Loss-of-heterozygosity facilitates a fitness valley crossing in experimentally evolved multicellular yeast

Determining how adaptive possibilities do or do not become evolutionary realities is central to understanding the tempo and mode of evolutionary change. Some of the simplest evolutionary landscapes arise from underdominance at a single locus where the fitness valley consists of only one less-fit gen...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 289; no. 1976; p. 20212722
Main Authors Baselga-Cervera, Beatriz, Gettle, Noah, Travisano, Michael
Format Journal Article
LanguageEnglish
Published England The Royal Society 08.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Determining how adaptive possibilities do or do not become evolutionary realities is central to understanding the tempo and mode of evolutionary change. Some of the simplest evolutionary landscapes arise from underdominance at a single locus where the fitness valley consists of only one less-fit genotype. Despite their potential for rapid evolutionary change, few such examples have been investigated. We capitalized on an experimental system in which a significant evolutionary shift, the transition from uni-to-multicellularity, was observed in asexual diploid populations of experimentally selected for increased settling rates. The multicellular phenotype results from recessive single-locus mutations that undergo loss-of-heterozygosity (LOH) events. By reconstructing the necessary heterozygous intermediate steps, we found that the evolution of multicellularity involves a decrease in size during the first steps. Heterozygous genotypes are 20% smaller in size than genotypes with functional alleles. Nevertheless, populations of heterozygotes give rise to multicellular genotypes more readily than unicellular genotypes with two functional alleles, by rapid LOH events. LOH drives adaptation that may enable rapid evolution in diploid yeast. Together these results show discordance between the phenotypic and genotypic multicellular transition. The evolutionary path to multicellularity, and the adaptive benefits of increased size, requires initial size reductions.
AbstractList Determining how adaptive possibilities do or do not become evolutionary realities is central to understanding the tempo and mode of evolutionary change. Some of the simplest evolutionary landscapes arise from underdominance at a single locus where the fitness valley consists of only one less-fit genotype. Despite their potential for rapid evolutionary change, few such examples have been investigated. We capitalized on an experimental system in which a significant evolutionary shift, the transition from uni-to-multicellularity, was observed in asexual diploid populations of  Saccharomyces cerevisiae  experimentally selected for increased settling rates. The multicellular phenotype results from recessive single-locus mutations that undergo loss-of-heterozygosity (LOH) events. By reconstructing the necessary heterozygous intermediate steps, we found that the evolution of multicellularity involves a decrease in size during the first steps. Heterozygous genotypes are 20% smaller in size than genotypes with functional alleles. Nevertheless, populations of heterozygotes give rise to multicellular genotypes more readily than unicellular genotypes with two functional alleles, by rapid LOH events. LOH drives adaptation that may enable rapid evolution in diploid yeast. Together these results show discordance between the phenotypic and genotypic multicellular transition. The evolutionary path to multicellularity, and the adaptive benefits of increased size, requires initial size reductions.
Determining how adaptive possibilities do or do not become evolutionary realities is central to understanding the tempo and mode of evolutionary change. Some of the simplest evolutionary landscapes arise from underdominance at a single locus where the fitness valley consists of only one less-fit genotype. Despite their potential for rapid evolutionary change, few such examples have been investigated. We capitalized on an experimental system in which a significant evolutionary shift, the transition from uni-to-multicellularity, was observed in asexual diploid populations of Saccharomyces cerevisiae experimentally selected for increased settling rates. The multicellular phenotype results from recessive single-locus mutations that undergo loss-of-heterozygosity (LOH) events. By reconstructing the necessary heterozygous intermediate steps, we found that the evolution of multicellularity involves a decrease in size during the first steps. Heterozygous genotypes are 20% smaller in size than genotypes with functional alleles. Nevertheless, populations of heterozygotes give rise to multicellular genotypes more readily than unicellular genotypes with two functional alleles, by rapid LOH events. LOH drives adaptation that may enable rapid evolution in diploid yeast. Together these results show discordance between the phenotypic and genotypic multicellular transition. The evolutionary path to multicellularity, and the adaptive benefits of increased size, requires initial size reductions.
Determining how adaptive possibilities do or do not become evolutionary realities is central to understanding the tempo and mode of evolutionary change. Some of the simplest evolutionary landscapes arise from underdominance at a single locus where the fitness valley consists of only one less-fit genotype. Despite their potential for rapid evolutionary change, few such examples have been investigated. We capitalized on an experimental system in which a significant evolutionary shift, the transition from uni-to-multicellularity, was observed in asexual diploid populations of experimentally selected for increased settling rates. The multicellular phenotype results from recessive single-locus mutations that undergo loss-of-heterozygosity (LOH) events. By reconstructing the necessary heterozygous intermediate steps, we found that the evolution of multicellularity involves a decrease in size during the first steps. Heterozygous genotypes are 20% smaller in size than genotypes with functional alleles. Nevertheless, populations of heterozygotes give rise to multicellular genotypes more readily than unicellular genotypes with two functional alleles, by rapid LOH events. LOH drives adaptation that may enable rapid evolution in diploid yeast. Together these results show discordance between the phenotypic and genotypic multicellular transition. The evolutionary path to multicellularity, and the adaptive benefits of increased size, requires initial size reductions.
Author Baselga-Cervera, Beatriz
Gettle, Noah
Travisano, Michael
Author_xml – sequence: 1
  givenname: Beatriz
  orcidid: 0000-0003-3423-4780
  surname: Baselga-Cervera
  fullname: Baselga-Cervera, Beatriz
  organization: Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 2
  givenname: Noah
  surname: Gettle
  fullname: Gettle, Noah
  organization: Department of Zoology, Stockholm University, Stockholm, Sweden
– sequence: 3
  givenname: Michael
  orcidid: 0000-0001-8168-0842
  surname: Travisano
  fullname: Travisano, Michael
  organization: Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36547392$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-207226$$DView record from Swedish Publication Index
BookMark eNpVkUtPGzEUha0KVALttkvkJQsmtT3jsb1BQvQBUiQ2tFvLmVwHI2ccbE_o8OvrIRSV1V3c75z7OMfooA89IPSFkjklSn6NabucM8LonAnGPqAZbQStmOLNAZoR1bJKNpwdoeOUHgghikv-ER3VLW9ErdgMPSxCSlWw1T1kiOF5XIfk8oit6Zx32WRI2GDrcg8p4Z3xHkbcxSJy_Rq7HsOfLUS3gT6X3ohhF_wOVngz-Ow68H7wJuIRTMqf0KE1PsHn13qCfv34fnd1XS1uf95cXS6qriE0V9ywJai2s61ZUSLbVkje8VaJRgFdypo1tSS1IGAktStLmLUdEaqg0lrJ6_oEne990xNsh6XelvVMHHUwTn9zvy91iGudBs1I-Vhb8Is9XtgNrLpySTT-nep9p3f3eh12WlHJJZPF4OzVIIbHAVLWG5em000PYUiaCS4IbygRBZ3v0ZcPRrBvYyjRU556ylNPeeopzyI4_X-5N_xfgPVfnfGh6A
CitedBy_id crossref_primary_10_1098_rspb_2021_2722
crossref_primary_10_1098_rspb_2023_1055
crossref_primary_10_1038_s42003_024_06485_y
crossref_primary_10_1007_s00239_022_10088_8
Cites_doi 10.1128/mr.47.2.150-168.1983
10.1101/073007
10.1038/s41586-018-0030-5
10.1016/j.tpb.2009.02.006
10.1098/rspb.1979.0086
10.1126/science.aaf0965
10.1128/9781555815837.ch32
10.1038/ng1998
10.1371/journal.pcbi.1002260
10.1086/700565
10.1093/genetics/143.1.15
10.1111/j.1558-5646.2010.00960.x
10.1038/ncomms7102
10.1534/genetics.104.036871
10.1038/374227a0
10.1006/jtbi.2001.2357
10.1016/j.ccr.2004.06.015
10.1371/journal.pgen.1007348
10.1016/j.tree.2007.09.011
10.1086/302219
10.1666/0094-8373(2005)031[0133:TDOES]2.0.CO;2
10.1098/rspb.2021.2722
10.1073/pnas.1305949110
10.1126/science.1243357
10.1098/rspb.2007.0056
10.1038/nprot.2007.13
10.1093/g3journal/jkab192
10.1086/285289
10.1093/genetics/97.3-4.639
10.2307/2407380
10.1534/genetics.117.300350
10.1006/jtbi.2000.2189
10.1534/genetics.108.089250
10.1038/ncomms4819
10.1093/molbev/msx098
10.1073/pnas.1115323109
10.1371/journal.pbio.1000221
10.1016/j.cub.2020.03.072
10.1534/genetics.105.051789
10.1016/j.xplc.2020.100103
10.1128/mBio.01900-20
10.1534/genetics.108.087890
10.1098/rstb.2015.0444
10.1002/bies.20197
10.1534/genetics.119.302411
ContentType Journal Article
Copyright 2022 The Authors. 2022
Copyright_xml – notice: 2022 The Authors. 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
DOI 10.1098/rspb.2021.2722
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
DocumentTitleAlternate Loss-of-heterozygosity facilitates a fitness valley crossing in experimentally evolved multicellular
EISSN 1471-2954
EndPage 20212722
ExternalDocumentID oai_DiVA_org_su_207226
10_1098_rspb_2021_2722
36547392
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: becas 2048
GroupedDBID ---
-~X
0R~
29P
2WC
36Y
4.4
5RE
85S
AACGO
AANCE
ABPLY
ABTLG
ACIWK
ACNCT
ACPRK
ACQIA
ADBBV
ADIYS
AEUPB
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HYE
HZ~
JLS
JSG
KQ8
MRS
NPM
O9-
OK1
OP1
RHF
RPM
RRY
TR2
V1E
W8F
~02
AAYXX
CITATION
7X8
5PM
.55
.GJ
0VX
3O-
53G
8WZ
A6W
AANZV
ABAVF
ABBHK
ABEFU
ABIEJ
ABXSQ
ACMKX
ADACV
ADTPV
ADULT
AEXZC
AJZGM
AOWAS
AQVQM
AS~
BGBPD
CAG
COF
D8T
DCCCD
DG7
DOOOF
EJD
HGD
HQ3
HTVGU
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
JSODD
JST
K-O
MVM
ROL
SA0
WOQ
X7M
ZXP
ZZAVC
ID FETCH-LOGICAL-c401t-5a2be96cf6ad10866785c569749e1b8324380370ea81fdf02ffc0791088ff8533
IEDL.DBID RPM
ISSN 0962-8452
1471-2954
IngestDate Tue Oct 01 22:39:23 EDT 2024
Tue Sep 17 21:09:51 EDT 2024
Sat Aug 17 01:46:09 EDT 2024
Tue Sep 24 00:53:07 EDT 2024
Sat Sep 28 08:20:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1976
Keywords evolutionary landscapes
multicellularity
loss-of-heterozygosity
loss of function
underdominance
genotype–phenotype map
Language English
License Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-5a2be96cf6ad10866785c569749e1b8324380370ea81fdf02ffc0791088ff8533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.6011670.
ORCID 0000-0001-8168-0842
0000-0003-3423-4780
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185828/
PMID 36547392
PQID 2757054107
PQPubID 23479
PageCount 1
ParticipantIDs swepub_primary_oai_DiVA_org_su_207226
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9185828
proquest_miscellaneous_2757054107
crossref_primary_10_1098_rspb_2021_2722
pubmed_primary_36547392
PublicationCentury 2000
PublicationDate 2022-06-08
PublicationDateYYYYMMDD 2022-06-08
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-08
  day: 08
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Proceedings of the Royal Society. B, Biological sciences
PublicationTitleAlternate Proc Biol Sci
PublicationYear 2022
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_6_30_2
e_1_3_6_51_2
e_1_3_6_32_2
e_1_3_6_38_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_40_2
e_1_3_6_21_2
e_1_3_6_42_2
Tung S (e_1_3_6_11_2) 2021; 11
e_1_3_6_4_2
e_1_3_6_2_2
e_1_3_6_8_2
e_1_3_6_6_2
e_1_3_6_27_2
e_1_3_6_48_2
e_1_3_6_23_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_46_2
e_1_3_6_52_2
e_1_3_6_31_2
Hartl DL (e_1_3_6_29_2) 2007
e_1_3_6_10_2
e_1_3_6_50_2
Crow JF (e_1_3_6_13_2) 1970
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_12_2
Travisano M (e_1_3_6_19_2) 2001; 67
e_1_3_6_39_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_41_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_5_2
e_1_3_6_3_2
e_1_3_6_9_2
e_1_3_6_7_2
e_1_3_6_26_2
e_1_3_6_49_2
e_1_3_6_28_2
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_24_2
e_1_3_6_47_2
References_xml – ident: e_1_3_6_16_2
  doi: 10.1128/mr.47.2.150-168.1983
– ident: e_1_3_6_43_2
  doi: 10.1101/073007
– ident: e_1_3_6_44_2
  doi: 10.1038/s41586-018-0030-5
– ident: e_1_3_6_3_2
  doi: 10.1016/j.tpb.2009.02.006
– ident: e_1_3_6_22_2
  doi: 10.1098/rspb.1979.0086
– ident: e_1_3_6_6_2
  doi: 10.1126/science.aaf0965
– ident: e_1_3_6_48_2
  doi: 10.1128/9781555815837.ch32
– ident: e_1_3_6_4_2
  doi: 10.1038/ng1998
– ident: e_1_3_6_34_2
  doi: 10.1371/journal.pcbi.1002260
– ident: e_1_3_6_21_2
  doi: 10.1086/700565
– volume: 67
  start-page: 403
  year: 2001
  ident: e_1_3_6_19_2
  article-title: Experimental evolution studies yield insights into bacterial diversity
  publication-title: ASM News
  contributor:
    fullname: Travisano M
– ident: e_1_3_6_15_2
  doi: 10.1093/genetics/143.1.15
– volume-title: An introduction to population genetics theory
  year: 1970
  ident: e_1_3_6_13_2
  contributor:
    fullname: Crow JF
– ident: e_1_3_6_24_2
  doi: 10.1111/j.1558-5646.2010.00960.x
– ident: e_1_3_6_28_2
  doi: 10.1038/ncomms7102
– ident: e_1_3_6_38_2
  doi: 10.1534/genetics.104.036871
– ident: e_1_3_6_8_2
– ident: e_1_3_6_10_2
  doi: 10.1038/374227a0
– ident: e_1_3_6_32_2
  doi: 10.1006/jtbi.2001.2357
– ident: e_1_3_6_40_2
  doi: 10.1016/j.ccr.2004.06.015
– ident: e_1_3_6_26_2
  doi: 10.1371/journal.pgen.1007348
– ident: e_1_3_6_2_2
– ident: e_1_3_6_23_2
  doi: 10.1016/j.tree.2007.09.011
– ident: e_1_3_6_35_2
  doi: 10.1086/302219
– ident: e_1_3_6_25_2
  doi: 10.1666/0094-8373(2005)031[0133:TDOES]2.0.CO;2
– ident: e_1_3_6_52_2
  doi: 10.1098/rspb.2021.2722
– ident: e_1_3_6_9_2
  doi: 10.1073/pnas.1305949110
– ident: e_1_3_6_20_2
  doi: 10.1126/science.1243357
– ident: e_1_3_6_46_2
  doi: 10.1098/rspb.2007.0056
– ident: e_1_3_6_12_2
  doi: 10.1038/nprot.2007.13
– volume: 11
  start-page: jkab192
  year: 2021
  ident: e_1_3_6_11_2
  article-title: The genetic basis of differential autodiploidization in evolving yeast populations
  publication-title: G3 Genes, Genomes, Genet
  doi: 10.1093/g3journal/jkab192
  contributor:
    fullname: Tung S
– ident: e_1_3_6_14_2
  doi: 10.1086/285289
– ident: e_1_3_6_27_2
  doi: 10.1093/genetics/97.3-4.639
– ident: e_1_3_6_31_2
  doi: 10.2307/2407380
– ident: e_1_3_6_50_2
  doi: 10.1534/genetics.117.300350
– ident: e_1_3_6_49_2
  doi: 10.1006/jtbi.2000.2189
– ident: e_1_3_6_51_2
  doi: 10.1098/rspb.2021.2722
– volume-title: Principles of population genetics
  year: 2007
  ident: e_1_3_6_29_2
  contributor:
    fullname: Hartl DL
– ident: e_1_3_6_17_2
  doi: 10.1534/genetics.108.089250
– ident: e_1_3_6_45_2
  doi: 10.1038/ncomms4819
– ident: e_1_3_6_18_2
  doi: 10.1093/molbev/msx098
– ident: e_1_3_6_7_2
  doi: 10.1073/pnas.1115323109
– ident: e_1_3_6_37_2
  doi: 10.1371/journal.pbio.1000221
– ident: e_1_3_6_30_2
  doi: 10.1016/j.cub.2020.03.072
– ident: e_1_3_6_33_2
  doi: 10.1534/genetics.105.051789
– ident: e_1_3_6_36_2
  doi: 10.1016/j.xplc.2020.100103
– ident: e_1_3_6_39_2
  doi: 10.1128/mBio.01900-20
– ident: e_1_3_6_5_2
  doi: 10.1534/genetics.108.087890
– ident: e_1_3_6_41_2
  doi: 10.1098/rstb.2015.0444
– ident: e_1_3_6_42_2
  doi: 10.1002/bies.20197
– ident: e_1_3_6_47_2
  doi: 10.1534/genetics.119.302411
SSID ssj0009585
Score 2.456234
Snippet Determining how adaptive possibilities do or do not become evolutionary realities is central to understanding the tempo and mode of evolutionary change. Some...
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 20212722
SubjectTerms Adaptation, Physiological - genetics
Biological Evolution
Evolution
evolutionary landscapes
Genetic Fitness
Genotype
genotypephenotype map
Heterozygote
loss of function
Loss of Heterozygosity
multicellularity
Saccharomyces cerevisiae - genetics
underdominance
Title Loss-of-heterozygosity facilitates a fitness valley crossing in experimentally evolved multicellular yeast
URI https://www.ncbi.nlm.nih.gov/pubmed/36547392
https://search.proquest.com/docview/2757054107
https://pubmed.ncbi.nlm.nih.gov/PMC9185828
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-207226
Volume 289
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xSEhcUIEWtnzIlVq1HMJunDhOjoiPoqpUPRS0tyh27CUIEsTuIoVfz4yTrBpx42w7djK25z1n_Abgayi0RVeAJCdQgReiS_aUn4deZG0W6wQRdEwXha_-RJfX4a-JmKyA6O7CuKB9rYrj8v7huCxuXWzl44MedXFio79Xpwk6GWQKowEMZBB0FH2ptOvycCI0x6UeCr5UaoxHyBQVUkKOvFBy3vdEb-Dl2yjJnpao8z8XH2CjBY7spBngJqyYcgvWmlSS9RZstot0xn60StJH23D3Gzv2KuvdUtBL9VJPKUSrZjbTjTg3Vs-YLea037FnSqtSMzdadGisKNn_-v_3NTO4lz2bnLkoRDrypxhWVlP6n49wfXH-7_TSa5MreBop1dwTGVcmibSNspyyLaHTElpESC8S4ytc5yRFH8ixyWLf5mhPa_VYIriIY2vRxwefYLWsSrMLjEuZ5MlYCVzMISX85Jnhfq64RLiDgGQI37sPnT42Ghpp8-87TskkKZkkJZMM4UtnhxSnOb1IVppqMcNSIRFdIlkdwk5jl-WzApdAOcHWsmexZQWS0O6X4MxyUtrtTBrCt8a2vSZnxc1JWj1N09kCh4jDiz6_u4c9WOd0cYLOb-J9WJ0_LcwBwpm5OoTBz4l_6CbxK-Ju-Qc
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVggu0JbXAgUjgYBD9uHEcXKsWqoFdisObdVbFDt2G2iTqputlP56ZpxkRegJzs7Dzng83xePvwF4HwhtMRQgyfGV7wUYkj01yQIvtDaNdIwIOqKDwvPDcHocfDsVp2sgurMwLmlfq3xYXFwOi_zc5VZeXepRlyc2-jHfizHIIFMY3YMN9FcuO5K-0tp1lTgRnKOzB4KvtBqjEXJFhaSQIzOUnPdj0R2AeTdPsqcm6iLQwWM46freJJ78Gi4rNdS3f8k6_vPgNuFRi0nZbtO8BWum2Ib7TZXKehu2Wv9fsE-tSPXnJ_BzhiPySuudUz5NeVufUfZXzWyqG91vvDxlNq9oKWU3VLGlZu4zYKxkecH-LC1wUTODy-SNyZhLcKTdBEqPZTVVFnoKxwdfjvamXlu3wdPI1ipPpFyZONQ2TDMq5ITxUGgRInOJzUThEkIq974cmzSa2AynirV6LBG3RJG1CB_8Z7BelIV5AYxLGWfxWAlcJwKqJcpTwyeZ4hKRFGKdAXzsLJhcNfIcSbOtHiVk64RsnZCtB_CuM3CCHkQDSQtTLhfYKiQCV-TBA3jeGHz1LN_VZo7xbtmbCqsLSJ2734J2dSrdrR0H8KGZNL1b9vOT3aS8PksWS-widi98-d9veAsPpkfzWTL7evj9FTzkdD6DfhNFr2G9ul6aHURNlXrjfOQ3e1waJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RUKte2kIL3X5QV2rVcshm1_k-ImBF-RKHUqFerNixIS0kKzaLFH59Z5xkRcqNc5xde8eeebN5eQ_gix8og6UAmxxPeo6PJdmR48x3QmPSWCWIoGN6Ufj4JNw_8w_Og_N7Vl-WtK9kPiyurodFfmm5ldNr5XY8Mff0eCfBIoOdgjvNjPsEVvDM8qRr1Bd6u9aNEwE6Hng_4Au9xtjFflFiY8ixO4w479ejByDzIVeypyhqq9DkJfzu5t-QT_4O55Ucqrv_pB0ftcBX8KLFpmy7GbIKS7pYg6eNW2W9BqttHpix761Y9dZr-HOEq3JK41wSr6a8qy-IBVYzk6pG_xuHp8zkFaVUdkvOLTWzPwXWTJYX7L7FwFXNNKbLW50xS3SkpwpEk2U1OQy9gbPJ3s-dfaf1b3AUdm2VE6Rc6iRUJkwzMnTCuhioIMQOJtFjiamE1O69aKTTeGwy3DLGqFGE-CWOjUEY4a3DclEW-i0wHkVJloxkgPnCJ09Rnmo-ziSPEFEh5hnAty6KYtrIdIjm8XosKN6C4i0o3gP43AVZ4EmihaSFLuczvBpECGCxHx7ARhP0xWd51qM5wbuj3nZYDCCV7v4VjK1V625jOYCvzcbp3bKb_9oW5c2FmM1xiji98N2jv-ETPDvdnYijHyeH7-E5p9c06N-i-AMsVzdz_RHBUyU37TH5BziPHKY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss-of-heterozygosity+facilitates+a+fitness+valley+crossing+in+experimentally+evolved+multicellular+yeast&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Baselga-Cervera%2C+Beatriz&rft.au=Gettle%2C+Noah&rft.au=Travisano%2C+Michael&rft.date=2022-06-08&rft.issn=1471-2954&rft.volume=289&rft.issue=1976&rft_id=info:doi/10.1098%2Frspb.2021.2722&rft.externalDocID=oai_DiVA_org_su_207226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon