Orbital Order and Fluctuations in Mott Insulators
Basic mechanisms controlling orbital order and orbital fluctuations in transition metal oxides are discussed. The lattice driven classical orbital picture, e.g. like in manganites LaMnO3, is contrasted to the quantum behavior of orbitals in frustrated superexchange models as realised in pseudocubic...
Saved in:
Published in | Progress of theoretical physics. Supplement Vol. 160; no. 160; pp. 155 - 202 |
---|---|
Main Author | |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Kyoto
Oxford University Press
01.01.2005
Progress of Theoretical Physics |
Subjects | |
Online Access | Get full text |
ISSN | 0375-9687 |
DOI | 10.1143/PTPS.160.155 |
Cover
Abstract | Basic mechanisms controlling orbital order and orbital fluctuations in transition metal oxides are discussed. The lattice driven classical orbital picture, e.g. like in manganites LaMnO3, is contrasted to the quantum behavior of orbitals in frustrated superexchange models as realised in pseudocubic titanites ATiO3 and vanadates AVO3. In YVO3, the lattice and superexchange effects strongly compete — this explains the extreme sensitivity of magnetic states to temperature and doping. Lifting the t2g orbital degeneracy by a relativistic spin-orbital coupling is considered on example of the layered cobaltates. We find that the spin-orbital mixing of low-energy states leads to unusual magnetic correlations in a triangular lattice of the CoO2 parent compound. Finally, the magnetism of sodium-rich compounds Na1-xCoO2 is discussed in terms of a spin/orbital polaronic liquid. |
---|---|
AbstractList | Basic mechanisms controlling orbital order and orbital fluctuations in transition metal oxides are discussed. The lattice driven classical orbital picture, e.g. like in manganites LaMnO3, is contrasted to the quantum behavior of orbitals in frustrated superexchange models as realised in pseudocubic titanites ATiO3 and vanadates AVO3. In YVO3, the lattice and superexchange effects strongly compete — this explains the extreme sensitivity of magnetic states to temperature and doping. Lifting the t2g orbital degeneracy by a relativistic spin-orbital coupling is considered on example of the layered cobaltates. We find that the spin-orbital mixing of low-energy states leads to unusual magnetic correlations in a triangular lattice of the CoO2 parent compound. Finally, the magnetism of sodium-rich compounds Na1-xCoO2 is discussed in terms of a spin/orbital polaronic liquid. |
Author | Khaliullin, Giniyat |
Author_xml | – sequence: 1 givenname: Giniyat surname: Khaliullin fullname: Khaliullin, Giniyat email: G.Khaliullin@fkf.mpg.de organization: Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17682527$$DView record in Pascal Francis |
BookMark | eNp9kM9LwzAYhnOY4Da9-Qf0Il7sTJpf7VGGm4NJB85z-JomUKlpSdKD_70tFQRBTx8fPO8L77NCC9c5g9ANwRtCGH04nU-vGyLGj_MFWmIqeVqIXF6iVQjvGGNaYLlEpPRVE6FNSl8bn4Crk1076DhAbDoXksYlL12MycGFoYXY-XCFLiy0wVx_3zV62z2dt8_psdwfto_HVDNMYipyqkVV5VhwnVWWZBJbQagULGdSA7W1rYUEyg0GyXhVcGm0yKzlDEtRGLpGt3NvD0FDaz043QTV--YD_KciUuQZz-TI3c-c9l0I3tgfBKtJhZpUqFGFGlWMePYL1-P-aWz00LR_he7mUDf0_9d_AXgdcNc |
CODEN | PTPSAL |
CitedBy_id | crossref_primary_10_1103_PhysRevB_77_104532 crossref_primary_10_1038_am_2017_67 crossref_primary_10_1103_PhysRevA_98_053611 crossref_primary_10_1103_PhysRevLett_110_097204 crossref_primary_10_1088_1361_6633_aab6be crossref_primary_10_1126_sciadv_abl5671 crossref_primary_10_1103_PhysRevB_86_134412 crossref_primary_10_12693_APhysPolA_130_659 crossref_primary_10_1016_j_cap_2023_03_012 crossref_primary_10_1038_nphys3322 crossref_primary_10_1103_PhysRevB_103_125112 crossref_primary_10_1088_1367_2630_10_5_053027 crossref_primary_10_1103_PhysRevB_107_165134 crossref_primary_10_1103_PhysRevB_95_014409 crossref_primary_10_1080_00107510902850361 crossref_primary_10_1038_s41467_020_15320_x crossref_primary_10_1103_PhysRevB_82_140406 crossref_primary_10_1103_PhysRevB_107_104414 crossref_primary_10_1103_PhysRevB_93_214431 crossref_primary_10_1103_PhysRevB_97_014408 crossref_primary_10_1103_PhysRevB_97_014407 crossref_primary_10_1103_PhysRevB_110_L020403 crossref_primary_10_1103_PhysRevB_99_075141 crossref_primary_10_1103_PhysRevB_86_205124 crossref_primary_10_1103_PhysRevB_95_041106 crossref_primary_10_1039_D3TC01915B crossref_primary_10_1103_PhysRevB_96_085108 crossref_primary_10_1103_PhysRevLett_103_067205 crossref_primary_10_1103_PhysRevB_93_214417 crossref_primary_10_1103_PhysRevB_97_035124 crossref_primary_10_1103_PhysRevB_109_L220412 crossref_primary_10_1103_PhysRevB_87_064508 crossref_primary_10_1103_RevModPhys_83_705 crossref_primary_10_1088_0953_8984_20_29_293201 crossref_primary_10_1142_S0217979221300061 crossref_primary_10_1103_PhysRevB_82_115105 crossref_primary_10_1103_PhysRevB_101_085120 crossref_primary_10_1002_jrs_4735 crossref_primary_10_1103_PhysRevB_81_212401 crossref_primary_10_1103_PhysRevB_77_235107 crossref_primary_10_1103_PhysRevB_99_035137 crossref_primary_10_1103_PhysRevB_91_205137 crossref_primary_10_1103_PhysRevX_5_011037 crossref_primary_10_1103_PhysRevLett_111_037205 crossref_primary_10_1103_PhysRevB_105_165151 crossref_primary_10_12693_APhysPolA_127_263 crossref_primary_10_7566_JPSJ_90_062001 crossref_primary_10_1103_PhysRevB_95_235153 crossref_primary_10_1103_PhysRevB_91_161106 crossref_primary_10_1088_1361_648X_ab2289 crossref_primary_10_1103_PhysRevB_96_125109 crossref_primary_10_1103_PhysRevMaterials_4_094408 crossref_primary_10_1103_PhysRevLett_96_147205 crossref_primary_10_1002_pssa_201532725 crossref_primary_10_1103_PhysRevB_86_125128 crossref_primary_10_1103_PhysRevMaterials_5_044405 crossref_primary_10_1103_PhysRevLett_122_227202 crossref_primary_10_1088_1361_648X_ab283e crossref_primary_10_1103_PhysRevB_75_224402 crossref_primary_10_1016_j_commatsci_2023_112090 crossref_primary_10_12693_APhysPolA_115_36 crossref_primary_10_1103_PhysRevB_97_155141 crossref_primary_10_1103_PhysRevLett_99_197201 crossref_primary_10_1103_PhysRevLett_105_027204 crossref_primary_10_1088_0953_8984_18_31_036 crossref_primary_10_1103_PhysRevB_86_014432 crossref_primary_10_1103_PhysRevB_86_224417 crossref_primary_10_1103_PhysRevB_90_024418 crossref_primary_10_12693_APhysPolA_127_163 crossref_primary_10_12693_APhysPolA_121_1045 crossref_primary_10_1103_PhysRevB_91_245134 crossref_primary_10_1103_PhysRevB_95_024421 crossref_primary_10_1103_PhysRevB_107_054431 crossref_primary_10_12693_APhysPolA_126_A_40 crossref_primary_10_1103_PhysRevB_106_014413 crossref_primary_10_1103_PhysRevResearch_2_033430 crossref_primary_10_1103_PhysRevLett_122_127206 crossref_primary_10_1103_PhysRevB_85_064406 crossref_primary_10_1103_PhysRevB_98_195113 crossref_primary_10_1103_PhysRevB_90_115151 crossref_primary_10_1063_1_2828595 crossref_primary_10_1103_PhysRevResearch_2_033318 crossref_primary_10_1103_PhysRevB_101_100410 crossref_primary_10_1103_PhysRevLett_102_017205 crossref_primary_10_1038_s41598_018_19960_4 crossref_primary_10_1103_PhysRevB_105_214411 crossref_primary_10_1103_PhysRevB_103_054410 crossref_primary_10_1103_PhysRevB_89_014424 crossref_primary_10_1103_PhysRevB_99_245141 crossref_primary_10_1088_1361_648X_acce8a crossref_primary_10_1103_PhysRevB_94_125120 crossref_primary_10_1103_PhysRevB_99_241106 crossref_primary_10_1103_PhysRevB_95_024426 crossref_primary_10_1146_annurev_conmatphys_031115_011319 crossref_primary_10_1016_j_jpcs_2007_08_035 crossref_primary_10_1146_annurev_conmatphys_033117_053934 crossref_primary_10_1103_PhysRevB_102_075110 crossref_primary_10_1103_PhysRevB_106_085103 crossref_primary_10_1103_PhysRevB_100_205131 crossref_primary_10_1103_PhysRevResearch_6_033168 crossref_primary_10_1103_PhysRevB_78_075122 crossref_primary_10_1103_PhysRevResearch_2_033201 crossref_primary_10_1103_PhysRevB_97_104417 crossref_primary_10_1103_PhysRevLett_96_216404 crossref_primary_10_1103_PhysRevLett_125_067201 crossref_primary_10_1103_PhysRevB_94_104436 crossref_primary_10_1038_s42005_024_01605_w crossref_primary_10_1038_srep26750 crossref_primary_10_1016_j_ssc_2021_114381 crossref_primary_10_1103_PhysRevB_90_024433 crossref_primary_10_1103_PhysRevB_102_245142 crossref_primary_10_1103_PhysRevLett_101_087205 crossref_primary_10_1103_PhysRevB_84_014415 crossref_primary_10_1103_PhysRevB_96_134408 crossref_primary_10_1038_s41535_025_00744_9 crossref_primary_10_1103_PhysRevLett_122_177201 crossref_primary_10_1103_PhysRevB_79_045101 crossref_primary_10_1016_j_jcrysgro_2018_12_002 crossref_primary_10_1103_PhysRevB_91_241110 crossref_primary_10_1103_PhysRevB_84_014407 crossref_primary_10_1103_PhysRevB_97_094427 crossref_primary_10_1142_S0217984909017777 crossref_primary_10_1134_S106377611606008X crossref_primary_10_1103_PhysRevB_94_214416 crossref_primary_10_1103_PhysRevLett_123_087203 crossref_primary_10_1007_s10948_017_4416_7 crossref_primary_10_1088_0953_8984_24_8_086003 crossref_primary_10_1088_1742_6596_428_1_012031 crossref_primary_10_1103_PhysRevB_105_014438 crossref_primary_10_1103_PhysRevB_84_195138 crossref_primary_10_1103_PhysRevLett_118_217202 crossref_primary_10_1103_PhysRevB_100_224413 crossref_primary_10_1088_0953_8984_28_43_435401 crossref_primary_10_1103_PhysRevLett_100_046401 crossref_primary_10_1103_PhysRevB_87_064407 crossref_primary_10_1103_PhysRevResearch_4_043134 crossref_primary_10_1103_PhysRevB_84_020403 crossref_primary_10_1103_PhysRevX_10_021034 crossref_primary_10_1038_s43246_024_00634_w crossref_primary_10_1088_1367_2630_aaf0d5 crossref_primary_10_1103_PhysRevB_106_174416 crossref_primary_10_1103_PhysRevB_110_104426 crossref_primary_10_1088_1742_6596_1932_1_012014 crossref_primary_10_1103_PhysRevB_93_134423 crossref_primary_10_1103_PhysRevLett_116_017203 crossref_primary_10_1103_PhysRevLett_103_176101 crossref_primary_10_1103_PhysRevResearch_3_033163 crossref_primary_10_1016_j_fmre_2022_09_030 crossref_primary_10_1103_PhysRevB_94_214426 crossref_primary_10_1103_PhysRevB_76_155125 crossref_primary_10_1103_PhysRevResearch_3_013216 crossref_primary_10_1103_PhysRevB_83_214408 crossref_primary_10_1103_PhysRevB_76_195102 crossref_primary_10_1103_PhysRevB_90_155126 crossref_primary_10_1103_PhysRevB_104_024417 crossref_primary_10_1103_PhysRevB_106_245127 crossref_primary_10_1103_PhysRevB_98_134432 crossref_primary_10_7566_JPSJ_87_064704 crossref_primary_10_1103_PhysRevLett_112_077204 crossref_primary_10_1103_PhysRevB_94_201110 crossref_primary_10_1103_PhysRevLett_100_200406 crossref_primary_10_12693_APhysPolA_133_359 crossref_primary_10_1093_ptep_ptad115 crossref_primary_10_1103_PhysRevB_92_054423 crossref_primary_10_1103_PhysRevLett_115_177205 crossref_primary_10_1103_PhysRevX_11_011013 crossref_primary_10_1038_s41535_023_00567_6 crossref_primary_10_1103_PhysRevLett_116_106401 crossref_primary_10_1103_PhysRevLett_129_037204 crossref_primary_10_1103_PhysRevLett_132_236701 crossref_primary_10_1088_1361_6633_ad208d crossref_primary_10_1103_PhysRevB_90_100405 crossref_primary_10_1088_1367_2630_17_8_083009 crossref_primary_10_1103_PhysRevB_95_184408 crossref_primary_10_1103_PhysRevResearch_6_013228 crossref_primary_10_1103_PhysRevX_9_021017 crossref_primary_10_1038_s42254_019_0038_2 crossref_primary_10_1103_PhysRevLett_133_056703 crossref_primary_10_1134_S1063783416100255 crossref_primary_10_1103_PhysRevB_100_085139 crossref_primary_10_1007_s10825_011_0346_y crossref_primary_10_1002_pssb_201800684 crossref_primary_10_2139_ssrn_4117144 crossref_primary_10_1103_PhysRevLett_99_126402 crossref_primary_10_1103_PhysRevB_83_201102 crossref_primary_10_1088_0034_4885_78_6_066001 crossref_primary_10_1016_j_physrep_2023_09_008 crossref_primary_10_1103_PhysRevLett_100_147203 crossref_primary_10_1103_PhysRevB_92_020405 crossref_primary_10_1103_PhysRevB_87_045132 crossref_primary_10_1103_PhysRevB_93_184410 crossref_primary_10_1038_s41535_019_0203_y crossref_primary_10_1134_S1063776113050166 crossref_primary_10_1103_PhysRevB_81_125118 crossref_primary_10_1103_PhysRevB_95_184413 crossref_primary_10_3390_condmat4020046 crossref_primary_10_1002_andp_202200012 crossref_primary_10_1103_PhysRevB_87_205142 crossref_primary_10_1103_PhysRevB_100_125109 crossref_primary_10_1103_PhysRevB_92_235121 crossref_primary_10_1103_PhysRevB_81_064430 crossref_primary_10_1016_j_ccr_2015_02_008 crossref_primary_10_1103_PhysRevLett_110_066403 crossref_primary_10_1088_1742_6596_2769_1_012013 crossref_primary_10_1103_PhysRevB_100_144403 crossref_primary_10_1103_PhysRevB_94_205138 crossref_primary_10_1038_s41535_023_00614_2 crossref_primary_10_1103_PhysRevB_89_014414 crossref_primary_10_1103_PhysRevB_98_054411 crossref_primary_10_1103_PhysRevLett_112_117204 crossref_primary_10_1103_PhysRevB_76_075108 crossref_primary_10_1103_PhysRevResearch_2_013370 crossref_primary_10_1007_s10948_016_3750_5 crossref_primary_10_1103_PhysRevB_104_024437 crossref_primary_10_1103_PhysRevB_78_094427 crossref_primary_10_1103_PhysRevB_96_155107 crossref_primary_10_1103_PhysRevB_83_094406 crossref_primary_10_1103_PhysRevB_87_205119 crossref_primary_10_1016_j_physb_2017_10_024 crossref_primary_10_1103_PhysRevB_89_104425 crossref_primary_10_1080_08940886_2023_2226048 crossref_primary_10_1103_PhysRevB_91_064407 crossref_primary_10_1103_PhysRevE_104_015311 crossref_primary_10_1103_PhysRevB_101_214442 crossref_primary_10_1016_j_physb_2017_09_056 crossref_primary_10_1088_1742_6596_2164_1_012024 crossref_primary_10_1103_PhysRevB_91_045101 crossref_primary_10_1103_PhysRevLett_130_186702 crossref_primary_10_7566_JPSJ_89_012002 crossref_primary_10_1103_PhysRevB_85_041201 crossref_primary_10_1038_s41467_021_23033_y crossref_primary_10_1103_PhysRevB_93_085101 crossref_primary_10_1149_2162_8777_ac6906 crossref_primary_10_1103_PhysRevLett_122_057203 crossref_primary_10_1146_annurev_matsci_080819_011453 crossref_primary_10_1103_PhysRevB_76_165120 crossref_primary_10_1088_1361_648X_ab1a12 crossref_primary_10_1103_PhysRevB_90_205126 crossref_primary_10_1103_PhysRevResearch_2_013353 crossref_primary_10_1002_pssb_200674619 crossref_primary_10_1103_PhysRevB_89_045117 crossref_primary_10_1146_annurev_conmatphys_031218_013113 crossref_primary_10_1038_s41467_021_24722_4 crossref_primary_10_1134_S0031918X14120023 crossref_primary_10_1103_PhysRevB_106_165108 crossref_primary_10_1103_PhysRevB_99_184436 crossref_primary_10_1103_PhysRevB_103_035129 crossref_primary_10_1088_1367_2630_17_4_043032 crossref_primary_10_1103_PhysRevB_93_104417 crossref_primary_10_1103_PhysRevB_96_205118 crossref_primary_10_1103_PhysRevB_94_064435 crossref_primary_10_1103_PhysRevB_101_035103 crossref_primary_10_1103_PhysRevB_101_054424 crossref_primary_10_1103_PhysRevB_92_024413 crossref_primary_10_1103_PhysRevB_78_235125 crossref_primary_10_1103_PhysRevA_84_051603 crossref_primary_10_1103_PhysRevB_101_020406 crossref_primary_10_1103_PhysRevLett_114_167201 crossref_primary_10_1038_s41467_024_52848_8 crossref_primary_10_1088_1361_648X_aa8cf5 crossref_primary_10_21468_SciPostPhys_4_1_003 crossref_primary_10_1103_PhysRevB_104_014411 crossref_primary_10_1016_j_physrep_2021_11_003 crossref_primary_10_1103_PhysRevB_106_235129 crossref_primary_10_1103_PhysRevB_97_125125 crossref_primary_10_1103_PhysRevLett_125_047201 crossref_primary_10_1103_PhysRevB_98_125126 crossref_primary_10_1103_PhysRevB_90_094412 crossref_primary_10_1103_PhysRevLett_99_256406 crossref_primary_10_1103_PhysRevLett_132_116502 crossref_primary_10_1016_j_jmmm_2022_169101 crossref_primary_10_1103_PhysRevResearch_4_043079 crossref_primary_10_1016_j_jallcom_2022_167526 crossref_primary_10_1103_PhysRevLett_113_147206 crossref_primary_10_1088_0953_8984_19_40_406223 crossref_primary_10_1007_s10909_016_1548_2 crossref_primary_10_1103_PhysRevB_97_174415 crossref_primary_10_1088_1361_648X_ab448d crossref_primary_10_1103_PhysRevB_81_235130 crossref_primary_10_1103_PhysRevB_79_054418 crossref_primary_10_1103_PhysRevResearch_2_033283 crossref_primary_10_1038_s41598_020_63415_8 crossref_primary_10_1103_PhysRevB_80_224422 crossref_primary_10_1103_PhysRevX_9_011035 crossref_primary_10_1103_PhysRevB_89_024417 crossref_primary_10_1103_PhysRevB_90_035137 crossref_primary_10_1103_PhysRevB_99_195105 crossref_primary_10_1103_PhysRevB_94_085117 crossref_primary_10_7566_JPSJ_92_064708 crossref_primary_10_1088_1742_6596_391_1_012085 crossref_primary_10_1038_s41467_022_34375_6 crossref_primary_10_7566_JPSJ_85_114710 crossref_primary_10_1103_PhysRevB_110_155124 crossref_primary_10_1103_PhysRevLett_100_160403 crossref_primary_10_1103_PhysRevB_110_064425 crossref_primary_10_1103_PhysRevB_81_184403 crossref_primary_10_1103_PhysRevB_88_205115 crossref_primary_10_4028_www_scientific_net_SSP_215_109 crossref_primary_10_1103_PhysRevB_103_075144 crossref_primary_10_1103_PhysRevLett_109_167205 crossref_primary_10_1007_s10948_019_05386_0 crossref_primary_10_1016_j_jmmm_2021_168616 crossref_primary_10_1038_s41567_024_02686_8 crossref_primary_10_1103_PhysRevB_89_235131 crossref_primary_10_1103_PhysRevB_91_054401 crossref_primary_10_1103_PhysRevLett_115_156403 crossref_primary_10_1103_PhysRevB_80_014405 crossref_primary_10_1103_PhysRevB_94_085109 crossref_primary_10_1103_PhysRevB_99_064425 crossref_primary_10_1103_PhysRevB_99_085125 crossref_primary_10_1088_1361_648X_aae106 crossref_primary_10_1103_PhysRevB_109_214402 crossref_primary_10_1103_PhysRevB_89_121106 crossref_primary_10_1038_s41467_019_08459_9 crossref_primary_10_1103_PhysRevB_91_155135 crossref_primary_10_1209_0295_5075_80_27005 crossref_primary_10_1103_PhysRevB_104_045149 crossref_primary_10_1103_PhysRevB_96_205121 crossref_primary_10_1103_PhysRevB_89_115108 crossref_primary_10_1103_PhysRevB_75_184434 crossref_primary_10_1103_PhysRevB_77_035109 crossref_primary_10_1103_PhysRevB_87_214421 crossref_primary_10_1021_acs_chemrev_0c00579 crossref_primary_10_1103_PhysRevB_97_155104 crossref_primary_10_1103_PhysRevResearch_1_013014 crossref_primary_10_1088_0256_307X_40_8_086701 crossref_primary_10_1103_PhysRevX_5_041035 crossref_primary_10_1103_PhysRevB_92_184416 crossref_primary_10_1103_PhysRevB_93_214402 crossref_primary_10_1088_0953_8984_24_31_313201 crossref_primary_10_1088_1361_648X_aa8a43 crossref_primary_10_1103_PhysRevLett_111_197201 crossref_primary_10_1103_PhysRevLett_127_143401 crossref_primary_10_1103_PhysRevResearch_3_033205 crossref_primary_10_1103_RevModPhys_87_1 |
ContentType | Journal Article Conference Proceeding |
Copyright | Copyright (c) 2005 Progress of Theoretical Physics 2005 2006 INIST-CNRS |
Copyright_xml | – notice: Copyright (c) 2005 Progress of Theoretical Physics 2005 – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1143/PTPS.160.155 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EndPage | 202 |
ExternalDocumentID | 17682527 10_1143_PTPS_160_155 10.1143/PTPS.160.155 |
GroupedDBID | -DZ -~X 0R~ 2WC 4.4 6TJ 7.U AAKDD AAMVS AAOGV AAPPN AAPXW AAVAP AAYJJ ABEFU ABPTD ABQLI ABSAR ABSMQ ABXVV ACFRR ACGFS ACKIV ACNCT ACUFI ACUTJ ADGZP AFFNX AGMDO ALMA_UNASSIGNED_HOLDINGS ASAOO ATDFG AVWKF BAYMD CS3 CXTWN DFGAJ DU5 EBS EJD F20 H13 H~9 JSI JSP MBTAY MVM OK1 O~Y P2P RAU RJT ROX ROZ RYR RZJ TCN TKC TOX WH7 YNT AAYXX ABEJV ABGNP ACVCV APJGH CITATION 08R AAPBV IQODW |
ID | FETCH-LOGICAL-c401t-683c6bb8065c2bf1270f613764847ca3fdfd67a35e0a745b957ec62ff540769e3 |
ISSN | 0375-9687 |
IngestDate | Sun Oct 22 16:07:49 EDT 2023 Thu Apr 24 23:01:57 EDT 2025 Tue Jul 01 01:41:30 EDT 2025 Wed Aug 28 03:19:56 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 160 |
Keywords | Fluctuations Mixing Spin liquid Triangular lattices Correlations Degeneration Models |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MeetingName | Physics of strongly correlated electron systems: proceedings of the Yukawa International Seminar 2004 (YKIS2004), November 1-19, 2004, Kyoto |
MergedId | FETCHMERGED-LOGICAL-c401t-683c6bb8065c2bf1270f613764847ca3fdfd67a35e0a745b957ec62ff540769e3 |
OpenAccessLink | https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.160.155/5162453/160-155.pdf |
PageCount | 48 |
ParticipantIDs | pascalfrancis_primary_17682527 crossref_primary_10_1143_PTPS_160_155 crossref_citationtrail_10_1143_PTPS_160_155 oup_primary_10_1143_PTPS_160_155 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-01-01 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – month: 01 year: 2005 text: 2005-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Kyoto |
PublicationPlace_xml | – name: Kyoto |
PublicationTitle | Progress of theoretical physics. Supplement |
PublicationTitleAbbrev | Prog. Theor. Phys. Supplement |
PublicationYear | 2005 |
Publisher | Oxford University Press Progress of Theoretical Physics |
Publisher_xml | – name: Oxford University Press – name: Progress of Theoretical Physics |
SSID | ssj0003907 |
Score | 2.1632843 |
Snippet | Basic mechanisms controlling orbital order and orbital fluctuations in transition metal oxides are discussed. The lattice driven classical orbital picture,... |
SourceID | pascalfrancis crossref oup |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 155 |
SubjectTerms | Exact sciences and technology Physics |
Title | Orbital Order and Fluctuations in Mott Insulators |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ5EAj00EdC0jZBh_a0OIktyd49ltJ0E7atoV7Ym5FkCRYSJzTOof31nZHkx6ZbQnIxi1fY8nxCM6OZb4aQD0yCETxWMhLj2EQclEokKysibjTLJOZFuWr7376n0zm_XIhF2949sEsadaL_rOWVPAdVuAe4Ikv2Cch2D4Ub8BvwhSsgDNd_MV6ranJMr8LNyof6O06iP7C4Oxm5rp2D9JYm9GlT2Cxk5ApvuviBvbpHKkmXWX6NJRtcojp65X3EZ_ppdjGfzS5cdsDXZb38LZuVkwPx4ORgOMNiMMPcz3CwEbFMRJM0KMawHnwXgLDtxb7UbtCgieNQr9mcORaJyIv8ZzjTEr0SagPvD3RTlzEYg1uUiCTbJNsJy8bYpKP4seh0Lpt4Ynw705biwNnp8H0rxocnNL64lXfw1da3MRnYFsVLstezLmnegfyKbJj6NdkJcnpD4gAadaBRAI0OQaPLmiJotAdtj8zPvxSfp1FoeBFpcHObKB0znSqFsW6dKItJARbMrSzlYENoyWxlqzSTTJgzmXGhJiIzOk2sxSqK6cSwfbJV39TmgNCKMfAsmeTKGh7rSoKraiS2Y7TwF9OHZNRKotShGjw2JbkqPVOdlSi3EuRWgtwOycdu9K2vgvKfcRSE-siQ4xWJ94MDwm8fG_CO7Par-T3Zan7dmyOwDBt17BbFX93OZCQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Progress+of+theoretical+physics.+Supplement&rft.atitle=Orbital+order+and+fluctuations+in+mott+insulators&rft.au=KHALIULLIN%2C+Giniyat&rft.date=2005-01-01&rft.pub=Progress+of+Theoretical+Physics&rft.issn=0375-9687&rft.issue=160&rft.spage=155&rft.epage=202&rft_id=info:doi/10.1143%2FPTPS.160.155&rft.externalDBID=n%2Fa&rft.externalDocID=17682527 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9687&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9687&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9687&client=summon |