0168-9002(97)01115-7 – volume: 187 start-page: 15 year: 1995 ident: ref_27 article-title: Energy Loss in Inorganic Scintillators publication-title: Phys. Stat. Sol. B doi: 10.1002/pssb.2221870102 – volume: 40 start-page: 388 year: 1993 ident: ref_94 article-title: Scintillation properties of some Ce3+ and Pr3+ doped inorganic crystals publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.256586 – volume: 65 start-page: 1977 year: 2018 ident: ref_14 article-title: Needs, Trends, and Advances in Inorganic Scintillators publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2018.2840160 – volume: 105 start-page: 114915 year: 2009 ident: ref_37 article-title: Computer simulation of the light yield nonlinearity of inorganic scintillators publication-title: J. Appl. Phys. doi: 10.1063/1.3143786 – volume: 6 start-page: 1465 year: 1994 ident: ref_16 article-title: Scintillator Materials publication-title: Chem. Mater. doi: 10.1021/cm00045a002 – volume: 15 start-page: 5145 year: 2003 ident: ref_82 article-title: Quantum efficiency of europium emission from nanocrystalline powders of Lu2O3:Eu publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/29/326 – volume: 784 start-page: 111 year: 2015 ident: ref_74 article-title: Comparative study of neutron and gamma-ray pulse shape discrimination of anthracene, stilbene, and p-terphenyl publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2014.12.031 – volume: 16 start-page: 826 year: 2017 ident: ref_147 article-title: Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy publication-title: Nat. Mater. doi: 10.1038/nmat4927 – volume: 809 start-page: 130 year: 2016 ident: ref_20 article-title: Development of new scintillators for medical applications publication-title: Nucl. Instrum. Methods Phys. Res. doi: 10.1016/j.nima.2015.08.041 – volume: 12 start-page: C06026 year: 2017 ident: ref_51 article-title: Development of scintillator detector for detection of cosmic ray shower publication-title: J. Instrum. doi: 10.1088/1748-0221/12/06/C06026 – volume: 19 start-page: 256209 year: 2007 ident: ref_96 article-title: Thermal Quenching of Ce3+ Emission in PrX3 (X = Cl, Br) by Intervalence Charge Transfer publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/19/25/256209 – ident: ref_10 doi: 10.1055/b-0036-140231 – volume: 37 start-page: 203 year: 1990 ident: ref_68 article-title: Prospects for new inorganic scintillators publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.106619 – volume: 45 start-page: 492 year: 1998 ident: ref_63 article-title: Structured CsI(Tl) scintillators for X-ray imaging applications publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.682433 – ident: ref_157 doi: 10.3390/cryst8020078 – volume: 98 start-page: 181914 year: 2011 ident: ref_166 article-title: CdTe quantum dots and polymer nanocomposites for X-ray scintillation and imaging publication-title: Appl. Phys. Lett. doi: 10.1063/1.3589366 – volume: 18 start-page: 6133 year: 2006 ident: ref_107 article-title: Scintillation properties and anomalous Ce3+ emission of Cs2NaREBr6:Ce3+ (RE = La, Y, Lu) publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/18/26/031 – ident: ref_7 – volume: 48 start-page: 341 year: 2001 ident: ref_97 article-title: Scintillation properties of LaCl3:Ce3+ crystals: fast, efficient, and high-energy resolution scintillators publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.940077 – volume: 85 start-page: 1 year: 1999 ident: ref_101 article-title: Scintillation and luminescence properties of Ce3+ doped K2LaCl5 publication-title: J. Lumin. doi: 10.1016/S0022-2313(99)00170-2 – volume: 55 start-page: 55 year: 1967 ident: ref_62 article-title: Fabrication of thin NaI(TI) scintillation layers for low energy X-ray detection publication-title: Nucl. Instrum. Methods Phys. Res. doi: 10.1016/0029-554X(67)90107-3 – volume: 38 start-page: 802 year: 1988 ident: ref_118 article-title: Fluorescence decays and lifetimes of Nd3+, Ce3+ and Cr3+ in YAG publication-title: Czech. J. Phys. B doi: 10.1007/BF01596341 – volume: 42 start-page: 1 year: 1997 ident: ref_165 article-title: X-ray detectors for digital radiography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/42/1/001 – volume: 52 start-page: 1819 year: 2005 ident: ref_100 article-title: Optical and scintillation properties of Cs2LiYCl6:Ce3+ and Cs2LiYCl6:Pr3+ crystals publication-title: IEEE Trans. Nucl. Sci. – volume: 18 start-page: 493 year: 2017 ident: ref_60 article-title: Consequences of Ca Codoping in YAlO3:Ce Single Crystals publication-title: Chem. Phys. Chem. doi: 10.1002/cphc.201601190 – volume: 194 start-page: 207 year: 2002 ident: ref_150 article-title: Scintillation Properties of (C6H13NH3)2PbI4: Exciton Luminescence of an Organic/Inorganic Multiple Quantum Well Structure Compound Induced by 2.0 MeV protons publication-title: Nucl. Instrum. Methods Phys. Res. B doi: 10.1016/S0168-583X(02)00671-7 – volume: 61 start-page: 683 year: 2014 ident: ref_40 article-title: The Effect of Self-Absorption on the Scintillation Properties of Ce3+ Activated LaBr3 and CeBr3 publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2013.2296101 – ident: ref_124 doi: 10.1117/12.738973 – volume: 60 start-page: 3134 year: 2013 ident: ref_58 article-title: Evidence and Consequences of Ce4+ in LYSO: Ce, Ca and LYSO: Ce, Mg Single Crystals for Medical Imaging Applications publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2013.2269700 – ident: ref_160 doi: 10.1021/acsphotonics.8b01655 – volume: 45 start-page: 822 year: 2004 ident: ref_91 article-title: NEMA NU 2 performance tests for scanners with intrinsic radioactivity publication-title: J. Nucl. Med. – volume: 283 start-page: 663 year: 1999 ident: ref_80 article-title: Visible Quantum Cutting in LiGdF4:Eu3+ Through Downconversion publication-title: Science doi: 10.1126/science.283.5402.663 – volume: 29 start-page: 1605003 year: 2017 ident: ref_162 article-title: Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organo-Metal Halide Perovskites publication-title: Adv. Mater. doi: 10.1002/adma.201605003 – volume: 2 start-page: 415 year: 1970 ident: ref_30 article-title: Compton Scattering of X Rays from Bound Electrons publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.2.415 – volume: 385 start-page: 123 year: 1997 ident: ref_84 article-title: Properties of the new LuAP:Ce scintillator publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/S0168-9002(96)00875-3 – volume: 59 start-page: 2334 year: 2012 ident: ref_159 article-title: Results of Photonic Crystal Enhanced Light Extraction on Heavy Inorganic Scintillators publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2012.2184556 – ident: ref_21 – volume: 75 start-page: 481 year: 1994 ident: ref_72 article-title: Saturation of ZnS:Ag and Al under cathode X-ray excitation publication-title: J. Appl. Phys. doi: 10.1063/1.355825 – volume: 77 start-page: 1467 year: 2000 ident: ref_95 article-title: High-energy-resolution scintillator:Ce3+ activated LaCl3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1308053 – volume: 7 start-page: 5744 year: 2015 ident: ref_164 article-title: Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect publication-title: Nanoscale doi: 10.1039/C4NR07444K – volume: 584 start-page: 334 year: 2008 ident: ref_54 article-title: Development of CaMoO4 crystal scintillators for double beta decay experiment with 100-Mo publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2007.10.038 – volume: 21 start-page: 5 year: 1993 ident: ref_24 article-title: Fast scintillators and their applications publication-title: Radiat. Meas. – volume: 14 start-page: 4827 year: 2014 ident: ref_59 article-title: Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators publication-title: Cryst. Growth Des. doi: 10.1021/cg501005s – volume: 92 start-page: 90 year: 2008 ident: ref_140 article-title: Strontium and barium iodide high–light yield scintillators publication-title: Appl. Phys. Lett. doi: 10.1063/1.2885728 – volume: 118 start-page: 308 year: 2006 ident: ref_88 article-title: Optical Spectroscopy and Luminescence Quenching of LuI3:Ce3+ publication-title: J. Lumin. doi: 10.1016/j.jlumin.2005.09.001 – volume: 652 start-page: 260 year: 2011 ident: ref_133 article-title: Scintillation properties of CsBa2Br5:Eu2+ publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2010.08.093 – volume: 101 start-page: 034901 year: 2007 ident: ref_123 article-title: Europium-doped barium halide scintillators for X-ray and gamma-ray detections publication-title: J. Appl. Phys. doi: 10.1063/1.2432306 – volume: 55 start-page: 1152 year: 2008 ident: ref_109 article-title: Li-Based Thermal Neutron Scintillator Research; Rb2LiYBr6:Ce3+ and Other Elpasolites publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2008.922826 – ident: ref_2 – volume: 422 start-page: 251 year: 1998 ident: ref_52 article-title: Detection of cosmic ray tracks using scintillating fibers and position sensitive multi-anode photomultipliers publication-title: AIP Conf. Proc. doi: 10.1063/1.55052 – volume: 404 start-page: 413 year: 1998 ident: ref_70 article-title: Comparison of YAP and BGO for high-resolution PET detectors publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/S0168-9002(97)01151-0 – volume: 79 start-page: 1573 year: 2001 ident: ref_103 article-title: High-energy-resolution scintillator:Ce3+ activated LaBr3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1385342 – volume: 58 start-page: 333 year: 2011 ident: ref_98 article-title: Selected Properties of Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6 Scintillators publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2010.2098045 – volume: 32 start-page: 3067 year: 2005 ident: ref_46 article-title: Segmented crystalline scintillators: An initial investigation of high quantum efficiency detectors for megavoltage X-ray imaging publication-title: Med. Phys. doi: 10.1118/1.2008407 – volume: 7 start-page: 14754 year: 2017 ident: ref_153 article-title: Scintillating Organic-Inorganic Layered Perovskite-Type Compounds and the Gamma-Ray Detection Capabilities publication-title: Sci. Rep. doi: 10.1038/s41598-017-15268-x – volume: 6 start-page: 37254 year: 2016 ident: ref_22 article-title: X-ray Scintillation in Lead Halide Perovskite Crystals publication-title: Sci. Rep. doi: 10.1038/srep37254 – volume: 42 start-page: 987 year: 2017 ident: ref_158 article-title: Modified timing characteristic of a scintillation detection system with photonic crystal structures publication-title: Opt. Lett. doi: 10.1364/OL.42.000987 – volume: 40 start-page: 890 year: 1993 ident: ref_50 article-title: Newly developed low background hard X-ray/gamma-ray telescope with the well-type phoswich counters publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.256679 – volume: 4 start-page: e344 year: 2015 ident: ref_81 article-title: Multi-photon quantum cutting in Gd2O2S:Tm3+ to enhance the photo-response of solar cells publication-title: Light Sci. Appl. doi: 10.1038/lsa.2015.117 – volume: 162 start-page: 477 year: 1979 ident: ref_19 article-title: Development of organic scintillators publication-title: Nucl. Instrum. Methods Phys. Res. doi: 10.1016/0029-554X(79)90729-8 – volume: 116 start-page: 12234 year: 2016 ident: ref_167 article-title: New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00290 – volume: 272 start-page: 913 year: 1988 ident: ref_93 article-title: Detection of LaF3:Nd3+ scintillation light in a photosensitive multiwire chamber publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/0168-9002(88)90780-2 – volume: 10 start-page: 333 year: 2016 ident: ref_142 article-title: Sensitive X-ray Detectors Made of Methylammonium Lead Tribromide Perovskite Single Crystals publication-title: Nat. Photon. doi: 10.1038/nphoton.2016.41 |
SSID | ssj0000760771 |
Score | 2.5445082 |
Snippet | Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections... |
SourceID | doaj hal proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 88 |
SubjectTerms | Absorption cross sections Atoms & subatomic particles Cerium Chemical Sciences Collaboration Conversion Crystal growth Energy dissipation Engineering Sciences High temperature inorganic Lead compounds Low temperature Medical imaging Metal halides Nanocrystals Nanotechnology organic perovskite Perovskites Photoluminescence Photons Physics Quantum dots R&D Research & development Scintillation Scintillation counters scintillator Sensors Single crystals Tomography X ray absorption X-ray X-rays γ-ray |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7B9gIHxK9YWpCF4ARW7SR2nBNqUasFlVIhKi2nyHZs9YCy7SZU6q3vwKPwHjwET8JM4l1aJLhFjmVFM_b4-2YmMwAvhBIhy6TlIuiKF94IbnwpeaNzJGIE4Yf_uD8c6tlx8X6u5snh1qW0ypVNHAx1s_DkI9_OinwMGZs3p2ecukZRdDW10LgJG2iCjZnAxu7e4dGntZeF4k5lKceM9xz5_bZfXnR9JSjsb67dRUPJfrxhTigh8i-7PFw2-3fhTkKJbGdU6z24Edr7cPtK7cAHcPauHTsy-dfs4-rBtg07CsvFeUdOWTZDkN2EjpGzlaEdXfRrRzpDsMooyePX5fcDIujsC-WysTkfFvn5gy_tBcOT3_bUl4h68jyE4_29z29nPPVP4B5ZU4-XD3krogk2Cqu0R7BgZSMjsg4VdIiVdV6EShmhAwrKxzy3hZNRG1dlpdH5I5i0izY8BoZLBAROTkWfFy4qF6wzCA-aylOBGTWFVytJ1j4VF6ceF19rJBkk9_qq3Kfwcj37dCyq8Y95u6SU9RwqhT0MoHzrdLJqW8bSqBKBIX6hy7WToWiCzYRF8lBIO4XnqNJra8x2Dmoao9o_SJfMuZzC1krjdTrEXf1nyz35_-tNuIXbuhqTubdg0i-_haeIVXr3LG3I35q46rE priority: 102 providerName: ProQuest |
Title | Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and γ-ray Scintillators |
URI | https://www.proquest.com/docview/2430071738 https://univ-lyon1.hal.science/hal-02285858 https://doaj.org/article/a7f7857324e44b36b1e4dea20a88241a |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BucAB8VextKwsVE4Q1U5sxzluoctSbUsFVNqeItuxxQFlYTet1BvvwKPwHjwET8JMkl1tkRAXToksy7LGY8_3OZNvAPa44iFNhU140EUiveGJ8blIKp0hESMI3_7HfXyiJ2fyaKZmG6W-KCeskwfuDLdv85gblWPcD1K6TDsRZBVsyi1iQylaaIQxb4NMtWdwrnmeiy7TPUNev-8XV8um4PS531yLQa1UP0aWT5QI-cd53AaZ8T2426NDNupmdR9uhPoB3NnQDHwIX9_WXSUm_5K9W73YumKnYTG_XNJlLJsguK7CktElK8Pzc96sL9AZglRGyR2_vn2fEjFn55TDxmZJO8jPH8nCXjHc8XVD9YioFs8jOBsffnw1Sfq6CYlHttRg0KFbimiCjdwq7REkWFGJiGxDBR1iYZ3noVCG64CG8jHLrHQiauOKNDc624atel6Hx8BwCDS7cCr6TLqoXLDOICyoCk_CMmoAL1aWLH0vKk61LT6XSC7I7uWm3QfwfN37Syem8Zd-B7Qo6z4kgd02oH3L3jHKfznGAJ7hkl4bYzKaltRGmj9Ik8ylGMDuasXLfvMuy1RmXXaCefI_JrIDt9Hpiy7Vexe2msVFeIpIpnFDuGnGb4Zwa_T6ePoBnweHJ6fvh60r_wY5V_WX |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xUMBC9ARW7fw4zgGh8rNk6bZwaKXllNqOIw4o225C0d54B96DC-_BQ_AkzORnaZHg1ltkW1Y0M575ZjyeAXgsYuGDQBouvEp55LTg2iWSFypER4wgfPuOe3dPZQfR21k8W4Pvw1sYSqscdGKrqIu5oxj5VhCF3ZWxfn50zKlrFN2uDi00OrHY8csv6LLVzyavkL-bQTB-vf8y431XAe7Ql2hQJZMPX2pvSmFi5dCEGlnIErF47JUvU2Od8GmshfLo5LsyDE1kZam0TYNEqxD3vQAXoxAtOb1MH79ZxXTolitJZJdfj_Niyy2WdZMKSjLQZyxf2yAA7dlHSr_8ywq0pm18Da72mJRtd0J0HdZ8dQOunKpUeBOOJ1XX_8k9Ze-GD1MV7L1fzE9qCgGzDCF94WtGoV2GWnverML2DKExo5SSX1-_TSkcwD5Q5hyb8XaTnz_4wiwZ6pmqoS5I1AHoFhycC11vw3o1r_wdYLiFR5hm49KFkS1j643VCEaK1FE5m3gETwZK5q4vZU4dNT7l6NIQ3fPTdB_B5mr1UVfC4x_rXhBTVmuo8HY7gPTN-3Ocm6RMdJwgDMU_tKGy0keFN4Ew6KpE0ozgEbL0zB7Z9jSnMao0hM6ZPpEj2Bg4nvcqo87_CPjd_08_hEvZ_u40n072du7BZTxQaZdGvgHrzeKzv48oqbEPWtFkcHjeZ-E3K8klog |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJwQPyKlAIWoidYxd5f7wGhljZKaAgRolI4LbbXFodq02aXotx4Bx6FGw_BQ_AkzOxPaJHg1ttq17JWM_bM943HMwBPecSt7wvlcRunXmgk96RJhJfHARIxgvD1Pe4303h0FL6eR_MN-NHdhaG0ys4m1oY6XxiKkQ_8MGiOjOXAtWkRs_3hy5NTjzpI0Ulr106jWSKHdvUF6Vv5YryPut7x_eHB-1cjr-0w4BnkFRWaZ-LzTlrluIpig-5UiVw4xOWRja1LlTbcppHksUXCb1wQqFALF0ud-omMA5z3CmwmxIp6sLl3MJ29W0d46MwrSUSTbR8EKR-Y5aqsUk4pB_KCH6zbBaB3-0TJmH_5hNrRDW_CjRahst1mSd2CDVvchuvn6hbegdNx0XSDMs_Z2-5BFTmb2eXirKSAMBshwM9tySjQy9CGL6p1EJ8hUGaUYPLr67cJBQfYB8qjY3OvnuTnd2-pVgytTlFRTyTqB3QXji5FsvegVywKex8YTmERtOnImSDULtJWaYnQJE8NFbeJ-vCsk2Rm2sLm1F_jOEOCQ3LPzsu9Dzvr0SdNQY9_jNsjpazHUBnu-gXKN2t3daYSl8goQVCKf6iDWAsb5lb5XCFxCYXqwxNU6YU5RruTjN5R3SGkavJM9GG703jWGpAy-7Pct_7_-TFcxX2QTcbTwwdwDXdX2uSUb0OvWn62DxEyVfpRuzYZfLzs7fAbgwQrNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic%2C+Organic%2C+and+Perovskite+Halides+with+Nanotechnology+for+High%E2%80%93Light+Yield+X-+and+%CE%B3-ray+Scintillators&rft.jtitle=Crystals+%28Basel%29&rft.au=Francesco+Maddalena&rft.au=Liliana+Tjahjana&rft.au=Aozhen+Xie&rft.au=Arramel&rft.date=2019-02-01&rft.pub=MDPI+AG&rft.eissn=2073-4352&rft.volume=9&rft.issue=2&rft.spage=88&rft_id=info:doi/10.3390%2Fcryst9020088&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7f7857324e44b36b1e4dea20a88241a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon |