Reactive oxygen species: from health to disease

Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS c...

Full description

Saved in:
Bibliographic Details
Published inSwiss medical weekly Vol. 142; no. 3334; p. w13659
Main Authors Brieger, Katharine, Schiavone, Stefania, Miller Jr, Francis J., Krause, Karl-Heinz
Format Journal Article
LanguageEnglish
Published Switzerland SMW supporting association (Trägerverein Swiss Medical Weekly SMW) 2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS concentrations may lead to non-specific damage to proteins, lipids, and nucleic acids, low to intermediate ROS concentrations exert their effects rather through regulation of cell signalling cascades. Biological specificity is achieved through the amount, duration, and localisation of ROS production. ROS have crucial roles in normal physiological processes, such as through redox regulation of protein phosphorylation, ion channels, and transcription factors. ROS are also required for biosynthetic processes, including thyroid hormone production and crosslinking of extracellular matrix. There are multiple sources of ROS, including NADPH oxidase enzymes; similarly, there are a large number of ROS-degrading systems. ROS-related disease can be either due to a lack of ROS (e.g., chronic granulomatous disease, certain autoimmune disorders) or a surplus of ROS (e.g., cardiovascular and neurodegenerative diseases). For diseases caused by a surplus of ROS, antioxidant supplementation has proven largely ineffective in clinical studies, most probably because their action is too late, too little, and too non-specific. Specific inhibition of ROS-producing enzymes is an approach more promising of clinical efficacy.
AbstractList Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS concentrations may lead to non-specific damage to proteins, lipids, and nucleic acids, low to intermediate ROS concentrations exert their effects rather through regulation of cell signalling cascades. Biological specificity is achieved through the amount, duration, and localisation of ROS production. ROS have crucial roles in normal physiological processes, such as through redox regulation of protein phosphorylation, ion channels, and transcription factors. ROS are also required for biosynthetic processes, including thyroid hormone production and crosslinking of extracellular matrix. There are multiple sources of ROS, including NADPH oxidase enzymes; similarly, there are a large number of ROS-degrading systems. ROS-related disease can be either due to a lack of ROS (e.g., chronic granulomatous disease, certain autoimmune disorders) or a surplus of ROS (e.g., cardiovascular and neurodegenerative diseases). For diseases caused by a surplus of ROS, antioxidant supplementation has proven largely ineffective in clinical studies, most probably because their action is too late, too little, and too non-specific. Specific inhibition of ROS-producing enzymes is an approach more promising of clinical efficacy.Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS concentrations may lead to non-specific damage to proteins, lipids, and nucleic acids, low to intermediate ROS concentrations exert their effects rather through regulation of cell signalling cascades. Biological specificity is achieved through the amount, duration, and localisation of ROS production. ROS have crucial roles in normal physiological processes, such as through redox regulation of protein phosphorylation, ion channels, and transcription factors. ROS are also required for biosynthetic processes, including thyroid hormone production and crosslinking of extracellular matrix. There are multiple sources of ROS, including NADPH oxidase enzymes; similarly, there are a large number of ROS-degrading systems. ROS-related disease can be either due to a lack of ROS (e.g., chronic granulomatous disease, certain autoimmune disorders) or a surplus of ROS (e.g., cardiovascular and neurodegenerative diseases). For diseases caused by a surplus of ROS, antioxidant supplementation has proven largely ineffective in clinical studies, most probably because their action is too late, too little, and too non-specific. Specific inhibition of ROS-producing enzymes is an approach more promising of clinical efficacy.
Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS concentrations may lead to non-specific damage to proteins, lipids, and nucleic acids, low to intermediate ROS concentrations exert their effects rather through regulation of cell signalling cascades. Biological specificity is achieved through the amount, duration, and localisation of ROS production. ROS have crucial roles in normal physiological processes, such as through redox regulation of protein phosphorylation, ion channels, and transcription factors. ROS are also required for biosynthetic processes, including thyroid hormone production and crosslinking of extracellular matrix. There are multiple sources of ROS, including NADPH oxidase enzymes; similarly, there are a large number of ROS-degrading systems. ROS-related disease can be either due to a lack of ROS (e.g., chronic granulomatous disease, certain autoimmune disorders) or a surplus of ROS (e.g., cardiovascular and neurodegenerative diseases). For diseases caused by a surplus of ROS, antioxidant supplementation has proven largely ineffective in clinical studies, most probably because their action is too late, too little, and too non-specific. Specific inhibition of ROS-producing enzymes is an approach more promising of clinical efficacy.
Author Brieger, Katharine
Schiavone, Stefania
Krause, Karl-Heinz
Miller Jr, Francis J.
Author_xml – sequence: 1
  givenname: Katharine
  surname: Brieger
  fullname: Brieger, Katharine
– sequence: 2
  givenname: Stefania
  surname: Schiavone
  fullname: Schiavone, Stefania
– sequence: 3
  givenname: Francis J.
  surname: Miller Jr
  fullname: Miller Jr, Francis J.
– sequence: 4
  givenname: Karl-Heinz
  surname: Krause
  fullname: Krause, Karl-Heinz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22903797$$D View this record in MEDLINE/PubMed
BookMark eNp1kUlLBDEQhYMo7leP0kcvM3a2rm5vIi4DgiB6DumkopHuzphkXP69PY6KCJ6qKL73Ct7bIetDGJCQA1pOhaDiOPWvU1ZSNqW8ks0a2aaCiQlvGlj_tW-RnZSeypLVFZWbZIuxpuTQwDY5vkVtsn_BIry9P-BQpDkaj-mkcDH0xSPqLj8WORTWJ9QJ98iG013C_a-5S-4vzu_OribXN5ezs9PriRElzZPKyQYdaFkDWgdtXVluqAMpmTWVBKMpA8MbKQSnpgUuW0Co2AgKrm3Ld8ls5WuDflLz6Hsd31XQXn0eQnxQOmZvOlRcgtMcBNgShAFbu8q1DnjLa6tb2YxeRyuveQzPC0xZ9T4Z7Do9YFgkRSllfAxTyBE9_EIXbY_25_F3YCMwXQEmhpQiuh-ElmrZiBobUctG1Gcjo0D8ERifdfZhyFH77j_ZBye-ja4
CitedBy_id crossref_primary_10_3390_ijms25052804
crossref_primary_10_11002_kjfp_2021_28_3_403
crossref_primary_10_1155_2019_1818259
crossref_primary_10_1007_s11332_016_0291_z
crossref_primary_10_1007_s12011_021_02908_7
crossref_primary_10_22312_sdusbed_424345
crossref_primary_10_3103_S1541308X23030020
crossref_primary_10_32900_2312_8402_2023_130_112_127
crossref_primary_10_1021_acs_jpcb_7b05186
crossref_primary_10_1021_acsami_2c08870
crossref_primary_10_3389_fphys_2015_00338
crossref_primary_10_1021_acsami_4c05435
crossref_primary_10_3389_fmolb_2022_1000113
crossref_primary_10_1088_2632_959X_ad246c
crossref_primary_10_3389_fcell_2022_820949
crossref_primary_10_1155_2019_5381692
crossref_primary_10_1063_1_4974898
crossref_primary_10_1007_s13346_022_01248_w
crossref_primary_10_1080_0167482X_2024_2418110
crossref_primary_10_3389_fnagi_2024_1414956
crossref_primary_10_2174_0113894501303824240604103732
crossref_primary_10_1099_jgv_0_001596
crossref_primary_10_1002_bem_22495
crossref_primary_10_15671_hjbc_617783
crossref_primary_10_20473_j_djmkg_v50_i3_p111_115
crossref_primary_10_1021_acs_jpca_0c10654
crossref_primary_10_2174_0929867330666221122123201
crossref_primary_10_1007_s13277_015_4517_5
crossref_primary_10_1021_acs_jpcb_6b00174
crossref_primary_10_1007_s00210_023_02509_2
crossref_primary_10_3389_fimmu_2022_855342
crossref_primary_10_3389_fgene_2020_584118
crossref_primary_10_31857_S0320972523070060
crossref_primary_10_3389_fimmu_2021_598601
crossref_primary_10_1523_JNEUROSCI_1460_19_2019
crossref_primary_10_1007_s11033_022_08052_2
crossref_primary_10_1021_acs_jpca_6b03615
crossref_primary_10_1021_acssuschemeng_1c02012
crossref_primary_10_1155_2022_1949718
crossref_primary_10_1029_2021GH000552
crossref_primary_10_1155_2016_1245049
crossref_primary_10_1152_physiolgenomics_00066_2021
crossref_primary_10_1021_acs_jmedchem_0c01914
crossref_primary_10_1161_HYPERTENSIONAHA_115_06370
crossref_primary_10_3390_nu15112587
crossref_primary_10_3389_fragi_2023_1161814
crossref_primary_10_3390_antiox10010124
crossref_primary_10_3389_fmolb_2022_900344
crossref_primary_10_20535_ibb_2024_8_2_288127
crossref_primary_10_18016_ksutarimdoga_vi_765838
crossref_primary_10_1007_s13770_021_00367_8
crossref_primary_10_4236_ns_2022_146021
crossref_primary_10_1007_s11033_022_07156_z
crossref_primary_10_21769_BioProtoc_2871
crossref_primary_10_3389_fonc_2022_980694
crossref_primary_10_1016_j_pbiomolbio_2022_10_009
crossref_primary_10_3389_fnins_2023_1121029
crossref_primary_10_3389_fphys_2016_00109
crossref_primary_10_1007_s00405_021_07064_1
crossref_primary_10_1021_acs_molpharmaceut_8b00338
crossref_primary_10_1134_S0006297923070064
crossref_primary_10_1155_2018_8613209
crossref_primary_10_22312_sdusbed_407365
crossref_primary_10_1080_15368378_2025_2460971
crossref_primary_10_1155_2019_5678548
crossref_primary_10_1155_2015_604658
crossref_primary_10_3389_fcell_2022_1011435
crossref_primary_10_3390_molecules26144351
crossref_primary_10_3389_fnins_2022_901360
crossref_primary_10_1016_j_vetimm_2023_110701
crossref_primary_10_22424_jdsb_2020_38_3_134
crossref_primary_10_1007_s12017_023_08756_z
crossref_primary_10_3389_fimmu_2024_1347492
crossref_primary_10_1021_acsanm_1c04037
crossref_primary_10_1155_2019_4398695
crossref_primary_10_1007_s10854_022_08277_8
crossref_primary_10_1007_s10863_023_09956_9
crossref_primary_10_1038_s41598_023_29918_w
crossref_primary_10_1007_s00210_023_02799_6
crossref_primary_10_2174_1871527320666210811160007
crossref_primary_10_1155_2018_3795070
crossref_primary_10_1139_cjpp_2017_0225
crossref_primary_10_1111_cbdd_14464
crossref_primary_10_1016_j_xphs_2022_03_005
crossref_primary_10_1021_acsanm_9b02243
crossref_primary_10_1093_gerona_glz070
crossref_primary_10_3389_fncel_2016_00301
crossref_primary_10_1155_2016_7601393
crossref_primary_10_1507_endocrj_EJ15_0234
crossref_primary_10_1080_01902148_2019_1601296
crossref_primary_10_1021_acsmedchemlett_8b00057
crossref_primary_10_1007_s11130_023_01085_3
crossref_primary_10_1515_med_2024_1036
crossref_primary_10_1021_acs_chemrestox_1c00090
crossref_primary_10_1021_acs_langmuir_5b04748
crossref_primary_10_2147_JIR_S408111
crossref_primary_10_1007_s10557_023_07531_3
crossref_primary_10_2147_IJN_S446584
crossref_primary_10_1155_2023_9030015
crossref_primary_10_36233_0507_4088_2020_65_5_5
crossref_primary_10_1021_acs_jpcb_7b12450
crossref_primary_10_18632_aging_202181
crossref_primary_10_1080_10408398_2021_1986464
crossref_primary_10_1042_BCJ20200525
crossref_primary_10_1021_acs_accounts_9b00352
crossref_primary_10_1631_jzus_B2000594
crossref_primary_10_1021_acs_chemrestox_4c00114
crossref_primary_10_1155_2016_4782426
crossref_primary_10_3389_fphar_2023_1125982
crossref_primary_10_1007_s11011_022_00983_w
crossref_primary_10_1002_ptr_8383
crossref_primary_10_1021_acs_analchem_3c05479
crossref_primary_10_1111_cbdd_13950
crossref_primary_10_3389_fcell_2022_884412
crossref_primary_10_1021_acsami_5b04419
crossref_primary_10_3389_fnins_2018_00612
crossref_primary_10_3390_ijms22084092
crossref_primary_10_3389_fcell_2023_1232241
crossref_primary_10_18231_j_ijooo_2024_001
crossref_primary_10_2147_IJN_S442727
crossref_primary_10_3389_fcell_2023_1295263
crossref_primary_10_12998_wjcc_v11_i12_2684
crossref_primary_10_3389_fmars_2024_1500870
crossref_primary_10_1155_2014_248656
crossref_primary_10_3389_fphar_2021_644116
crossref_primary_10_1021_acschemneuro_2c00435
crossref_primary_10_1007_s13197_016_2341_6
crossref_primary_10_18632_aging_205433
crossref_primary_10_4236_abb_2013_411A2005
crossref_primary_10_3389_fphar_2023_1144836
crossref_primary_10_3389_ftox_2021_777768
crossref_primary_10_1038_s41598_021_99594_1
crossref_primary_10_12998_wjcc_v12_i3_479
crossref_primary_10_7759_cureus_66570
crossref_primary_10_1002_fpf2_70003
crossref_primary_10_34172_ajmb_2019_04
crossref_primary_10_15429_jkomor_2022_22_2_115
crossref_primary_10_2174_0929867330666230519112312
crossref_primary_10_3389_fnins_2023_1127460
crossref_primary_10_15430_JCP_2016_21_1_32
crossref_primary_10_1111_odi_14087
crossref_primary_10_1016_j_molimm_2024_03_002
crossref_primary_10_1021_acs_jafc_8b00333
crossref_primary_10_1155_2019_3253696
crossref_primary_10_1021_acsmedchemlett_3c00328
crossref_primary_10_1007_s11356_020_09209_x
crossref_primary_10_1007_s40011_021_01291_6
crossref_primary_10_1139_bcb_2018_0361
crossref_primary_10_1155_2021_4548594
crossref_primary_10_1007_s12035_015_9337_5
crossref_primary_10_1016_j_biocel_2024_106697
crossref_primary_10_1038_srep38543
crossref_primary_10_1021_acs_langmuir_3c03223
crossref_primary_10_1021_acs_jmedchem_4c02644
crossref_primary_10_29235_1561_8323_2019_63_6_730_735
crossref_primary_10_20402_ajbc_2021_0187
crossref_primary_10_3390_nano10122440
crossref_primary_10_1155_2017_8210734
crossref_primary_10_1021_acschemneuro_1c00591
crossref_primary_10_1149_2_1061908jes
crossref_primary_10_4155_fmc_2017_0249
crossref_primary_10_2174_0929867330666221209093343
crossref_primary_10_1007_s10534_021_00360_7
crossref_primary_10_1007_s12035_021_02516_5
crossref_primary_10_1155_2022_2724324
crossref_primary_10_1016_j_scienta_2024_113213
crossref_primary_10_1155_2020_1714352
crossref_primary_10_1007_s11906_020_01085_7
crossref_primary_10_32725_jab_2019_012
crossref_primary_10_2174_1573401319666230330095521
crossref_primary_10_5010_JPB_2022_49_2_150
crossref_primary_10_3389_fmicb_2021_738047
crossref_primary_10_1155_2015_151972
crossref_primary_10_1021_acs_jnatprod_9b00547
crossref_primary_10_48130_mpb_0024_0009
crossref_primary_10_3389_fphar_2023_1195490
crossref_primary_10_3389_fimmu_2024_1393378
crossref_primary_10_1021_acsami_4c05636
crossref_primary_10_1152_physiol_00015_2024
crossref_primary_10_2174_0113862073286226240220092357
crossref_primary_10_1007_s10103_022_03638_5
crossref_primary_10_21769_BioProtoc_2466
crossref_primary_10_1007_s10853_021_06338_7
crossref_primary_10_1155_2021_9965916
crossref_primary_10_18632_oncotarget_26608
crossref_primary_10_31083_j_jin2106167
crossref_primary_10_1155_2020_2837853
crossref_primary_10_1021_acsami_3c01065
crossref_primary_10_3389_fmed_2023_1121036
crossref_primary_10_30910_turkjans_1454998
crossref_primary_10_1021_acs_orglett_5c00747
crossref_primary_10_1155_2022_3820848
crossref_primary_10_1007_s00005_017_0459_5
crossref_primary_10_1080_17568919_2024_2447225
crossref_primary_10_1155_2024_5514265
crossref_primary_10_31083_j_fbl2807143
crossref_primary_10_1002_ejlt_201600320
crossref_primary_10_3389_fcimb_2021_728425
crossref_primary_10_3389_fnagi_2022_975248
crossref_primary_10_1016_j_theriogenology_2017_04_015
crossref_primary_10_3389_fncel_2022_963169
crossref_primary_10_1159_000494220
crossref_primary_10_31083_j_jin2306109
crossref_primary_10_3389_fphys_2020_00063
crossref_primary_10_1021_acs_macromol_3c01895
crossref_primary_10_3390_antiox10020248
crossref_primary_10_1007_s10853_021_05919_w
crossref_primary_10_1155_2015_392476
crossref_primary_10_1155_2022_6487430
crossref_primary_10_1080_02772248_2022_2137165
crossref_primary_10_3389_fchem_2021_763495
crossref_primary_10_1002_agm2_12386
crossref_primary_10_30910_turkjans_1209593
crossref_primary_10_1021_jacs_3c10216
crossref_primary_10_1021_acs_jafc_3c07221
crossref_primary_10_11603_bmbr_2706_6290_2019_1_10517
crossref_primary_10_4081_reumatismo_2023_1550
crossref_primary_10_1021_acs_langmuir_6b01621
crossref_primary_10_2147_IJN_S378217
crossref_primary_10_1007_s13105_021_00802_3
crossref_primary_10_1007_s11051_020_04913_8
crossref_primary_10_1155_2020_7259267
crossref_primary_10_3389_fnut_2024_1446485
crossref_primary_10_1096_fj_202402292R
crossref_primary_10_1021_acsami_3c09320
crossref_primary_10_1248_bpb_b21_00042
crossref_primary_10_1111_1750_3841_17133
crossref_primary_10_1038_s41598_023_50116_1
crossref_primary_10_1155_2016_1835684
crossref_primary_10_1128_IAI_00537_20
crossref_primary_10_33549_physiolres_934276
crossref_primary_10_1021_acsomega_3c02626
crossref_primary_10_1021_acs_bioconjchem_3c00476
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.4414/smw.2012.13659
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journal Collection
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1424-3997
ExternalDocumentID oai_doaj_org_article_357fa3747d074c7d8f6fbf73b38dab59
22903797
10_4414_smw_2012_13659
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
123
29Q
2WC
5VS
AAFWJ
AAYXX
ACGFO
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
CITATION
DIK
E3Z
EBS
EJD
F5P
FRP
GROUPED_DOAJ
GX1
KQ8
OVT
P2P
RNS
TR2
W2D
XSB
.GJ
3O-
53G
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c401t-6f59ef7a587edf7b86d3c1f7552dc657ca127c3954431cb735b7e762b8643adb3
IEDL.DBID DOA
ISSN 1424-3997
IngestDate Wed Aug 27 01:23:21 EDT 2025
Fri Jul 11 00:46:24 EDT 2025
Thu Jan 02 23:12:15 EST 2025
Thu Aug 21 00:11:48 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3334
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-6f59ef7a587edf7b86d3c1f7552dc657ca127c3954431cb735b7e762b8643adb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/357fa3747d074c7d8f6fbf73b38dab59
PMID 22903797
PQID 1112341445
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_357fa3747d074c7d8f6fbf73b38dab59
proquest_miscellaneous_1112341445
pubmed_primary_22903797
crossref_primary_10_4414_smw_2012_13659
crossref_citationtrail_10_4414_smw_2012_13659
PublicationCentury 2000
PublicationDate 2012-00-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012-00-00
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Swiss medical weekly
PublicationTitleAlternate Swiss Med Wkly
PublicationYear 2012
Publisher SMW supporting association (Trägerverein Swiss Medical Weekly SMW)
Publisher_xml – name: SMW supporting association (Trägerverein Swiss Medical Weekly SMW)
SSID ssj0028615
Score 2.5334418
SecondaryResourceType review_article
Snippet Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage w13659
SubjectTerms Aging
Antioxidant
Antioxidants - metabolism
Cardiovascular Diseases - etiology
Cognition - physiology
free radical
Hearing Loss - etiology
Humans
Immunity
Mental Disorders - etiology
NADPH oxidase
NADPH Oxidases
Neoplasms - etiology
Nervous System Diseases - etiology
NOX
Oxidative stress
reactive oxygen species (ROS)
Reactive Oxygen Species - antagonists & inhibitors
Reactive Oxygen Species - chemistry
Reactive Oxygen Species - metabolism
Thyroid Gland - physiology
Vision Disorders - etiology
Title Reactive oxygen species: from health to disease
URI https://www.ncbi.nlm.nih.gov/pubmed/22903797
https://www.proquest.com/docview/1112341445
https://doaj.org/article/357fa3747d074c7d8f6fbf73b38dab59
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iQbyI39YvIgieQrvJZpP1pmIpQj2Ihd5Ckk1Ouit2i_rvnSTboofixesysMmbkDeTZN4gdMnZwFCnOWGFMyQ31BMNREKs1CV30ggT-6eMH4vRJH-Y8umPVl_hTViSB07A9RkXXjMIeisgOysq6QtvvGCGyUobHkv3gPMWyVSXakkg6iTRCHSf92evH-EVF42PuspfFBSV-leHl5Fmhttoq4sP8U0a1w5ac_Uu2hh3N-B7qP_kdNyicPP5Bc7HoVQSst1rHApFcCprxG2Du5uXfTQZ3j_fjUjX9IBYSHVaUnheOi80l8JVXhhZVMxmXnBOK1twYXVGhWVl0K3LrBGMG-FgRwPDnOnKsAO0Xje1O0I4ZxR2YueyEJdJXpbODAJ2kKJoTwe8h8gCB2U7RfDQmOJFQWYQcFOAmwq4qYhbD10t7d-SFsZKy9sA69IqaFjHD-BZ1XlW_eXZHrpYOEXBmg8XGbp2zXwWshYK7JvnMIXD5K3lr4J-PROlOP6PIZygzTCpdORyitbb97k7gyCkNedxvX0DTTDYdQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+oxygen+species%3A+from+health+to+disease&rft.jtitle=Swiss+medical+weekly&rft.au=Brieger%2C+K&rft.au=Schiavone%2C+S&rft.au=Miller%2C+F+J&rft.au=Krause%2C+K-H&rft.date=2012&rft.issn=1424-3997&rft.eissn=1424-3997&rft.volume=142&rft.spage=w13659&rft_id=info:doi/10.4414%2Fsmw.2012.13659&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-3997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-3997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-3997&client=summon