QuEChERS sample pre-processing with UPLC–MS/MS: A method for detecting 19 quinolone-based veterinary drugs in goat’s milk

•QuEChERS + UPLC–MS/MS was used to determine and identify quinolones in goat’s milk.•Plackett–Burman and CCD methods identified efficient extraction parameters.•The developed method meets the validation specifications of the TFDA.•The method is suitable for the routine analysis of quinolones in goat...

Full description

Saved in:
Bibliographic Details
Published inFood chemistry Vol. 373; no. Pt B; p. 131466
Main Authors Bang Ye, Siou, Huang, Ying, Lin, Ding-Yan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 30.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •QuEChERS + UPLC–MS/MS was used to determine and identify quinolones in goat’s milk.•Plackett–Burman and CCD methods identified efficient extraction parameters.•The developed method meets the validation specifications of the TFDA.•The method is suitable for the routine analysis of quinolones in goat’s milk. We develop and validate a method for the rapid determination and identification of 19 quinolones in goat’s milk by combining the QuEChERS technique with ultra-performance liquid chromatography–tandem mass spectrometry. Plackett–Burman and Central Composite Design methods were used to select the parameters that best promote the extraction efficiency, which led to extraction with acetonitrile/5% formic acid, followed by phase separation with sodium citrate, disodium hydrogen citrate, Na2SO4, and NaCl as optimal. The supernatant was then extracted and cleaned by dispersive solid-phase extraction using C18 and Na2SO4 aided by low-temperature clean-up. The method was validated, with limits of quantification (LOQs) of 5 ppb, specificities of 1/5 LOQ, linearities (R2) > 0.9853, recoveries of 73.4–114.2%, repeatabilities < 15.0%, and intermediate precisions < 13.6%. The developed method was suitable for the routine analysis of quinolone residues in goat’s milk and was used to test 10 goat milk samples produced in Taiwan.
AbstractList We develop and validate a method for the rapid determination and identification of 19 quinolones in goat's milk by combining the QuEChERS technique with ultra-performance liquid chromatography-tandem mass spectrometry. Plackett-Burman and Central Composite Design methods were used to select the parameters that best promote the extraction efficiency, which led to extraction with acetonitrile/5% formic acid, followed by phase separation with sodium citrate, disodium hydrogen citrate, Na SO , and NaCl as optimal. The supernatant was then extracted and cleaned by dispersive solid-phase extraction using C and Na SO aided by low-temperature clean-up. The method was validated, with limits of quantification (LOQs) of 5 ppb, specificities of 1/5 LOQ, linearities (R ) > 0.9853, recoveries of 73.4-114.2%, repeatabilities < 15.0%, and intermediate precisions < 13.6%. The developed method was suitable for the routine analysis of quinolone residues in goat's milk and was used to test 10 goat milk samples produced in Taiwan.
We develop and validate a method for the rapid determination and identification of 19 quinolones in goat’s milk by combining the QuEChERS technique with ultra-performance liquid chromatography–tandem mass spectrometry. Plackett–Burman and Central Composite Design methods were used to select the parameters that best promote the extraction efficiency, which led to extraction with acetonitrile/5% formic acid, followed by phase separation with sodium citrate, disodium hydrogen citrate, Na₂SO₄, and NaCl as optimal. The supernatant was then extracted and cleaned by dispersive solid-phase extraction using C₁₈ and Na₂SO₄ aided by low-temperature clean-up. The method was validated, with limits of quantification (LOQs) of 5 ppb, specificities of 1/5 LOQ, linearities (R²) > 0.9853, recoveries of 73.4–114.2%, repeatabilities < 15.0%, and intermediate precisions < 13.6%. The developed method was suitable for the routine analysis of quinolone residues in goat’s milk and was used to test 10 goat milk samples produced in Taiwan.
We develop and validate a method for the rapid determination and identification of 19 quinolones in goat's milk by combining the QuEChERS technique with ultra-performance liquid chromatography-tandem mass spectrometry. Plackett-Burman and Central Composite Design methods were used to select the parameters that best promote the extraction efficiency, which led to extraction with acetonitrile/5% formic acid, followed by phase separation with sodium citrate, disodium hydrogen citrate, Na2SO4, and NaCl as optimal. The supernatant was then extracted and cleaned by dispersive solid-phase extraction using C18 and Na2SO4 aided by low-temperature clean-up. The method was validated, with limits of quantification (LOQs) of 5 ppb, specificities of 1/5 LOQ, linearities (R2) > 0.9853, recoveries of 73.4-114.2%, repeatabilities < 15.0%, and intermediate precisions < 13.6%. The developed method was suitable for the routine analysis of quinolone residues in goat's milk and was used to test 10 goat milk samples produced in Taiwan.We develop and validate a method for the rapid determination and identification of 19 quinolones in goat's milk by combining the QuEChERS technique with ultra-performance liquid chromatography-tandem mass spectrometry. Plackett-Burman and Central Composite Design methods were used to select the parameters that best promote the extraction efficiency, which led to extraction with acetonitrile/5% formic acid, followed by phase separation with sodium citrate, disodium hydrogen citrate, Na2SO4, and NaCl as optimal. The supernatant was then extracted and cleaned by dispersive solid-phase extraction using C18 and Na2SO4 aided by low-temperature clean-up. The method was validated, with limits of quantification (LOQs) of 5 ppb, specificities of 1/5 LOQ, linearities (R2) > 0.9853, recoveries of 73.4-114.2%, repeatabilities < 15.0%, and intermediate precisions < 13.6%. The developed method was suitable for the routine analysis of quinolone residues in goat's milk and was used to test 10 goat milk samples produced in Taiwan.
•QuEChERS + UPLC–MS/MS was used to determine and identify quinolones in goat’s milk.•Plackett–Burman and CCD methods identified efficient extraction parameters.•The developed method meets the validation specifications of the TFDA.•The method is suitable for the routine analysis of quinolones in goat’s milk. We develop and validate a method for the rapid determination and identification of 19 quinolones in goat’s milk by combining the QuEChERS technique with ultra-performance liquid chromatography–tandem mass spectrometry. Plackett–Burman and Central Composite Design methods were used to select the parameters that best promote the extraction efficiency, which led to extraction with acetonitrile/5% formic acid, followed by phase separation with sodium citrate, disodium hydrogen citrate, Na2SO4, and NaCl as optimal. The supernatant was then extracted and cleaned by dispersive solid-phase extraction using C18 and Na2SO4 aided by low-temperature clean-up. The method was validated, with limits of quantification (LOQs) of 5 ppb, specificities of 1/5 LOQ, linearities (R2) > 0.9853, recoveries of 73.4–114.2%, repeatabilities < 15.0%, and intermediate precisions < 13.6%. The developed method was suitable for the routine analysis of quinolone residues in goat’s milk and was used to test 10 goat milk samples produced in Taiwan.
ArticleNumber 131466
Author Bang Ye, Siou
Huang, Ying
Lin, Ding-Yan
Author_xml – sequence: 1
  givenname: Siou
  surname: Bang Ye
  fullname: Bang Ye, Siou
  organization: Chiayi County Health Bureau Laboratory Section, No. 3, E. Sec., Sianghe 2nd Rd., Taibao City, Chiayi County 61249, Taiwan, ROC
– sequence: 2
  givenname: Ying
  surname: Huang
  fullname: Huang, Ying
  organization: Chiayi County Health Bureau Laboratory Section, No. 3, E. Sec., Sianghe 2nd Rd., Taibao City, Chiayi County 61249, Taiwan, ROC
– sequence: 3
  givenname: Ding-Yan
  surname: Lin
  fullname: Lin, Ding-Yan
  email: aceldy@g4e.npust.edu.tw
  organization: Institute of Food Safety Management, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 912301, Taiwan, ROC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34731812$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9uEzEQhy1URNPCK1Q-ctnUXu96HcSBKkoLUir-hJ4txx4nDrvr1PYWcajUd-DE6_VJcJSWA5dIluYw32_kme8EHfW-B4TOKBlTQvn5Zmy9N3oN3bgkJR1TRivOX6ARFQ0rGtKUR2hEGBGFyI1jdBLjhhBSEipeoWNWNYwKWo7Q_ddhNl3Pvi1wVN22BbwNUGyD1xCj61f4p0trfPNlPn18-H29OL9evMMXuIO09gZbH7CBBDrtSDrBt4PrfZs_WixVBIPvcjO4XoVf2IRhFbHr8cqr9PjwJ-LOtT9eo5dWtRHePNVTdHM5-z79WMw_X32aXswLXRGaimapeM0J4bWt2FJRRohpNBNEaF1aYaultXxSKS00NQ2DWotaibosAURjqGWn6O1-bt7sdoCYZOeihrZVPfghypIzXrMcqA6j9YTlV1GW0bMndFh2YOQ2uC7vKp-vmwG-B3TwMQaw_xBK5E6j3MhnjXKnUe415uD7_4LaJZWc71NQrj0c_7CPQ77pnYMgo3bQazAuZFvSeHdoxF82l73h
CitedBy_id crossref_primary_10_1016_j_foodcont_2024_110796
crossref_primary_10_1007_s12161_024_02602_z
crossref_primary_10_1038_s41598_024_65246_3
crossref_primary_10_1016_j_jpha_2024_101023
crossref_primary_10_1016_j_microc_2024_112519
crossref_primary_10_1093_chromsci_bmae014
crossref_primary_10_1007_s00216_023_04749_w
crossref_primary_10_1016_j_trac_2024_117831
crossref_primary_10_1021_acsomega_3c00217
crossref_primary_10_3390_molecules28093765
crossref_primary_10_1016_j_chroma_2024_464967
crossref_primary_10_3390_molecules29194611
crossref_primary_10_1016_j_chroma_2023_464550
crossref_primary_10_1016_j_foodchem_2023_136712
crossref_primary_10_1093_jaoacint_qsad127
crossref_primary_10_1002_sscp_202400219
crossref_primary_10_1007_s12161_024_02663_0
crossref_primary_10_3390_molecules29061296
crossref_primary_10_1016_j_jfp_2025_100453
crossref_primary_10_1080_10408398_2023_2225613
crossref_primary_10_5851_kosfa_2023_e41
crossref_primary_10_1039_D4RA00247D
crossref_primary_10_1111_ijfs_15567
crossref_primary_10_3390_molecules28166130
crossref_primary_10_1080_03067319_2024_2339456
Cites_doi 10.1016/j.chroma.2017.11.050
10.1016/j.chroma.2011.05.005
10.1016/j.foodchem.2011.01.098
10.1093/oxfordjournals.jac.a020889
10.1007/s00216-008-2300-9
10.1016/j.trac.2014.06.020
10.1080/10408347.2013.835244
10.1016/j.chroma.2017.09.036
10.1093/jaoac/86.2.412
10.1016/j.aca.2019.02.036
10.1016/j.chroma.2014.06.034
10.1016/j.anifeedsci.2014.09.018
10.1080/10408390701761878
10.1016/j.foodcont.2014.10.027
10.1016/j.indcrop.2012.07.011
10.1016/j.foodchem.2016.04.077
10.1016/j.jpba.2018.03.029
10.1016/j.foodcont.2016.03.001
10.1016/j.foodchem.2011.03.042
10.1016/j.trac.2019.06.012
10.1002/jssc.201501204
10.1016/j.chroma.2011.05.066
10.1016/j.talanta.2012.02.011
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2021.131466
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 34731812
10_1016_j_foodchem_2021_131466
S0308814621024729
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
SSH
VH1
WUQ
Y6R
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c401t-7ba6560065f43ba1300d7c3808cc2f8f4bff694ac8c1d73e5c85a8522ee87d1f3
IEDL.DBID .~1
ISSN 0308-8146
1873-7072
IngestDate Fri Jul 11 09:48:16 EDT 2025
Tue Aug 05 09:56:33 EDT 2025
Thu Apr 03 07:05:10 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Tue Jul 01 03:22:39 EDT 2025
Wed Mar 27 03:05:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Validation
Central composite design
Plackett–Burman
UPLC–MS/MS
QuEChERS
Quinolones
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-7ba6560065f43ba1300d7c3808cc2f8f4bff694ac8c1d73e5c85a8522ee87d1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34731812
PQID 2593593413
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636535224
proquest_miscellaneous_2593593413
pubmed_primary_34731812
crossref_primary_10_1016_j_foodchem_2021_131466
crossref_citationtrail_10_1016_j_foodchem_2021_131466
elsevier_sciencedirect_doi_10_1016_j_foodchem_2021_131466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-30
PublicationDateYYYYMMDD 2022-03-30
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References TFDA of the Ministry of Health and Welfare (b0150) 2020
Herrera-Herrera, Hernández-Borges, Rodríguez-Delgado, Herrero, Cifuentes (b0095) 2011; 1218
Australia (2019). Agricultural and Veterinary Chemicals Code (MRL Standard) Instrument 2019. Compilation No. 11, 1–304.
CODEX. Codex Alimentarius. (2018). Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRS) for Residues of Veterinary Drugs in Foods CAC/MRL 2–2018. Retrieved from http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXM%2B2%252FMRL2e.pdf. Accessed [May 11, 2021].
Majors (b0120) 2007; 25
Anastassiades, Lehotay, Štajnbaher, Schenck (b0015) 2003; 86
Díaz-Alvarez, Turiel, Martín-Esteban (b0060) 2009; 393
8. Retrieved from https://op.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-cf7a82bad858/language-en. Accessed [May 11, 2021].
189–199. Doi: 10.1016/j.foodchem.2016.04.077.
Lombardo-Agüí, García-Campaña, Crices-Blanco, Gámiz-Gracia (b0110) 2015; 50
Frenich, Romero-González, Gómez-Pérez, Vidal (b0080) 2011; 1218
European Commission (2010). Council regulation N° 37/2010 de 22 de dezembro de 2009 relativo a substâncias farmacologicamente ativas e respectiva classificação no que respeita aos limites máximos de resíduos nos alimentos de origem animal.
Zhang, Deng, Zheng, Zhang, Yang, Liao, Luo (b0160) 2019; 118
Frenich, Romero-González, del Mar Aguilera-Luiz (b0075) 2014; 63
Perestrelo, Silva, Porto-Figuera, Periera, Silva, Medina, Câmara (b0130) 2019; 1070
Georgakopoulos, P., Zachari, R., Mataragas, M., Athanasopoulos, P., Drosinos, E. H., & Skandamis., P. N. (2011). Optimisation of octadecyl (C
1–72. Retrieved from https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32010R0037&from=DE. Accessed [May 11, 2021].
Cabrera, Caldas, Prestes, Primel, Zanella (b0045) 2016; 39
Center for Disease Control and Prevention U.S., CDC (2013). Antibiotic resistant threats in the United States, 2013. The threat of antibiotic resistance (Section 1). Retrieved from https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed [May 11, 2021].
Zhou, Xu, Cong, Cai, Zhang, Wang, Ren (b0165) 2018; 1532
European Commission (2002). 2002/657/EC: Commission decision of 12 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results.
Borges, P. R. S., Tavares, E. G., Guimarães, I. C., de Paulo Rocha, R., Araujo, A. B. S., Nunes, E. E., & de Barros Vilas Boas, E. V. (2016). Obtaining a protocol for extraction of phenolics from açaí fruit pulp through Plackett–Burman design and response surface methodology.
Rodríguez, Moreno-Bondi, Marazuela (b0135) 2011; 127
Jakimska, Kot-Wasik, Namieśnik (b0100) 2014; 44
Barreto, Ribeiro, Hoff, Costa (b0030) 2017; 1521
Grande-Martínez, Moreno-González, Arrebola-Liébanas, Garrido-Frenich, García-Campaña (b0090) 2018; 155
Makkar, Ankers (b0125) 2014; 198
Beyer, Biziuk (b0035) 2008; 48
536–542. Doi: 10.1016/j.foodchem.2011.03.042.
Anastácio, Carvalho (b0005) 2013; 43
USA. (2020). https://bcglobal.bryantchristie.com/db#pesticides/query. Accessed [May 11, 2021].
Ronquillo, Hernandez (b0140) 2017; 72
Anastassiades (b0010) 2006
Lombardo-Agüí, García-Campana, Gámiz-Gracia, Cruces-Blanco (b0115) 2012; 93
TFDA of the Ministry of Health and Welfare (2019). Quality control regulations in the guidelines for the validation of food chemical methods. Retrieved from https://www.rootlaw.com.tw/LawContent.aspx?LawID=A040170051056900-1080314. Accessed [May 11, 2021].
sorbent amount in QuEChERS analytical method for the accurate organophosphorus pesticide residues determination in low-fatty baby foods with response surface methodology.
Junza, Dorival-García, Zafra-Gómez, Barrón, Ballesteros, Barbosa, Navalón (b0105) 2014; 1356
Ball (b0025) 2000; 46
Anastassiades (10.1016/j.foodchem.2021.131466_b0010)
Díaz-Alvarez (10.1016/j.foodchem.2021.131466_b0060) 2009; 393
Anastácio (10.1016/j.foodchem.2021.131466_b0005) 2013; 43
Ronquillo (10.1016/j.foodchem.2021.131466_b0140) 2017; 72
10.1016/j.foodchem.2021.131466_b0070
Grande-Martínez (10.1016/j.foodchem.2021.131466_b0090) 2018; 155
10.1016/j.foodchem.2021.131466_b0155
10.1016/j.foodchem.2021.131466_b0055
Herrera-Herrera (10.1016/j.foodchem.2021.131466_b0095) 2011; 1218
Perestrelo (10.1016/j.foodchem.2021.131466_b0130) 2019; 1070
10.1016/j.foodchem.2021.131466_b0050
Barreto (10.1016/j.foodchem.2021.131466_b0030) 2017; 1521
Junza (10.1016/j.foodchem.2021.131466_b0105) 2014; 1356
Jakimska (10.1016/j.foodchem.2021.131466_b0100) 2014; 44
Zhang (10.1016/j.foodchem.2021.131466_b0160) 2019; 118
Cabrera (10.1016/j.foodchem.2021.131466_b0045) 2016; 39
Lombardo-Agüí (10.1016/j.foodchem.2021.131466_b0110) 2015; 50
TFDA of the Ministry of Health and Welfare (10.1016/j.foodchem.2021.131466_b0150)
Frenich (10.1016/j.foodchem.2021.131466_b0075) 2014; 63
Ball (10.1016/j.foodchem.2021.131466_b0025) 2000; 46
10.1016/j.foodchem.2021.131466_b0065
10.1016/j.foodchem.2021.131466_b0020
10.1016/j.foodchem.2021.131466_b0085
Majors (10.1016/j.foodchem.2021.131466_b0120) 2007; 25
Anastassiades (10.1016/j.foodchem.2021.131466_b0015) 2003; 86
10.1016/j.foodchem.2021.131466_b0040
Frenich (10.1016/j.foodchem.2021.131466_b0080) 2011; 1218
Rodríguez (10.1016/j.foodchem.2021.131466_b0135) 2011; 127
Beyer (10.1016/j.foodchem.2021.131466_b0035) 2008; 48
Lombardo-Agüí (10.1016/j.foodchem.2021.131466_b0115) 2012; 93
Makkar (10.1016/j.foodchem.2021.131466_b0125) 2014; 198
Zhou (10.1016/j.foodchem.2021.131466_b0165) 2018; 1532
10.1016/j.foodchem.2021.131466_b0145
References_xml – reference: Georgakopoulos, P., Zachari, R., Mataragas, M., Athanasopoulos, P., Drosinos, E. H., & Skandamis., P. N. (2011). Optimisation of octadecyl (C
– reference: , 8. Retrieved from https://op.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-cf7a82bad858/language-en. Accessed [May 11, 2021].
– volume: 127
  start-page: 1354
  year: 2011
  end-page: 1360
  ident: b0135
  article-title: Multiresidue determination of fluoroquinolone antimicrobials in baby foods by liquid chromatography
  publication-title: Food Chemistry
– reference: , 1–72. Retrieved from https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32010R0037&from=DE. Accessed [May 11, 2021].
– reference: USA. (2020). https://bcglobal.bryantchristie.com/db#pesticides/query. Accessed [May 11, 2021].
– volume: 1532
  start-page: 20
  year: 2018
  end-page: 29
  ident: b0165
  article-title: Optimization for quick, easy, cheap, effective, rugged and safe extraction of mycotoxins and veterinary drugs by response surface methodology for application to egg and milk
  publication-title: Journal of Chromatography A
– volume: 86
  start-page: 412
  year: 2003
  end-page: 431
  ident: b0015
  article-title: Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce
  publication-title: Journal of AOAC INTERNATIONAL
– reference: , 189–199. Doi: 10.1016/j.foodchem.2016.04.077.
– volume: 46
  start-page: 17
  year: 2000
  end-page: 24
  ident: b0025
  article-title: Quinolone generations: Natural history or natural selection?
  publication-title: Journal of Antimicrobial Chemotherapy
– reference: ) sorbent amount in QuEChERS analytical method for the accurate organophosphorus pesticide residues determination in low-fatty baby foods with response surface methodology.
– year: 2020
  ident: b0150
  article-title: Standards for veterinary drug residue limits in foods
– reference: CODEX. Codex Alimentarius. (2018). Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRS) for Residues of Veterinary Drugs in Foods CAC/MRL 2–2018. Retrieved from http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXM%2B2%252FMRL2e.pdf. Accessed [May 11, 2021].
– volume: 44
  start-page: 277
  year: 2014
  end-page: 298
  ident: b0100
  article-title: The current state-of-the-art in the determination of pharmaceutical residues in environmental matrices using hyphenated techniques
  publication-title: Critical Reviews in Analytical Chemistry
– volume: 93
  start-page: 193
  year: 2012
  end-page: 199
  ident: b0115
  article-title: Determination of quinolones of veterinary use in bee products by ultra-high performance liquid chromatography–tandem mass spectrometry using a QuEChERS extraction procedure
  publication-title: Talanta
– reference: Center for Disease Control and Prevention U.S., CDC (2013). Antibiotic resistant threats in the United States, 2013. The threat of antibiotic resistance (Section 1). Retrieved from https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed [May 11, 2021].
– reference: , 536–542. Doi: 10.1016/j.foodchem.2011.03.042.
– volume: 1070
  start-page: 1
  year: 2019
  end-page: 28
  ident: b0130
  article-title: QuEChERS - Fundamentals, relevant improvements, applications and future trends
  publication-title: Analytica Chimica Acta
– year: 2006
  ident: b0010
  article-title: CRL-SRM 1st Joint CRL Workshop, Stuttgart
– volume: 43
  start-page: 99
  year: 2013
  end-page: 105
  ident: b0005
  article-title: Phenolics extraction from sweet potato peels: Key factors screening through a Placket-Burman design
  publication-title: Industrial Crops and Products
– volume: 155
  start-page: 27
  year: 2018
  end-page: 32
  ident: b0090
  article-title: Optimization of a modified QuEChERS method for the determination of tetracyclines in fish muscle by UHPLC-MS/MS
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
– volume: 39
  start-page: 1945
  year: 2016
  end-page: 1954
  ident: b0045
  article-title: Evaluation of alternative sorbents for dispersive solid-phase extraction clean-up in the QuEChERS method for the determination of pesticide residues in rice by liquid chromatography with tandem mass spectrometry
  publication-title: Journal of Separation Science
– volume: 1356
  start-page: 10
  year: 2014
  end-page: 22
  ident: b0105
  article-title: Multiclass method for the determination of quinolones and -lactams, in raw cow milk using dispersive liquid-liquid microextraction and ultra high performance liquid chromatography–tandem mass spectrometry
  publication-title: Journal of Chromatography A
– reference: TFDA of the Ministry of Health and Welfare (2019). Quality control regulations in the guidelines for the validation of food chemical methods. Retrieved from https://www.rootlaw.com.tw/LawContent.aspx?LawID=A040170051056900-1080314. Accessed [May 11, 2021].
– volume: 393
  start-page: 899
  year: 2009
  end-page: 905
  ident: b0060
  article-title: Selective sample preparation for the analysis of (fluoro)quinolones in baby food: Molecularly imprinted polymers versus anion-exchange resins
  publication-title: Analytical and Bioanalytical Chemistry
– volume: 1218
  start-page: 7608
  year: 2011
  end-page: 7614
  ident: b0095
  article-title: Determination of quinolone residues in infant and young children powdered milk combining solid-phase extraction and ultra-performance liquid chromatography–tandem mass spectrometry
  publication-title: Journal of Chromatography A
– volume: 48
  start-page: 888
  year: 2008
  end-page: 904
  ident: b0035
  article-title: Methods for determining pesticides and polychlorinated biphenyls in food samples— problems and challenges
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 198
  start-page: 309
  year: 2014
  end-page: 322
  ident: b0125
  article-title: Towards sustainable animal diets: A survey-based study
  publication-title: Animal Feed Science and Technology
– volume: 1521
  start-page: 131
  year: 2017
  end-page: 139
  ident: b0030
  article-title: Development and validation of a high-throughput method for determination of nine fluoroquinolones residues in muscle of different animal species by liquid chromatography coupled to tandem mass spectrometry with low temperature clean up
  publication-title: Journal of Chromatography A
– volume: 25
  start-page: 436
  year: 2007
  end-page: 446
  ident: b0120
  article-title: QuEChERS - a new sample preparation technique for multiresidue analysis of pesticides in foods and agricultural samples
  publication-title: LCGC North America
– reference: Australia (2019). Agricultural and Veterinary Chemicals Code (MRL Standard) Instrument 2019. Compilation No. 11, 1–304.
– reference: Borges, P. R. S., Tavares, E. G., Guimarães, I. C., de Paulo Rocha, R., Araujo, A. B. S., Nunes, E. E., & de Barros Vilas Boas, E. V. (2016). Obtaining a protocol for extraction of phenolics from açaí fruit pulp through Plackett–Burman design and response surface methodology.
– volume: 50
  start-page: 864
  year: 2015
  end-page: 868
  ident: b0110
  article-title: Determination of quinolones in fish by ultra-high performance liquid chromatography with fluorescence detection using QuEChERS as sample treatment
  publication-title: Food Control
– volume: 72
  start-page: 255
  year: 2017
  end-page: 267
  ident: b0140
  article-title: Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods
  publication-title: Food Control
– volume: 1218
  start-page: 4349
  year: 2011
  end-page: 4356
  ident: b0080
  article-title: Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry
  publication-title: Journal of Chromatography A
– reference: European Commission (2002). 2002/657/EC: Commission decision of 12 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results.
– reference: European Commission (2010). Council regulation N° 37/2010 de 22 de dezembro de 2009 relativo a substâncias farmacologicamente ativas e respectiva classificação no que respeita aos limites máximos de resíduos nos alimentos de origem animal.
– volume: 63
  start-page: 158
  year: 2014
  end-page: 169
  ident: b0075
  article-title: Comprehensive analysis of toxics (pesticides, veterinary drugs and mycotoxins) in food by UHPLC-MS
  publication-title: TrAC Trends in Analytical Chemistry
– volume: 118
  start-page: 517
  year: 2019
  end-page: 537
  ident: b0160
  article-title: The application of the QuEChERS methodology in the determination of antibiotics in food: A review
  publication-title: TrAC Trends in Analytical Chemistry
– ident: 10.1016/j.foodchem.2021.131466_b0145
– volume: 1532
  start-page: 20
  year: 2018
  ident: 10.1016/j.foodchem.2021.131466_b0165
  article-title: Optimization for quick, easy, cheap, effective, rugged and safe extraction of mycotoxins and veterinary drugs by response surface methodology for application to egg and milk
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2017.11.050
– ident: 10.1016/j.foodchem.2021.131466_b0065
– volume: 1218
  start-page: 4349
  issue: 28
  year: 2011
  ident: 10.1016/j.foodchem.2021.131466_b0080
  article-title: Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2011.05.005
– volume: 127
  start-page: 1354
  issue: 3
  year: 2011
  ident: 10.1016/j.foodchem.2021.131466_b0135
  article-title: Multiresidue determination of fluoroquinolone antimicrobials in baby foods by liquid chromatography
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2011.01.098
– volume: 46
  start-page: 17
  issue: supplement 3
  year: 2000
  ident: 10.1016/j.foodchem.2021.131466_b0025
  article-title: Quinolone generations: Natural history or natural selection?
  publication-title: Journal of Antimicrobial Chemotherapy
  doi: 10.1093/oxfordjournals.jac.a020889
– volume: 393
  start-page: 899
  issue: 3
  year: 2009
  ident: 10.1016/j.foodchem.2021.131466_b0060
  article-title: Selective sample preparation for the analysis of (fluoro)quinolones in baby food: Molecularly imprinted polymers versus anion-exchange resins
  publication-title: Analytical and Bioanalytical Chemistry
  doi: 10.1007/s00216-008-2300-9
– volume: 63
  start-page: 158
  year: 2014
  ident: 10.1016/j.foodchem.2021.131466_b0075
  article-title: Comprehensive analysis of toxics (pesticides, veterinary drugs and mycotoxins) in food by UHPLC-MS
  publication-title: TrAC Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2014.06.020
– volume: 44
  start-page: 277
  issue: 3
  year: 2014
  ident: 10.1016/j.foodchem.2021.131466_b0100
  article-title: The current state-of-the-art in the determination of pharmaceutical residues in environmental matrices using hyphenated techniques
  publication-title: Critical Reviews in Analytical Chemistry
  doi: 10.1080/10408347.2013.835244
– volume: 1521
  start-page: 131
  year: 2017
  ident: 10.1016/j.foodchem.2021.131466_b0030
  article-title: Development and validation of a high-throughput method for determination of nine fluoroquinolones residues in muscle of different animal species by liquid chromatography coupled to tandem mass spectrometry with low temperature clean up
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2017.09.036
– ident: 10.1016/j.foodchem.2021.131466_b0070
– ident: 10.1016/j.foodchem.2021.131466_b0055
– volume: 86
  start-page: 412
  year: 2003
  ident: 10.1016/j.foodchem.2021.131466_b0015
  article-title: Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce
  publication-title: Journal of AOAC INTERNATIONAL
  doi: 10.1093/jaoac/86.2.412
– ident: 10.1016/j.foodchem.2021.131466_b0020
– volume: 1070
  start-page: 1
  year: 2019
  ident: 10.1016/j.foodchem.2021.131466_b0130
  article-title: QuEChERS - Fundamentals, relevant improvements, applications and future trends
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2019.02.036
– volume: 1356
  start-page: 10
  year: 2014
  ident: 10.1016/j.foodchem.2021.131466_b0105
  article-title: Multiclass method for the determination of quinolones and -lactams, in raw cow milk using dispersive liquid-liquid microextraction and ultra high performance liquid chromatography–tandem mass spectrometry
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2014.06.034
– volume: 198
  start-page: 309
  year: 2014
  ident: 10.1016/j.foodchem.2021.131466_b0125
  article-title: Towards sustainable animal diets: A survey-based study
  publication-title: Animal Feed Science and Technology
  doi: 10.1016/j.anifeedsci.2014.09.018
– volume: 48
  start-page: 888
  issue: 10
  year: 2008
  ident: 10.1016/j.foodchem.2021.131466_b0035
  article-title: Methods for determining pesticides and polychlorinated biphenyls in food samples— problems and challenges
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408390701761878
– volume: 50
  start-page: 864
  year: 2015
  ident: 10.1016/j.foodchem.2021.131466_b0110
  article-title: Determination of quinolones in fish by ultra-high performance liquid chromatography with fluorescence detection using QuEChERS as sample treatment
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2014.10.027
– volume: 43
  start-page: 99
  year: 2013
  ident: 10.1016/j.foodchem.2021.131466_b0005
  article-title: Phenolics extraction from sweet potato peels: Key factors screening through a Placket-Burman design
  publication-title: Industrial Crops and Products
  doi: 10.1016/j.indcrop.2012.07.011
– ident: 10.1016/j.foodchem.2021.131466_b0040
  doi: 10.1016/j.foodchem.2016.04.077
– volume: 25
  start-page: 436
  year: 2007
  ident: 10.1016/j.foodchem.2021.131466_b0120
  article-title: QuEChERS - a new sample preparation technique for multiresidue analysis of pesticides in foods and agricultural samples
  publication-title: LCGC North America
– volume: 155
  start-page: 27
  year: 2018
  ident: 10.1016/j.foodchem.2021.131466_b0090
  article-title: Optimization of a modified QuEChERS method for the determination of tetracyclines in fish muscle by UHPLC-MS/MS
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
  doi: 10.1016/j.jpba.2018.03.029
– ident: 10.1016/j.foodchem.2021.131466_b0150
– ident: 10.1016/j.foodchem.2021.131466_b0050
– volume: 72
  start-page: 255
  year: 2017
  ident: 10.1016/j.foodchem.2021.131466_b0140
  article-title: Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.03.001
– ident: 10.1016/j.foodchem.2021.131466_b0010
– ident: 10.1016/j.foodchem.2021.131466_b0085
  doi: 10.1016/j.foodchem.2011.03.042
– volume: 118
  start-page: 517
  year: 2019
  ident: 10.1016/j.foodchem.2021.131466_b0160
  article-title: The application of the QuEChERS methodology in the determination of antibiotics in food: A review
  publication-title: TrAC Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2019.06.012
– ident: 10.1016/j.foodchem.2021.131466_b0155
– volume: 39
  start-page: 1945
  issue: 10
  year: 2016
  ident: 10.1016/j.foodchem.2021.131466_b0045
  article-title: Evaluation of alternative sorbents for dispersive solid-phase extraction clean-up in the QuEChERS method for the determination of pesticide residues in rice by liquid chromatography with tandem mass spectrometry
  publication-title: Journal of Separation Science
  doi: 10.1002/jssc.201501204
– volume: 1218
  start-page: 7608
  issue: 42
  year: 2011
  ident: 10.1016/j.foodchem.2021.131466_b0095
  article-title: Determination of quinolone residues in infant and young children powdered milk combining solid-phase extraction and ultra-performance liquid chromatography–tandem mass spectrometry
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2011.05.066
– volume: 93
  start-page: 193
  year: 2012
  ident: 10.1016/j.foodchem.2021.131466_b0115
  article-title: Determination of quinolones of veterinary use in bee products by ultra-high performance liquid chromatography–tandem mass spectrometry using a QuEChERS extraction procedure
  publication-title: Talanta
  doi: 10.1016/j.talanta.2012.02.011
SSID ssj0002018
Score 2.5635188
Snippet •QuEChERS + UPLC–MS/MS was used to determine and identify quinolones in goat’s milk.•Plackett–Burman and CCD methods identified efficient extraction...
We develop and validate a method for the rapid determination and identification of 19 quinolones in goat's milk by combining the QuEChERS technique with...
We develop and validate a method for the rapid determination and identification of 19 quinolones in goat’s milk by combining the QuEChERS technique with...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 131466
SubjectTerms Animals
Central composite design
Chromatography, High Pressure Liquid
Chromatography, Liquid
food chemistry
formic acid
goat milk
Goats
hydrogen
Milk
Plackett–Burman
QuEChERS
Quinolones
separation
sodium citrate
Solid Phase Extraction
Taiwan
Tandem Mass Spectrometry
UPLC–MS/MS
Validation
Veterinary Drugs
Title QuEChERS sample pre-processing with UPLC–MS/MS: A method for detecting 19 quinolone-based veterinary drugs in goat’s milk
URI https://dx.doi.org/10.1016/j.foodchem.2021.131466
https://www.ncbi.nlm.nih.gov/pubmed/34731812
https://www.proquest.com/docview/2593593413
https://www.proquest.com/docview/2636535224
Volume 373
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoALgvJaKNUgIW7ZPOwk3t5WYavlsStgWam3yI7tNmXJLk3CDdT_wKl_r7-knjwKHEoPSDkltjTyTDyfPfPNEPJSGGVBvZIO87XnMG2owwPDHJOFypM-M8pH7vBsHk2X7O1heLhFkp4Lg2mV3d7f7unNbt29cbvVdDd57i6w0gpeYOGhhVmMiAx2FqOVD3_-TvOwDo63kQTeXHf9wRI-GZr1Wtm1QUZ64A99ar9H1zmo6wBo44gO7pG7HYKEcSvkfbKlix1yO-kbt-2QwetcV_AKupKfK5j3FfftuJ6IXD4gPz7Wk-R48mkBpcAawYAZIZuWOGAdGuAVLSw_vE8uzn7NFu5ssQ9jaDtOg4W6oDQGIHCkP4JvdY439IV20C8q-I5pNg3XF9RpfVRCXsDRWlQXZ-clfM1XXx6S5cHkczJ1um4MTmbPYJUTS4GFeixkMYxKgWEwFWeUezzLAsMNk8ZEIyYynvkqpjrMeCi4hXda81j5hj4i24UV4wkBGQhGYyFjKkZMB0aw0NPUSB6LKGIqGpCwV0GadaXKsWPGKu1z0k7SXnUpqi5tVTcg7tW8TVus48YZo17D6V9ml1qPcuPcF71JpFbDGGgRhV7XZWqPlNQ-Fh_8Y0xEIyytE7ABedza05XMlMUUkdfT_5DuGbkTIFMD6ZPeLtmuTmv93OKnSu41P8geuTV-8246vwSCuBvO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFcEJTX8jQS4pbmYSfxcluFrbZ0dwVsV-rNcmK7pCzZpUm4IfU_cOLv9Zfg2SQrOJQekHJKbGnkcTyf7fm-AXgtjbKgXqUO87XnMG2owwPDHJOFykt9ZpSP3OHpLBov2PvT8HQHko4Lg2mV7drfrOmb1bp947aj6a7z3J2j0goeYOGmhVmMeAt2UZ0q7MHu8Oh4PNsuyDbG8eYygW9OvP4gCp8fmNVK2eFBUnrgH_jUfo-ui1HXYdBNLDq8C3daEEmGjZ33YEcX-7CXdLXb9qH_LtcVeUNa1c8lmXWi-7Zdx0Uu78OPj_Uo-Tz6NCelRJlggkkh64Y7YGMawVNasvgwSa4uf07n7nT-lgxJU3SaWLRLlMY7CGzpD8i3OsdD-kI7GBoV-Y6ZNhu6L1EX9VlJ8oKcrWR1dfmrJF_z5ZcHsDgcnSRjpy3I4GR2G1Y5cSpRq8eiFsNoKvEmTMUZ5R7PssBww1JjogGTGc98FVMdZjyU3CI8rXmsfEMfQq-wZjwGkgaS0VimMZUDpgMjWehpalIeyyhiKupD2LlAZK1aORbNWIouLe1cdK4T6DrRuK4P7rbfutHruLHHoPOw-GvmCRtUbuz7qpsSwnoY71pkoVd1KeyuktrHQoR_tIlohOo6AevDo2Y-bW2mLKYIvp78h3UvYW98Mp2IydHs-CncDpC4gWxK7xn0qotaP7dwqkpftL_Lbyh6Hn8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QuEChERS+sample+pre-processing+with+UPLC%E2%80%93MS%2FMS%3A+A+method+for+detecting+19+quinolone-based+veterinary+drugs+in+goat%E2%80%99s+milk&rft.jtitle=Food+chemistry&rft.au=Bang+Ye%2C+Siou&rft.au=Huang%2C+Ying&rft.au=Lin%2C+Ding-Yan&rft.date=2022-03-30&rft.issn=0308-8146&rft.volume=373+p.131466-&rft_id=info:doi/10.1016%2Fj.foodchem.2021.131466&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon