Irvsp: To obtain irreducible representations of electronic states in the VASP
We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) and space group operators (listed in OUTCAR)...
Saved in:
Published in | Computer physics communications Vol. 261; p. 107760 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) and space group operators (listed in OUTCAR), which are generated by the VASP package. This program computes the traces of matrix presentations and determines the corresponding irreducible representations for all energy bands and all the k-points in the three-dimensional Brillouin zone. It also works with spin–orbit coupling (SOC), i.e., for double groups. It is in particular useful to analyze energy bands, their connectivities, and band topology, after the establishment of the theory of topological quantum chemistry. Accordingly, the associated library – irrep_bcs.a – is developed, which can be easily linked to by other ab-initio packages. In addition, the program has been extended to orthogonal tight-binding (TB) Hamiltonians, e.g. electronic or phononic TB Hamiltonians. A sister program ir2tb is presented as well.
Program title: irvsp
CPC Library link to program files:https://doi.org/10.17632/y9ds5nnm2f.1
Licensing provisions: GNU Lesser General Public License
Programming language: Fortran 90/77
Nature of problem: Determining irreducible representations for all energy bands and all the k-points in 230 space groups. It is in particular useful to analyze energy bands, their connectivities, and band topology.
Solution method: By computing the traces of matrix presentations of space group operators for the eigen-wavefunctions at a certain k-point in a given space group, one can determine irreducible representations for them. |
---|---|
AbstractList | We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) and space group operators (listed in OUTCAR), which are generated by the VASP package. This program computes the traces of matrix presentations and determines the corresponding irreducible representations for all energy bands and all the k-points in the three-dimensional Brillouin zone. It also works with spin–orbit coupling (SOC), i.e., for double groups. It is in particular useful to analyze energy bands, their connectivities, and band topology, after the establishment of the theory of topological quantum chemistry. Accordingly, the associated library – irrep_bcs.a – is developed, which can be easily linked to by other ab-initio packages. In addition, the program has been extended to orthogonal tight-binding (TB) Hamiltonians, e.g. electronic or phononic TB Hamiltonians. A sister program ir2tb is presented as well.
Program title: irvsp
CPC Library link to program files:https://doi.org/10.17632/y9ds5nnm2f.1
Licensing provisions: GNU Lesser General Public License
Programming language: Fortran 90/77
Nature of problem: Determining irreducible representations for all energy bands and all the k-points in 230 space groups. It is in particular useful to analyze energy bands, their connectivities, and band topology.
Solution method: By computing the traces of matrix presentations of space group operators for the eigen-wavefunctions at a certain k-point in a given space group, one can determine irreducible representations for them. We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) and space group operators (listed in OUTCAR), which are generated by the VASP package. This program computes the traces of matrix presentations and determines the corresponding irreducible representations for all energy bands and all the k-points in the three-dimensional Brillouin zone. It also works with spin-orbit coupling (SOC), i.e., for double groups. It is in particular useful to analyze energy bands, their connectivities, and band topology, after the establishment of the theory of topological quantum chemistry. Accordingly, the associated library -irrep_bcs.a - is developed, which can be easily linked to by other ab-initio packages. In addition, the program has been extended to orthogonal tight-binding (TB) Hamiltonians, e.g. electronic or phononic TB Hamiltonians. A sister program is presented as well. Program summary Program title: irvsp CPC Library link to program files: http://doi.org/10.1763/y9ds5nnm2f.1 Licensing provisions: GNU Lesser General Public License Programming language: Fortran 90/77 Nature of problem: Determining irreducible representations for all energy bands and all the k-points in 230 space groups. It is in particular useful to analyze energy bands, their connectivities, and band topology. Solution method: By computing the traces of matrix presentations of space group operators for the eigen-wavefunctions at a certain k-point in a given space group, one can determine irreducible representations for them. |
ArticleNumber | 107760 |
Author | Persson, Clas Wu, Quansheng Gao, Jiacheng Wang, Zhijun |
Author_xml | – sequence: 1 givenname: Jiacheng surname: Gao fullname: Gao, Jiacheng organization: Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: Quansheng orcidid: 0000-0002-9154-4489 surname: Wu fullname: Wu, Quansheng organization: Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland – sequence: 3 givenname: Clas orcidid: 0000-0002-9050-5445 surname: Persson fullname: Persson, Clas organization: Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo, Norway – sequence: 4 givenname: Zhijun orcidid: 0000-0003-2169-8068 surname: Wang fullname: Wang, Zhijun email: zjwang11@hotmail.com organization: Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291939$$DView record from Swedish Publication Index |
BookMark | eNp9kE1OwzAQRi1UJNrCAdj5Aim2k9g1rKryV6kIJEq3VuJMqEuII9st4va4CmxYdDWa0fdmNG-EBq1tAaFLSiaUUH61nehOTxhhh14ITk7QkE6FTJjMsgEaEkJJkvE8P0Mj77eExJBMh-hp4fa-u8Yri20ZCtNi4xxUO23KBrCDzoGHNhTB2NZjW2NoQAdnW6Oxj2PwODJhA3g9e305R6d10Xi4-K1j9HZ_t5o_Jsvnh8V8tkx0RmhI8gqKdMpkpYHVPAfGeQq8nkpSTAGApjnNScmhqmnNKCFaploLkmWiBClElY5R0u_1X9DtStU581m4b2ULo27Neqase1cfYaOYpDKVMS_6vHbWewe10qb_KbjCNIoSdbCotipaVAeLqrcYSfqP_Lt1jLnpGYgK9gac8tpAq6EyLspTlTVH6B-luozK |
CitedBy_id | crossref_primary_10_1038_s41578_021_00380_2 crossref_primary_10_1021_acs_jpclett_1c03193 crossref_primary_10_1063_5_0245475 crossref_primary_10_1088_2515_7639_ac363d crossref_primary_10_1103_PhysRevB_105_214506 crossref_primary_10_1039_D3CP05680E crossref_primary_10_1088_1361_648X_ac0570 crossref_primary_10_1103_PhysRevB_106_035150 crossref_primary_10_1103_PhysRevLett_132_106602 crossref_primary_10_1103_PhysRevB_109_165136 crossref_primary_10_1103_PhysRevB_103_035433 crossref_primary_10_1103_PhysRevB_104_035157 crossref_primary_10_1103_PhysRevB_105_165135 crossref_primary_10_1103_PhysRevResearch_5_L042003 crossref_primary_10_1016_j_apmt_2025_102644 crossref_primary_10_1103_PhysRevLett_127_215701 crossref_primary_10_1038_s42254_021_00292_8 crossref_primary_10_1103_PhysRevB_110_054513 crossref_primary_10_1016_j_nanoen_2024_109763 crossref_primary_10_1103_PhysRevB_110_085150 crossref_primary_10_1002_adfm_202316079 crossref_primary_10_1021_jacs_3c00797 crossref_primary_10_1103_PhysRevB_106_075155 crossref_primary_10_1103_PhysRevResearch_5_023142 crossref_primary_10_1021_acs_jpcc_4c06353 crossref_primary_10_35848_1347_4065_ac4c4e crossref_primary_10_1016_j_mtphys_2025_101700 crossref_primary_10_1103_PhysRevB_109_205103 crossref_primary_10_1103_PhysRevLett_126_246601 crossref_primary_10_1038_s41535_023_00609_z crossref_primary_10_1016_j_jcis_2024_04_230 crossref_primary_10_1038_s41467_023_40515_3 crossref_primary_10_1116_5_0245604 crossref_primary_10_1016_j_mtcomm_2023_107590 crossref_primary_10_1016_j_scib_2021_12_025 crossref_primary_10_1103_PhysRevB_104_245427 crossref_primary_10_1103_PhysRevB_110_075124 crossref_primary_10_1016_j_mtphys_2023_101153 crossref_primary_10_1088_1402_4896_adaf7d crossref_primary_10_1039_D2CP01941H crossref_primary_10_1103_PhysRevB_103_205133 crossref_primary_10_1103_PhysRevLett_128_077001 crossref_primary_10_1007_s11433_023_2271_y crossref_primary_10_1103_PhysRevB_108_115123 crossref_primary_10_1063_5_0129044 crossref_primary_10_1038_s41467_022_32359_0 crossref_primary_10_1002_smsc_202300356 crossref_primary_10_1016_j_cpc_2025_109510 crossref_primary_10_1103_PhysRevMaterials_8_074001 crossref_primary_10_1103_PhysRevB_111_064519 crossref_primary_10_1016_j_mtphys_2022_100694 crossref_primary_10_1039_D3TC04120D crossref_primary_10_1002_smsc_202400160 crossref_primary_10_1088_0256_307X_41_9_097101 crossref_primary_10_1002_advs_202207508 crossref_primary_10_1016_j_physb_2024_416773 crossref_primary_10_1103_PhysRevB_105_245152 crossref_primary_10_1103_PhysRevB_109_144522 crossref_primary_10_1103_PhysRevB_110_165122 crossref_primary_10_1103_PhysRevB_109_085102 crossref_primary_10_1103_PhysRevLett_129_027001 crossref_primary_10_1038_s41535_022_00449_3 crossref_primary_10_1039_D2NR03236H crossref_primary_10_34133_research_0042 crossref_primary_10_1002_adma_202108550 crossref_primary_10_1038_s41586_021_03543_x crossref_primary_10_1021_acsnano_3c03307 crossref_primary_10_1039_D2EE03924A crossref_primary_10_1103_PhysRevB_105_224103 crossref_primary_10_1021_acs_cgd_5c00012 crossref_primary_10_1021_acs_jpcc_2c08143 crossref_primary_10_1103_PhysRevB_108_054311 crossref_primary_10_1103_PhysRevB_109_115118 crossref_primary_10_1103_PhysRevB_106_195429 crossref_primary_10_1109_TGRS_2024_3424227 crossref_primary_10_1039_D4TC03058C crossref_primary_10_1088_0256_307X_40_12_127101 crossref_primary_10_1016_j_cpc_2024_109468 crossref_primary_10_1039_D4CP00608A crossref_primary_10_1088_1674_1056_ac0cd8 crossref_primary_10_1038_s41524_020_00358_8 crossref_primary_10_1016_j_xcrp_2023_101392 crossref_primary_10_1103_PhysRevB_108_125434 crossref_primary_10_1088_1367_2630_acc608 crossref_primary_10_1103_PhysRevB_108_174430 crossref_primary_10_1103_PhysRevB_109_045423 crossref_primary_10_1038_s41535_022_00498_8 crossref_primary_10_1103_PhysRevB_111_075433 crossref_primary_10_1103_PhysRevB_110_024504 crossref_primary_10_1103_PhysRevB_106_115114 crossref_primary_10_1103_PhysRevResearch_6_023249 crossref_primary_10_1088_1367_2630_aca429 crossref_primary_10_1038_s41535_023_00557_8 crossref_primary_10_1103_PhysRevB_108_L241406 crossref_primary_10_1021_acsomega_4c09865 crossref_primary_10_1103_PhysRevB_110_075129 crossref_primary_10_1103_PhysRevX_14_041048 crossref_primary_10_1039_D2CP03349F crossref_primary_10_1103_PhysRevB_105_235410 crossref_primary_10_1103_PhysRevB_106_085102 crossref_primary_10_1038_s41586_020_2837_0 crossref_primary_10_1103_PhysRevB_108_235302 crossref_primary_10_1103_PhysRevB_105_245108 crossref_primary_10_1002_adma_202300227 crossref_primary_10_1021_acs_jpcc_4c05870 crossref_primary_10_1039_D4TC04581E crossref_primary_10_1103_PhysRevB_105_014437 crossref_primary_10_1103_PhysRevB_106_115121 crossref_primary_10_1002_adfm_202304499 crossref_primary_10_1103_PhysRevB_110_035151 crossref_primary_10_1103_PhysRevB_111_085135 crossref_primary_10_1103_PhysRevB_110_035152 crossref_primary_10_1103_PhysRevB_111_035113 crossref_primary_10_1103_PhysRevB_108_L161110 crossref_primary_10_1002_smll_202407232 crossref_primary_10_1103_PhysRevB_110_125103 crossref_primary_10_1103_PhysRevMaterials_5_034801 crossref_primary_10_1016_j_physe_2022_115164 crossref_primary_10_1103_PhysRevB_110_184507 crossref_primary_10_1103_PhysRevB_104_235139 crossref_primary_10_1103_PhysRevB_110_054106 crossref_primary_10_1016_j_carbon_2023_118555 crossref_primary_10_1021_jacs_3c00284 crossref_primary_10_1103_PhysRevB_110_245421 crossref_primary_10_1103_PhysRevB_111_L041117 crossref_primary_10_1039_D1TC00547B crossref_primary_10_1021_acsmaterialslett_2c00333 crossref_primary_10_1103_PhysRevB_103_115145 crossref_primary_10_1016_j_physleta_2024_129723 crossref_primary_10_1039_D3MH01266B crossref_primary_10_1103_PhysRevResearch_6_023277 crossref_primary_10_1103_PhysRevB_104_245128 crossref_primary_10_1002_pssr_202100477 crossref_primary_10_1088_1367_2630_ad59ff crossref_primary_10_1103_PhysRevB_105_115143 crossref_primary_10_1103_PhysRevB_108_085135 crossref_primary_10_1016_j_mtnano_2023_100389 crossref_primary_10_1038_s41467_022_30442_0 crossref_primary_10_1038_s41467_023_37971_2 crossref_primary_10_1016_j_scib_2023_06_029 crossref_primary_10_1016_j_cpc_2021_107993 crossref_primary_10_1016_j_cpc_2023_108722 crossref_primary_10_1103_PhysRevMaterials_8_044201 crossref_primary_10_1103_PhysRevB_109_155152 crossref_primary_10_1103_PhysRevMaterials_8_044203 crossref_primary_10_1021_acs_jpcc_3c05433 crossref_primary_10_1039_D3TC01890C crossref_primary_10_1103_PhysRevB_108_165122 crossref_primary_10_1088_1367_2630_ad6c78 crossref_primary_10_1126_sciadv_add5239 crossref_primary_10_1038_s41467_023_39620_0 crossref_primary_10_1103_PhysRevB_105_045417 crossref_primary_10_1016_j_ssc_2024_115673 crossref_primary_10_1063_5_0147752 crossref_primary_10_1103_PhysRevB_103_014439 crossref_primary_10_1103_PhysRevB_105_184514 crossref_primary_10_1007_s42864_022_00200_2 crossref_primary_10_1103_PhysRevB_106_045148 crossref_primary_10_1103_PhysRevB_110_085413 crossref_primary_10_1103_PhysRevB_103_L161109 crossref_primary_10_1103_PhysRevLett_133_176602 crossref_primary_10_1063_5_0230231 crossref_primary_10_1103_PhysRevB_106_085129 crossref_primary_10_1002_adfm_202110930 crossref_primary_10_1021_acssuschemeng_4c07350 crossref_primary_10_1093_nsr_nwaa218 crossref_primary_10_1088_1361_648X_ad3ac2 crossref_primary_10_3390_cryst12101478 crossref_primary_10_1107_S2053273323005016 crossref_primary_10_1039_D4MH01599A crossref_primary_10_1103_PhysRevMaterials_8_054205 crossref_primary_10_1016_j_jallcom_2023_169776 crossref_primary_10_1103_PhysRevMaterials_8_054204 crossref_primary_10_1103_PhysRevB_103_115105 crossref_primary_10_1103_PhysRevB_103_L121101 crossref_primary_10_1016_j_isci_2022_105813 crossref_primary_10_1103_PhysRevB_104_195145 crossref_primary_10_1002_qute_202400444 crossref_primary_10_1103_PhysRevB_111_104113 crossref_primary_10_1126_sciadv_abd1076 crossref_primary_10_1103_PhysRevB_105_235128 crossref_primary_10_1021_acs_jpclett_2c01978 crossref_primary_10_1016_j_mtcomm_2024_108890 crossref_primary_10_1063_5_0073844 crossref_primary_10_1103_PhysRevB_109_205141 crossref_primary_10_1103_PhysRevB_111_075154 crossref_primary_10_1016_j_cpc_2021_107948 crossref_primary_10_1103_PhysRevResearch_3_013278 crossref_primary_10_1088_1367_2630_ac6231 crossref_primary_10_1021_jacs_2c12780 crossref_primary_10_1103_PhysRevB_105_235138 crossref_primary_10_1016_j_jallcom_2023_171070 crossref_primary_10_1063_5_0242426 crossref_primary_10_1016_j_mtcomm_2024_110974 crossref_primary_10_1002_adfm_202415606 crossref_primary_10_1103_PhysRevB_105_155102 crossref_primary_10_1088_1367_2630_aca34d crossref_primary_10_1021_acs_jpcc_4c03050 crossref_primary_10_1007_s11433_021_1862_3 crossref_primary_10_1038_s41467_021_22350_6 crossref_primary_10_21105_joss_05269 crossref_primary_10_1063_5_0180800 crossref_primary_10_1103_PhysRevB_109_075115 crossref_primary_10_1088_1367_2630_ad602d crossref_primary_10_1088_1361_648X_ad4430 crossref_primary_10_1088_0256_307X_41_6_067301 crossref_primary_10_1103_PhysRevB_106_235103 crossref_primary_10_1103_PhysRevB_107_045125 crossref_primary_10_1103_PhysRevB_109_205121 crossref_primary_10_1038_s43246_022_00234_6 crossref_primary_10_1063_5_0226504 crossref_primary_10_1103_PhysRevB_110_054511 crossref_primary_10_1088_1367_2630_ac919d crossref_primary_10_1103_PhysRevResearch_3_L012028 crossref_primary_10_1103_PhysRevB_109_035122 crossref_primary_10_1016_j_mser_2021_100620 crossref_primary_10_1126_science_abg9094 crossref_primary_10_1002_pssr_202100324 crossref_primary_10_1103_PhysRevLett_133_026402 crossref_primary_10_1103_PhysRevB_103_L161303 crossref_primary_10_1021_acs_nanolett_4c02508 crossref_primary_10_1016_j_physleta_2025_130433 crossref_primary_10_1103_PhysRevB_111_085401 crossref_primary_10_1021_acs_chemmater_3c00624 crossref_primary_10_1088_1361_648X_acfcfc crossref_primary_10_1103_PhysRevMaterials_5_044203 crossref_primary_10_1016_j_scib_2020_12_028 crossref_primary_10_1103_PhysRevB_109_125305 crossref_primary_10_1021_acsomega_4c08957 |
Cites_doi | 10.1126/science.1133734 10.1103/RevModPhys.83.1057 10.1126/science.1148047 10.1103/PhysRevB.98.125143 10.1126/science.aaf5037 10.1038/s41586-019-0937-5 10.1038/s41586-019-0944-6 10.1126/science.aan2802 10.1038/nphys1270 10.1126/science.aaa9297 10.1126/science.1173034 10.1038/nmat3990 10.1126/science.1245085 10.1038/s41467-017-00133-2 10.1103/PhysRevB.97.035139 10.1126/sciadv.aat0346 10.1016/j.cpc.2014.05.003 10.1107/S0108767313007538 10.1038/nature23268 10.1038/nature17410 10.1038/s41524-019-0260-6 10.1103/PhysRev.94.1498 10.1038/ncomms1969 10.1103/PhysRevE.96.023310 10.1103/RevModPhys.84.1419 10.1038/ncomms8373 10.1103/PhysRevLett.120.266401 10.1103/PhysRevB.99.161110 10.1038/s41586-019-0954-4 10.1016/0022-5088(68)90166-5 10.1002/zaac.19946200302 10.1038/nphys2442 10.1016/j.cpc.2017.09.033 10.1038/nphys1274 10.1038/s41467-018-06010-w 10.1103/RevModPhys.82.3045 10.1107/S1600576717011712 10.1103/PhysRevB.54.11169 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION ADTPV AOWAS D8V |
DOI | 10.1016/j.cpc.2020.107760 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2944 |
ExternalDocumentID | oai_DiVA_org_kth_291939 10_1016_j_cpc_2020_107760 S0010465520303805 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH ADTPV AOWAS D8V EFKBS |
ID | FETCH-LOGICAL-c401t-5dea3829dce2f65e2663e6f890a8eee135150b6edf1f2100c93cc70447be977d3 |
IEDL.DBID | .~1 |
ISSN | 0010-4655 1879-2944 |
IngestDate | Thu Aug 21 06:58:01 EDT 2025 Tue Jul 01 02:40:33 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 Fri Feb 23 02:48:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | First-principles calculations Irreducible representations Tight-binding hamiltonian Nonsymmorphic space groups Topological materials Plane-wave basis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-5dea3829dce2f65e2663e6f890a8eee135150b6edf1f2100c93cc70447be977d3 |
ORCID | 0000-0003-2169-8068 0000-0002-9050-5445 0000-0002-9154-4489 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_291939 crossref_citationtrail_10_1016_j_cpc_2020_107760 crossref_primary_10_1016_j_cpc_2020_107760 elsevier_sciencedirect_doi_10_1016_j_cpc_2020_107760 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computer physics communications |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Aroyo, Perez-Mato, Orobengoa, Tasci, La Flor, Kirov (b41) 2011; 43 Xu, Song, Wang, Weng, Dai (b13) 2019; 122 Persson (b44) 1999 Wang, Sun, Chen, Franchini, Xu, Weng, Dai, Fang (b20) 2012; 85 Liu, Jiang, Zhou, Wang, Zhang, Weng, Prabhakaran, Mo, Peng, Dudin (b23) 2014; 13 Nie, Xing, Jin, Xie, Wang, Prinz (b15) 2018; 98 Slater, Koster (b51) 1954; 94 Schindler, Cook, Vergniory, Wang, Parkin, Bernevig, Neupert (b7) 2018; 4 Streitwolf (b54) 1971 Weng, Fang, Fang, Bernevig, Dai (b24) 2015; 5 Vergniory, Elcoro, Wang, Cano, Felser, Aroyo, Bernevig, Bradlyn (b38) 2017; 96 Cano, Bradlyn, Wang, Elcoro, Vergniory, Felser, Aroyo, Bernevig (b39) 2018; 120 Furuseth, Selte, Kjekshus, Nielsen, Sjöberg, Larsen (b58) 1965; 19 Hsieh, Lin, Liu, Duan, Bansil, Fu (b28) 2012; 3 Ma, Yi, Lv, Wang, Nie, Wang, Kong, Huang, Richard, Zhang (b31) 2017; 3 Xu, Belopolski, Alidoust, Neupane, Bian, Zhang, Sankar, Chang, Yuan, Lee, Huang, Zheng, Ma, Sanchez, Wang, Bansil, Chou, Shibayev, Lin, Jia, Hasan (b27) 2015; 349 Pratt, Myles, Darb. Jr, Mueller (b57) 1968; 14 Zhu, Cheng, Schwingenschlögl (b32) 2012; 85 Elcoro, Bradlyn, Wang, Vergniory, Cano, Felser, Bernevig, Orobengoa, Flor, Aroyo (b40) 2017; 50 Kresse, Furthmüller (b45) 1996; 54 Wieder, Bradlyn, Wang, Cano, Kim, Kim, Rappe, Kane, Bernevig (b9) 2018; 361 Zhang, Jiang, Song, Huang, He, Fang, Weng, Fang (b11) 2019; 566 Xia, Qian, Hsieh, Wray, Pal, Lin, Bansil, Grauer, Hor, Cava, Hasan (b18) 2009; 5 Po, Vishwanath, Watanabe (b33) 2017; 8 Cornwell (b53) 1984 Bradlyn, Elcoro, Cano, Vergniory, Wang, Felser, Aroyo, Bernevig (b36) 2017; 547 . Qian, Nie, Yi, Kong, Fang, Qian, Ding, Shi, Wang, Weng, Fang (b16) 2019; 5 Tang, Po, Vishwanath, Wan (b10) 2019; 566 Brese, von Schnering (b59) 1994; 620 Kane, Mele (b3) 2005; 95 C. Yue, Symmetrization of wannier tight-binding models Bradlyn, Cano, Wang, Vergniory, Felser, Cava, Bernevig (b55) 2016; 353 Stokes, Campbell, Cordes (b42) 2013; 69 Mostofi, Yates, Pizzi, Lee, Souza, Vanderbilt, Marzari (b47) 2014; 185 Zhang, Liu, Qi, Dai, Fang, Zhang (b17) 2009; 5 Liu, Zhou, Zhang, Wang, Weng, Prabhakaran, Mo, Shen, Fang, Dai, Hussain, Chen (b21) 2014; 343 Marzari, Mostofi, Yates, Souza, Vanderbilt (b46) 2012; 84 Tanaka, Ren, Sato, Nakayama, Souma, Takahashi, Segawa, Ando (b29) 2012; 8 Wan, Turner, Vishwanath, Savrasov (b8) 2011; 83 Bernevig, Zhang (b4) 2006; 96 Blaha, Schwarz, Madsen, Kvasnicka, Luitz (b43) 2001 Willatzen, Voon (b52) 2009 Bernevig, Hughes, Zhang (b1) 2006; 314 Song, Zhang, Fang, Fang (b34) 2018; 9 König, Wiedmann, Brüne, Roth, Buhmann, Molenkamp, Qi, Zhang (b2) 2007; 318 Wang, Weng, Wu, Dai, Fang (b22) 2013; 88 Cano, Bradlyn, Wang, Elcoro, Vergniory, Felser, Aroyo, Bernevig (b37) 2018; 97 Qi, Zhang (b6) 2011; 83 Wu, Zhang, Song, Troyer, Soluyanov (b48) 2018; 224 Vergniory, Elcoro, Felser, Regnault, Bernevig, Wang (b12) 2019; 566 Gresch, Wu, Winkler, Häuselmann, Troyer, Soluyanov (b50) 2018; 2 Chapai, Jia, Shelton, Nepal, Saghayezhian, DiTusa, Plummer, Jin, Jin (b56) 2019; 99 Li, Yan, Wang, Held (b14) 2017; 95 Chen, Analytis, Chu, Liu, Mo, Qi, Zhang, Lu, Dai, Fang, Zhang, Fisher, Hussain, Shen (b19) 2009; 325 Huang, Xu, Belopolski, Lee, Chang, Wang, Alidoust, Bian, Neupane, Zhang, Jia, Bansil, Lin, Hasan (b25) 2015; 6 Lv, Weng, Fu, Wang, Miao, Ma, Richard, Huang, Zhao, Chen, Fang, Dai, Qian, Ding (b26) 2015; 5 Kane, Hasan (b5) 2010; 82 Kruthoff, de Boer, van Wezel, Kane, Slager (b35) 2017; 7 Wang, Alexandradinata, Cava, Bernevig (b30) 2016; 532 Elcoro (10.1016/j.cpc.2020.107760_b40) 2017; 50 Weng (10.1016/j.cpc.2020.107760_b24) 2015; 5 Li (10.1016/j.cpc.2020.107760_b14) 2017; 95 Streitwolf (10.1016/j.cpc.2020.107760_b54) 1971 Wan (10.1016/j.cpc.2020.107760_b8) 2011; 83 Wang (10.1016/j.cpc.2020.107760_b20) 2012; 85 Aroyo (10.1016/j.cpc.2020.107760_b41) 2011; 43 Pratt (10.1016/j.cpc.2020.107760_b57) 1968; 14 Xu (10.1016/j.cpc.2020.107760_b13) 2019; 122 Vergniory (10.1016/j.cpc.2020.107760_b38) 2017; 96 Bradlyn (10.1016/j.cpc.2020.107760_b36) 2017; 547 Xu (10.1016/j.cpc.2020.107760_b27) 2015; 349 Kruthoff (10.1016/j.cpc.2020.107760_b35) 2017; 7 Bradlyn (10.1016/j.cpc.2020.107760_b55) 2016; 353 Zhang (10.1016/j.cpc.2020.107760_b11) 2019; 566 Blaha (10.1016/j.cpc.2020.107760_b43) 2001 Mostofi (10.1016/j.cpc.2020.107760_b47) 2014; 185 Ma (10.1016/j.cpc.2020.107760_b31) 2017; 3 Cano (10.1016/j.cpc.2020.107760_b39) 2018; 120 Marzari (10.1016/j.cpc.2020.107760_b46) 2012; 84 Vergniory (10.1016/j.cpc.2020.107760_b12) 2019; 566 Lv (10.1016/j.cpc.2020.107760_b26) 2015; 5 Liu (10.1016/j.cpc.2020.107760_b21) 2014; 343 Huang (10.1016/j.cpc.2020.107760_b25) 2015; 6 Schindler (10.1016/j.cpc.2020.107760_b7) 2018; 4 Bernevig (10.1016/j.cpc.2020.107760_b4) 2006; 96 Song (10.1016/j.cpc.2020.107760_b34) 2018; 9 Qian (10.1016/j.cpc.2020.107760_b16) 2019; 5 Chen (10.1016/j.cpc.2020.107760_b19) 2009; 325 10.1016/j.cpc.2020.107760_b49 Qi (10.1016/j.cpc.2020.107760_b6) 2011; 83 Liu (10.1016/j.cpc.2020.107760_b23) 2014; 13 Slater (10.1016/j.cpc.2020.107760_b51) 1954; 94 Kresse (10.1016/j.cpc.2020.107760_b45) 1996; 54 Brese (10.1016/j.cpc.2020.107760_b59) 1994; 620 Kane (10.1016/j.cpc.2020.107760_b3) 2005; 95 Po (10.1016/j.cpc.2020.107760_b33) 2017; 8 Furuseth (10.1016/j.cpc.2020.107760_b58) 1965; 19 Nie (10.1016/j.cpc.2020.107760_b15) 2018; 98 Hsieh (10.1016/j.cpc.2020.107760_b28) 2012; 3 Xia (10.1016/j.cpc.2020.107760_b18) 2009; 5 Wieder (10.1016/j.cpc.2020.107760_b9) 2018; 361 Wu (10.1016/j.cpc.2020.107760_b48) 2018; 224 Tanaka (10.1016/j.cpc.2020.107760_b29) 2012; 8 Cano (10.1016/j.cpc.2020.107760_b37) 2018; 97 Wang (10.1016/j.cpc.2020.107760_b22) 2013; 88 Bernevig (10.1016/j.cpc.2020.107760_b1) 2006; 314 Persson (10.1016/j.cpc.2020.107760_b44) 1999 Cornwell (10.1016/j.cpc.2020.107760_b53) 1984 Stokes (10.1016/j.cpc.2020.107760_b42) 2013; 69 Zhang (10.1016/j.cpc.2020.107760_b17) 2009; 5 Wang (10.1016/j.cpc.2020.107760_b30) 2016; 532 Zhu (10.1016/j.cpc.2020.107760_b32) 2012; 85 Chapai (10.1016/j.cpc.2020.107760_b56) 2019; 99 Kane (10.1016/j.cpc.2020.107760_b5) 2010; 82 Tang (10.1016/j.cpc.2020.107760_b10) 2019; 566 Gresch (10.1016/j.cpc.2020.107760_b50) 2018; 2 König (10.1016/j.cpc.2020.107760_b2) 2007; 318 Willatzen (10.1016/j.cpc.2020.107760_b52) 2009 |
References_xml | – volume: 120 year: 2018 ident: b39 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 438 year: 2009 ident: b17 publication-title: Nat. Phys. – volume: 6 start-page: 7373 year: 2015 ident: b25 publication-title: Nat. Commun. – volume: 3 start-page: 982 year: 2012 ident: b28 publication-title: Nat. Commun. – volume: 620 start-page: 393 year: 1994 ident: b59 publication-title: Z. Anorg. Allg. Chem. – volume: 9 start-page: 3530 year: 2018 ident: b34 publication-title: Nat. Commun. – volume: 122 year: 2019 ident: b13 publication-title: Phys. Rev. Lett. – reference: C. Yue, Symmetrization of wannier tight-binding models, – year: 2001 ident: b43 article-title: An augmented plane wave + local orbitals program for calculating crystal properties – volume: 50 start-page: 1457 year: 2017 ident: b40 publication-title: J. Appl. Crystallogr. – volume: 83 year: 2011 ident: b8 publication-title: Phys. Rev. B – volume: 325 start-page: 178 year: 2009 ident: b19 publication-title: Science – volume: 94 start-page: 1498 year: 1954 ident: b51 publication-title: Phys. Rev. – year: 1999 ident: b44 article-title: Electronic Structure of Intrinsic and Doped Silicon Carbide and Silicon – year: 1984 ident: b53 article-title: Group Theory in Physics [Vol. 1-2] – volume: 13 start-page: 677 year: 2014 ident: b23 publication-title: Nat. Mater. – volume: 7 year: 2017 ident: b35 publication-title: Phys. Rev. X – volume: 98 year: 2018 ident: b15 publication-title: Phys. Rev. B – volume: 4 start-page: eaat0346 year: 2018 ident: b7 publication-title: Sci. Adv. – volume: 566 start-page: 475 year: 2019 ident: b11 publication-title: Nature – volume: 566 start-page: 480 year: 2019 ident: b12 publication-title: Nature – volume: 85 year: 2012 ident: b20 publication-title: Phys. Rev. B – volume: 97 year: 2018 ident: b37 publication-title: Phys. Rev. B – volume: 566 start-page: 486 year: 2019 ident: b10 publication-title: Nature – volume: 547 start-page: 298 year: 2017 ident: b36 publication-title: Nature – volume: 96 year: 2017 ident: b38 publication-title: Phys. Rev. E – volume: 349 start-page: 613 year: 2015 ident: b27 publication-title: Science – volume: 314 start-page: 1757 year: 2006 ident: b1 publication-title: Science – volume: 83 start-page: 1057 year: 2011 ident: b6 publication-title: Rev. Modern Phys. – volume: 14 start-page: 427 year: 1968 ident: b57 publication-title: J. Less Common Metals – volume: 224 start-page: 405 year: 2018 ident: b48 publication-title: Comput. Phys. Comm. – volume: 95 year: 2017 ident: b14 publication-title: Phys. Rev. B – volume: 88 year: 2013 ident: b22 publication-title: Phys. Rev. B – volume: 99 year: 2019 ident: b56 publication-title: Phys. Rev. B – volume: 343 start-page: 864 year: 2014 ident: b21 publication-title: Science – volume: 43 start-page: 183 year: 2011 ident: b41 publication-title: Bulg. Chem. Commun. – volume: 318 start-page: 766 year: 2007 ident: b2 publication-title: Science – volume: 185 start-page: 2309 year: 2014 ident: b47 publication-title: Comput. Phys. Comm. – volume: 532 start-page: 189 year: 2016 ident: b30 publication-title: Nature – volume: 3 year: 2017 ident: b31 publication-title: Sci. Adv. – volume: 85 year: 2012 ident: b32 publication-title: Phys. Rev. B – volume: 5 year: 2015 ident: b24 publication-title: Phys. Rev. X – year: 1971 ident: b54 article-title: Group Theory in Solid-State Physics – volume: 5 start-page: 398 year: 2009 ident: b18 publication-title: Nat. Phys. – volume: 5 year: 2015 ident: b26 publication-title: Phys. Rev. X – volume: 69 start-page: 388 year: 2013 ident: b42 publication-title: Acta Crystallogr. A: Found. Crystallogr. – volume: 82 start-page: 3045 year: 2010 ident: b5 publication-title: Rev. Modern Phys. – volume: 361 start-page: 246 year: 2018 ident: b9 publication-title: Science – volume: 5 start-page: 121 year: 2019 ident: b16 publication-title: npj Comput. Mater. – volume: 84 start-page: 1419 year: 2012 ident: b46 publication-title: Rev. Modern Phys. – year: 2009 ident: b52 article-title: The Kp Method-Electronic Properties of Semiconductors, Vol. 53 – volume: 54 start-page: 169 year: 1996 ident: b45 publication-title: Phys. Rev. B – reference: . – volume: 8 start-page: 800 year: 2012 ident: b29 publication-title: Nat. Phys. – volume: 95 year: 2005 ident: b3 publication-title: Phys. Rev. Lett. – volume: 19 year: 1965 ident: b58 publication-title: Acta Chem. Scand. – volume: 96 year: 2006 ident: b4 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 50 year: 2017 ident: b33 publication-title: Nat. Commun. – volume: 2 year: 2018 ident: b50 publication-title: Phys. Rev. Mater. – volume: 353 start-page: aaf5037 year: 2016 ident: b55 publication-title: Science – volume: 314 start-page: 1757 year: 2006 ident: 10.1016/j.cpc.2020.107760_b1 publication-title: Science doi: 10.1126/science.1133734 – volume: 83 start-page: 1057 year: 2011 ident: 10.1016/j.cpc.2020.107760_b6 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.83.1057 – volume: 95 year: 2005 ident: 10.1016/j.cpc.2020.107760_b3 publication-title: Phys. Rev. Lett. – year: 2001 ident: 10.1016/j.cpc.2020.107760_b43 – volume: 318 start-page: 766 year: 2007 ident: 10.1016/j.cpc.2020.107760_b2 publication-title: Science doi: 10.1126/science.1148047 – volume: 98 year: 2018 ident: 10.1016/j.cpc.2020.107760_b15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.125143 – volume: 2 year: 2018 ident: 10.1016/j.cpc.2020.107760_b50 publication-title: Phys. Rev. Mater. – volume: 122 year: 2019 ident: 10.1016/j.cpc.2020.107760_b13 publication-title: Phys. Rev. Lett. – volume: 353 start-page: aaf5037 year: 2016 ident: 10.1016/j.cpc.2020.107760_b55 publication-title: Science doi: 10.1126/science.aaf5037 – volume: 566 start-page: 486 year: 2019 ident: 10.1016/j.cpc.2020.107760_b10 publication-title: Nature doi: 10.1038/s41586-019-0937-5 – volume: 566 start-page: 475 year: 2019 ident: 10.1016/j.cpc.2020.107760_b11 publication-title: Nature doi: 10.1038/s41586-019-0944-6 – volume: 361 start-page: 246 year: 2018 ident: 10.1016/j.cpc.2020.107760_b9 publication-title: Science doi: 10.1126/science.aan2802 – volume: 5 start-page: 438 year: 2009 ident: 10.1016/j.cpc.2020.107760_b17 publication-title: Nat. Phys. doi: 10.1038/nphys1270 – volume: 349 start-page: 613 year: 2015 ident: 10.1016/j.cpc.2020.107760_b27 publication-title: Science doi: 10.1126/science.aaa9297 – volume: 325 start-page: 178 year: 2009 ident: 10.1016/j.cpc.2020.107760_b19 publication-title: Science doi: 10.1126/science.1173034 – volume: 13 start-page: 677 year: 2014 ident: 10.1016/j.cpc.2020.107760_b23 publication-title: Nat. Mater. doi: 10.1038/nmat3990 – volume: 343 start-page: 864 year: 2014 ident: 10.1016/j.cpc.2020.107760_b21 publication-title: Science doi: 10.1126/science.1245085 – volume: 5 year: 2015 ident: 10.1016/j.cpc.2020.107760_b24 publication-title: Phys. Rev. X – volume: 8 start-page: 50 year: 2017 ident: 10.1016/j.cpc.2020.107760_b33 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00133-2 – volume: 3 year: 2017 ident: 10.1016/j.cpc.2020.107760_b31 publication-title: Sci. Adv. – volume: 19 year: 1965 ident: 10.1016/j.cpc.2020.107760_b58 publication-title: Acta Chem. Scand. – volume: 97 year: 2018 ident: 10.1016/j.cpc.2020.107760_b37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.035139 – year: 1971 ident: 10.1016/j.cpc.2020.107760_b54 – volume: 4 start-page: eaat0346 year: 2018 ident: 10.1016/j.cpc.2020.107760_b7 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat0346 – volume: 185 start-page: 2309 year: 2014 ident: 10.1016/j.cpc.2020.107760_b47 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2014.05.003 – ident: 10.1016/j.cpc.2020.107760_b49 – year: 1984 ident: 10.1016/j.cpc.2020.107760_b53 – volume: 69 start-page: 388 year: 2013 ident: 10.1016/j.cpc.2020.107760_b42 publication-title: Acta Crystallogr. A: Found. Crystallogr. doi: 10.1107/S0108767313007538 – volume: 85 year: 2012 ident: 10.1016/j.cpc.2020.107760_b20 publication-title: Phys. Rev. B – volume: 7 year: 2017 ident: 10.1016/j.cpc.2020.107760_b35 publication-title: Phys. Rev. X – volume: 547 start-page: 298 year: 2017 ident: 10.1016/j.cpc.2020.107760_b36 publication-title: Nature doi: 10.1038/nature23268 – volume: 88 year: 2013 ident: 10.1016/j.cpc.2020.107760_b22 publication-title: Phys. Rev. B – volume: 532 start-page: 189 year: 2016 ident: 10.1016/j.cpc.2020.107760_b30 publication-title: Nature doi: 10.1038/nature17410 – volume: 5 start-page: 121 year: 2019 ident: 10.1016/j.cpc.2020.107760_b16 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0260-6 – volume: 94 start-page: 1498 year: 1954 ident: 10.1016/j.cpc.2020.107760_b51 publication-title: Phys. Rev. doi: 10.1103/PhysRev.94.1498 – volume: 3 start-page: 982 year: 2012 ident: 10.1016/j.cpc.2020.107760_b28 publication-title: Nat. Commun. doi: 10.1038/ncomms1969 – volume: 5 year: 2015 ident: 10.1016/j.cpc.2020.107760_b26 publication-title: Phys. Rev. X – volume: 96 year: 2017 ident: 10.1016/j.cpc.2020.107760_b38 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.023310 – volume: 84 start-page: 1419 year: 2012 ident: 10.1016/j.cpc.2020.107760_b46 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.84.1419 – volume: 96 year: 2006 ident: 10.1016/j.cpc.2020.107760_b4 publication-title: Phys. Rev. Lett. – volume: 83 year: 2011 ident: 10.1016/j.cpc.2020.107760_b8 publication-title: Phys. Rev. B – volume: 6 start-page: 7373 year: 2015 ident: 10.1016/j.cpc.2020.107760_b25 publication-title: Nat. Commun. doi: 10.1038/ncomms8373 – year: 2009 ident: 10.1016/j.cpc.2020.107760_b52 – volume: 120 year: 2018 ident: 10.1016/j.cpc.2020.107760_b39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.266401 – volume: 99 year: 2019 ident: 10.1016/j.cpc.2020.107760_b56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.161110 – volume: 95 year: 2017 ident: 10.1016/j.cpc.2020.107760_b14 publication-title: Phys. Rev. B – volume: 566 start-page: 480 year: 2019 ident: 10.1016/j.cpc.2020.107760_b12 publication-title: Nature doi: 10.1038/s41586-019-0954-4 – volume: 85 year: 2012 ident: 10.1016/j.cpc.2020.107760_b32 publication-title: Phys. Rev. B – volume: 43 start-page: 183 year: 2011 ident: 10.1016/j.cpc.2020.107760_b41 publication-title: Bulg. Chem. Commun. – volume: 14 start-page: 427 year: 1968 ident: 10.1016/j.cpc.2020.107760_b57 publication-title: J. Less Common Metals doi: 10.1016/0022-5088(68)90166-5 – volume: 620 start-page: 393 year: 1994 ident: 10.1016/j.cpc.2020.107760_b59 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19946200302 – volume: 8 start-page: 800 year: 2012 ident: 10.1016/j.cpc.2020.107760_b29 publication-title: Nat. Phys. doi: 10.1038/nphys2442 – volume: 224 start-page: 405 issn: 0010-4655 year: 2018 ident: 10.1016/j.cpc.2020.107760_b48 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2017.09.033 – volume: 5 start-page: 398 year: 2009 ident: 10.1016/j.cpc.2020.107760_b18 publication-title: Nat. Phys. doi: 10.1038/nphys1274 – volume: 9 start-page: 3530 year: 2018 ident: 10.1016/j.cpc.2020.107760_b34 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06010-w – volume: 82 start-page: 3045 year: 2010 ident: 10.1016/j.cpc.2020.107760_b5 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 50 start-page: 1457 year: 2017 ident: 10.1016/j.cpc.2020.107760_b40 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576717011712 – year: 1999 ident: 10.1016/j.cpc.2020.107760_b44 – volume: 54 start-page: 169 year: 1996 ident: 10.1016/j.cpc.2020.107760_b45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 |
SSID | ssj0007793 |
Score | 2.6775193 |
Snippet | We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 107760 |
SubjectTerms | First-principles calculations Irreducible representations Nonsymmorphic space groups Plane-wave basis Tight-binding hamiltonian Topological materials |
Title | Irvsp: To obtain irreducible representations of electronic states in the VASP |
URI | https://dx.doi.org/10.1016/j.cpc.2020.107760 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291939 |
Volume | 261 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yEbyIP_E3OYgHoa5t2qbxNtQxHYqom7uFNn3R6lhHWz36t5uk7VSQHTyVlrw2fH28vJDvfQ-ho9AGGkQhs-IEQG1QHGaFUQIWODRIEgZSGrb7zW3QG3jXI3-0gM6bWhhNq6xjfxXTTbSun7RrNNvTNNU1vvp80vdd5ackNDqmnke1l59-ftM8KK2Fd1W80aObk03D8RJTrWLo6ntKjUrl32vTTxFRs_B0V9FKnTHiTjWpNbQAk3W0ZJibothAN1f5RzE9w48ZzmK9z8dpnms91jQeAzaalU190aTAmcTfjW-wqSYqsLJRaSAedh7uNtGge_l43rPqHgmWUMCWlp9AREKXJQJcGfig1lsCgQyZHYUAoPvv-XYcQCIdqXZ3tmBECGoroGJQqV9CtlBrkk1gG-EACFPpkmRERp7wnchxZQgeCSghwNxoB9kNOlzUAuK6j8WYN0yxV64A5RpQXgG6g05mJtNKPWPeYK-BnP9yAa6i-zyz4-r3zL6gFbMv0mGHZ_kzfytfuMtUmsp2__f-PbTsah6LYevso1aZv8OBSkTK-NB42iFa7Fz1e7f62r9_6n8BmNzdmA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA4yEX0Rf-L8mQfxQShrm7ZpfCvq6NQNwSl7C2160aqso5v-_SZpOxVkDz629Nry5bi7kO--Q-g0tIEGScisNANQGxSHWWGSgQUODbKMgZSG7d4fBPGjdzPyR0vosumF0bTKOvZXMd1E6_pOp0azM8lz3eOrzyd931V-SkKtY7qs1an8FlqOerfxYB6QKa21d1XI0QbN4aaheYmJFjJ09TWlRqjy7_T0U0fU5J7uBlqvi0YcVf-1iZZgvIVWDHlTTLdRv1d-TicXeFjgItVbfZyXpZZkzdN3wEa2smkxGk9xIfH37BtsGoqmWNmoShA_RQ_3O-ixez28jK16TIIlFLYzy88gIaHLMgGuDHxQKZdAIENmJyEA6BF8vp0GkElHqg2eLRgRgtqeR1NQ1V9GdlFrXIxhD-EACFMVk2REJp7wncRxZQgeCSghwNykjewGHS5qDXE9yuKdN2SxV64A5RpQXgHaRudzk0kloLHoYa-BnP_yAq4C_CKzs2p55l_QotlX-VPEi_KZv81euMtUpcr2__f-E7QaD_t3_K43uD1Aa66mtRjyziFqzcoPOFJ1ySw9rv3uC01I3qY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irvsp%3A+To+obtain+irreducible+representations+of+electronic+states+in+the+VASP&rft.jtitle=Computer+physics+communications&rft.au=Gao%2C+Jiacheng&rft.au=Wu%2C+Quansheng&rft.au=Persson%2C+Clas&rft.au=Wang%2C+Zhijun&rft.date=2021-04-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=261&rft_id=info:doi/10.1016%2Fj.cpc.2020.107760&rft.externalDocID=S0010465520303805 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |