The properties of a micro-reactor for the study of the unimolecular decomposition of large molecules
A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared spectroscopy diagnostics is described. Short residence time flow reactors (roughly ≤ 100 μs) combined with suitable diagnostic tools have th...
Saved in:
Published in | International reviews in physical chemistry Vol. 33; no. 4; pp. 447 - 487 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.10.2014
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared spectroscopy diagnostics is described. Short residence time flow reactors (roughly ≤ 100 μs) combined with suitable diagnostic tools have the potential to allow observation of unimolecular decomposition processes with minimum interference from secondary reactions. However, achieving the short residence times desired requires very small micro-reactors that are difficult to characterise experimentally because of their size. In this article the benefits of using these micro-reactors are presented along with some details of the systems employed. This is followed by some general flow considerations and then some simple analyses to illustrate particular features of the flow. Finally, computational fluid dynamics simulations are used to explore the flow and chemical behaviour of the reactors in detail. Some findings include: (1) The reactor operates in the laminar domain. (2) Heating and large pressure differences across the reactor result in a compressible flow that chokes (meaning the velocity reaches the sonic condition) at the reactor exit. (3) When helium is the carrier gas, under some circumstances there is slip at the boundaries near the downstream end of the reactor that reduces the pressure drop and heat transfer rate; this effect must be accounted for in the simulations. (4) Because the initial reactant concentration is held to less than 0.1%, secondary reactions are minimised. (5) Although the fluid dynamical residence time from entrance to exit ranges from 25 to 150 μs, in practice the period over which reactions take place is much shorter. In essence, there is a 'sweet spot' within the reactor where most reactions take place. In summary, the micro-reactor, which has been used for many years to generate radicals or study unimolecular decomposition chemical mechanisms, can be used to extract kinetic information by comparing simulations and measurements of reactant and product concentrations at the reactor exit. |
---|---|
AbstractList | A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared spectroscopy diagnostics is described. Short residence time flow reactors (roughly ≤ 100 μs) combined with suitable diagnostic tools have the potential to allow observation of unimolecular decomposition processes with minimum interference from secondary reactions. However, achieving the short residence times desired requires very small micro-reactors that are difficult to characterise experimentally because of their size. In this article the benefits of using these micro-reactors are presented along with some details of the systems employed. This is followed by some general flow considerations and then some simple analyses to illustrate particular features of the flow. Finally, computational fluid dynamics simulations are used to explore the flow and chemical behaviour of the reactors in detail. Some findings include: (1) The reactor operates in the laminar domain. (2) Heating and large pressure differences across the reactor result in a compressible flow that chokes (meaning the velocity reaches the sonic condition) at the reactor exit. (3) When helium is the carrier gas, under some circumstances there is slip at the boundaries near the downstream end of the reactor that reduces the pressure drop and heat transfer rate; this effect must be accounted for in the simulations. (4) Because the initial reactant concentration is held to less than 0.1%, secondary reactions are minimised. (5) Although the fluid dynamical residence time from entrance to exit ranges from 25 to 150 μs, in practice the period over which reactions take place is much shorter. In essence, there is a 'sweet spot' within the reactor where most reactions take place. In summary, the micro-reactor, which has been used for many years to generate radicals or study unimolecular decomposition chemical mechanisms, can be used to extract kinetic information by comparing simulations and measurements of reactant and product concentrations at the reactor exit. A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared spectroscopy diagnostics is described. Short residence time flow reactors (roughly ≤ 100 ...s) combined with suitable diagnostic tools have the potential to allow observation of unimolecular decomposition processes with minimum interference from secondary reactions. However, achieving the short residence times desired requires very small micro-reactors that are difficult to characterise experimentally because of their size. In this article the benefits of using these micro-reactors are presented along with some details of the systems employed. This is followed by some general flow considerations and then some simple analyses to illustrate particular features of the flow. Finally, computational fluid dynamics simulations are used to explore the flow and chemical behaviour of the reactors in detail. Some findings include: (1) The reactor operates in the laminar domain. (2) Heating and large pressure differences across the reactor result in a compressible flow that chokes (meaning the velocity reaches the sonic condition) at the reactor exit. (3) When helium is the carrier gas, under some circumstances there is slip at the boundaries near the downstream end of the reactor that reduces the pressure drop and heat transfer rate; this effect must be accounted for in the simulations. (4) Because the initial reactant concentration is held to less than 0.1%, secondary reactions are minimised. (5) Although the fluid dynamical residence time from entrance to exit ranges from 25 to 150 ...s, in practice the period over which reactions take place is much shorter. In essence, there is a 'sweet spot' within the reactor where most reactions take place. In summary, the micro-reactor, which has been used for many years to generate radicals or study unimolecular decomposition chemical mechanisms, can be used to extract kinetic information by comparing simulations and measurements of reactant and product concentrations at the reactor exit. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Guan, Qi Ormond, Thomas K. David, Donald E. Barney Ellison, G. Daily, John W. Urness, Kimberly N. |
Author_xml | – sequence: 1 givenname: Qi surname: Guan fullname: Guan, Qi organization: Department of Mechanical Engineering, University of Colorado at Boulder – sequence: 2 givenname: Kimberly N. surname: Urness fullname: Urness, Kimberly N. organization: Department of Mechanical Engineering, University of Colorado at Boulder – sequence: 3 givenname: Thomas K. surname: Ormond fullname: Ormond, Thomas K. organization: Department of Chemistry and Biochemistry, University of Colorado at Boulder – sequence: 4 givenname: Donald E. surname: David fullname: David, Donald E. organization: Department of Chemistry and Biochemistry, University of Colorado at Boulder – sequence: 5 givenname: G. surname: Barney Ellison fullname: Barney Ellison, G. organization: Department of Chemistry and Biochemistry, University of Colorado at Boulder – sequence: 6 givenname: John W. surname: Daily fullname: Daily, John W. email: john.daily@colorado.edu organization: Department of Mechanical Engineering, University of Colorado at Boulder |
BookMark | eNqFkE1LwzAYx4NMcJt-Aw8Fz51J89LGi8jwDQZeJuwW0jTRjLaZSYrs25tSvXjQQ8gLv__z5PktwKx3vQbgEsEVghW8hoiQAtPdqkinFWclp-gEzBFmLKcc7WZgPiL5yJyBRQh7CBEuEJ-DZvuus4N3B-2j1SFzJpNZZ5V3uddSReczk1ZMVIhDcxyB8TL0tnOtVkMrfdZo5bqDCzZa149EenzT2Tegwzk4NbIN-uJ7X4LXh_vt-infvDw-r-82uSIQxZyiWhIsMVRaKcgVMbwqSclqw2quaaWrpiTU1BJiXkhmGNWE8qKkDWpUwSRegqupbhroY9Ahir0bfJ9aCsQow7TCJUnUzUSlIUPw2ghloxy_Hr20rUBQjFbFj1UxWhWT1RQmv8IHbzvpj__FbqeY7ZPOTn463zYiymPrvPGyVzYI_GeFL-7wka8 |
CitedBy_id | crossref_primary_10_1016_j_jaap_2021_105410 crossref_primary_10_1002_ange_202110929 crossref_primary_10_1002_kin_21397 crossref_primary_10_1177_14690667221142699 crossref_primary_10_1063_1_4906156 crossref_primary_10_1021_acs_jpca_2c00766 crossref_primary_10_1021_acs_jpca_5b04435 crossref_primary_10_1016_j_combustflame_2020_08_040 crossref_primary_10_1016_j_ijms_2020_116476 crossref_primary_10_1021_acs_jpca_7b07582 crossref_primary_10_1021_acs_jpca_6b05699 crossref_primary_10_1038_s41929_018_0071_z crossref_primary_10_1039_C9CP03519B crossref_primary_10_1016_j_proci_2020_06_139 crossref_primary_10_1039_D1CP00720C crossref_primary_10_3390_separations8050070 crossref_primary_10_1016_j_proci_2020_06_375 crossref_primary_10_1080_00268976_2021_1961907 crossref_primary_10_1021_acs_jpca_4c06549 crossref_primary_10_1021_acs_jpca_9b08102 crossref_primary_10_1002_cphc_202000477 crossref_primary_10_1039_D1CP05183K crossref_primary_10_3389_fchem_2019_00326 crossref_primary_10_1016_j_proci_2016_06_104 crossref_primary_10_1002_ange_201607509 crossref_primary_10_1016_j_combustflame_2022_112547 crossref_primary_10_1039_C5CP02960K crossref_primary_10_1016_j_jaap_2017_02_020 crossref_primary_10_1177_14690667241255767 crossref_primary_10_1016_j_cplett_2017_05_040 crossref_primary_10_1021_acs_jpca_1c00724 crossref_primary_10_1063_1_4954895 crossref_primary_10_1021_acs_energyfuels_2c01455 crossref_primary_10_1039_C5CP05346C crossref_primary_10_1039_D1CP05206C crossref_primary_10_1002_chem_201800852 crossref_primary_10_1021_acs_jpca_8b06837 crossref_primary_10_1021_acs_jpca_7b07359 crossref_primary_10_1021_acs_jpca_7b02629 crossref_primary_10_1021_acs_jpca_8b03201 crossref_primary_10_1002_kin_21173 crossref_primary_10_1021_acs_jpca_8b05102 crossref_primary_10_1021_acs_jpca_2c09081 crossref_primary_10_1021_jz501758p crossref_primary_10_1002_anie_202110929 crossref_primary_10_1002_chem_201700402 crossref_primary_10_1021_acs_energyfuels_1c01712 crossref_primary_10_1039_C8CP05830J crossref_primary_10_1038_s41550_018_0585_y crossref_primary_10_1002_ange_202305881 crossref_primary_10_1039_C9CP01935A crossref_primary_10_1016_j_jaap_2016_11_009 crossref_primary_10_1021_jacs_2c12045 crossref_primary_10_1039_D1CP00459J crossref_primary_10_1021_acs_jpca_7b02639 crossref_primary_10_1021_acs_jpclett_4c00343 crossref_primary_10_1021_acs_jpca_6b11472 crossref_primary_10_1002_anie_201411987 crossref_primary_10_1002_chem_201702376 crossref_primary_10_1021_acs_jpca_1c00149 crossref_primary_10_1063_1_4939459 crossref_primary_10_1021_acs_analchem_4c04997 crossref_primary_10_1021_acs_jpca_0c01134 crossref_primary_10_1007_s10311_023_01661_8 crossref_primary_10_1021_acs_jpca_2c01228 crossref_primary_10_1021_acs_jpca_5b04565 crossref_primary_10_1021_acs_jpca_6b08750 crossref_primary_10_1002_cphc_201801154 crossref_primary_10_1002_anie_202305881 crossref_primary_10_1038_s41467_019_09224_8 crossref_primary_10_1039_D1CP01565F crossref_primary_10_1021_acs_jpca_2c06670 crossref_primary_10_1016_j_cplett_2025_142052 crossref_primary_10_1021_acs_chemrev_6b00738 crossref_primary_10_3103_S106833561810007X crossref_primary_10_1021_acs_jpca_4c05532 crossref_primary_10_1021_acs_jpclett_5b00517 crossref_primary_10_1021_acs_jpca_5b06779 crossref_primary_10_1021_acs_jpclett_9b03836 crossref_primary_10_1002_ange_201411987 crossref_primary_10_1002_anie_201607509 crossref_primary_10_1021_acs_jpca_3c06019 crossref_primary_10_1002_jms_4868 crossref_primary_10_1002_jms_4901 crossref_primary_10_1039_D4CP02798A crossref_primary_10_1021_acs_jpca_6b11817 crossref_primary_10_1039_D0CP03846F crossref_primary_10_1016_j_rser_2021_111262 crossref_primary_10_1016_j_jms_2024_111981 crossref_primary_10_1021_jp511390f crossref_primary_10_1016_j_proci_2024_105623 crossref_primary_10_1002_cphc_202300359 crossref_primary_10_1021_jacs_7b06714 crossref_primary_10_1021_acs_jpca_8b09640 crossref_primary_10_1039_D1CP04984D crossref_primary_10_1021_jacs_0c11677 crossref_primary_10_1021_acs_jpca_6b00652 crossref_primary_10_1039_C5CP02964C crossref_primary_10_1039_C9CP04493K crossref_primary_10_1021_jasms_3c00334 crossref_primary_10_1021_acs_jpca_5b10743 crossref_primary_10_1021_acs_jpca_7b02821 crossref_primary_10_1021_acs_jpca_5b10984 crossref_primary_10_1107_S1600577516005816 crossref_primary_10_1002_hlca_202400197 crossref_primary_10_1021_acs_jpca_5b01032 crossref_primary_10_1039_D2CP00400C crossref_primary_10_1002_kin_21532 crossref_primary_10_1002_chem_202001388 crossref_primary_10_1039_C5CP05354D crossref_primary_10_1016_j_jms_2023_111847 crossref_primary_10_1002_admi_202200192 crossref_primary_10_1126_sciadv_adi5060 crossref_primary_10_1021_jp509324w crossref_primary_10_1016_j_cplett_2015_08_055 crossref_primary_10_1039_C8CP02626B crossref_primary_10_1039_D3CP04064J crossref_primary_10_1016_j_ijms_2022_116933 crossref_primary_10_1016_j_jcat_2019_12_040 crossref_primary_10_1039_C7CP01571B crossref_primary_10_1021_acs_jpca_1c07661 crossref_primary_10_1039_C7RA03990E crossref_primary_10_1039_C9CY02587A crossref_primary_10_1021_acs_jpclett_4c02445 crossref_primary_10_1557_s43578_022_00566_6 crossref_primary_10_1080_00268976_2015_1042936 crossref_primary_10_1126_sciadv_abf0360 crossref_primary_10_1039_C5CP02243F crossref_primary_10_1039_D4CP02129K crossref_primary_10_1016_j_proci_2022_09_012 crossref_primary_10_1002_chem_202401750 crossref_primary_10_1016_j_proci_2020_07_060 |
Cites_doi | 10.1002/0471461296 10.1063/1.1145641 10.1016/j.combustflame.2011.09.005 10.1063/1.4821600 10.1063/1.1574397 10.1002/(ISSN)1097-4601 10.1021/jp102046p 10.1021/jp102996d 10.1063/1.3604005 10.1093/oso/9780198561958.001.0001 10.1063/1.452303 10.1021/jp1076356 10.1021/j100300a019 10.1002/kin.2013.45.issue-8 10.1021/ar00021a001 10.1063/1.4759050 10.1021/jp411257k 10.1021/j100402a014 10.1021/jp903401h 10.1098/rstl.1879.0067 10.1016/0009-2509(53)80001-1 10.1063/1.555846 10.1021/jp2068073 10.1021/jp803622w 10.1016/j.combustflame.2009.06.001 10.1002/cssc.201100648 10.1016/0009-2509(56)80014-6 10.1063/1.1995702 |
ContentType | Journal Article |
Copyright | 2014 Taylor & Francis 2014 Copyright Taylor & Francis Ltd. 2014 |
Copyright_xml | – notice: 2014 Taylor & Francis 2014 – notice: Copyright Taylor & Francis Ltd. 2014 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1080/0144235X.2014.967951 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1366-591X |
EndPage | 487 |
ExternalDocumentID | 3597594451 10_1080_0144235X_2014_967951 967951 |
Genre | Review Feature |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 30N 4.4 53G 5GY 5VS AAENE AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NW0 O9- P2P PQQKQ RIG RNANH RNS ROSJB RTWRZ S-T SNACF TBQAZ TCY TDBHL TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7U5 8FD L7M TASJS |
ID | FETCH-LOGICAL-c401t-51ba43a30cecc09c4f987476bf6b9e58e8d745fba0392a6f65e459275d1dc26a3 |
ISSN | 0144-235X |
IngestDate | Wed Aug 13 06:59:18 EDT 2025 Tue Jul 01 01:55:41 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Wed Dec 25 08:58:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c401t-51ba43a30cecc09c4f987476bf6b9e58e8d745fba0392a6f65e459275d1dc26a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1656358374 |
PQPubID | 53227 |
PageCount | 41 |
ParticipantIDs | crossref_citationtrail_10_1080_0144235X_2014_967951 crossref_primary_10_1080_0144235X_2014_967951 informaworld_taylorfrancis_310_1080_0144235X_2014_967951 proquest_journals_1656358374 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-02 |
PublicationDateYYYYMMDD | 2014-10-02 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International reviews in physical chemistry |
PublicationYear | 2014 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0032 Bird G. (CIT0022) 1994 CIT0034 Batchelor G. (CIT0024) 1967 CIT0033 White F.M. (CIT0026) 2011 Turns S.R. (CIT0042) 1996 Anderson J.B. (CIT0012) 1966 Navier C. (CIT0023) 1822; 6 CIT0014 CIT0036 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0019 Urness K. (CIT0011) CIT0040 CIT0020 CIT0001 Miller D. (CIT0013) 1988 CIT0045 CIT0044 Hirschfelder J. (CIT0025) 1954 Troy T. (CIT0030) 2014 Bird R. (CIT0043) 1960 Stokes S.G.G. (CIT0031) 1850; 9 Williams F. (CIT0041) 1985 CIT0003 Schaaf S.A. (CIT0021) 1961 CIT0002 CIT0005 CIT0027 CIT0004 CIT0007 Levenspiel O. (CIT0029) 1972 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0015 – volume-title: Chemical Reaction Engineering year: 1972 ident: CIT0029 – volume: 9 start-page: 8 year: 1850 ident: CIT0031 publication-title: Trans. Cambridge Philos. Soc – ident: CIT0040 doi: 10.1002/0471461296 – ident: CIT0016 doi: 10.1063/1.1145641 – volume-title: An Introduction to Combustion: Concepts and Applications year: 1996 ident: CIT0042 – ident: CIT0020 doi: 10.1016/j.combustflame.2011.09.005 – ident: CIT0044 – ident: CIT0010 doi: 10.1063/1.4821600 – volume-title: Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems year: 1985 ident: CIT0041 – ident: CIT0011 publication-title: J. Phys. Chem. A – volume-title: Advances in Chemical Physics: Chap. 8 Supersonic Nozzle Beams year: 1966 ident: CIT0012 – ident: CIT0017 doi: 10.1063/1.1574397 – ident: CIT0034 doi: 10.1002/(ISSN)1097-4601 – ident: CIT0004 doi: 10.1021/jp102046p – ident: CIT0038 doi: 10.1021/jp102996d – ident: CIT0007 doi: 10.1063/1.3604005 – volume-title: Molecular Gas Dynamics and the Direct Simulation of Gas Flows year: 1994 ident: CIT0022 doi: 10.1093/oso/9780198561958.001.0001 – ident: CIT0002 doi: 10.1063/1.452303 – ident: CIT0003 doi: 10.1021/jp1076356 – ident: CIT0033 doi: 10.1021/j100300a019 – volume-title: Flow of Rarefied Gases year: 1961 ident: CIT0021 – volume: 6 start-page: 389 year: 1822 ident: CIT0023 publication-title: Mem. Acad. Sci. Inst. France – ident: CIT0037 doi: 10.1002/kin.2013.45.issue-8 – ident: CIT0014 doi: 10.1021/ar00021a001 – volume-title: Terminal velocity measurements for micro tubular reactor year: 2014 ident: CIT0030 – ident: CIT0008 doi: 10.1063/1.4759050 – ident: CIT0009 doi: 10.1021/jp411257k – ident: CIT0001 doi: 10.1021/j100402a014 – ident: CIT0006 doi: 10.1021/jp903401h – ident: CIT0032 doi: 10.1098/rstl.1879.0067 – volume-title: Transport Phenomena year: 1960 ident: CIT0043 – ident: CIT0027 doi: 10.1016/0009-2509(53)80001-1 – ident: CIT0045 doi: 10.1063/1.555846 – start-page: 14 volume-title: Atomic and Molecular Beam Methods year: 1988 ident: CIT0013 – volume-title: Molecular Theory of Gases and Liquids year: 1954 ident: CIT0025 – ident: CIT0005 doi: 10.1021/jp2068073 – ident: CIT0018 doi: 10.1021/jp803622w – ident: CIT0019 doi: 10.1016/j.combustflame.2009.06.001 – volume-title: Fluid Mechanics year: 2011 ident: CIT0026 – volume-title: An Introduction to Fluid Mechanics year: 1967 ident: CIT0024 – ident: CIT0036 doi: 10.1002/cssc.201100648 – ident: CIT0028 doi: 10.1016/0009-2509(56)80014-6 – ident: CIT0039 doi: 10.1063/1.1995702 |
SSID | ssj0013219 |
Score | 2.4492445 |
Snippet | A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared... A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 447 |
SubjectTerms | biomass Chemical reactions computational fluid dynamics Decomposition Fluid dynamics fuels Heat transfer Mass spectrometry micro-reactor Reactors Spectrum analysis thermal decomposition |
Title | The properties of a micro-reactor for the study of the unimolecular decomposition of large molecules |
URI | https://www.tandfonline.com/doi/abs/10.1080/0144235X.2014.967951 https://www.proquest.com/docview/1656358374 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc5NBeiq5o2rTgobeAgSUuEo9BmsAo0gQFZFTohdBCAikcJ3BsoO2P9fc6I1IbHKTLRdBCyTbneTgcPb4h5L0VTolCThkAJmGwF7MiLmPmHHd1Udmobij_n87VbC4-5jKfTH4NWEubdXlY_bxzXcn_WBXOgV1xlew_WLZ7KJyAfbAvbMHCsP1rG99gNn2Fsqh-qeMVMuwYhIKYje9IhLetdjQebJZgoFAV96C2yCoP1C1ssUBu-EFoEBiG33q-e58-DEKmDQ-9tXbV1o_reD0bn2H9fNmema_QuzYO5hKrkSx-9K-DLlZXocyxJy71SdiGe-8jfkxmhwUUIV0RiYb41k9us63KIQP6kk9wChZzmfvxyTtlrhSTOsqHXtvLZwR0ioELFl7Bc2toCFxKeD48_juS-sShVokOercjJe7zC3M6Pzsz2Umeja_6kR9mYVKjtNsDshvD_AQc7O7R7MPXL4MXWE1Nme7ntKs2Udb9jq8wiopGmrlbMUIT-GRPyOMwY6FHHn5PycQun5GHx62hn5MaYEh7GNJrRws6giGFD6KAPNrAEBvgwRCGdARDbNHAkHYwfEHmpyfZ8YyF4h2sgin7msmoLAQv-LQCJzHVlXA6hamrKp0qtZWpTetESFcWU4jQC-WUtELqOJF1VFexKvhLsrO8XtpXhEYFt5HVVYliWamOUgujDrc2SWup6lLuEd52nqmCsj0WWFmYqBXA9V2eG-xy47t8j7Durhuv7PKH9unQLmbdINl5EBt-_637rQ1NcB-3BmWvuEx5Il7ff_kNedT_kfbJznq1sW8hEl6X7wLqfgNQMrN- |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3ohCAR_g6CXxK8mBAypUW9ruqZX2ZuzYvlC2VTerqvwr_gq_iJnEQS0IkJB64JYotuPHjD1jf_4G4GVUySinC44CU3F8EtwJL3hKMgXXxjL0kP-DmZkeqQ9zPV-Dr-NdGIJVkg-dBqKIfq4m5abN6BES95q8ACH1nJBZatKYCs2EjKvcixfn6LUt3-y-wyF-JcTO-8PtKc-BBXiL7kTHdemdkk4WLTagaFqV0PNWlfHJ-CbqOtahUjp5V6D14EwyOirdiEqHMrTCOInl3oCbGv9MqiWL2aWDiz6WCNWQUxXH23q_qfWV1fAKV-ova0O_4O3cgW9jVw04l0-TVecn7ZefWCT_q768C7ez-c3eDvpyD9bi4j5sbI9R7x5AQL1hp3RCcUZUs-wkMcc-E2qRo3lNJxwMe4-h2cx6Zl5KQC-rBQp9jjTMQiSkfobDUYpjwtuznCAuH8LRtTTyEawvThbxMbDSyVjGpvXE_FQ3ZR1xCpUxVnXQJni9CXKUCNtmmnaKFnJsy5HNNY-YpRGzw4htAv-R63SgKflL-vqysNmu3x5KQywXK_-cdWsUTJvnu6UlDiepa1mpJ_9e8gvYmB4e7Nv93dneU7hFX3rYpNiC9e5sFZ-h-df5573CMfh43VL5HTK9XaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_hGFAj7A0UvivyQHDqhl1VJYcaDS3owd25eW7aqbFYKn4lV4I2YSB7UgQELqgVuijCPHM2PPxJ-_AXgaVTLK6YKjwVQcrwR3wguekkzBtbEMPeT_7czsHarXcz3fgK_jWRiCVVIOnQaiiH6uJudehjQi4p5TEiCknhMwS00aU2GUkGGVB_HzJ0zaVi_2d1HDz4SYvnq_s8dzXQHeYjbRcV16p6STRYv9L5pWJUy8VWV8Mr6Juo51qJRO3hUYPDiTjI5KN6LSoQytME7iey_BZUPnOunQSDE7s2_RlxKhHnLq4nhY7ze9PrcYnqNK_WVp6Ne76Q34No7UAHM5mqw7P2m__EQi-T8N5U24noNv9nLwlluwERe34erOWPPuDgT0Grak_YlTIpplJ4k59pEwixyDa9rfYDh4DINm1vPykgDdrBdo8rnOMAuRcPoZDEcSx4S2Z1kgru7C4YV85D3YXJws4n1gpZOxjE3rifepbso64gQqY6zqoE3wegvkaBC2zSTtVCvk2JYjl2vWmCWN2UFjW8B_tFoOJCV_ka_P2prt-p9DaajkYuWfm26PdmnzbLeyxOAkdS0r9eDf3_wErrzbndo3-7ODh3CNHvSYSbENm93pOj7C2K_zj3t3Y_Dhoo3yO2yPXEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+properties+of+a+micro-reactor+for+the+study+of+the+unimolecular+decomposition+of+large+molecules&rft.jtitle=International+reviews+in+physical+chemistry&rft.au=Guan%2C+Qi&rft.au=Urness%2C+Kimberly+N&rft.au=Ormond%2C+Thomas+K&rft.au=David%2C+Donald+E&rft.date=2014-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0144-235X&rft.eissn=1366-591X&rft.volume=33&rft.issue=4&rft.spage=447&rft_id=info:doi/10.1080%2F0144235x.2014.967951&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3597594451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-235X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-235X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-235X&client=summon |