Irvsp: To obtain irreducible representations of electronic states in the VASP

We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) and space group operators (listed in OUTCAR)...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 261; p. 107760
Main Authors Gao, Jiacheng, Wu, Quansheng, Persson, Clas, Wang, Zhijun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) and space group operators (listed in OUTCAR), which are generated by the VASP package. This program computes the traces of matrix presentations and determines the corresponding irreducible representations for all energy bands and all the k-points in the three-dimensional Brillouin zone. It also works with spin–orbit coupling (SOC), i.e., for double groups. It is in particular useful to analyze energy bands, their connectivities, and band topology, after the establishment of the theory of topological quantum chemistry. Accordingly, the associated library – irrep_bcs.a – is developed, which can be easily linked to by other ab-initio packages. In addition, the program has been extended to orthogonal tight-binding (TB) Hamiltonians, e.g. electronic or phononic TB Hamiltonians. A sister program ir2tb is presented as well. Program title: irvsp CPC Library link to program files:https://doi.org/10.17632/y9ds5nnm2f.1 Licensing provisions: GNU Lesser General Public License Programming language: Fortran 90/77 Nature of problem: Determining irreducible representations for all energy bands and all the k-points in 230 space groups. It is in particular useful to analyze energy bands, their connectivities, and band topology. Solution method: By computing the traces of matrix presentations of space group operators for the eigen-wavefunctions at a certain k-point in a given space group, one can determine irreducible representations for them.
AbstractList We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) and space group operators (listed in OUTCAR), which are generated by the VASP package. This program computes the traces of matrix presentations and determines the corresponding irreducible representations for all energy bands and all the k-points in the three-dimensional Brillouin zone. It also works with spin–orbit coupling (SOC), i.e., for double groups. It is in particular useful to analyze energy bands, their connectivities, and band topology, after the establishment of the theory of topological quantum chemistry. Accordingly, the associated library – irrep_bcs.a – is developed, which can be easily linked to by other ab-initio packages. In addition, the program has been extended to orthogonal tight-binding (TB) Hamiltonians, e.g. electronic or phononic TB Hamiltonians. A sister program ir2tb is presented as well. Program title: irvsp CPC Library link to program files:https://doi.org/10.17632/y9ds5nnm2f.1 Licensing provisions: GNU Lesser General Public License Programming language: Fortran 90/77 Nature of problem: Determining irreducible representations for all energy bands and all the k-points in 230 space groups. It is in particular useful to analyze energy bands, their connectivities, and band topology. Solution method: By computing the traces of matrix presentations of space group operators for the eigen-wavefunctions at a certain k-point in a given space group, one can determine irreducible representations for them.
We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) and space group operators (listed in OUTCAR), which are generated by the VASP package. This program computes the traces of matrix presentations and determines the corresponding irreducible representations for all energy bands and all the k-points in the three-dimensional Brillouin zone. It also works with spin-orbit coupling (SOC), i.e., for double groups. It is in particular useful to analyze energy bands, their connectivities, and band topology, after the establishment of the theory of topological quantum chemistry. Accordingly, the associated library -irrep_bcs.a - is developed, which can be easily linked to by other ab-initio packages. In addition, the program has been extended to orthogonal tight-binding (TB) Hamiltonians, e.g. electronic or phononic TB Hamiltonians. A sister program is presented as well. Program summary Program title: irvsp CPC Library link to program files: http://doi.org/10.1763/y9ds5nnm2f.1 Licensing provisions: GNU Lesser General Public License Programming language: Fortran 90/77 Nature of problem: Determining irreducible representations for all energy bands and all the k-points in 230 space groups. It is in particular useful to analyze energy bands, their connectivities, and band topology. Solution method: By computing the traces of matrix presentations of space group operators for the eigen-wavefunctions at a certain k-point in a given space group, one can determine irreducible representations for them.
ArticleNumber 107760
Author Persson, Clas
Wu, Quansheng
Gao, Jiacheng
Wang, Zhijun
Author_xml – sequence: 1
  givenname: Jiacheng
  surname: Gao
  fullname: Gao, Jiacheng
  organization: Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Quansheng
  orcidid: 0000-0002-9154-4489
  surname: Wu
  fullname: Wu, Quansheng
  organization: Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
– sequence: 3
  givenname: Clas
  orcidid: 0000-0002-9050-5445
  surname: Persson
  fullname: Persson, Clas
  organization: Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo, Norway
– sequence: 4
  givenname: Zhijun
  orcidid: 0000-0003-2169-8068
  surname: Wang
  fullname: Wang, Zhijun
  email: zjwang11@hotmail.com
  organization: Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291939$$DView record from Swedish Publication Index
BookMark eNp9kE1OwzAQRi1UJNrCAdj5Aim2k9g1rKryV6kIJEq3VuJMqEuII9st4va4CmxYdDWa0fdmNG-EBq1tAaFLSiaUUH61nehOTxhhh14ITk7QkE6FTJjMsgEaEkJJkvE8P0Mj77eExJBMh-hp4fa-u8Yri20ZCtNi4xxUO23KBrCDzoGHNhTB2NZjW2NoQAdnW6Oxj2PwODJhA3g9e305R6d10Xi4-K1j9HZ_t5o_Jsvnh8V8tkx0RmhI8gqKdMpkpYHVPAfGeQq8nkpSTAGApjnNScmhqmnNKCFaploLkmWiBClElY5R0u_1X9DtStU581m4b2ULo27Neqase1cfYaOYpDKVMS_6vHbWewe10qb_KbjCNIoSdbCotipaVAeLqrcYSfqP_Lt1jLnpGYgK9gac8tpAq6EyLspTlTVH6B-luozK
CitedBy_id crossref_primary_10_1038_s41578_021_00380_2
crossref_primary_10_1021_acs_jpclett_1c03193
crossref_primary_10_1063_5_0245475
crossref_primary_10_1088_2515_7639_ac363d
crossref_primary_10_1103_PhysRevB_105_214506
crossref_primary_10_1039_D3CP05680E
crossref_primary_10_1088_1361_648X_ac0570
crossref_primary_10_1103_PhysRevB_106_035150
crossref_primary_10_1103_PhysRevLett_132_106602
crossref_primary_10_1103_PhysRevB_109_165136
crossref_primary_10_1103_PhysRevB_103_035433
crossref_primary_10_1103_PhysRevB_104_035157
crossref_primary_10_1103_PhysRevB_105_165135
crossref_primary_10_1103_PhysRevResearch_5_L042003
crossref_primary_10_1016_j_apmt_2025_102644
crossref_primary_10_1103_PhysRevLett_127_215701
crossref_primary_10_1038_s42254_021_00292_8
crossref_primary_10_1103_PhysRevB_110_054513
crossref_primary_10_1016_j_nanoen_2024_109763
crossref_primary_10_1103_PhysRevB_110_085150
crossref_primary_10_1002_adfm_202316079
crossref_primary_10_1021_jacs_3c00797
crossref_primary_10_1103_PhysRevB_106_075155
crossref_primary_10_1103_PhysRevResearch_5_023142
crossref_primary_10_1021_acs_jpcc_4c06353
crossref_primary_10_35848_1347_4065_ac4c4e
crossref_primary_10_1016_j_mtphys_2025_101700
crossref_primary_10_1103_PhysRevB_109_205103
crossref_primary_10_1103_PhysRevLett_126_246601
crossref_primary_10_1038_s41535_023_00609_z
crossref_primary_10_1016_j_jcis_2024_04_230
crossref_primary_10_1038_s41467_023_40515_3
crossref_primary_10_1116_5_0245604
crossref_primary_10_1016_j_mtcomm_2023_107590
crossref_primary_10_1016_j_scib_2021_12_025
crossref_primary_10_1103_PhysRevB_104_245427
crossref_primary_10_1103_PhysRevB_110_075124
crossref_primary_10_1016_j_mtphys_2023_101153
crossref_primary_10_1088_1402_4896_adaf7d
crossref_primary_10_1039_D2CP01941H
crossref_primary_10_1103_PhysRevB_103_205133
crossref_primary_10_1103_PhysRevLett_128_077001
crossref_primary_10_1007_s11433_023_2271_y
crossref_primary_10_1103_PhysRevB_108_115123
crossref_primary_10_1063_5_0129044
crossref_primary_10_1038_s41467_022_32359_0
crossref_primary_10_1002_smsc_202300356
crossref_primary_10_1016_j_cpc_2025_109510
crossref_primary_10_1103_PhysRevMaterials_8_074001
crossref_primary_10_1103_PhysRevB_111_064519
crossref_primary_10_1016_j_mtphys_2022_100694
crossref_primary_10_1039_D3TC04120D
crossref_primary_10_1002_smsc_202400160
crossref_primary_10_1088_0256_307X_41_9_097101
crossref_primary_10_1002_advs_202207508
crossref_primary_10_1016_j_physb_2024_416773
crossref_primary_10_1103_PhysRevB_105_245152
crossref_primary_10_1103_PhysRevB_109_144522
crossref_primary_10_1103_PhysRevB_110_165122
crossref_primary_10_1103_PhysRevB_109_085102
crossref_primary_10_1103_PhysRevLett_129_027001
crossref_primary_10_1038_s41535_022_00449_3
crossref_primary_10_1039_D2NR03236H
crossref_primary_10_34133_research_0042
crossref_primary_10_1002_adma_202108550
crossref_primary_10_1038_s41586_021_03543_x
crossref_primary_10_1021_acsnano_3c03307
crossref_primary_10_1039_D2EE03924A
crossref_primary_10_1103_PhysRevB_105_224103
crossref_primary_10_1021_acs_cgd_5c00012
crossref_primary_10_1021_acs_jpcc_2c08143
crossref_primary_10_1103_PhysRevB_108_054311
crossref_primary_10_1103_PhysRevB_109_115118
crossref_primary_10_1103_PhysRevB_106_195429
crossref_primary_10_1109_TGRS_2024_3424227
crossref_primary_10_1039_D4TC03058C
crossref_primary_10_1088_0256_307X_40_12_127101
crossref_primary_10_1016_j_cpc_2024_109468
crossref_primary_10_1039_D4CP00608A
crossref_primary_10_1088_1674_1056_ac0cd8
crossref_primary_10_1038_s41524_020_00358_8
crossref_primary_10_1016_j_xcrp_2023_101392
crossref_primary_10_1103_PhysRevB_108_125434
crossref_primary_10_1088_1367_2630_acc608
crossref_primary_10_1103_PhysRevB_108_174430
crossref_primary_10_1103_PhysRevB_109_045423
crossref_primary_10_1038_s41535_022_00498_8
crossref_primary_10_1103_PhysRevB_111_075433
crossref_primary_10_1103_PhysRevB_110_024504
crossref_primary_10_1103_PhysRevB_106_115114
crossref_primary_10_1103_PhysRevResearch_6_023249
crossref_primary_10_1088_1367_2630_aca429
crossref_primary_10_1038_s41535_023_00557_8
crossref_primary_10_1103_PhysRevB_108_L241406
crossref_primary_10_1021_acsomega_4c09865
crossref_primary_10_1103_PhysRevB_110_075129
crossref_primary_10_1103_PhysRevX_14_041048
crossref_primary_10_1039_D2CP03349F
crossref_primary_10_1103_PhysRevB_105_235410
crossref_primary_10_1103_PhysRevB_106_085102
crossref_primary_10_1038_s41586_020_2837_0
crossref_primary_10_1103_PhysRevB_108_235302
crossref_primary_10_1103_PhysRevB_105_245108
crossref_primary_10_1002_adma_202300227
crossref_primary_10_1021_acs_jpcc_4c05870
crossref_primary_10_1039_D4TC04581E
crossref_primary_10_1103_PhysRevB_105_014437
crossref_primary_10_1103_PhysRevB_106_115121
crossref_primary_10_1002_adfm_202304499
crossref_primary_10_1103_PhysRevB_110_035151
crossref_primary_10_1103_PhysRevB_111_085135
crossref_primary_10_1103_PhysRevB_110_035152
crossref_primary_10_1103_PhysRevB_111_035113
crossref_primary_10_1103_PhysRevB_108_L161110
crossref_primary_10_1002_smll_202407232
crossref_primary_10_1103_PhysRevB_110_125103
crossref_primary_10_1103_PhysRevMaterials_5_034801
crossref_primary_10_1016_j_physe_2022_115164
crossref_primary_10_1103_PhysRevB_110_184507
crossref_primary_10_1103_PhysRevB_104_235139
crossref_primary_10_1103_PhysRevB_110_054106
crossref_primary_10_1016_j_carbon_2023_118555
crossref_primary_10_1021_jacs_3c00284
crossref_primary_10_1103_PhysRevB_110_245421
crossref_primary_10_1103_PhysRevB_111_L041117
crossref_primary_10_1039_D1TC00547B
crossref_primary_10_1021_acsmaterialslett_2c00333
crossref_primary_10_1103_PhysRevB_103_115145
crossref_primary_10_1016_j_physleta_2024_129723
crossref_primary_10_1039_D3MH01266B
crossref_primary_10_1103_PhysRevResearch_6_023277
crossref_primary_10_1103_PhysRevB_104_245128
crossref_primary_10_1002_pssr_202100477
crossref_primary_10_1088_1367_2630_ad59ff
crossref_primary_10_1103_PhysRevB_105_115143
crossref_primary_10_1103_PhysRevB_108_085135
crossref_primary_10_1016_j_mtnano_2023_100389
crossref_primary_10_1038_s41467_022_30442_0
crossref_primary_10_1038_s41467_023_37971_2
crossref_primary_10_1016_j_scib_2023_06_029
crossref_primary_10_1016_j_cpc_2021_107993
crossref_primary_10_1016_j_cpc_2023_108722
crossref_primary_10_1103_PhysRevMaterials_8_044201
crossref_primary_10_1103_PhysRevB_109_155152
crossref_primary_10_1103_PhysRevMaterials_8_044203
crossref_primary_10_1021_acs_jpcc_3c05433
crossref_primary_10_1039_D3TC01890C
crossref_primary_10_1103_PhysRevB_108_165122
crossref_primary_10_1088_1367_2630_ad6c78
crossref_primary_10_1126_sciadv_add5239
crossref_primary_10_1038_s41467_023_39620_0
crossref_primary_10_1103_PhysRevB_105_045417
crossref_primary_10_1016_j_ssc_2024_115673
crossref_primary_10_1063_5_0147752
crossref_primary_10_1103_PhysRevB_103_014439
crossref_primary_10_1103_PhysRevB_105_184514
crossref_primary_10_1007_s42864_022_00200_2
crossref_primary_10_1103_PhysRevB_106_045148
crossref_primary_10_1103_PhysRevB_110_085413
crossref_primary_10_1103_PhysRevB_103_L161109
crossref_primary_10_1103_PhysRevLett_133_176602
crossref_primary_10_1063_5_0230231
crossref_primary_10_1103_PhysRevB_106_085129
crossref_primary_10_1002_adfm_202110930
crossref_primary_10_1021_acssuschemeng_4c07350
crossref_primary_10_1093_nsr_nwaa218
crossref_primary_10_1088_1361_648X_ad3ac2
crossref_primary_10_3390_cryst12101478
crossref_primary_10_1107_S2053273323005016
crossref_primary_10_1039_D4MH01599A
crossref_primary_10_1103_PhysRevMaterials_8_054205
crossref_primary_10_1016_j_jallcom_2023_169776
crossref_primary_10_1103_PhysRevMaterials_8_054204
crossref_primary_10_1103_PhysRevB_103_115105
crossref_primary_10_1103_PhysRevB_103_L121101
crossref_primary_10_1016_j_isci_2022_105813
crossref_primary_10_1103_PhysRevB_104_195145
crossref_primary_10_1002_qute_202400444
crossref_primary_10_1103_PhysRevB_111_104113
crossref_primary_10_1126_sciadv_abd1076
crossref_primary_10_1103_PhysRevB_105_235128
crossref_primary_10_1021_acs_jpclett_2c01978
crossref_primary_10_1016_j_mtcomm_2024_108890
crossref_primary_10_1063_5_0073844
crossref_primary_10_1103_PhysRevB_109_205141
crossref_primary_10_1103_PhysRevB_111_075154
crossref_primary_10_1016_j_cpc_2021_107948
crossref_primary_10_1103_PhysRevResearch_3_013278
crossref_primary_10_1088_1367_2630_ac6231
crossref_primary_10_1021_jacs_2c12780
crossref_primary_10_1103_PhysRevB_105_235138
crossref_primary_10_1016_j_jallcom_2023_171070
crossref_primary_10_1063_5_0242426
crossref_primary_10_1016_j_mtcomm_2024_110974
crossref_primary_10_1002_adfm_202415606
crossref_primary_10_1103_PhysRevB_105_155102
crossref_primary_10_1088_1367_2630_aca34d
crossref_primary_10_1021_acs_jpcc_4c03050
crossref_primary_10_1007_s11433_021_1862_3
crossref_primary_10_1038_s41467_021_22350_6
crossref_primary_10_21105_joss_05269
crossref_primary_10_1063_5_0180800
crossref_primary_10_1103_PhysRevB_109_075115
crossref_primary_10_1088_1367_2630_ad602d
crossref_primary_10_1088_1361_648X_ad4430
crossref_primary_10_1088_0256_307X_41_6_067301
crossref_primary_10_1103_PhysRevB_106_235103
crossref_primary_10_1103_PhysRevB_107_045125
crossref_primary_10_1103_PhysRevB_109_205121
crossref_primary_10_1038_s43246_022_00234_6
crossref_primary_10_1063_5_0226504
crossref_primary_10_1103_PhysRevB_110_054511
crossref_primary_10_1088_1367_2630_ac919d
crossref_primary_10_1103_PhysRevResearch_3_L012028
crossref_primary_10_1103_PhysRevB_109_035122
crossref_primary_10_1016_j_mser_2021_100620
crossref_primary_10_1126_science_abg9094
crossref_primary_10_1002_pssr_202100324
crossref_primary_10_1103_PhysRevLett_133_026402
crossref_primary_10_1103_PhysRevB_103_L161303
crossref_primary_10_1021_acs_nanolett_4c02508
crossref_primary_10_1016_j_physleta_2025_130433
crossref_primary_10_1103_PhysRevB_111_085401
crossref_primary_10_1021_acs_chemmater_3c00624
crossref_primary_10_1088_1361_648X_acfcfc
crossref_primary_10_1103_PhysRevMaterials_5_044203
crossref_primary_10_1016_j_scib_2020_12_028
crossref_primary_10_1103_PhysRevB_109_125305
crossref_primary_10_1021_acsomega_4c08957
Cites_doi 10.1126/science.1133734
10.1103/RevModPhys.83.1057
10.1126/science.1148047
10.1103/PhysRevB.98.125143
10.1126/science.aaf5037
10.1038/s41586-019-0937-5
10.1038/s41586-019-0944-6
10.1126/science.aan2802
10.1038/nphys1270
10.1126/science.aaa9297
10.1126/science.1173034
10.1038/nmat3990
10.1126/science.1245085
10.1038/s41467-017-00133-2
10.1103/PhysRevB.97.035139
10.1126/sciadv.aat0346
10.1016/j.cpc.2014.05.003
10.1107/S0108767313007538
10.1038/nature23268
10.1038/nature17410
10.1038/s41524-019-0260-6
10.1103/PhysRev.94.1498
10.1038/ncomms1969
10.1103/PhysRevE.96.023310
10.1103/RevModPhys.84.1419
10.1038/ncomms8373
10.1103/PhysRevLett.120.266401
10.1103/PhysRevB.99.161110
10.1038/s41586-019-0954-4
10.1016/0022-5088(68)90166-5
10.1002/zaac.19946200302
10.1038/nphys2442
10.1016/j.cpc.2017.09.033
10.1038/nphys1274
10.1038/s41467-018-06010-w
10.1103/RevModPhys.82.3045
10.1107/S1600576717011712
10.1103/PhysRevB.54.11169
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
ADTPV
AOWAS
D8V
DOI 10.1016/j.cpc.2020.107760
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID oai_DiVA_org_kth_291939
10_1016_j_cpc_2020_107760
S0010465520303805
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ADTPV
AOWAS
D8V
EFKBS
ID FETCH-LOGICAL-c401t-5dea3829dce2f65e2663e6f890a8eee135150b6edf1f2100c93cc70447be977d3
IEDL.DBID .~1
ISSN 0010-4655
1879-2944
IngestDate Thu Aug 21 06:58:01 EDT 2025
Tue Jul 01 02:40:33 EDT 2025
Thu Apr 24 22:51:20 EDT 2025
Fri Feb 23 02:48:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords First-principles calculations
Irreducible representations
Tight-binding hamiltonian
Nonsymmorphic space groups
Topological materials
Plane-wave basis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-5dea3829dce2f65e2663e6f890a8eee135150b6edf1f2100c93cc70447be977d3
ORCID 0000-0003-2169-8068
0000-0002-9050-5445
0000-0002-9154-4489
ParticipantIDs swepub_primary_oai_DiVA_org_kth_291939
crossref_citationtrail_10_1016_j_cpc_2020_107760
crossref_primary_10_1016_j_cpc_2020_107760
elsevier_sciencedirect_doi_10_1016_j_cpc_2020_107760
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Aroyo, Perez-Mato, Orobengoa, Tasci, La Flor, Kirov (b41) 2011; 43
Xu, Song, Wang, Weng, Dai (b13) 2019; 122
Persson (b44) 1999
Wang, Sun, Chen, Franchini, Xu, Weng, Dai, Fang (b20) 2012; 85
Liu, Jiang, Zhou, Wang, Zhang, Weng, Prabhakaran, Mo, Peng, Dudin (b23) 2014; 13
Nie, Xing, Jin, Xie, Wang, Prinz (b15) 2018; 98
Slater, Koster (b51) 1954; 94
Schindler, Cook, Vergniory, Wang, Parkin, Bernevig, Neupert (b7) 2018; 4
Streitwolf (b54) 1971
Weng, Fang, Fang, Bernevig, Dai (b24) 2015; 5
Vergniory, Elcoro, Wang, Cano, Felser, Aroyo, Bernevig, Bradlyn (b38) 2017; 96
Cano, Bradlyn, Wang, Elcoro, Vergniory, Felser, Aroyo, Bernevig (b39) 2018; 120
Furuseth, Selte, Kjekshus, Nielsen, Sjöberg, Larsen (b58) 1965; 19
Hsieh, Lin, Liu, Duan, Bansil, Fu (b28) 2012; 3
Ma, Yi, Lv, Wang, Nie, Wang, Kong, Huang, Richard, Zhang (b31) 2017; 3
Xu, Belopolski, Alidoust, Neupane, Bian, Zhang, Sankar, Chang, Yuan, Lee, Huang, Zheng, Ma, Sanchez, Wang, Bansil, Chou, Shibayev, Lin, Jia, Hasan (b27) 2015; 349
Pratt, Myles, Darb. Jr, Mueller (b57) 1968; 14
Zhu, Cheng, Schwingenschlögl (b32) 2012; 85
Elcoro, Bradlyn, Wang, Vergniory, Cano, Felser, Bernevig, Orobengoa, Flor, Aroyo (b40) 2017; 50
Kresse, Furthmüller (b45) 1996; 54
Wieder, Bradlyn, Wang, Cano, Kim, Kim, Rappe, Kane, Bernevig (b9) 2018; 361
Zhang, Jiang, Song, Huang, He, Fang, Weng, Fang (b11) 2019; 566
Xia, Qian, Hsieh, Wray, Pal, Lin, Bansil, Grauer, Hor, Cava, Hasan (b18) 2009; 5
Po, Vishwanath, Watanabe (b33) 2017; 8
Cornwell (b53) 1984
Bradlyn, Elcoro, Cano, Vergniory, Wang, Felser, Aroyo, Bernevig (b36) 2017; 547
.
Qian, Nie, Yi, Kong, Fang, Qian, Ding, Shi, Wang, Weng, Fang (b16) 2019; 5
Tang, Po, Vishwanath, Wan (b10) 2019; 566
Brese, von Schnering (b59) 1994; 620
Kane, Mele (b3) 2005; 95
C. Yue, Symmetrization of wannier tight-binding models
Bradlyn, Cano, Wang, Vergniory, Felser, Cava, Bernevig (b55) 2016; 353
Stokes, Campbell, Cordes (b42) 2013; 69
Mostofi, Yates, Pizzi, Lee, Souza, Vanderbilt, Marzari (b47) 2014; 185
Zhang, Liu, Qi, Dai, Fang, Zhang (b17) 2009; 5
Liu, Zhou, Zhang, Wang, Weng, Prabhakaran, Mo, Shen, Fang, Dai, Hussain, Chen (b21) 2014; 343
Marzari, Mostofi, Yates, Souza, Vanderbilt (b46) 2012; 84
Tanaka, Ren, Sato, Nakayama, Souma, Takahashi, Segawa, Ando (b29) 2012; 8
Wan, Turner, Vishwanath, Savrasov (b8) 2011; 83
Bernevig, Zhang (b4) 2006; 96
Blaha, Schwarz, Madsen, Kvasnicka, Luitz (b43) 2001
Willatzen, Voon (b52) 2009
Bernevig, Hughes, Zhang (b1) 2006; 314
Song, Zhang, Fang, Fang (b34) 2018; 9
König, Wiedmann, Brüne, Roth, Buhmann, Molenkamp, Qi, Zhang (b2) 2007; 318
Wang, Weng, Wu, Dai, Fang (b22) 2013; 88
Cano, Bradlyn, Wang, Elcoro, Vergniory, Felser, Aroyo, Bernevig (b37) 2018; 97
Qi, Zhang (b6) 2011; 83
Wu, Zhang, Song, Troyer, Soluyanov (b48) 2018; 224
Vergniory, Elcoro, Felser, Regnault, Bernevig, Wang (b12) 2019; 566
Gresch, Wu, Winkler, Häuselmann, Troyer, Soluyanov (b50) 2018; 2
Chapai, Jia, Shelton, Nepal, Saghayezhian, DiTusa, Plummer, Jin, Jin (b56) 2019; 99
Li, Yan, Wang, Held (b14) 2017; 95
Chen, Analytis, Chu, Liu, Mo, Qi, Zhang, Lu, Dai, Fang, Zhang, Fisher, Hussain, Shen (b19) 2009; 325
Huang, Xu, Belopolski, Lee, Chang, Wang, Alidoust, Bian, Neupane, Zhang, Jia, Bansil, Lin, Hasan (b25) 2015; 6
Lv, Weng, Fu, Wang, Miao, Ma, Richard, Huang, Zhao, Chen, Fang, Dai, Qian, Ding (b26) 2015; 5
Kane, Hasan (b5) 2010; 82
Kruthoff, de Boer, van Wezel, Kane, Slager (b35) 2017; 7
Wang, Alexandradinata, Cava, Bernevig (b30) 2016; 532
Elcoro (10.1016/j.cpc.2020.107760_b40) 2017; 50
Weng (10.1016/j.cpc.2020.107760_b24) 2015; 5
Li (10.1016/j.cpc.2020.107760_b14) 2017; 95
Streitwolf (10.1016/j.cpc.2020.107760_b54) 1971
Wan (10.1016/j.cpc.2020.107760_b8) 2011; 83
Wang (10.1016/j.cpc.2020.107760_b20) 2012; 85
Aroyo (10.1016/j.cpc.2020.107760_b41) 2011; 43
Pratt (10.1016/j.cpc.2020.107760_b57) 1968; 14
Xu (10.1016/j.cpc.2020.107760_b13) 2019; 122
Vergniory (10.1016/j.cpc.2020.107760_b38) 2017; 96
Bradlyn (10.1016/j.cpc.2020.107760_b36) 2017; 547
Xu (10.1016/j.cpc.2020.107760_b27) 2015; 349
Kruthoff (10.1016/j.cpc.2020.107760_b35) 2017; 7
Bradlyn (10.1016/j.cpc.2020.107760_b55) 2016; 353
Zhang (10.1016/j.cpc.2020.107760_b11) 2019; 566
Blaha (10.1016/j.cpc.2020.107760_b43) 2001
Mostofi (10.1016/j.cpc.2020.107760_b47) 2014; 185
Ma (10.1016/j.cpc.2020.107760_b31) 2017; 3
Cano (10.1016/j.cpc.2020.107760_b39) 2018; 120
Marzari (10.1016/j.cpc.2020.107760_b46) 2012; 84
Vergniory (10.1016/j.cpc.2020.107760_b12) 2019; 566
Lv (10.1016/j.cpc.2020.107760_b26) 2015; 5
Liu (10.1016/j.cpc.2020.107760_b21) 2014; 343
Huang (10.1016/j.cpc.2020.107760_b25) 2015; 6
Schindler (10.1016/j.cpc.2020.107760_b7) 2018; 4
Bernevig (10.1016/j.cpc.2020.107760_b4) 2006; 96
Song (10.1016/j.cpc.2020.107760_b34) 2018; 9
Qian (10.1016/j.cpc.2020.107760_b16) 2019; 5
Chen (10.1016/j.cpc.2020.107760_b19) 2009; 325
10.1016/j.cpc.2020.107760_b49
Qi (10.1016/j.cpc.2020.107760_b6) 2011; 83
Liu (10.1016/j.cpc.2020.107760_b23) 2014; 13
Slater (10.1016/j.cpc.2020.107760_b51) 1954; 94
Kresse (10.1016/j.cpc.2020.107760_b45) 1996; 54
Brese (10.1016/j.cpc.2020.107760_b59) 1994; 620
Kane (10.1016/j.cpc.2020.107760_b3) 2005; 95
Po (10.1016/j.cpc.2020.107760_b33) 2017; 8
Furuseth (10.1016/j.cpc.2020.107760_b58) 1965; 19
Nie (10.1016/j.cpc.2020.107760_b15) 2018; 98
Hsieh (10.1016/j.cpc.2020.107760_b28) 2012; 3
Xia (10.1016/j.cpc.2020.107760_b18) 2009; 5
Wieder (10.1016/j.cpc.2020.107760_b9) 2018; 361
Wu (10.1016/j.cpc.2020.107760_b48) 2018; 224
Tanaka (10.1016/j.cpc.2020.107760_b29) 2012; 8
Cano (10.1016/j.cpc.2020.107760_b37) 2018; 97
Wang (10.1016/j.cpc.2020.107760_b22) 2013; 88
Bernevig (10.1016/j.cpc.2020.107760_b1) 2006; 314
Persson (10.1016/j.cpc.2020.107760_b44) 1999
Cornwell (10.1016/j.cpc.2020.107760_b53) 1984
Stokes (10.1016/j.cpc.2020.107760_b42) 2013; 69
Zhang (10.1016/j.cpc.2020.107760_b17) 2009; 5
Wang (10.1016/j.cpc.2020.107760_b30) 2016; 532
Zhu (10.1016/j.cpc.2020.107760_b32) 2012; 85
Chapai (10.1016/j.cpc.2020.107760_b56) 2019; 99
Kane (10.1016/j.cpc.2020.107760_b5) 2010; 82
Tang (10.1016/j.cpc.2020.107760_b10) 2019; 566
Gresch (10.1016/j.cpc.2020.107760_b50) 2018; 2
König (10.1016/j.cpc.2020.107760_b2) 2007; 318
Willatzen (10.1016/j.cpc.2020.107760_b52) 2009
References_xml – volume: 120
  year: 2018
  ident: b39
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 438
  year: 2009
  ident: b17
  publication-title: Nat. Phys.
– volume: 6
  start-page: 7373
  year: 2015
  ident: b25
  publication-title: Nat. Commun.
– volume: 3
  start-page: 982
  year: 2012
  ident: b28
  publication-title: Nat. Commun.
– volume: 620
  start-page: 393
  year: 1994
  ident: b59
  publication-title: Z. Anorg. Allg. Chem.
– volume: 9
  start-page: 3530
  year: 2018
  ident: b34
  publication-title: Nat. Commun.
– volume: 122
  year: 2019
  ident: b13
  publication-title: Phys. Rev. Lett.
– reference: C. Yue, Symmetrization of wannier tight-binding models,
– year: 2001
  ident: b43
  article-title: An augmented plane wave + local orbitals program for calculating crystal properties
– volume: 50
  start-page: 1457
  year: 2017
  ident: b40
  publication-title: J. Appl. Crystallogr.
– volume: 83
  year: 2011
  ident: b8
  publication-title: Phys. Rev. B
– volume: 325
  start-page: 178
  year: 2009
  ident: b19
  publication-title: Science
– volume: 94
  start-page: 1498
  year: 1954
  ident: b51
  publication-title: Phys. Rev.
– year: 1999
  ident: b44
  article-title: Electronic Structure of Intrinsic and Doped Silicon Carbide and Silicon
– year: 1984
  ident: b53
  article-title: Group Theory in Physics [Vol. 1-2]
– volume: 13
  start-page: 677
  year: 2014
  ident: b23
  publication-title: Nat. Mater.
– volume: 7
  year: 2017
  ident: b35
  publication-title: Phys. Rev. X
– volume: 98
  year: 2018
  ident: b15
  publication-title: Phys. Rev. B
– volume: 4
  start-page: eaat0346
  year: 2018
  ident: b7
  publication-title: Sci. Adv.
– volume: 566
  start-page: 475
  year: 2019
  ident: b11
  publication-title: Nature
– volume: 566
  start-page: 480
  year: 2019
  ident: b12
  publication-title: Nature
– volume: 85
  year: 2012
  ident: b20
  publication-title: Phys. Rev. B
– volume: 97
  year: 2018
  ident: b37
  publication-title: Phys. Rev. B
– volume: 566
  start-page: 486
  year: 2019
  ident: b10
  publication-title: Nature
– volume: 547
  start-page: 298
  year: 2017
  ident: b36
  publication-title: Nature
– volume: 96
  year: 2017
  ident: b38
  publication-title: Phys. Rev. E
– volume: 349
  start-page: 613
  year: 2015
  ident: b27
  publication-title: Science
– volume: 314
  start-page: 1757
  year: 2006
  ident: b1
  publication-title: Science
– volume: 83
  start-page: 1057
  year: 2011
  ident: b6
  publication-title: Rev. Modern Phys.
– volume: 14
  start-page: 427
  year: 1968
  ident: b57
  publication-title: J. Less Common Metals
– volume: 224
  start-page: 405
  year: 2018
  ident: b48
  publication-title: Comput. Phys. Comm.
– volume: 95
  year: 2017
  ident: b14
  publication-title: Phys. Rev. B
– volume: 88
  year: 2013
  ident: b22
  publication-title: Phys. Rev. B
– volume: 99
  year: 2019
  ident: b56
  publication-title: Phys. Rev. B
– volume: 343
  start-page: 864
  year: 2014
  ident: b21
  publication-title: Science
– volume: 43
  start-page: 183
  year: 2011
  ident: b41
  publication-title: Bulg. Chem. Commun.
– volume: 318
  start-page: 766
  year: 2007
  ident: b2
  publication-title: Science
– volume: 185
  start-page: 2309
  year: 2014
  ident: b47
  publication-title: Comput. Phys. Comm.
– volume: 532
  start-page: 189
  year: 2016
  ident: b30
  publication-title: Nature
– volume: 3
  year: 2017
  ident: b31
  publication-title: Sci. Adv.
– volume: 85
  year: 2012
  ident: b32
  publication-title: Phys. Rev. B
– volume: 5
  year: 2015
  ident: b24
  publication-title: Phys. Rev. X
– year: 1971
  ident: b54
  article-title: Group Theory in Solid-State Physics
– volume: 5
  start-page: 398
  year: 2009
  ident: b18
  publication-title: Nat. Phys.
– volume: 5
  year: 2015
  ident: b26
  publication-title: Phys. Rev. X
– volume: 69
  start-page: 388
  year: 2013
  ident: b42
  publication-title: Acta Crystallogr. A: Found. Crystallogr.
– volume: 82
  start-page: 3045
  year: 2010
  ident: b5
  publication-title: Rev. Modern Phys.
– volume: 361
  start-page: 246
  year: 2018
  ident: b9
  publication-title: Science
– volume: 5
  start-page: 121
  year: 2019
  ident: b16
  publication-title: npj Comput. Mater.
– volume: 84
  start-page: 1419
  year: 2012
  ident: b46
  publication-title: Rev. Modern Phys.
– year: 2009
  ident: b52
  article-title: The Kp Method-Electronic Properties of Semiconductors, Vol. 53
– volume: 54
  start-page: 169
  year: 1996
  ident: b45
  publication-title: Phys. Rev. B
– reference: .
– volume: 8
  start-page: 800
  year: 2012
  ident: b29
  publication-title: Nat. Phys.
– volume: 95
  year: 2005
  ident: b3
  publication-title: Phys. Rev. Lett.
– volume: 19
  year: 1965
  ident: b58
  publication-title: Acta Chem. Scand.
– volume: 96
  year: 2006
  ident: b4
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 50
  year: 2017
  ident: b33
  publication-title: Nat. Commun.
– volume: 2
  year: 2018
  ident: b50
  publication-title: Phys. Rev. Mater.
– volume: 353
  start-page: aaf5037
  year: 2016
  ident: b55
  publication-title: Science
– volume: 314
  start-page: 1757
  year: 2006
  ident: 10.1016/j.cpc.2020.107760_b1
  publication-title: Science
  doi: 10.1126/science.1133734
– volume: 83
  start-page: 1057
  year: 2011
  ident: 10.1016/j.cpc.2020.107760_b6
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.83.1057
– volume: 95
  year: 2005
  ident: 10.1016/j.cpc.2020.107760_b3
  publication-title: Phys. Rev. Lett.
– year: 2001
  ident: 10.1016/j.cpc.2020.107760_b43
– volume: 318
  start-page: 766
  year: 2007
  ident: 10.1016/j.cpc.2020.107760_b2
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 98
  year: 2018
  ident: 10.1016/j.cpc.2020.107760_b15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.125143
– volume: 2
  year: 2018
  ident: 10.1016/j.cpc.2020.107760_b50
  publication-title: Phys. Rev. Mater.
– volume: 122
  year: 2019
  ident: 10.1016/j.cpc.2020.107760_b13
  publication-title: Phys. Rev. Lett.
– volume: 353
  start-page: aaf5037
  year: 2016
  ident: 10.1016/j.cpc.2020.107760_b55
  publication-title: Science
  doi: 10.1126/science.aaf5037
– volume: 566
  start-page: 486
  year: 2019
  ident: 10.1016/j.cpc.2020.107760_b10
  publication-title: Nature
  doi: 10.1038/s41586-019-0937-5
– volume: 566
  start-page: 475
  year: 2019
  ident: 10.1016/j.cpc.2020.107760_b11
  publication-title: Nature
  doi: 10.1038/s41586-019-0944-6
– volume: 361
  start-page: 246
  year: 2018
  ident: 10.1016/j.cpc.2020.107760_b9
  publication-title: Science
  doi: 10.1126/science.aan2802
– volume: 5
  start-page: 438
  year: 2009
  ident: 10.1016/j.cpc.2020.107760_b17
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1270
– volume: 349
  start-page: 613
  year: 2015
  ident: 10.1016/j.cpc.2020.107760_b27
  publication-title: Science
  doi: 10.1126/science.aaa9297
– volume: 325
  start-page: 178
  year: 2009
  ident: 10.1016/j.cpc.2020.107760_b19
  publication-title: Science
  doi: 10.1126/science.1173034
– volume: 13
  start-page: 677
  year: 2014
  ident: 10.1016/j.cpc.2020.107760_b23
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3990
– volume: 343
  start-page: 864
  year: 2014
  ident: 10.1016/j.cpc.2020.107760_b21
  publication-title: Science
  doi: 10.1126/science.1245085
– volume: 5
  year: 2015
  ident: 10.1016/j.cpc.2020.107760_b24
  publication-title: Phys. Rev. X
– volume: 8
  start-page: 50
  year: 2017
  ident: 10.1016/j.cpc.2020.107760_b33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00133-2
– volume: 3
  year: 2017
  ident: 10.1016/j.cpc.2020.107760_b31
  publication-title: Sci. Adv.
– volume: 19
  year: 1965
  ident: 10.1016/j.cpc.2020.107760_b58
  publication-title: Acta Chem. Scand.
– volume: 97
  year: 2018
  ident: 10.1016/j.cpc.2020.107760_b37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.035139
– year: 1971
  ident: 10.1016/j.cpc.2020.107760_b54
– volume: 4
  start-page: eaat0346
  year: 2018
  ident: 10.1016/j.cpc.2020.107760_b7
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat0346
– volume: 185
  start-page: 2309
  year: 2014
  ident: 10.1016/j.cpc.2020.107760_b47
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2014.05.003
– ident: 10.1016/j.cpc.2020.107760_b49
– year: 1984
  ident: 10.1016/j.cpc.2020.107760_b53
– volume: 69
  start-page: 388
  year: 2013
  ident: 10.1016/j.cpc.2020.107760_b42
  publication-title: Acta Crystallogr. A: Found. Crystallogr.
  doi: 10.1107/S0108767313007538
– volume: 85
  year: 2012
  ident: 10.1016/j.cpc.2020.107760_b20
  publication-title: Phys. Rev. B
– volume: 7
  year: 2017
  ident: 10.1016/j.cpc.2020.107760_b35
  publication-title: Phys. Rev. X
– volume: 547
  start-page: 298
  year: 2017
  ident: 10.1016/j.cpc.2020.107760_b36
  publication-title: Nature
  doi: 10.1038/nature23268
– volume: 88
  year: 2013
  ident: 10.1016/j.cpc.2020.107760_b22
  publication-title: Phys. Rev. B
– volume: 532
  start-page: 189
  year: 2016
  ident: 10.1016/j.cpc.2020.107760_b30
  publication-title: Nature
  doi: 10.1038/nature17410
– volume: 5
  start-page: 121
  year: 2019
  ident: 10.1016/j.cpc.2020.107760_b16
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0260-6
– volume: 94
  start-page: 1498
  year: 1954
  ident: 10.1016/j.cpc.2020.107760_b51
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.94.1498
– volume: 3
  start-page: 982
  year: 2012
  ident: 10.1016/j.cpc.2020.107760_b28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1969
– volume: 5
  year: 2015
  ident: 10.1016/j.cpc.2020.107760_b26
  publication-title: Phys. Rev. X
– volume: 96
  year: 2017
  ident: 10.1016/j.cpc.2020.107760_b38
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.023310
– volume: 84
  start-page: 1419
  year: 2012
  ident: 10.1016/j.cpc.2020.107760_b46
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.84.1419
– volume: 96
  year: 2006
  ident: 10.1016/j.cpc.2020.107760_b4
  publication-title: Phys. Rev. Lett.
– volume: 83
  year: 2011
  ident: 10.1016/j.cpc.2020.107760_b8
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 7373
  year: 2015
  ident: 10.1016/j.cpc.2020.107760_b25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8373
– year: 2009
  ident: 10.1016/j.cpc.2020.107760_b52
– volume: 120
  year: 2018
  ident: 10.1016/j.cpc.2020.107760_b39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.266401
– volume: 99
  year: 2019
  ident: 10.1016/j.cpc.2020.107760_b56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.161110
– volume: 95
  year: 2017
  ident: 10.1016/j.cpc.2020.107760_b14
  publication-title: Phys. Rev. B
– volume: 566
  start-page: 480
  year: 2019
  ident: 10.1016/j.cpc.2020.107760_b12
  publication-title: Nature
  doi: 10.1038/s41586-019-0954-4
– volume: 85
  year: 2012
  ident: 10.1016/j.cpc.2020.107760_b32
  publication-title: Phys. Rev. B
– volume: 43
  start-page: 183
  year: 2011
  ident: 10.1016/j.cpc.2020.107760_b41
  publication-title: Bulg. Chem. Commun.
– volume: 14
  start-page: 427
  year: 1968
  ident: 10.1016/j.cpc.2020.107760_b57
  publication-title: J. Less Common Metals
  doi: 10.1016/0022-5088(68)90166-5
– volume: 620
  start-page: 393
  year: 1994
  ident: 10.1016/j.cpc.2020.107760_b59
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.19946200302
– volume: 8
  start-page: 800
  year: 2012
  ident: 10.1016/j.cpc.2020.107760_b29
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2442
– volume: 224
  start-page: 405
  issn: 0010-4655
  year: 2018
  ident: 10.1016/j.cpc.2020.107760_b48
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2017.09.033
– volume: 5
  start-page: 398
  year: 2009
  ident: 10.1016/j.cpc.2020.107760_b18
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1274
– volume: 9
  start-page: 3530
  year: 2018
  ident: 10.1016/j.cpc.2020.107760_b34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06010-w
– volume: 82
  start-page: 3045
  year: 2010
  ident: 10.1016/j.cpc.2020.107760_b5
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 50
  start-page: 1457
  year: 2017
  ident: 10.1016/j.cpc.2020.107760_b40
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576717011712
– year: 1999
  ident: 10.1016/j.cpc.2020.107760_b44
– volume: 54
  start-page: 169
  year: 1996
  ident: 10.1016/j.cpc.2020.107760_b45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
SSID ssj0007793
Score 2.6775193
Snippet We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107760
SubjectTerms First-principles calculations
Irreducible representations
Nonsymmorphic space groups
Plane-wave basis
Tight-binding hamiltonian
Topological materials
Title Irvsp: To obtain irreducible representations of electronic states in the VASP
URI https://dx.doi.org/10.1016/j.cpc.2020.107760
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291939
Volume 261
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yEbyIP_E3OYgHoa5t2qbxNtQxHYqom7uFNn3R6lhHWz36t5uk7VSQHTyVlrw2fH28vJDvfQ-ho9AGGkQhs-IEQG1QHGaFUQIWODRIEgZSGrb7zW3QG3jXI3-0gM6bWhhNq6xjfxXTTbSun7RrNNvTNNU1vvp80vdd5ackNDqmnke1l59-ftM8KK2Fd1W80aObk03D8RJTrWLo6ntKjUrl32vTTxFRs_B0V9FKnTHiTjWpNbQAk3W0ZJibothAN1f5RzE9w48ZzmK9z8dpnms91jQeAzaalU190aTAmcTfjW-wqSYqsLJRaSAedh7uNtGge_l43rPqHgmWUMCWlp9AREKXJQJcGfig1lsCgQyZHYUAoPvv-XYcQCIdqXZ3tmBECGoroGJQqV9CtlBrkk1gG-EACFPpkmRERp7wnchxZQgeCSghwNxoB9kNOlzUAuK6j8WYN0yxV64A5RpQXgG6g05mJtNKPWPeYK-BnP9yAa6i-zyz4-r3zL6gFbMv0mGHZ_kzfytfuMtUmsp2__f-PbTsah6LYevso1aZv8OBSkTK-NB42iFa7Fz1e7f62r9_6n8BmNzdmA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA4yEX0Rf-L8mQfxQShrm7ZpfCvq6NQNwSl7C2160aqso5v-_SZpOxVkDz629Nry5bi7kO--Q-g0tIEGScisNANQGxSHWWGSgQUODbKMgZSG7d4fBPGjdzPyR0vosumF0bTKOvZXMd1E6_pOp0azM8lz3eOrzyd931V-SkKtY7qs1an8FlqOerfxYB6QKa21d1XI0QbN4aaheYmJFjJ09TWlRqjy7_T0U0fU5J7uBlqvi0YcVf-1iZZgvIVWDHlTTLdRv1d-TicXeFjgItVbfZyXpZZkzdN3wEa2smkxGk9xIfH37BtsGoqmWNmoShA_RQ_3O-ixez28jK16TIIlFLYzy88gIaHLMgGuDHxQKZdAIENmJyEA6BF8vp0GkElHqg2eLRgRgtqeR1NQ1V9GdlFrXIxhD-EACFMVk2REJp7wncRxZQgeCSghwNykjewGHS5qDXE9yuKdN2SxV64A5RpQXgHaRudzk0kloLHoYa-BnP_yAq4C_CKzs2p55l_QotlX-VPEi_KZv81euMtUpcr2__f-E7QaD_t3_K43uD1Aa66mtRjyziFqzcoPOFJ1ySw9rv3uC01I3qY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irvsp%3A+To+obtain+irreducible+representations+of+electronic+states+in+the+VASP&rft.jtitle=Computer+physics+communications&rft.au=Gao%2C+Jiacheng&rft.au=Wu%2C+Quansheng&rft.au=Persson%2C+Clas&rft.au=Wang%2C+Zhijun&rft.date=2021-04-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=261&rft_id=info:doi/10.1016%2Fj.cpc.2020.107760&rft.externalDocID=S0010465520303805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon