Reactive oxygen species: from health to disease
Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS c...
Saved in:
Published in | Swiss medical weekly Vol. 142; no. 3334; p. w13659 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
SMW supporting association (Trägerverein Swiss Medical Weekly SMW)
2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS concentrations may lead to non-specific damage to proteins, lipids, and nucleic acids, low to intermediate ROS concentrations exert their effects rather through regulation of cell signalling cascades. Biological specificity is achieved through the amount, duration, and localisation of ROS production. ROS have crucial roles in normal physiological processes, such as through redox regulation of protein phosphorylation, ion channels, and transcription factors. ROS are also required for biosynthetic processes, including thyroid hormone production and crosslinking of extracellular matrix. There are multiple sources of ROS, including NADPH oxidase enzymes; similarly, there are a large number of ROS-degrading systems. ROS-related disease can be either due to a lack of ROS (e.g., chronic granulomatous disease, certain autoimmune disorders) or a surplus of ROS (e.g., cardiovascular and neurodegenerative diseases). For diseases caused by a surplus of ROS, antioxidant supplementation has proven largely ineffective in clinical studies, most probably because their action is too late, too little, and too non-specific. Specific inhibition of ROS-producing enzymes is an approach more promising of clinical efficacy. |
---|---|
AbstractList | Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS concentrations may lead to non-specific damage to proteins, lipids, and nucleic acids, low to intermediate ROS concentrations exert their effects rather through regulation of cell signalling cascades. Biological specificity is achieved through the amount, duration, and localisation of ROS production. ROS have crucial roles in normal physiological processes, such as through redox regulation of protein phosphorylation, ion channels, and transcription factors. ROS are also required for biosynthetic processes, including thyroid hormone production and crosslinking of extracellular matrix. There are multiple sources of ROS, including NADPH oxidase enzymes; similarly, there are a large number of ROS-degrading systems. ROS-related disease can be either due to a lack of ROS (e.g., chronic granulomatous disease, certain autoimmune disorders) or a surplus of ROS (e.g., cardiovascular and neurodegenerative diseases). For diseases caused by a surplus of ROS, antioxidant supplementation has proven largely ineffective in clinical studies, most probably because their action is too late, too little, and too non-specific. Specific inhibition of ROS-producing enzymes is an approach more promising of clinical efficacy.Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS concentrations may lead to non-specific damage to proteins, lipids, and nucleic acids, low to intermediate ROS concentrations exert their effects rather through regulation of cell signalling cascades. Biological specificity is achieved through the amount, duration, and localisation of ROS production. ROS have crucial roles in normal physiological processes, such as through redox regulation of protein phosphorylation, ion channels, and transcription factors. ROS are also required for biosynthetic processes, including thyroid hormone production and crosslinking of extracellular matrix. There are multiple sources of ROS, including NADPH oxidase enzymes; similarly, there are a large number of ROS-degrading systems. ROS-related disease can be either due to a lack of ROS (e.g., chronic granulomatous disease, certain autoimmune disorders) or a surplus of ROS (e.g., cardiovascular and neurodegenerative diseases). For diseases caused by a surplus of ROS, antioxidant supplementation has proven largely ineffective in clinical studies, most probably because their action is too late, too little, and too non-specific. Specific inhibition of ROS-producing enzymes is an approach more promising of clinical efficacy. Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS concentrations may lead to non-specific damage to proteins, lipids, and nucleic acids, low to intermediate ROS concentrations exert their effects rather through regulation of cell signalling cascades. Biological specificity is achieved through the amount, duration, and localisation of ROS production. ROS have crucial roles in normal physiological processes, such as through redox regulation of protein phosphorylation, ion channels, and transcription factors. ROS are also required for biosynthetic processes, including thyroid hormone production and crosslinking of extracellular matrix. There are multiple sources of ROS, including NADPH oxidase enzymes; similarly, there are a large number of ROS-degrading systems. ROS-related disease can be either due to a lack of ROS (e.g., chronic granulomatous disease, certain autoimmune disorders) or a surplus of ROS (e.g., cardiovascular and neurodegenerative diseases). For diseases caused by a surplus of ROS, antioxidant supplementation has proven largely ineffective in clinical studies, most probably because their action is too late, too little, and too non-specific. Specific inhibition of ROS-producing enzymes is an approach more promising of clinical efficacy. |
Author | Brieger, Katharine Schiavone, Stefania Krause, Karl-Heinz Miller Jr, Francis J. |
Author_xml | – sequence: 1 givenname: Katharine surname: Brieger fullname: Brieger, Katharine – sequence: 2 givenname: Stefania surname: Schiavone fullname: Schiavone, Stefania – sequence: 3 givenname: Francis J. surname: Miller Jr fullname: Miller Jr, Francis J. – sequence: 4 givenname: Karl-Heinz surname: Krause fullname: Krause, Karl-Heinz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22903797$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUlLBDEQhYMo7leP0kcvM3a2rm5vIi4DgiB6DumkopHuzphkXP69PY6KCJ6qKL73Ct7bIetDGJCQA1pOhaDiOPWvU1ZSNqW8ks0a2aaCiQlvGlj_tW-RnZSeypLVFZWbZIuxpuTQwDY5vkVtsn_BIry9P-BQpDkaj-mkcDH0xSPqLj8WORTWJ9QJ98iG013C_a-5S-4vzu_OribXN5ezs9PriRElzZPKyQYdaFkDWgdtXVluqAMpmTWVBKMpA8MbKQSnpgUuW0Co2AgKrm3Ld8ls5WuDflLz6Hsd31XQXn0eQnxQOmZvOlRcgtMcBNgShAFbu8q1DnjLa6tb2YxeRyuveQzPC0xZ9T4Z7Do9YFgkRSllfAxTyBE9_EIXbY_25_F3YCMwXQEmhpQiuh-ElmrZiBobUctG1Gcjo0D8ERifdfZhyFH77j_ZBye-ja4 |
CitedBy_id | crossref_primary_10_3390_ijms25052804 crossref_primary_10_11002_kjfp_2021_28_3_403 crossref_primary_10_1155_2019_1818259 crossref_primary_10_1007_s11332_016_0291_z crossref_primary_10_1007_s12011_021_02908_7 crossref_primary_10_22312_sdusbed_424345 crossref_primary_10_3103_S1541308X23030020 crossref_primary_10_32900_2312_8402_2023_130_112_127 crossref_primary_10_1021_acs_jpcb_7b05186 crossref_primary_10_1021_acsami_2c08870 crossref_primary_10_3389_fphys_2015_00338 crossref_primary_10_1021_acsami_4c05435 crossref_primary_10_3389_fmolb_2022_1000113 crossref_primary_10_1088_2632_959X_ad246c crossref_primary_10_3389_fcell_2022_820949 crossref_primary_10_1155_2019_5381692 crossref_primary_10_1063_1_4974898 crossref_primary_10_1007_s13346_022_01248_w crossref_primary_10_1080_0167482X_2024_2418110 crossref_primary_10_3389_fnagi_2024_1414956 crossref_primary_10_2174_0113894501303824240604103732 crossref_primary_10_1099_jgv_0_001596 crossref_primary_10_1002_bem_22495 crossref_primary_10_15671_hjbc_617783 crossref_primary_10_20473_j_djmkg_v50_i3_p111_115 crossref_primary_10_1021_acs_jpca_0c10654 crossref_primary_10_2174_0929867330666221122123201 crossref_primary_10_1007_s13277_015_4517_5 crossref_primary_10_1021_acs_jpcb_6b00174 crossref_primary_10_1007_s00210_023_02509_2 crossref_primary_10_3389_fimmu_2022_855342 crossref_primary_10_3389_fgene_2020_584118 crossref_primary_10_31857_S0320972523070060 crossref_primary_10_3389_fimmu_2021_598601 crossref_primary_10_1523_JNEUROSCI_1460_19_2019 crossref_primary_10_1007_s11033_022_08052_2 crossref_primary_10_1021_acs_jpca_6b03615 crossref_primary_10_1021_acssuschemeng_1c02012 crossref_primary_10_1155_2022_1949718 crossref_primary_10_1029_2021GH000552 crossref_primary_10_1155_2016_1245049 crossref_primary_10_1152_physiolgenomics_00066_2021 crossref_primary_10_1021_acs_jmedchem_0c01914 crossref_primary_10_1161_HYPERTENSIONAHA_115_06370 crossref_primary_10_3390_nu15112587 crossref_primary_10_3389_fragi_2023_1161814 crossref_primary_10_3390_antiox10010124 crossref_primary_10_3389_fmolb_2022_900344 crossref_primary_10_20535_ibb_2024_8_2_288127 crossref_primary_10_18016_ksutarimdoga_vi_765838 crossref_primary_10_1007_s13770_021_00367_8 crossref_primary_10_4236_ns_2022_146021 crossref_primary_10_1007_s11033_022_07156_z crossref_primary_10_21769_BioProtoc_2871 crossref_primary_10_3389_fonc_2022_980694 crossref_primary_10_1016_j_pbiomolbio_2022_10_009 crossref_primary_10_3389_fnins_2023_1121029 crossref_primary_10_3389_fphys_2016_00109 crossref_primary_10_1007_s00405_021_07064_1 crossref_primary_10_1021_acs_molpharmaceut_8b00338 crossref_primary_10_1134_S0006297923070064 crossref_primary_10_1155_2018_8613209 crossref_primary_10_22312_sdusbed_407365 crossref_primary_10_1080_15368378_2025_2460971 crossref_primary_10_1155_2019_5678548 crossref_primary_10_1155_2015_604658 crossref_primary_10_3389_fcell_2022_1011435 crossref_primary_10_3390_molecules26144351 crossref_primary_10_3389_fnins_2022_901360 crossref_primary_10_1016_j_vetimm_2023_110701 crossref_primary_10_22424_jdsb_2020_38_3_134 crossref_primary_10_1007_s12017_023_08756_z crossref_primary_10_3389_fimmu_2024_1347492 crossref_primary_10_1021_acsanm_1c04037 crossref_primary_10_1155_2019_4398695 crossref_primary_10_1007_s10854_022_08277_8 crossref_primary_10_1007_s10863_023_09956_9 crossref_primary_10_1038_s41598_023_29918_w crossref_primary_10_1007_s00210_023_02799_6 crossref_primary_10_2174_1871527320666210811160007 crossref_primary_10_1155_2018_3795070 crossref_primary_10_1139_cjpp_2017_0225 crossref_primary_10_1111_cbdd_14464 crossref_primary_10_1016_j_xphs_2022_03_005 crossref_primary_10_1021_acsanm_9b02243 crossref_primary_10_1093_gerona_glz070 crossref_primary_10_3389_fncel_2016_00301 crossref_primary_10_1155_2016_7601393 crossref_primary_10_1507_endocrj_EJ15_0234 crossref_primary_10_1080_01902148_2019_1601296 crossref_primary_10_1021_acsmedchemlett_8b00057 crossref_primary_10_1007_s11130_023_01085_3 crossref_primary_10_1515_med_2024_1036 crossref_primary_10_1021_acs_chemrestox_1c00090 crossref_primary_10_1021_acs_langmuir_5b04748 crossref_primary_10_2147_JIR_S408111 crossref_primary_10_1007_s10557_023_07531_3 crossref_primary_10_2147_IJN_S446584 crossref_primary_10_1155_2023_9030015 crossref_primary_10_36233_0507_4088_2020_65_5_5 crossref_primary_10_1021_acs_jpcb_7b12450 crossref_primary_10_18632_aging_202181 crossref_primary_10_1080_10408398_2021_1986464 crossref_primary_10_1042_BCJ20200525 crossref_primary_10_1021_acs_accounts_9b00352 crossref_primary_10_1631_jzus_B2000594 crossref_primary_10_1021_acs_chemrestox_4c00114 crossref_primary_10_1155_2016_4782426 crossref_primary_10_3389_fphar_2023_1125982 crossref_primary_10_1007_s11011_022_00983_w crossref_primary_10_1002_ptr_8383 crossref_primary_10_1021_acs_analchem_3c05479 crossref_primary_10_1111_cbdd_13950 crossref_primary_10_3389_fcell_2022_884412 crossref_primary_10_1021_acsami_5b04419 crossref_primary_10_3389_fnins_2018_00612 crossref_primary_10_3390_ijms22084092 crossref_primary_10_3389_fcell_2023_1232241 crossref_primary_10_18231_j_ijooo_2024_001 crossref_primary_10_2147_IJN_S442727 crossref_primary_10_3389_fcell_2023_1295263 crossref_primary_10_12998_wjcc_v11_i12_2684 crossref_primary_10_3389_fmars_2024_1500870 crossref_primary_10_1155_2014_248656 crossref_primary_10_3389_fphar_2021_644116 crossref_primary_10_1021_acschemneuro_2c00435 crossref_primary_10_1007_s13197_016_2341_6 crossref_primary_10_18632_aging_205433 crossref_primary_10_4236_abb_2013_411A2005 crossref_primary_10_3389_fphar_2023_1144836 crossref_primary_10_3389_ftox_2021_777768 crossref_primary_10_1038_s41598_021_99594_1 crossref_primary_10_12998_wjcc_v12_i3_479 crossref_primary_10_7759_cureus_66570 crossref_primary_10_1002_fpf2_70003 crossref_primary_10_34172_ajmb_2019_04 crossref_primary_10_15429_jkomor_2022_22_2_115 crossref_primary_10_2174_0929867330666230519112312 crossref_primary_10_3389_fnins_2023_1127460 crossref_primary_10_15430_JCP_2016_21_1_32 crossref_primary_10_1111_odi_14087 crossref_primary_10_1016_j_molimm_2024_03_002 crossref_primary_10_1021_acs_jafc_8b00333 crossref_primary_10_1155_2019_3253696 crossref_primary_10_1021_acsmedchemlett_3c00328 crossref_primary_10_1007_s11356_020_09209_x crossref_primary_10_1007_s40011_021_01291_6 crossref_primary_10_1139_bcb_2018_0361 crossref_primary_10_1155_2021_4548594 crossref_primary_10_1007_s12035_015_9337_5 crossref_primary_10_1016_j_biocel_2024_106697 crossref_primary_10_1038_srep38543 crossref_primary_10_1021_acs_langmuir_3c03223 crossref_primary_10_1021_acs_jmedchem_4c02644 crossref_primary_10_29235_1561_8323_2019_63_6_730_735 crossref_primary_10_20402_ajbc_2021_0187 crossref_primary_10_3390_nano10122440 crossref_primary_10_1155_2017_8210734 crossref_primary_10_1021_acschemneuro_1c00591 crossref_primary_10_1149_2_1061908jes crossref_primary_10_4155_fmc_2017_0249 crossref_primary_10_2174_0929867330666221209093343 crossref_primary_10_1007_s10534_021_00360_7 crossref_primary_10_1007_s12035_021_02516_5 crossref_primary_10_1155_2022_2724324 crossref_primary_10_1016_j_scienta_2024_113213 crossref_primary_10_1155_2020_1714352 crossref_primary_10_1007_s11906_020_01085_7 crossref_primary_10_32725_jab_2019_012 crossref_primary_10_2174_1573401319666230330095521 crossref_primary_10_5010_JPB_2022_49_2_150 crossref_primary_10_3389_fmicb_2021_738047 crossref_primary_10_1155_2015_151972 crossref_primary_10_1021_acs_jnatprod_9b00547 crossref_primary_10_48130_mpb_0024_0009 crossref_primary_10_3389_fphar_2023_1195490 crossref_primary_10_3389_fimmu_2024_1393378 crossref_primary_10_1021_acsami_4c05636 crossref_primary_10_1152_physiol_00015_2024 crossref_primary_10_2174_0113862073286226240220092357 crossref_primary_10_1007_s10103_022_03638_5 crossref_primary_10_21769_BioProtoc_2466 crossref_primary_10_1007_s10853_021_06338_7 crossref_primary_10_1155_2021_9965916 crossref_primary_10_18632_oncotarget_26608 crossref_primary_10_31083_j_jin2106167 crossref_primary_10_1155_2020_2837853 crossref_primary_10_1021_acsami_3c01065 crossref_primary_10_3389_fmed_2023_1121036 crossref_primary_10_30910_turkjans_1454998 crossref_primary_10_1021_acs_orglett_5c00747 crossref_primary_10_1155_2022_3820848 crossref_primary_10_1007_s00005_017_0459_5 crossref_primary_10_1080_17568919_2024_2447225 crossref_primary_10_1155_2024_5514265 crossref_primary_10_31083_j_fbl2807143 crossref_primary_10_1002_ejlt_201600320 crossref_primary_10_3389_fcimb_2021_728425 crossref_primary_10_3389_fnagi_2022_975248 crossref_primary_10_1016_j_theriogenology_2017_04_015 crossref_primary_10_3389_fncel_2022_963169 crossref_primary_10_1159_000494220 crossref_primary_10_31083_j_jin2306109 crossref_primary_10_3389_fphys_2020_00063 crossref_primary_10_1021_acs_macromol_3c01895 crossref_primary_10_3390_antiox10020248 crossref_primary_10_1007_s10853_021_05919_w crossref_primary_10_1155_2015_392476 crossref_primary_10_1155_2022_6487430 crossref_primary_10_1080_02772248_2022_2137165 crossref_primary_10_3389_fchem_2021_763495 crossref_primary_10_1002_agm2_12386 crossref_primary_10_30910_turkjans_1209593 crossref_primary_10_1021_jacs_3c10216 crossref_primary_10_1021_acs_jafc_3c07221 crossref_primary_10_11603_bmbr_2706_6290_2019_1_10517 crossref_primary_10_4081_reumatismo_2023_1550 crossref_primary_10_1021_acs_langmuir_6b01621 crossref_primary_10_2147_IJN_S378217 crossref_primary_10_1007_s13105_021_00802_3 crossref_primary_10_1007_s11051_020_04913_8 crossref_primary_10_1155_2020_7259267 crossref_primary_10_3389_fnut_2024_1446485 crossref_primary_10_1096_fj_202402292R crossref_primary_10_1021_acsami_3c09320 crossref_primary_10_1248_bpb_b21_00042 crossref_primary_10_1111_1750_3841_17133 crossref_primary_10_1038_s41598_023_50116_1 crossref_primary_10_1155_2016_1835684 crossref_primary_10_1128_IAI_00537_20 crossref_primary_10_33549_physiolres_934276 crossref_primary_10_1021_acsomega_3c02626 crossref_primary_10_1021_acs_bioconjchem_3c00476 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.4414/smw.2012.13659 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journal Collection |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1424-3997 |
ExternalDocumentID | oai_doaj_org_article_357fa3747d074c7d8f6fbf73b38dab59 22903797 10_4414_smw_2012_13659 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- 123 29Q 2WC 5VS AAFWJ AAYXX ACGFO ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV CITATION DIK E3Z EBS EJD F5P FRP GROUPED_DOAJ GX1 KQ8 OVT P2P RNS TR2 W2D XSB .GJ 3O- 53G CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c401t-6f59ef7a587edf7b86d3c1f7552dc657ca127c3954431cb735b7e762b8643adb3 |
IEDL.DBID | DOA |
ISSN | 1424-3997 |
IngestDate | Wed Aug 27 01:23:21 EDT 2025 Fri Jul 11 00:46:24 EDT 2025 Thu Jan 02 23:12:15 EST 2025 Thu Aug 21 00:11:48 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3334 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-6f59ef7a587edf7b86d3c1f7552dc657ca127c3954431cb735b7e762b8643adb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/357fa3747d074c7d8f6fbf73b38dab59 |
PMID | 22903797 |
PQID | 1112341445 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_357fa3747d074c7d8f6fbf73b38dab59 proquest_miscellaneous_1112341445 pubmed_primary_22903797 crossref_primary_10_4414_smw_2012_13659 crossref_citationtrail_10_4414_smw_2012_13659 |
PublicationCentury | 2000 |
PublicationDate | 2012-00-00 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Swiss medical weekly |
PublicationTitleAlternate | Swiss Med Wkly |
PublicationYear | 2012 |
Publisher | SMW supporting association (Trägerverein Swiss Medical Weekly SMW) |
Publisher_xml | – name: SMW supporting association (Trägerverein Swiss Medical Weekly SMW) |
SSID | ssj0028615 |
Score | 2.5334418 |
SecondaryResourceType | review_article |
Snippet | Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | w13659 |
SubjectTerms | Aging Antioxidant Antioxidants - metabolism Cardiovascular Diseases - etiology Cognition - physiology free radical Hearing Loss - etiology Humans Immunity Mental Disorders - etiology NADPH oxidase NADPH Oxidases Neoplasms - etiology Nervous System Diseases - etiology NOX Oxidative stress reactive oxygen species (ROS) Reactive Oxygen Species - antagonists & inhibitors Reactive Oxygen Species - chemistry Reactive Oxygen Species - metabolism Thyroid Gland - physiology Vision Disorders - etiology |
Title | Reactive oxygen species: from health to disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22903797 https://www.proquest.com/docview/1112341445 https://doaj.org/article/357fa3747d074c7d8f6fbf73b38dab59 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iQbyI39YvIgieQrvJZpP1pmIpQj2Ihd5Ckk1Ouit2i_rvnSTboofixesysMmbkDeTZN4gdMnZwFCnOWGFMyQ31BMNREKs1CV30ggT-6eMH4vRJH-Y8umPVl_hTViSB07A9RkXXjMIeisgOysq6QtvvGCGyUobHkv3gPMWyVSXakkg6iTRCHSf92evH-EVF42PuspfFBSV-leHl5Fmhttoq4sP8U0a1w5ac_Uu2hh3N-B7qP_kdNyicPP5Bc7HoVQSst1rHApFcCprxG2Du5uXfTQZ3j_fjUjX9IBYSHVaUnheOi80l8JVXhhZVMxmXnBOK1twYXVGhWVl0K3LrBGMG-FgRwPDnOnKsAO0Xje1O0I4ZxR2YueyEJdJXpbODAJ2kKJoTwe8h8gCB2U7RfDQmOJFQWYQcFOAmwq4qYhbD10t7d-SFsZKy9sA69IqaFjHD-BZ1XlW_eXZHrpYOEXBmg8XGbp2zXwWshYK7JvnMIXD5K3lr4J-PROlOP6PIZygzTCpdORyitbb97k7gyCkNedxvX0DTTDYdQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+oxygen+species%3A+from+health+to+disease&rft.jtitle=Swiss+medical+weekly&rft.au=Brieger%2C+K&rft.au=Schiavone%2C+S&rft.au=Miller%2C+F+J&rft.au=Krause%2C+K-H&rft.date=2012&rft.issn=1424-3997&rft.eissn=1424-3997&rft.volume=142&rft.spage=w13659&rft_id=info:doi/10.4414%2Fsmw.2012.13659&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-3997&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-3997&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-3997&client=summon |