Cupriavidus B-7 immobilized biochar: an effective solution for Cd accumulation alleviation and growth promotion in pakchoi (Brassica Chinensis L.)
Cd contamination, especially in farmland soil, can pose serious threats to human health as well as ecological security. Stabilization is an important strategy for agricultural soil Cd remediation. In this study, a Cd-resistant strain ( Cupriavidus B-7) was isolated and loaded onto cow manure (CDB),...
Saved in:
Published in | Biochar (Online) Vol. 6; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
09.05.2024
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cd contamination, especially in farmland soil, can pose serious threats to human health as well as ecological security. Stabilization is an important strategy for agricultural soil Cd remediation. In this study, a Cd-resistant strain (
Cupriavidus
B-7) was isolated and loaded onto cow manure (CDB), rice straw (RSB) and pine wood biochar (PB) to investigate its effects on Cd stabilization by a 60-day pot experiment. Results indicated that the
Cupriavidus
B-7-loaded biochar (labelled as CDBB, PBB and RSBB) reduced the CaCl
2
-extractable Cd by 43.06–59.78%, which was significantly superior to individual applications of
Cupriavidus
B-7 and biochar. Likewise, the soil physicochemical properties, urease, catalase and phosphatase activities were improved, indicating improved soil health. Consequently, dry weights of pakchoi’s shoot and root were increased by 938.9–1230.9% and 149.1–281.2%, respectively, by applying CDBB, PBB and RSBB. Meanwhile, the Cd accumulation in pakchoi shoots decreased by 38.06–50.75%. Notably, the RSBB exhibited an optimal performance on pakchoi growth promotion and Cd accumulation alleviation. The structural equation model indicated the synergistic effect on pakchoi growth promotion and Cd accumulation decreased between biochar and
Cupriavidus
B-7. Our research provides some new insights into the development of strategies for green and sustainable remediation of Cd-contaminated soil.
Graphical Abstract
Highlights
A Cd resistant
Cupriavidus
B-7 (B-7) was isolated from copper mining soil
Biochar, B-7 and their conbination were used to remediate Cd polluted soil
Biochar loaded B-7 outperformed individual treatments for Cd stabilization
Biochar loaded B-7 alleivated the Cd uptake and promoted pakchoi growth |
---|---|
AbstractList | Cd contamination, especially in farmland soil, can pose serious threats to human health as well as ecological security. Stabilization is an important strategy for agricultural soil Cd remediation. In this study, a Cd-resistant strain (
Cupriavidus
B-7) was isolated and loaded onto cow manure (CDB), rice straw (RSB) and pine wood biochar (PB) to investigate its effects on Cd stabilization by a 60-day pot experiment. Results indicated that the
Cupriavidus
B-7-loaded biochar (labelled as CDBB, PBB and RSBB) reduced the CaCl
2
-extractable Cd by 43.06–59.78%, which was significantly superior to individual applications of
Cupriavidus
B-7 and biochar. Likewise, the soil physicochemical properties, urease, catalase and phosphatase activities were improved, indicating improved soil health. Consequently, dry weights of pakchoi’s shoot and root were increased by 938.9–1230.9% and 149.1–281.2%, respectively, by applying CDBB, PBB and RSBB. Meanwhile, the Cd accumulation in pakchoi shoots decreased by 38.06–50.75%. Notably, the RSBB exhibited an optimal performance on pakchoi growth promotion and Cd accumulation alleviation. The structural equation model indicated the synergistic effect on pakchoi growth promotion and Cd accumulation decreased between biochar and
Cupriavidus
B-7. Our research provides some new insights into the development of strategies for green and sustainable remediation of Cd-contaminated soil.
Graphical Abstract
Highlights
A Cd resistant
Cupriavidus
B-7 (B-7) was isolated from copper mining soil
Biochar, B-7 and their conbination were used to remediate Cd polluted soil
Biochar loaded B-7 outperformed individual treatments for Cd stabilization
Biochar loaded B-7 alleivated the Cd uptake and promoted pakchoi growth Abstract Cd contamination, especially in farmland soil, can pose serious threats to human health as well as ecological security. Stabilization is an important strategy for agricultural soil Cd remediation. In this study, a Cd-resistant strain (Cupriavidus B-7) was isolated and loaded onto cow manure (CDB), rice straw (RSB) and pine wood biochar (PB) to investigate its effects on Cd stabilization by a 60-day pot experiment. Results indicated that the Cupriavidus B-7-loaded biochar (labelled as CDBB, PBB and RSBB) reduced the CaCl2-extractable Cd by 43.06–59.78%, which was significantly superior to individual applications of Cupriavidus B-7 and biochar. Likewise, the soil physicochemical properties, urease, catalase and phosphatase activities were improved, indicating improved soil health. Consequently, dry weights of pakchoi’s shoot and root were increased by 938.9–1230.9% and 149.1–281.2%, respectively, by applying CDBB, PBB and RSBB. Meanwhile, the Cd accumulation in pakchoi shoots decreased by 38.06–50.75%. Notably, the RSBB exhibited an optimal performance on pakchoi growth promotion and Cd accumulation alleviation. The structural equation model indicated the synergistic effect on pakchoi growth promotion and Cd accumulation decreased between biochar and Cupriavidus B-7. Our research provides some new insights into the development of strategies for green and sustainable remediation of Cd-contaminated soil. Graphical Abstract Cd contamination, especially in farmland soil, can pose serious threats to human health as well as ecological security. Stabilization is an important strategy for agricultural soil Cd remediation. In this study, a Cd-resistant strain ( Cupriavidus B-7) was isolated and loaded onto cow manure (CDB), rice straw (RSB) and pine wood biochar (PB) to investigate its effects on Cd stabilization by a 60-day pot experiment. Results indicated that the Cupriavidus B-7-loaded biochar (labelled as CDBB, PBB and RSBB) reduced the CaCl 2 -extractable Cd by 43.06–59.78%, which was significantly superior to individual applications of Cupriavidus B-7 and biochar. Likewise, the soil physicochemical properties, urease, catalase and phosphatase activities were improved, indicating improved soil health. Consequently, dry weights of pakchoi’s shoot and root were increased by 938.9–1230.9% and 149.1–281.2%, respectively, by applying CDBB, PBB and RSBB. Meanwhile, the Cd accumulation in pakchoi shoots decreased by 38.06–50.75%. Notably, the RSBB exhibited an optimal performance on pakchoi growth promotion and Cd accumulation alleviation. The structural equation model indicated the synergistic effect on pakchoi growth promotion and Cd accumulation decreased between biochar and Cupriavidus B-7. Our research provides some new insights into the development of strategies for green and sustainable remediation of Cd-contaminated soil. Graphical Abstract |
ArticleNumber | 45 |
Author | Cai, Yiming Li, Mei Zhang, Qichun Guo, Ting Xie, Lu Sun, Yefang Ouyang, Da Chen, Ruihuan Zhao, Xinlin Li, Fangzhen Wen, Xiujuan Zhang, Haibo |
Author_xml | – sequence: 1 givenname: Yefang surname: Sun fullname: Sun, Yefang organization: Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Shaoxing Academy of Agricultural Sciences – sequence: 2 givenname: Da surname: Ouyang fullname: Ouyang, Da email: ouyangda@zafu.edu.cn organization: Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University – sequence: 3 givenname: Yiming surname: Cai fullname: Cai, Yiming organization: Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-Environmental Science Research and Design Institute of Zhejiang Province – sequence: 4 givenname: Ting surname: Guo fullname: Guo, Ting organization: Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University – sequence: 5 givenname: Mei surname: Li fullname: Li, Mei organization: Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University – sequence: 6 givenname: Xinlin surname: Zhao fullname: Zhao, Xinlin organization: Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences – sequence: 7 givenname: Qichun surname: Zhang fullname: Zhang, Qichun organization: School of Environment and Resources, Zhejiang University – sequence: 8 givenname: Ruihuan surname: Chen fullname: Chen, Ruihuan organization: College of Life and Environmental Science, Wenzhou University – sequence: 9 givenname: Fangzhen surname: Li fullname: Li, Fangzhen organization: Shaoxing Academy of Agricultural Sciences – sequence: 10 givenname: Xiujuan surname: Wen fullname: Wen, Xiujuan organization: Shaoxing Academy of Agricultural Sciences – sequence: 11 givenname: Lu surname: Xie fullname: Xie, Lu organization: Shaoxing Academy of Agricultural Sciences – sequence: 12 givenname: Haibo surname: Zhang fullname: Zhang, Haibo email: hbzhang@zafu.edu.cn organization: Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University |
BookMark | eNp9kc1u1DAUhS3USpS2L8DKS1ikvbZjZ4YdjfipNBKbdm1d_2TGQ2KP7GQQPAZPTMi0EmLRlY-P_B1Z57whZzFFT8hbBjcMoLktNW8aUQGvKwAhRMVfkQsu52uzUs3ZP_o1uS5lDwBcMqbE-oL8bqdDDngMbir0rmpoGIZkQh9-eUdNSHaH-QPFSH3XeTuGo6cl9dMYUqRdyrR1FK2dhqnHxcO-98fwpKOj25x-jDt6yGlIixkiPeB3u0uBvrvLWEqwSNtdiD6WUOjm5v0VOe-wL_766bwkj58_PbRfq823L_ftx01la2BjJa0yDTcSkXsAiawTYOuVlJKBQqH4rFW3rj1wsVbSdQbqxlkp3Aw6L8UluT_luoR7PbcwYP6pEwa9GClvNeYx2N5rZyzzArkwXNbWdKsGlBesZtYwUyszZ61OWTanUrLvtA3j0sKYMfSagf47lT5Npeep9DKV5jPK_0Ofv_IiJE5QmR_Hrc96n6Yc57peov4AvWep9w |
CitedBy_id | crossref_primary_10_1080_15320383_2025_2467849 crossref_primary_10_1016_j_jhazmat_2025_137910 crossref_primary_10_1016_j_jfca_2024_106521 crossref_primary_10_1016_j_jbiotec_2024_12_009 crossref_primary_10_1016_j_apsoil_2024_105717 |
Cites_doi | 10.1016/j.scitotenv.2020.142164 10.1016/j.chemosphere.2022.136084 10.1016/j.scitotenv.2022.159955 10.1016/j.soilbio.2013.06.004 10.1007/s11274-009-0075-6 10.1016/j.foodcont.2020.107747 10.1016/j.scitotenv.2021.152112 10.1016/j.cej.2019.03.235 10.1016/j.envpol.2021.118129 10.3389/fpls.2017.00120 10.1016/j.chemosphere.2020.125834 10.1016/j.envpol.2017.04.032 10.1016/j.biortech.2017.08.085 10.1016/j.envpol.2017.08.057 10.1016/j.cej.2013.09.016 10.1016/j.envint.2020.105576 10.1016/j.scitotenv.2017.07.215 10.1016/j.jhazmat.2022.129006 10.1016/j.jhazmat.2007.05.082 10.1016/j.ecoenv.2020.111616 10.1016/j.chemosphere.2020.125850 10.1021/acs.est.9b04990 10.1016/j.envres.2022.113226 10.1016/j.ecoenv.2019.109655 10.1016/j.chemosphere.2018.02.134 10.1016/j.scitotenv.2020.140422 10.1016/j.chemosphere.2020.128010 10.1016/j.jaap.2021.105081 10.1016/j.jhazmat.2009.01.107 10.1016/j.jhazmat.2023.131921 10.1016/j.jhazmat.2020.122806 10.1016/j.scitotenv.2017.11.132 10.1016/j.scitotenv.2023.162812 10.1016/j.geoderma.2018.09.034 10.1021/ac50043a017 10.1016/j.ecoenv.2019.109635 10.1016/j.ecoenv.2015.05.008 10.1016/j.scitotenv.2022.153242 10.1016/j.envint.2019.02.022 10.1016/j.cej.2022.140381 10.1016/j.ecoenv.2015.06.019 10.1016/j.jhazmat.2023.131176 10.1016/j.envres.2019.01.051 10.1016/j.scitotenv.2010.04.007 10.1016/j.ecoenv.2020.111261 10.1016/j.ecoenv.2013.05.002 10.1016/j.jhazmat.2020.122065 10.1016/j.jhazmat.2019.121505 10.1016/j.jhazmat.2019.121493 10.1016/j.jhazmat.2020.123823 10.1016/j.envpol.2020.114042 10.1016/j.ecoenv.2018.07.081 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s42773-024-00333-2 |
DatabaseName | SpringerOpen CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2524-7867 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_dbc1e3a23b254cbf8706e3141cb1b46b 10_1007_s42773_024_00333_2 |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province grantid: LQ24D030002; LZ24D010001 funderid: http://dx.doi.org/10.13039/501100004731 – fundername: Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province grantid: 2021ZEKL09 – fundername: the Special Support Program for high-level Talents of Zhejiang Province grantid: 2022R52015 – fundername: National Natural Science Foundation of China grantid: 42177021; 42207012 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ AAHBH AAHNG AAJSJ AAKKN AAYZJ ABDBF ABECU ABEEZ ABFTV ABKCH ABMQK ABTEG ABTMW ACACY ACOKC ACULB ACZOJ ADKNI ADURQ ADYFF AFGXO AFQWF AGDGC AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AXYYD C24 C6C EBLON EBS FNLPD GROUPED_DOAJ M~E NQJWS OK1 RSV SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AASML AAYXX CITATION |
ID | FETCH-LOGICAL-c401t-5c6b72b5aa2e005a1f30c48555106a3624856f94e023965dfb047dc53dc6bde53 |
IEDL.DBID | C24 |
ISSN | 2524-7867 |
IngestDate | Wed Aug 27 01:30:52 EDT 2025 Thu Apr 24 22:55:05 EDT 2025 Tue Jul 01 03:16:38 EDT 2025 Fri Feb 21 02:38:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cadmium Bioremediation Bioavailability Uptake Biochar loaded bacteria |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-5c6b72b5aa2e005a1f30c48555106a3624856f94e023965dfb047dc53dc6bde53 |
OpenAccessLink | https://link.springer.com/10.1007/s42773-024-00333-2 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dbc1e3a23b254cbf8706e3141cb1b46b crossref_citationtrail_10_1007_s42773_024_00333_2 crossref_primary_10_1007_s42773_024_00333_2 springer_journals_10_1007_s42773_024_00333_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-09 |
PublicationDateYYYYMMDD | 2024-05-09 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Biochar (Online) |
PublicationTitleAbbrev | Biochar |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore Springer |
Publisher_xml | – name: Springer Nature Singapore – name: Springer |
References | Ouyang, Chen, Yan, Qian, Han, Chen (CR25) 2019; 370 Qing, Yutong, Shenggao (CR30) 2015; 120 Huang, Chen, Zhang, Fang, YangJin, Zou (CR9) 2021; 208 Li, Chen, Wang, Lei, Zheng, Sun (CR14) 2021; 752 Quilliam, Glanville, Wade, Jones (CR32) 2013; 65 Teng, Shao, Zhang, Yu, Huo, Li (CR40) 2020; 384 Wang, Shi, Zhai, Zhang, Wang, Zou (CR44) 2021; 207 Li, Meng, Li, Yin, Liu, Liu (CR12) 2017; 231 Liu, Tie, Li, Lei, Wei, Liu (CR17) 2018; 163 Li, Zheng, Tian, Ge, Liu, Tang (CR13) 2019; 184 Qiu, Tao, Wang, Li, Ding, Chu (CR31) 2021; 155 Jiang, Sun, Sun, Zhang, Zhang (CR11) 2009; 167 Zhu, Chen, Zhu, Xing (CR53) 2017; 227 Liu, Tie, Peng, Luo, Li, Liu (CR18) 2020; 247 Sang, Shan, An, Shu, Sun, Guo (CR34) 2017; 8 Ma, Zhao, Guan, Teng, Ji, Ma (CR20) 2020; 260 Qi, Gou, Chen, Xiao, Ali, Shang (CR27) 2021; 401 Wei, Li, Li, Gao, Guo, Li (CR46) 2022; 435 Zhang, Li, Zhou, Li, Zhang, Wang (CR51) 2023; 877 Chen, Min, Hu, Ma, Huo (CR4) 2023; 452 Li, Chen, Wang (CR15) 2021; 123 Qin, Yuan, Xiong, Tan, Wang (CR29) 2020; 261 Shen, Jin, O’Connor, Hou (CR36) 2019; 53 Tessier, Campbell, Bisson (CR41) 1979; 51 Rady, Hemida (CR33) 2015; 119 Wahla, Anwar, Mueller, Arslan, Iqbal (CR43) 2020; 390 Liu, Ai, Zhang, Huang, Zhang (CR16) 2017; 609 Ma, Wei, Wang, Hou, Li, Xu (CR19) 2020; 388 El-Naggar, Lee, Rinklebe, Farooq, Song, Sarmah (CR7) 2019; 337 O’Connor, Peng, Zhang, Tsang, Alessi, Shen (CR23) 2018; 619–620 Qi, Chen, Wang, Xing, Song, Yan (CR28) 2023; 458 Shi, Zhang, Yuan, Wang, Yang, Yao (CR37) 2020; 247 Yang, Xu, Huang, Sun, Liang, Wang (CR48) 2021; 291 Wu, Zhi, Yao, Zhou, Yang, Zhou (CR47) 2022; 212 Siripornadulsil, Siripornadulsil (CR38) 2013; 94 Chi, Huang, Wang, Chen, Chu, Hayat (CR5) 2020; 741 Wang, Cai, Ji, Chen, Yao, Han (CR45) 2022; 819 Manasi, Santhana Krishna Kumar, Rajesh (CR21) 2014; 235 Zhang, Li, Wu, Long, An, Pan (CR50) 2020; 398 Ji, Wan, Wang, Peng, Wang, Liang (CR10) 2022; 811 Chen, Wu, James, Chang (CR3) 2008; 151 Tu, Wei, Guan, Liu, Sun, Luo (CR42) 2020; 137 Ouyang, Wu, Xu, Zhu, Cai, Chen (CR26) 2023; 455 Song, Niu, Zhou, Xiao, Zou (CR39) 2022; 307 Shen, Li, Zhu, Ho, Yuan, Chen (CR35) 2017; 244 Ali, Guo, Jeyasundar, Li, Xiao, Du (CR1) 2019; 184 Zeng, Guo, Xiao, Peng, Feng, Xin (CR49) 2019; 650 Cui, Noerpel, Scheckel, Ippolito (CR6) 2019; 126 Bharti, Vikrant, Goswami, Tiwari, Sonwani, Lee (CR2) 2019; 171 Gao, Mao, Miao, Zhou, Cao, Zhi (CR8) 2010; 408 Nie, Yang, Niazi, Xu, Wen, Rinklebe (CR22) 2018; 200 Zheng, Tang, Liu, Liu, Luo, Zou (CR52) 2023; 858 Oh, Hassan, Joo (CR24) 2009; 25 L Cui (333_CR6) 2019; 126 Y Chi (333_CR5) 2020; 741 X Ji (333_CR10) 2022; 811 Z Shi (333_CR37) 2020; 247 A El-Naggar (333_CR7) 2019; 337 C Wu (333_CR47) 2022; 212 P Zeng (333_CR49) 2019; 650 X Li (333_CR12) 2017; 231 B Liu (333_CR16) 2017; 609 T Zhang (333_CR51) 2023; 877 L Song (333_CR39) 2022; 307 WM Chen (333_CR3) 2008; 151 A Ali (333_CR1) 2019; 184 Y Liu (333_CR17) 2018; 163 HM Chen (333_CR4) 2023; 452 J Wang (333_CR44) 2021; 207 RV Manasi (333_CR21) 2014; 235 Q Ma (333_CR20) 2020; 260 X Wang (333_CR45) 2022; 819 B Qiu (333_CR31) 2021; 155 F Li (333_CR13) 2019; 184 C Qin (333_CR29) 2020; 261 C Zhang (333_CR50) 2020; 398 Z Shen (333_CR36) 2019; 53 H Ma (333_CR19) 2020; 388 MM Rady (333_CR33) 2015; 119 A Tessier (333_CR41) 1979; 51 V Bharti (333_CR2) 2019; 171 Z Teng (333_CR40) 2020; 384 T Wei (333_CR46) 2022; 435 X Qing (333_CR30) 2015; 120 C Nie (333_CR22) 2018; 200 Y Huang (333_CR9) 2021; 208 D Ouyang (333_CR26) 2023; 455 Q Sang (333_CR34) 2017; 8 Y Zheng (333_CR52) 2023; 858 D Ouyang (333_CR25) 2019; 370 RS Quilliam (333_CR32) 2013; 65 X Zhu (333_CR53) 2017; 227 W Li (333_CR15) 2021; 123 T Yang (333_CR48) 2021; 291 Y Liu (333_CR18) 2020; 247 SE Oh (333_CR24) 2009; 25 C Tu (333_CR42) 2020; 137 Y Shen (333_CR35) 2017; 244 X Qi (333_CR27) 2021; 401 C Jiang (333_CR11) 2009; 167 S Li (333_CR14) 2021; 752 AQ Wahla (333_CR43) 2020; 390 D O’Connor (333_CR23) 2018; 619–620 S Siripornadulsil (333_CR38) 2013; 94 Y Gao (333_CR8) 2010; 408 WY Qi (333_CR28) 2023; 458 |
References_xml | – volume: 752 year: 2021 ident: CR14 article-title: Redistribution of iron oxides in aggregates induced by pe + pH variation alters Cd availability in paddy soils publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.142164 – volume: 307 start-page: 136084 year: 2022 ident: CR39 article-title: Application of biochar-immobilized sp. KSB7 to enhance the phytoremediation of PAHs and heavy metals in a coking plant publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136084 – volume: 858 start-page: 159955 year: 2023 ident: CR52 article-title: Alleviation of metal stress in rape seedlings ( L.) using the antimony-resistant plant growth-promoting rhizobacteria sp. S-8–2 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.159955 – volume: 65 start-page: 287 year: 2013 end-page: 293 ident: CR32 article-title: Life in the ‘charosphere’—does biochar in agricultural soil provide a significant habitat for microorganisms? publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.06.004 – volume: 25 start-page: 1771 year: 2009 end-page: 1778 ident: CR24 article-title: Biosorption of heavy metals by lyophilized cells of publication-title: World J Microb Biot doi: 10.1007/s11274-009-0075-6 – volume: 123 year: 2021 ident: CR15 article-title: Cadmium biosorption by lactic acid bacteria ZY-6 publication-title: Food Control doi: 10.1016/j.foodcont.2020.107747 – volume: 811 year: 2022 ident: CR10 article-title: Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system: Effects and mechanisms publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.152112 – volume: 370 start-page: 614 year: 2019 end-page: 624 ident: CR25 article-title: Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: important role of biochar defect structures publication-title: Chem Eng J doi: 10.1016/j.cej.2019.03.235 – volume: 650 start-page: 594 year: 2019 end-page: 603 ident: CR49 article-title: Phytoextraction potential of L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil publication-title: Sci Total Environ doi: 10.1016/j.envpol.2021.118129 – volume: 8 start-page: 120 year: 2017 ident: CR34 article-title: Proteomic analysis reveals the positive effect of exogenous spermidine in tomato seedlings’ response to high-temperature stress publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00120 – volume: 247 start-page: 125834 year: 2020 ident: CR37 article-title: Characterization of a high cadmium accumulating soil bacterium, sp. WS2 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125834 – volume: 227 start-page: 98 year: 2017 end-page: 115 ident: CR53 article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.04.032 – volume: 244 start-page: 1031 year: 2017 end-page: 1038 ident: CR35 article-title: Microalgal-biochar immobilized complex: a novel efficient biosorbent for cadmium removal from aqueous solution publication-title: Bioresource Technol doi: 10.1016/j.biortech.2017.08.085 – volume: 231 start-page: 908 year: 2017 end-page: 917 ident: CR12 article-title: Response of soil microbial communities and microbial interactions to long-term heavy metal contamination publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.08.057 – volume: 235 start-page: 176 year: 2014 end-page: 185 ident: CR21 article-title: Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent publication-title: Chem Eng J doi: 10.1016/j.cej.2013.09.016 – volume: 137 year: 2020 ident: CR42 article-title: Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil publication-title: Environ Int doi: 10.1016/j.envint.2020.105576 – volume: 609 start-page: 822 year: 2017 end-page: 829 ident: CR16 article-title: Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.07.215 – volume: 435 year: 2022 ident: CR46 article-title: The potential effectiveness of mixed bacteria-loaded biochar/activated carbon to remediate Cd, Pb co-contaminated soil and improve the performance of pakchoi plants publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022.129006 – volume: 151 start-page: 364 year: 2008 end-page: 371 ident: CR3 article-title: Metal biosorption capability of and its effects on heavy metal removal by nodulated publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2007.05.082 – volume: 208 start-page: 111616 year: 2021 ident: CR9 article-title: Enhanced vacuole compartmentalization of cadmium in root cells contributes to glutathione-induced reduction of cadmium translocation from roots to shoots in pakchoi ( L.) publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2020.111616 – volume: 247 year: 2020 ident: CR18 article-title: Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite: a novel approach to reducing cadmium accumulation in rice grains publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125850 – volume: 53 start-page: 11615 year: 2019 end-page: 11617 ident: CR36 article-title: Solidification/Stabilization for soil remediation: an old technology with new vitality publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b04990 – volume: 212 year: 2022 ident: CR47 article-title: Immobilization of microbes on biochar for water and soil remediation: a review publication-title: Environ Res doi: 10.1016/j.envres.2022.113226 – volume: 291 year: 2021 ident: CR48 article-title: An efficient biochar synthesized by iron-zinc modified corn straw for simultaneously immobilization Cd in acidic and alkaline soils publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.118129 – volume: 184 start-page: 109655 year: 2019 ident: CR13 article-title: sp. strain Cd02-mediated pH increase favoring bioprecipitation of Cd2+ in medium and reduction of cadmium bioavailability in paddy soil publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.109655 – volume: 200 start-page: 274 year: 2018 end-page: 282 ident: CR22 article-title: Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.02.134 – volume: 741 year: 2020 ident: CR5 article-title: Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.140422 – volume: 261 year: 2020 ident: CR29 article-title: Physicochemical properties, metal availability and bacterial community structure in heavy metal-polluted soil remediated by montmorillonite-based amendments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128010 – volume: 155 year: 2021 ident: CR31 article-title: Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review publication-title: J Anal Appl Pyrol doi: 10.1016/j.jaap.2021.105081 – volume: 167 start-page: 1170 year: 2009 end-page: 1177 ident: CR11 article-title: Immobilization of cadmium in soils by UV-mutated 38 bioaugmentation and NovoGro amendment publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2009.01.107 – volume: 458 year: 2023 ident: CR28 article-title: Biochar-immobilized enhances Cd immobilization in soil and promotes growth publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2023.131921 – volume: 398 year: 2020 ident: CR50 article-title: Rapid degradation of dimethomorph in polluted water and soil by WL08 immobilized on bamboo charcoal-sodium alginate publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.122806 – volume: 619–620 start-page: 815 year: 2018 end-page: 826 ident: CR23 article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.11.132 – volume: 877 year: 2023 ident: CR51 article-title: Cadmium-resistant phosphate-solubilizing bacteria immobilized on phosphoric acid-ball milling modified biochar enhances soil cadmium passivation and phosphorus bioavailability publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.162812 – volume: 337 start-page: 536 year: 2019 end-page: 554 ident: CR7 article-title: Biochar application to low fertility soils: a review of current status, and future prospects publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.034 – volume: 51 start-page: 844 year: 1979 end-page: 851 ident: CR41 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal Chem doi: 10.1021/ac50043a017 – volume: 184 year: 2019 ident: CR1 article-title: Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat ( ) growth and soil enzymatic activity publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.109635 – volume: 119 start-page: 178 year: 2015 end-page: 185 ident: CR33 article-title: Modulation of cadmium toxicity and enhancing cadmium tolerance in wheat seedlings by exogenous application of polyamines publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.05.008 – volume: 819 year: 2022 ident: CR45 article-title: Isolation of heavy metal-immobilizing and plant growth-promoting bacteria and their potential in reducing Cd and Pb uptake in water spinach publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.153242 – volume: 126 start-page: 69 year: 2019 end-page: 75 ident: CR6 article-title: Wheat straw biochar reduces environmental cadmium bioavailability publication-title: Environ Int doi: 10.1016/j.envint.2019.02.022 – volume: 455 year: 2023 ident: CR26 article-title: Efficient degradation of Bisphenol A by Fe /Fe cycle activating persulfate with the assistance of biochar-supported MoO publication-title: Chem Eng J doi: 10.1016/j.cej.2022.140381 – volume: 120 start-page: 377 year: 2015 end-page: 385 ident: CR30 article-title: Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.06.019 – volume: 452 year: 2023 ident: CR4 article-title: Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2023.131176 – volume: 171 start-page: 356 year: 2019 end-page: 364 ident: CR2 article-title: Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media publication-title: Environ Res doi: 10.1016/j.envres.2019.01.051 – volume: 408 start-page: 3251 year: 2010 end-page: 3260 ident: CR8 article-title: Spatial characteristics of soil enzyme activities and microbial community structure under different land uses in Chongming Island, China: geostatistical modelling and PCR-RAPD method publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.04.007 – volume: 207 year: 2021 ident: CR44 article-title: Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: a review publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2020.111261 – volume: 94 start-page: 94 year: 2013 end-page: 103 ident: CR38 article-title: Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2013.05.002 – volume: 388 start-page: 122065 year: 2020 ident: CR19 article-title: Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain sp. TZ5 loaded on biochar publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.122065 – volume: 384 year: 2020 ident: CR40 article-title: Enhanced passivation of lead with immobilized phosphate solubilizing bacteria beads loaded with biochar/ nanoscale zero valent iron composite publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121505 – volume: 390 year: 2020 ident: CR43 article-title: Immobilization of metribuzin degrading bacterial consortium MB3R on biochar enhances bioremediation of potato vegetated soil and restores bacterial community structure publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121493 – volume: 401 year: 2021 ident: CR27 article-title: Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123823 – volume: 260 year: 2020 ident: CR20 article-title: Comparing CaCl , EDTA and DGT methods to predict Cd and Ni accumulation in rice grains from contaminated soils publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.114042 – volume: 163 start-page: 223 year: 2018 end-page: 229 ident: CR17 article-title: Inoculation of soil with cadmium-resistant bacterium sp. B9 reduces cadmium accumulation in rice ( L.) grains publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2018.07.081 – volume: 247 start-page: 125834 year: 2020 ident: 333_CR37 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125834 – volume: 235 start-page: 176 year: 2014 ident: 333_CR21 publication-title: Chem Eng J doi: 10.1016/j.cej.2013.09.016 – volume: 401 year: 2021 ident: 333_CR27 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123823 – volume: 155 year: 2021 ident: 333_CR31 publication-title: J Anal Appl Pyrol doi: 10.1016/j.jaap.2021.105081 – volume: 184 year: 2019 ident: 333_CR1 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.109635 – volume: 609 start-page: 822 year: 2017 ident: 333_CR16 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.07.215 – volume: 260 year: 2020 ident: 333_CR20 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.114042 – volume: 261 year: 2020 ident: 333_CR29 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128010 – volume: 452 year: 2023 ident: 333_CR4 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2023.131176 – volume: 200 start-page: 274 year: 2018 ident: 333_CR22 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.02.134 – volume: 137 year: 2020 ident: 333_CR42 publication-title: Environ Int doi: 10.1016/j.envint.2020.105576 – volume: 212 year: 2022 ident: 333_CR47 publication-title: Environ Res doi: 10.1016/j.envres.2022.113226 – volume: 877 year: 2023 ident: 333_CR51 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.162812 – volume: 811 year: 2022 ident: 333_CR10 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.152112 – volume: 25 start-page: 1771 year: 2009 ident: 333_CR24 publication-title: World J Microb Biot doi: 10.1007/s11274-009-0075-6 – volume: 247 year: 2020 ident: 333_CR18 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125850 – volume: 390 year: 2020 ident: 333_CR43 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121493 – volume: 119 start-page: 178 year: 2015 ident: 333_CR33 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.05.008 – volume: 458 year: 2023 ident: 333_CR28 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2023.131921 – volume: 435 year: 2022 ident: 333_CR46 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022.129006 – volume: 163 start-page: 223 year: 2018 ident: 333_CR17 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2018.07.081 – volume: 8 start-page: 120 year: 2017 ident: 333_CR34 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00120 – volume: 123 year: 2021 ident: 333_CR15 publication-title: Food Control doi: 10.1016/j.foodcont.2020.107747 – volume: 650 start-page: 594 year: 2019 ident: 333_CR49 publication-title: Sci Total Environ doi: 10.1016/j.envpol.2021.118129 – volume: 65 start-page: 287 year: 2013 ident: 333_CR32 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.06.004 – volume: 819 year: 2022 ident: 333_CR45 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.153242 – volume: 151 start-page: 364 year: 2008 ident: 333_CR3 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2007.05.082 – volume: 231 start-page: 908 year: 2017 ident: 333_CR12 publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.08.057 – volume: 53 start-page: 11615 year: 2019 ident: 333_CR36 publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b04990 – volume: 370 start-page: 614 year: 2019 ident: 333_CR25 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.03.235 – volume: 455 year: 2023 ident: 333_CR26 publication-title: Chem Eng J doi: 10.1016/j.cej.2022.140381 – volume: 858 start-page: 159955 year: 2023 ident: 333_CR52 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.159955 – volume: 337 start-page: 536 year: 2019 ident: 333_CR7 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.034 – volume: 208 start-page: 111616 year: 2021 ident: 333_CR9 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2020.111616 – volume: 244 start-page: 1031 year: 2017 ident: 333_CR35 publication-title: Bioresource Technol doi: 10.1016/j.biortech.2017.08.085 – volume: 384 year: 2020 ident: 333_CR40 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121505 – volume: 307 start-page: 136084 year: 2022 ident: 333_CR39 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136084 – volume: 398 year: 2020 ident: 333_CR50 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.122806 – volume: 171 start-page: 356 year: 2019 ident: 333_CR2 publication-title: Environ Res doi: 10.1016/j.envres.2019.01.051 – volume: 741 year: 2020 ident: 333_CR5 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.140422 – volume: 167 start-page: 1170 year: 2009 ident: 333_CR11 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2009.01.107 – volume: 408 start-page: 3251 year: 2010 ident: 333_CR8 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.04.007 – volume: 94 start-page: 94 year: 2013 ident: 333_CR38 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2013.05.002 – volume: 184 start-page: 109655 year: 2019 ident: 333_CR13 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.109655 – volume: 51 start-page: 844 year: 1979 ident: 333_CR41 publication-title: Anal Chem doi: 10.1021/ac50043a017 – volume: 126 start-page: 69 year: 2019 ident: 333_CR6 publication-title: Environ Int doi: 10.1016/j.envint.2019.02.022 – volume: 291 year: 2021 ident: 333_CR48 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.118129 – volume: 752 year: 2021 ident: 333_CR14 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.142164 – volume: 207 year: 2021 ident: 333_CR44 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2020.111261 – volume: 120 start-page: 377 year: 2015 ident: 333_CR30 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.06.019 – volume: 227 start-page: 98 year: 2017 ident: 333_CR53 publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.04.032 – volume: 388 start-page: 122065 year: 2020 ident: 333_CR19 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.122065 – volume: 619–620 start-page: 815 year: 2018 ident: 333_CR23 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.11.132 |
SSID | ssj0002511639 |
Score | 2.3020422 |
Snippet | Cd contamination, especially in farmland soil, can pose serious threats to human health as well as ecological security. Stabilization is an important strategy... Abstract Cd contamination, especially in farmland soil, can pose serious threats to human health as well as ecological security. Stabilization is an important... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Agriculture Bioavailability Biochar loaded bacteria Bioremediation BRICS Biochar Cadmium Ceramics Composites Earth and Environmental Science Environment Environmental Engineering/Biotechnology Fossil Fuels (incl. Carbon Capture) Glass Natural Materials Original Research Renewable and Green Energy Soil Science & Conservation Uptake |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4v5uBB0WiTJm3Xm7soIupJwVvJq1rU7uLuevBn-IudabuLIujFWwkJKZkv8yDfzDC2m-kMrYSwPLhUcaWk492MKFYyy7TVIgmCEoWvb5KLO3V5r--_tPoiTlhTHrg5uGNvnQixkbHFUMbZgt7lQiyUcFZYlVjSvmjzvgRTpIPJcUbb22bJ1LlySqYpPVkqTv3LYi6_WaK6YP-P19DayJwvscXWO4TT5q-W2VyoVthHf4LTiXs-GUGPp1AidojT-h482HJAiVMnYCpouBmovmAKKECXFPoejHOTl7ZRF1D3lLey_a48PGAkPn6EYUPMw8GygqF5Qr1Ywl7vFb1rFCRQo20iu4_g6mh_ld2dn932L3jbSoE7DKDGXLvEptJqY2TAe2dEEUeO6sLglUwMGjH8ToquCpTrmmhf2Eil3unY40IfdLzG5qtBFdYZCOld7LPIoF-uoiC6ShbauKKwqdFRoTtMTI81d22dcWp38ZzPKiTXoshRFHktilx22MFszbCpsvHr7B5JazaTKmTXA4ibvMVN_hduOuxwKuu8vbajX_bc-I89N9mCrAGoedTdYvPj10nYRp9mbHdq-H4CDN_xpg priority: 102 providerName: Directory of Open Access Journals |
Title | Cupriavidus B-7 immobilized biochar: an effective solution for Cd accumulation alleviation and growth promotion in pakchoi (Brassica Chinensis L.) |
URI | https://link.springer.com/article/10.1007/s42773-024-00333-2 https://doaj.org/article/dbc1e3a23b254cbf8706e3141cb1b46b |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1NSxwxNBR7qQexrcXth7xDDxUbmWSSmdne3EWRUntS8Dbka9ZBnV32w4MHf0R_cd_LZhZKi9BLCCGPwLzveV-Mfa50hVpCWB5cqbhS0vFhRSlWsqq01aIIggqFL34W51fq-7W-TkVhiz7bvQ9JRkm9KXZTsiwp5qg4DSDLOQrel5p8dwrRphoHkr9kNKPeTRUy_wb9QwvFZv1_RUKjgjnbZTvJMoSTNSpfsxehe8O2Tybz1B0jvGW_xisEpiz01QJGvIQWqYiyWx-DB9tOqYTqG5gO1lkaKMigJy1A4xTGHoxzq_s0sgtojspDm_adhwn65MsbmK1T9PCw7WBmblFCtvBlNEc7G1EKNHKb0t4X8OP4cI9dnZ1ejs95GqrAHbpSS65dYUtptTEyIAca0eSZow4xyJyFQXWG-6IZqkBVr4X2jc1U6Z3OPQL6oPN3bKubdmGfgZDe5b7KDFroKgtiqGSjjWsaWxqdNXrARP-Ra5c6jtPgi7t60ys5IqZGxNQRMbUcsKMNzGzdb-PZ2yPC3eYm9cqOB9P5pE6sV3vrRMiNzC06w842FNkNuVDCWWFVYQfsa4_5OjHw4pk33__f9Q_slYyEp3k2_Mi2lvNV-IR2zNIeRLKltRgfxH8BuF48nf4Ggjrszg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QE4IJ4iPOcAEggWede7toPEIQlUaZr2Qiv1ZvblYNE6kZNQwc_gN_BDmXXWlhCoEofeVqtZ2fLMzsPzzQwhzzOZoZVgmjqTCioEN3SQeYgVzzKpJUsc84XCh0fJ5ERMT-XpDvnV1sI0aPc2Jdlo6q7YTfA09TlHQf0AspjyAKU8cN8vMFBbvd__gFx9wfnex-PxhIZZAtRgBLGm0iQ65VoqxR0KnmJFHBnfGAVlMlGoxXGdFAPhfLFnIm2hI5FaI2OLB63zsyFQ0e8iUSZ7ZHc4nH6adv9yvJuOlj7U5Pz7Zf-we814gL9yr41J27tFbgZfFIZb4blNdlx1h9wYzuvQj8PdJT_HGzzsce-bFYxoCiXKrcfT_nAWdLnwRVvvQFWwxYWg6oRWmAHdYRhbUMZszsOQMPCTW76VYV1ZmNeLi_UXWG5BgbhZVrBUX1Enl_ByVKNnj0IEfsi3B9qvYPb21T1yciWf_j7pVYvKPSDAuDWxzSKFMYGIHBsIXkhlikKnSkaF7BPWfuTchB7nftTGWd51Z24YkyNj8oYxOe-T192Z5bbDx6XUI8-7jtJ35242FvU8D5c9t9owFyseawy_jS58LtnFTDCjmRaJ7pM3LefzoDJWlzzz4f-RPyPXJseHs3y2f3TwiFznjRBKGg0ek9663rgn6EWt9dMgxEA-X_W9-Q1F5ydC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA_HHog-iJ-4fuZBQdF4TZq0XcGH3T2Xu73zEPTg3mK-upY7u0u366F_hn-Jf6KTNi2IcuDDvYWQ0NL5ZWbS-c0MQk8zkYGVoJo4k3LCOTNklHmKFcsyoQVNHPWJwu-Pkr1jPj8RJ1voV5cL07Ddu5Bkm9PgqzSV9c7K5jt94htnaerjj5z4ZmQxYYFWeeC-n8Olbf12fxck_Iyx2btP0z0S-goQA7eJmgiT6JRpoRRzAEJF8zgyvkgK4DNRoNFhnOQj7nziZyJsriOeWiNiCxut830iQOlvZwmc0AHaHo_nH-f9fx3vsoPVD_k5_37ZP2xg0yrgrzhsY95mN9D14JficQukm2jLlbfQtfGiCrU53G30c7qBzZ4Dv1njCUlxARj23NofzmJdLH0C1xusStxyRECN4g7YGFxjPLVYGbP5GhqGYd_F5VsRxqXFi2p5Xn_Bq5YgCJNFiVfqFPRzgZ9PKvDyAVDYN_z2pPs1Pnz94g46vpRPfxcNymXp7iFMmTWxzSIF9wMeOTriLBfK5LlOlYhyMUS0-8jShHrnvu3GmewrNTeCkSAY2QhGsiF62e9ZtdU-Llw98bLrV_pK3c3EslrIcPCl1Ya6WLFYw1Xc6NzHlV1MOTWaap7oIXrVSV4G9bG-4Jn3_2_5E3Tlw-5MHu4fHTxAV1mDQUGi0UM0qKuNewQOVa0fBwxj9Pmyj81viiwrgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cupriavidus+B-7+immobilized+biochar%3A+an+effective+solution+for+Cd+accumulation+alleviation+and+growth+promotion+in+pakchoi+%28Brassica+Chinensis+L.%29&rft.jtitle=Biochar+%28Online%29&rft.au=Sun%2C+Yefang&rft.au=Ouyang%2C+Da&rft.au=Cai%2C+Yiming&rft.au=Guo%2C+Ting&rft.date=2024-05-09&rft.pub=Springer+Nature+Singapore&rft.eissn=2524-7867&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-024-00333-2&rft.externalDocID=10_1007_s42773_024_00333_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7867&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7867&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7867&client=summon |