The properties of a micro-reactor for the study of the unimolecular decomposition of large molecules

A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared spectroscopy diagnostics is described. Short residence time flow reactors (roughly ≤ 100 μs) combined with suitable diagnostic tools have th...

Full description

Saved in:
Bibliographic Details
Published inInternational reviews in physical chemistry Vol. 33; no. 4; pp. 447 - 487
Main Authors Guan, Qi, Urness, Kimberly N., Ormond, Thomas K., David, Donald E., Barney Ellison, G., Daily, John W.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.10.2014
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared spectroscopy diagnostics is described. Short residence time flow reactors (roughly ≤ 100 μs) combined with suitable diagnostic tools have the potential to allow observation of unimolecular decomposition processes with minimum interference from secondary reactions. However, achieving the short residence times desired requires very small micro-reactors that are difficult to characterise experimentally because of their size. In this article the benefits of using these micro-reactors are presented along with some details of the systems employed. This is followed by some general flow considerations and then some simple analyses to illustrate particular features of the flow. Finally, computational fluid dynamics simulations are used to explore the flow and chemical behaviour of the reactors in detail. Some findings include: (1) The reactor operates in the laminar domain. (2) Heating and large pressure differences across the reactor result in a compressible flow that chokes (meaning the velocity reaches the sonic condition) at the reactor exit. (3) When helium is the carrier gas, under some circumstances there is slip at the boundaries near the downstream end of the reactor that reduces the pressure drop and heat transfer rate; this effect must be accounted for in the simulations. (4) Because the initial reactant concentration is held to less than 0.1%, secondary reactions are minimised. (5) Although the fluid dynamical residence time from entrance to exit ranges from 25 to 150 μs, in practice the period over which reactions take place is much shorter. In essence, there is a 'sweet spot' within the reactor where most reactions take place. In summary, the micro-reactor, which has been used for many years to generate radicals or study unimolecular decomposition chemical mechanisms, can be used to extract kinetic information by comparing simulations and measurements of reactant and product concentrations at the reactor exit.
AbstractList A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared spectroscopy diagnostics is described. Short residence time flow reactors (roughly ≤ 100 μs) combined with suitable diagnostic tools have the potential to allow observation of unimolecular decomposition processes with minimum interference from secondary reactions. However, achieving the short residence times desired requires very small micro-reactors that are difficult to characterise experimentally because of their size. In this article the benefits of using these micro-reactors are presented along with some details of the systems employed. This is followed by some general flow considerations and then some simple analyses to illustrate particular features of the flow. Finally, computational fluid dynamics simulations are used to explore the flow and chemical behaviour of the reactors in detail. Some findings include: (1) The reactor operates in the laminar domain. (2) Heating and large pressure differences across the reactor result in a compressible flow that chokes (meaning the velocity reaches the sonic condition) at the reactor exit. (3) When helium is the carrier gas, under some circumstances there is slip at the boundaries near the downstream end of the reactor that reduces the pressure drop and heat transfer rate; this effect must be accounted for in the simulations. (4) Because the initial reactant concentration is held to less than 0.1%, secondary reactions are minimised. (5) Although the fluid dynamical residence time from entrance to exit ranges from 25 to 150 μs, in practice the period over which reactions take place is much shorter. In essence, there is a 'sweet spot' within the reactor where most reactions take place. In summary, the micro-reactor, which has been used for many years to generate radicals or study unimolecular decomposition chemical mechanisms, can be used to extract kinetic information by comparing simulations and measurements of reactant and product concentrations at the reactor exit.
A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared spectroscopy diagnostics is described. Short residence time flow reactors (roughly ≤ 100 ...s) combined with suitable diagnostic tools have the potential to allow observation of unimolecular decomposition processes with minimum interference from secondary reactions. However, achieving the short residence times desired requires very small micro-reactors that are difficult to characterise experimentally because of their size. In this article the benefits of using these micro-reactors are presented along with some details of the systems employed. This is followed by some general flow considerations and then some simple analyses to illustrate particular features of the flow. Finally, computational fluid dynamics simulations are used to explore the flow and chemical behaviour of the reactors in detail. Some findings include: (1) The reactor operates in the laminar domain. (2) Heating and large pressure differences across the reactor result in a compressible flow that chokes (meaning the velocity reaches the sonic condition) at the reactor exit. (3) When helium is the carrier gas, under some circumstances there is slip at the boundaries near the downstream end of the reactor that reduces the pressure drop and heat transfer rate; this effect must be accounted for in the simulations. (4) Because the initial reactant concentration is held to less than 0.1%, secondary reactions are minimised. (5) Although the fluid dynamical residence time from entrance to exit ranges from 25 to 150 ...s, in practice the period over which reactions take place is much shorter. In essence, there is a 'sweet spot' within the reactor where most reactions take place. In summary, the micro-reactor, which has been used for many years to generate radicals or study unimolecular decomposition chemical mechanisms, can be used to extract kinetic information by comparing simulations and measurements of reactant and product concentrations at the reactor exit. (ProQuest: ... denotes formulae/symbols omitted.)
Author Guan, Qi
Ormond, Thomas K.
David, Donald E.
Barney Ellison, G.
Daily, John W.
Urness, Kimberly N.
Author_xml – sequence: 1
  givenname: Qi
  surname: Guan
  fullname: Guan, Qi
  organization: Department of Mechanical Engineering, University of Colorado at Boulder
– sequence: 2
  givenname: Kimberly N.
  surname: Urness
  fullname: Urness, Kimberly N.
  organization: Department of Mechanical Engineering, University of Colorado at Boulder
– sequence: 3
  givenname: Thomas K.
  surname: Ormond
  fullname: Ormond, Thomas K.
  organization: Department of Chemistry and Biochemistry, University of Colorado at Boulder
– sequence: 4
  givenname: Donald E.
  surname: David
  fullname: David, Donald E.
  organization: Department of Chemistry and Biochemistry, University of Colorado at Boulder
– sequence: 5
  givenname: G.
  surname: Barney Ellison
  fullname: Barney Ellison, G.
  organization: Department of Chemistry and Biochemistry, University of Colorado at Boulder
– sequence: 6
  givenname: John W.
  surname: Daily
  fullname: Daily, John W.
  email: john.daily@colorado.edu
  organization: Department of Mechanical Engineering, University of Colorado at Boulder
BookMark eNqFkE1LwzAYx4NMcJt-Aw8Fz51J89LGi8jwDQZeJuwW0jTRjLaZSYrs25tSvXjQQ8gLv__z5PktwKx3vQbgEsEVghW8hoiQAtPdqkinFWclp-gEzBFmLKcc7WZgPiL5yJyBRQh7CBEuEJ-DZvuus4N3B-2j1SFzJpNZZ5V3uddSReczk1ZMVIhDcxyB8TL0tnOtVkMrfdZo5bqDCzZa149EenzT2Tegwzk4NbIN-uJ7X4LXh_vt-infvDw-r-82uSIQxZyiWhIsMVRaKcgVMbwqSclqw2quaaWrpiTU1BJiXkhmGNWE8qKkDWpUwSRegqupbhroY9Ahir0bfJ9aCsQow7TCJUnUzUSlIUPw2ghloxy_Hr20rUBQjFbFj1UxWhWT1RQmv8IHbzvpj__FbqeY7ZPOTn463zYiymPrvPGyVzYI_GeFL-7wka8
CitedBy_id crossref_primary_10_1016_j_jaap_2021_105410
crossref_primary_10_1002_ange_202110929
crossref_primary_10_1002_kin_21397
crossref_primary_10_1177_14690667221142699
crossref_primary_10_1063_1_4906156
crossref_primary_10_1021_acs_jpca_2c00766
crossref_primary_10_1021_acs_jpca_5b04435
crossref_primary_10_1016_j_combustflame_2020_08_040
crossref_primary_10_1016_j_ijms_2020_116476
crossref_primary_10_1021_acs_jpca_7b07582
crossref_primary_10_1021_acs_jpca_6b05699
crossref_primary_10_1038_s41929_018_0071_z
crossref_primary_10_1039_C9CP03519B
crossref_primary_10_1016_j_proci_2020_06_139
crossref_primary_10_1039_D1CP00720C
crossref_primary_10_3390_separations8050070
crossref_primary_10_1016_j_proci_2020_06_375
crossref_primary_10_1080_00268976_2021_1961907
crossref_primary_10_1021_acs_jpca_4c06549
crossref_primary_10_1021_acs_jpca_9b08102
crossref_primary_10_1002_cphc_202000477
crossref_primary_10_1039_D1CP05183K
crossref_primary_10_3389_fchem_2019_00326
crossref_primary_10_1016_j_proci_2016_06_104
crossref_primary_10_1002_ange_201607509
crossref_primary_10_1016_j_combustflame_2022_112547
crossref_primary_10_1039_C5CP02960K
crossref_primary_10_1016_j_jaap_2017_02_020
crossref_primary_10_1177_14690667241255767
crossref_primary_10_1016_j_cplett_2017_05_040
crossref_primary_10_1021_acs_jpca_1c00724
crossref_primary_10_1063_1_4954895
crossref_primary_10_1021_acs_energyfuels_2c01455
crossref_primary_10_1039_C5CP05346C
crossref_primary_10_1039_D1CP05206C
crossref_primary_10_1002_chem_201800852
crossref_primary_10_1021_acs_jpca_8b06837
crossref_primary_10_1021_acs_jpca_7b07359
crossref_primary_10_1021_acs_jpca_7b02629
crossref_primary_10_1021_acs_jpca_8b03201
crossref_primary_10_1002_kin_21173
crossref_primary_10_1021_acs_jpca_8b05102
crossref_primary_10_1021_acs_jpca_2c09081
crossref_primary_10_1021_jz501758p
crossref_primary_10_1002_anie_202110929
crossref_primary_10_1002_chem_201700402
crossref_primary_10_1021_acs_energyfuels_1c01712
crossref_primary_10_1039_C8CP05830J
crossref_primary_10_1038_s41550_018_0585_y
crossref_primary_10_1002_ange_202305881
crossref_primary_10_1039_C9CP01935A
crossref_primary_10_1016_j_jaap_2016_11_009
crossref_primary_10_1021_jacs_2c12045
crossref_primary_10_1039_D1CP00459J
crossref_primary_10_1021_acs_jpca_7b02639
crossref_primary_10_1021_acs_jpclett_4c00343
crossref_primary_10_1021_acs_jpca_6b11472
crossref_primary_10_1002_anie_201411987
crossref_primary_10_1002_chem_201702376
crossref_primary_10_1021_acs_jpca_1c00149
crossref_primary_10_1063_1_4939459
crossref_primary_10_1021_acs_analchem_4c04997
crossref_primary_10_1021_acs_jpca_0c01134
crossref_primary_10_1007_s10311_023_01661_8
crossref_primary_10_1021_acs_jpca_2c01228
crossref_primary_10_1021_acs_jpca_5b04565
crossref_primary_10_1021_acs_jpca_6b08750
crossref_primary_10_1002_cphc_201801154
crossref_primary_10_1002_anie_202305881
crossref_primary_10_1038_s41467_019_09224_8
crossref_primary_10_1039_D1CP01565F
crossref_primary_10_1021_acs_jpca_2c06670
crossref_primary_10_1016_j_cplett_2025_142052
crossref_primary_10_1021_acs_chemrev_6b00738
crossref_primary_10_3103_S106833561810007X
crossref_primary_10_1021_acs_jpca_4c05532
crossref_primary_10_1021_acs_jpclett_5b00517
crossref_primary_10_1021_acs_jpca_5b06779
crossref_primary_10_1021_acs_jpclett_9b03836
crossref_primary_10_1002_ange_201411987
crossref_primary_10_1002_anie_201607509
crossref_primary_10_1021_acs_jpca_3c06019
crossref_primary_10_1002_jms_4868
crossref_primary_10_1002_jms_4901
crossref_primary_10_1039_D4CP02798A
crossref_primary_10_1021_acs_jpca_6b11817
crossref_primary_10_1039_D0CP03846F
crossref_primary_10_1016_j_rser_2021_111262
crossref_primary_10_1016_j_jms_2024_111981
crossref_primary_10_1021_jp511390f
crossref_primary_10_1016_j_proci_2024_105623
crossref_primary_10_1002_cphc_202300359
crossref_primary_10_1021_jacs_7b06714
crossref_primary_10_1021_acs_jpca_8b09640
crossref_primary_10_1039_D1CP04984D
crossref_primary_10_1021_jacs_0c11677
crossref_primary_10_1021_acs_jpca_6b00652
crossref_primary_10_1039_C5CP02964C
crossref_primary_10_1039_C9CP04493K
crossref_primary_10_1021_jasms_3c00334
crossref_primary_10_1021_acs_jpca_5b10743
crossref_primary_10_1021_acs_jpca_7b02821
crossref_primary_10_1021_acs_jpca_5b10984
crossref_primary_10_1107_S1600577516005816
crossref_primary_10_1002_hlca_202400197
crossref_primary_10_1021_acs_jpca_5b01032
crossref_primary_10_1039_D2CP00400C
crossref_primary_10_1002_kin_21532
crossref_primary_10_1002_chem_202001388
crossref_primary_10_1039_C5CP05354D
crossref_primary_10_1016_j_jms_2023_111847
crossref_primary_10_1002_admi_202200192
crossref_primary_10_1126_sciadv_adi5060
crossref_primary_10_1021_jp509324w
crossref_primary_10_1016_j_cplett_2015_08_055
crossref_primary_10_1039_C8CP02626B
crossref_primary_10_1039_D3CP04064J
crossref_primary_10_1016_j_ijms_2022_116933
crossref_primary_10_1016_j_jcat_2019_12_040
crossref_primary_10_1039_C7CP01571B
crossref_primary_10_1021_acs_jpca_1c07661
crossref_primary_10_1039_C7RA03990E
crossref_primary_10_1039_C9CY02587A
crossref_primary_10_1021_acs_jpclett_4c02445
crossref_primary_10_1557_s43578_022_00566_6
crossref_primary_10_1080_00268976_2015_1042936
crossref_primary_10_1126_sciadv_abf0360
crossref_primary_10_1039_C5CP02243F
crossref_primary_10_1039_D4CP02129K
crossref_primary_10_1016_j_proci_2022_09_012
crossref_primary_10_1002_chem_202401750
crossref_primary_10_1016_j_proci_2020_07_060
Cites_doi 10.1002/0471461296
10.1063/1.1145641
10.1016/j.combustflame.2011.09.005
10.1063/1.4821600
10.1063/1.1574397
10.1002/(ISSN)1097-4601
10.1021/jp102046p
10.1021/jp102996d
10.1063/1.3604005
10.1093/oso/9780198561958.001.0001
10.1063/1.452303
10.1021/jp1076356
10.1021/j100300a019
10.1002/kin.2013.45.issue-8
10.1021/ar00021a001
10.1063/1.4759050
10.1021/jp411257k
10.1021/j100402a014
10.1021/jp903401h
10.1098/rstl.1879.0067
10.1016/0009-2509(53)80001-1
10.1063/1.555846
10.1021/jp2068073
10.1021/jp803622w
10.1016/j.combustflame.2009.06.001
10.1002/cssc.201100648
10.1016/0009-2509(56)80014-6
10.1063/1.1995702
ContentType Journal Article
Copyright 2014 Taylor & Francis 2014
Copyright Taylor & Francis Ltd. 2014
Copyright_xml – notice: 2014 Taylor & Francis 2014
– notice: Copyright Taylor & Francis Ltd. 2014
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1080/0144235X.2014.967951
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1366-591X
EndPage 487
ExternalDocumentID 3597594451
10_1080_0144235X_2014_967951
967951
Genre Review
Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
30N
4.4
53G
5GY
5VS
AAENE
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NW0
O9-
P2P
PQQKQ
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TCY
TDBHL
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7U5
8FD
L7M
TASJS
ID FETCH-LOGICAL-c401t-51ba43a30cecc09c4f987476bf6b9e58e8d745fba0392a6f65e459275d1dc26a3
ISSN 0144-235X
IngestDate Wed Aug 13 06:59:18 EDT 2025
Tue Jul 01 01:55:41 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Wed Dec 25 08:58:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-51ba43a30cecc09c4f987476bf6b9e58e8d745fba0392a6f65e459275d1dc26a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1656358374
PQPubID 53227
PageCount 41
ParticipantIDs crossref_citationtrail_10_1080_0144235X_2014_967951
crossref_primary_10_1080_0144235X_2014_967951
informaworld_taylorfrancis_310_1080_0144235X_2014_967951
proquest_journals_1656358374
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-02
PublicationDateYYYYMMDD 2014-10-02
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International reviews in physical chemistry
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0032
Bird G. (CIT0022) 1994
CIT0034
Batchelor G. (CIT0024) 1967
CIT0033
White F.M. (CIT0026) 2011
Turns S.R. (CIT0042) 1996
Anderson J.B. (CIT0012) 1966
Navier C. (CIT0023) 1822; 6
CIT0014
CIT0036
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0019
Urness K. (CIT0011)
CIT0040
CIT0020
CIT0001
Miller D. (CIT0013) 1988
CIT0045
CIT0044
Hirschfelder J. (CIT0025) 1954
Troy T. (CIT0030) 2014
Bird R. (CIT0043) 1960
Stokes S.G.G. (CIT0031) 1850; 9
Williams F. (CIT0041) 1985
CIT0003
Schaaf S.A. (CIT0021) 1961
CIT0002
CIT0005
CIT0027
CIT0004
CIT0007
Levenspiel O. (CIT0029) 1972
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0015
– volume-title: Chemical Reaction Engineering
  year: 1972
  ident: CIT0029
– volume: 9
  start-page: 8
  year: 1850
  ident: CIT0031
  publication-title: Trans. Cambridge Philos. Soc
– ident: CIT0040
  doi: 10.1002/0471461296
– ident: CIT0016
  doi: 10.1063/1.1145641
– volume-title: An Introduction to Combustion: Concepts and Applications
  year: 1996
  ident: CIT0042
– ident: CIT0020
  doi: 10.1016/j.combustflame.2011.09.005
– ident: CIT0044
– ident: CIT0010
  doi: 10.1063/1.4821600
– volume-title: Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems
  year: 1985
  ident: CIT0041
– ident: CIT0011
  publication-title: J. Phys. Chem. A
– volume-title: Advances in Chemical Physics: Chap. 8 Supersonic Nozzle Beams
  year: 1966
  ident: CIT0012
– ident: CIT0017
  doi: 10.1063/1.1574397
– ident: CIT0034
  doi: 10.1002/(ISSN)1097-4601
– ident: CIT0004
  doi: 10.1021/jp102046p
– ident: CIT0038
  doi: 10.1021/jp102996d
– ident: CIT0007
  doi: 10.1063/1.3604005
– volume-title: Molecular Gas Dynamics and the Direct Simulation of Gas Flows
  year: 1994
  ident: CIT0022
  doi: 10.1093/oso/9780198561958.001.0001
– ident: CIT0002
  doi: 10.1063/1.452303
– ident: CIT0003
  doi: 10.1021/jp1076356
– ident: CIT0033
  doi: 10.1021/j100300a019
– volume-title: Flow of Rarefied Gases
  year: 1961
  ident: CIT0021
– volume: 6
  start-page: 389
  year: 1822
  ident: CIT0023
  publication-title: Mem. Acad. Sci. Inst. France
– ident: CIT0037
  doi: 10.1002/kin.2013.45.issue-8
– ident: CIT0014
  doi: 10.1021/ar00021a001
– volume-title: Terminal velocity measurements for micro tubular reactor
  year: 2014
  ident: CIT0030
– ident: CIT0008
  doi: 10.1063/1.4759050
– ident: CIT0009
  doi: 10.1021/jp411257k
– ident: CIT0001
  doi: 10.1021/j100402a014
– ident: CIT0006
  doi: 10.1021/jp903401h
– ident: CIT0032
  doi: 10.1098/rstl.1879.0067
– volume-title: Transport Phenomena
  year: 1960
  ident: CIT0043
– ident: CIT0027
  doi: 10.1016/0009-2509(53)80001-1
– ident: CIT0045
  doi: 10.1063/1.555846
– start-page: 14
  volume-title: Atomic and Molecular Beam Methods
  year: 1988
  ident: CIT0013
– volume-title: Molecular Theory of Gases and Liquids
  year: 1954
  ident: CIT0025
– ident: CIT0005
  doi: 10.1021/jp2068073
– ident: CIT0018
  doi: 10.1021/jp803622w
– ident: CIT0019
  doi: 10.1016/j.combustflame.2009.06.001
– volume-title: Fluid Mechanics
  year: 2011
  ident: CIT0026
– volume-title: An Introduction to Fluid Mechanics
  year: 1967
  ident: CIT0024
– ident: CIT0036
  doi: 10.1002/cssc.201100648
– ident: CIT0028
  doi: 10.1016/0009-2509(56)80014-6
– ident: CIT0039
  doi: 10.1063/1.1995702
SSID ssj0013219
Score 2.4492445
Snippet A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared...
A micro-reactor system (approximately 0.5-1 mm inner diameter by 2-3 cm in length) coupled with photoionization mass spectrometry and matrix isolation/infrared...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 447
SubjectTerms biomass
Chemical reactions
computational fluid dynamics
Decomposition
Fluid dynamics
fuels
Heat transfer
Mass spectrometry
micro-reactor
Reactors
Spectrum analysis
thermal decomposition
Title The properties of a micro-reactor for the study of the unimolecular decomposition of large molecules
URI https://www.tandfonline.com/doi/abs/10.1080/0144235X.2014.967951
https://www.proquest.com/docview/1656358374
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc5NBeiq5o2rTgobeAgSUuEo9BmsAo0gQFZFTohdBCAikcJ3BsoO2P9fc6I1IbHKTLRdBCyTbneTgcPb4h5L0VTolCThkAJmGwF7MiLmPmHHd1Udmobij_n87VbC4-5jKfTH4NWEubdXlY_bxzXcn_WBXOgV1xlew_WLZ7KJyAfbAvbMHCsP1rG99gNn2Fsqh-qeMVMuwYhIKYje9IhLetdjQebJZgoFAV96C2yCoP1C1ssUBu-EFoEBiG33q-e58-DEKmDQ-9tXbV1o_reD0bn2H9fNmema_QuzYO5hKrkSx-9K-DLlZXocyxJy71SdiGe-8jfkxmhwUUIV0RiYb41k9us63KIQP6kk9wChZzmfvxyTtlrhSTOsqHXtvLZwR0ioELFl7Bc2toCFxKeD48_juS-sShVokOercjJe7zC3M6Pzsz2Umeja_6kR9mYVKjtNsDshvD_AQc7O7R7MPXL4MXWE1Nme7ntKs2Udb9jq8wiopGmrlbMUIT-GRPyOMwY6FHHn5PycQun5GHx62hn5MaYEh7GNJrRws6giGFD6KAPNrAEBvgwRCGdARDbNHAkHYwfEHmpyfZ8YyF4h2sgin7msmoLAQv-LQCJzHVlXA6hamrKp0qtZWpTetESFcWU4jQC-WUtELqOJF1VFexKvhLsrO8XtpXhEYFt5HVVYliWamOUgujDrc2SWup6lLuEd52nqmCsj0WWFmYqBXA9V2eG-xy47t8j7Durhuv7PKH9unQLmbdINl5EBt-_637rQ1NcB-3BmWvuEx5Il7ff_kNedT_kfbJznq1sW8hEl6X7wLqfgNQMrN-
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3ohCAR_g6CXxK8mBAypUW9ruqZX2ZuzYvlC2VTerqvwr_gq_iJnEQS0IkJB64JYotuPHjD1jf_4G4GVUySinC44CU3F8EtwJL3hKMgXXxjL0kP-DmZkeqQ9zPV-Dr-NdGIJVkg-dBqKIfq4m5abN6BES95q8ACH1nJBZatKYCs2EjKvcixfn6LUt3-y-wyF-JcTO-8PtKc-BBXiL7kTHdemdkk4WLTagaFqV0PNWlfHJ-CbqOtahUjp5V6D14EwyOirdiEqHMrTCOInl3oCbGv9MqiWL2aWDiz6WCNWQUxXH23q_qfWV1fAKV-ova0O_4O3cgW9jVw04l0-TVecn7ZefWCT_q768C7ez-c3eDvpyD9bi4j5sbI9R7x5AQL1hp3RCcUZUs-wkMcc-E2qRo3lNJxwMe4-h2cx6Zl5KQC-rBQp9jjTMQiSkfobDUYpjwtuznCAuH8LRtTTyEawvThbxMbDSyVjGpvXE_FQ3ZR1xCpUxVnXQJni9CXKUCNtmmnaKFnJsy5HNNY-YpRGzw4htAv-R63SgKflL-vqysNmu3x5KQywXK_-cdWsUTJvnu6UlDiepa1mpJ_9e8gvYmB4e7Nv93dneU7hFX3rYpNiC9e5sFZ-h-df5573CMfh43VL5HTK9XaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_hGFAj7A0UvivyQHDqhl1VJYcaDS3owd25eW7aqbFYKn4lV4I2YSB7UgQELqgVuijCPHM2PPxJ-_AXgaVTLK6YKjwVQcrwR3wguekkzBtbEMPeT_7czsHarXcz3fgK_jWRiCVVIOnQaiiH6uJudehjQi4p5TEiCknhMwS00aU2GUkGGVB_HzJ0zaVi_2d1HDz4SYvnq_s8dzXQHeYjbRcV16p6STRYv9L5pWJUy8VWV8Mr6Juo51qJRO3hUYPDiTjI5KN6LSoQytME7iey_BZUPnOunQSDE7s2_RlxKhHnLq4nhY7ze9PrcYnqNK_WVp6Ne76Q34No7UAHM5mqw7P2m__EQi-T8N5U24noNv9nLwlluwERe34erOWPPuDgT0Grak_YlTIpplJ4k59pEwixyDa9rfYDh4DINm1vPykgDdrBdo8rnOMAuRcPoZDEcSx4S2Z1kgru7C4YV85D3YXJws4n1gpZOxjE3rifepbso64gQqY6zqoE3wegvkaBC2zSTtVCvk2JYjl2vWmCWN2UFjW8B_tFoOJCV_ka_P2prt-p9DaajkYuWfm26PdmnzbLeyxOAkdS0r9eDf3_wErrzbndo3-7ODh3CNHvSYSbENm93pOj7C2K_zj3t3Y_Dhoo3yO2yPXEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+properties+of+a+micro-reactor+for+the+study+of+the+unimolecular+decomposition+of+large+molecules&rft.jtitle=International+reviews+in+physical+chemistry&rft.au=Guan%2C+Qi&rft.au=Urness%2C+Kimberly+N&rft.au=Ormond%2C+Thomas+K&rft.au=David%2C+Donald+E&rft.date=2014-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0144-235X&rft.eissn=1366-591X&rft.volume=33&rft.issue=4&rft.spage=447&rft_id=info:doi/10.1080%2F0144235x.2014.967951&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3597594451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-235X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-235X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-235X&client=summon