Cavitation to fracture transition in a soft solid
When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a...
Saved in:
Published in | Soft matter Vol. 13; no. 37; pp. 6372 - 6376 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
27.09.2017
|
Online Access | Get full text |
ISSN | 1744-683X 1744-6848 1744-6848 |
DOI | 10.1039/c7sm01479a |
Cover
Abstract | When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is usually referred to as cavitation instability in soft solids. Several recent experiments have shown that fractures may occur in the material when the hydrostatic tension is far below the critical value. In this article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer subject to hydrostatic tension. We compute the energy release rate associated with the extension of the ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the pressure-control mode, the energy release rate increases with the increase of the crack size as well as the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy release rate increases with the increase of the crack size when the crack is short; the energy release rate maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture transition in soft solids subject to different loading conditions.
When large hydrostatic tension is applied onto a soft solid, crack extension can be induced during the cavitating process. |
---|---|
AbstractList | When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is usually referred to as cavitation instability in soft solids. Several recent experiments have shown that fractures may occur in the material when the hydrostatic tension is far below the critical value. In this article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer subject to hydrostatic tension. We compute the energy release rate associated with the extension of the ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the pressure-control mode, the energy release rate increases with the increase of the crack size as well as the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy release rate increases with the increase of the crack size when the crack is short; the energy release rate maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture transition in soft solids subject to different loading conditions.
When large hydrostatic tension is applied onto a soft solid, crack extension can be induced during the cavitating process. When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is usually referred to as cavitation instability in soft solids. Several recent experiments have shown that fractures may occur in the material when the hydrostatic tension is far below the critical value. In this article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer subject to hydrostatic tension. We compute the energy release rate associated with the extension of the ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the pressure-control mode, the energy release rate increases with the increase of the crack size as well as the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy release rate increases with the increase of the crack size when the crack is short; the energy release rate maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture transition in soft solids subject to different loading conditions. When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is usually referred to as cavitation instability in soft solids. Several recent experiments have shown that fractures may occur in the material when the hydrostatic tension is far below the critical value. In this article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer subject to hydrostatic tension. We compute the energy release rate associated with the extension of the ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the pressure-control mode, the energy release rate increases with the increase of the crack size as well as the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy release rate increases with the increase of the crack size when the crack is short; the energy release rate maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture transition in soft solids subject to different loading conditions.When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is usually referred to as cavitation instability in soft solids. Several recent experiments have shown that fractures may occur in the material when the hydrostatic tension is far below the critical value. In this article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer subject to hydrostatic tension. We compute the energy release rate associated with the extension of the ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the pressure-control mode, the energy release rate increases with the increase of the crack size as well as the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy release rate increases with the increase of the crack size when the crack is short; the energy release rate maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture transition in soft solids subject to different loading conditions. |
Author | Cai, Shengqiang Kang, Jingtian Wang, Changguo |
AuthorAffiliation | Harbin Institute of Technology Department of Mechanical and Aerospace Engineering University of California Center for Composite Material and Structure |
AuthorAffiliation_xml | – name: University of California – name: Center for Composite Material and Structure – name: Harbin Institute of Technology – name: Department of Mechanical and Aerospace Engineering |
Author_xml | – sequence: 1 givenname: Jingtian surname: Kang fullname: Kang, Jingtian – sequence: 2 givenname: Changguo surname: Wang fullname: Wang, Changguo – sequence: 3 givenname: Shengqiang surname: Cai fullname: Cai, Shengqiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28868551$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UlLxDAUB_AgI44zevGu1JsI1bwk3Y5DcYMRDyp4C2kWiHQZk1Tw29tZBREvSUh-78H_ZYJGbddqhE4AXwGmxbXMfIOBZYXYQ4eQMRanOctHuzN9G6OJ9-8Y05xBeoDGJM_TPEngEEEpPm0QwXZtFLrIOCFD73QUnGi9XV3bNhKR70wYltqqI7RvRO318Wafotfbm5fyPp4_3T2Us3ksGYYQs1RVmKicsCQDiomROCWgUiEFVEYYBYYN70UCmhhCMq00VCzNQJuM5bSiU3Sx7rtw3UevfeCN9VLXtWh113sOBU3YMjYe6NmG9lWjFV842wj3xbcxB4DXQLrOe6cNl5vQQ05bc8B8OUleZs-Pq0nOhpLLXyXbrn_i8zV2Xu7cz7fwhTKDOf3P0G-XEods |
CitedBy_id | crossref_primary_10_1016_j_ijnonlinmec_2022_104076 crossref_primary_10_2139_ssrn_3962085 crossref_primary_10_1039_C8SM01560K crossref_primary_10_1039_C9SM01023H crossref_primary_10_1016_j_ijnonlinmec_2020_103562 crossref_primary_10_1039_C9SM00570F crossref_primary_10_1016_j_polymertesting_2019_106221 crossref_primary_10_1038_s41567_024_02504_1 crossref_primary_10_1016_j_eml_2021_101444 crossref_primary_10_1039_C8SM02142B crossref_primary_10_1039_D2SM00400C crossref_primary_10_1016_j_ijmecsci_2021_106730 crossref_primary_10_1039_D1SM00325A crossref_primary_10_1016_j_jmps_2022_105192 crossref_primary_10_1142_S1758825121500277 crossref_primary_10_1063_1_5009747 crossref_primary_10_1016_j_ijadhadh_2024_103867 crossref_primary_10_1007_s00417_021_05289_8 crossref_primary_10_1039_D4SM01203H crossref_primary_10_1016_j_engfracmech_2022_108653 crossref_primary_10_1039_C8SM01464G crossref_primary_10_1016_j_xphs_2020_10_008 crossref_primary_10_1016_j_ijmecsci_2020_105934 crossref_primary_10_1080_1539445X_2019_1655052 crossref_primary_10_1016_j_eml_2022_101673 crossref_primary_10_1016_j_jmbbm_2023_105901 crossref_primary_10_1039_D0SM00710B crossref_primary_10_1016_j_jmps_2023_105223 crossref_primary_10_1073_pnas_1920168117 crossref_primary_10_1016_j_bpj_2022_06_016 crossref_primary_10_1007_s10704_019_00380_y crossref_primary_10_1016_j_actbio_2022_02_017 crossref_primary_10_1126_sciadv_aaz0418 |
Cites_doi | 10.1063/1.3211917 10.1007/s10704-016-0176-9 10.1039/b617050a 10.1243/03093247V072132 10.1039/b925407b 10.1039/C5SM02055G 10.1002/polb.21968 10.1016/j.matdes.2013.06.058 10.1007/BF00184154 10.1016/j.jmbbm.2015.06.023 10.1016/S0167-6636(02)00174-6 10.5254/1.3538266 10.1098/rspa.1959.0016 10.1023/B:FRAC.0000026510.60747.3a 10.1007/BF01124691 10.1201/9781315370293 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1039/c7sm01479a |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1744-6848 |
EndPage | 6376 |
ExternalDocumentID | 28868551 10_1039_C7SM01479A c7sm01479a |
Genre | Journal Article |
GroupedDBID | -JG 0-7 1TJ 705 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE BSQNT C6K EE0 EF- GNO H~N J3I R7B RCNCU RPMJG RRC RSCEA SKA SLH VH6 0R~ 0UZ 123 4.4 53G 71~ AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACPRK ACRPL ADMRA ADNMO AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRAH AFRZK AGEGJ AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AVWKF AZFZN BBWZM BLAPV C1A CITATION CS3 EBS ECGLT EEHRC EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~9 J3G J3H KZ1 L-8 M4U N9A NDZJH O9- P2P R56 RAOCF RCLXC RNS XJT NPM OK1 7X8 |
ID | FETCH-LOGICAL-c401t-46db02d824571302fc0621d6aca1bfafd1f402d951e2f227ede1b4671ef7483b3 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Thu Jul 10 18:49:05 EDT 2025 Wed Feb 19 02:40:13 EST 2025 Tue Jul 01 03:13:08 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 Sun Jun 02 15:24:45 EDT 2019 Mon Jan 28 17:15:17 EST 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c401t-46db02d824571302fc0621d6aca1bfafd1f402d951e2f227ede1b4671ef7483b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6852-7680 |
PMID | 28868551 |
PQID | 1935401470 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | pubmed_primary_28868551 proquest_miscellaneous_1935401470 crossref_citationtrail_10_1039_C7SM01479A crossref_primary_10_1039_C7SM01479A rsc_primary_c7sm01479a |
ProviderPackageCode | J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH EE0 RSCEA AFVBQ C6K H~N 0-7 RPMJG 1TJ SKA -JG AGSTE EF- BSQNT ADSRN ABGFH 705 R7B AAEMU CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170927 |
PublicationDateYYYYMMDD | 2017-09-27 |
PublicationDate_xml | – month: 9 year: 2017 text: 20170927 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Soft matter |
PublicationTitleAlternate | Soft Matter |
PublicationYear | 2017 |
References | Zimberlin (C7SM01479A-(cit3)/*[position()=1]) 2007; 3 Yeoh (C7SM01479A-(cit15)/*[position()=1]) 2002; 34 Zimberlin (C7SM01479A-(cit18)/*[position()=1]) 2010; 48 Poulain (C7SM01479A-(cit6)/*[position()=1]) 2017; 205 Williams (C7SM01479A-(cit7)/*[position()=1]) 1965; 1 C7SM01479A-(cit12)/*[position()=1] Gent (C7SM01479A-(cit8)/*[position()=1]) 1991; 26 Lin (C7SM01479A-(cit9)/*[position()=1]) 2004; 126 Gent (C7SM01479A-(cit1)/*[position()=1]) 1959; 249 Zimberlin (C7SM01479A-(cit4)/*[position()=1]) 2010; 6 Gent (C7SM01479A-(cit11)/*[position()=1]) 1990; 63 Jansen (C7SM01479A-(cit5)/*[position()=1]) 2015; 50 Lindley (C7SM01479A-(cit14)/*[position()=1]) 1972; 7 Hutchens (C7SM01479A-(cit10)/*[position()=1]) 2016; 12 Anderson (C7SM01479A-(cit16)/*[position()=1]) 2017 Hamdi (C7SM01479A-(cit2)/*[position()=1]) 2014; 53 Lake (C7SM01479A-(cit13)/*[position()=1]) 1970 Hong (C7SM01479A-(cit17)/*[position()=1]) 2009; 95 |
References_xml | – issn: 1970 end-page: 47 publication-title: Int. Conf. Yeld, Deformation and Fracture of Polymers doi: Lake – issn: 2017 publication-title: Fracture mechanics: fundamentals and applications doi: Anderson – volume: 95 start-page: 111901 year: 2009 ident: C7SM01479A-(cit17)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3211917 – volume: 205 start-page: 1 year: 2017 ident: C7SM01479A-(cit6)/*[position()=1] publication-title: Int. J. Fract. doi: 10.1007/s10704-016-0176-9 – volume: 3 start-page: 763 year: 2007 ident: C7SM01479A-(cit3)/*[position()=1] publication-title: Soft Matter doi: 10.1039/b617050a – volume: 7 start-page: 132 year: 1972 ident: C7SM01479A-(cit14)/*[position()=1] publication-title: J. Strain Anal. doi: 10.1243/03093247V072132 – volume: 6 start-page: 3632 year: 2010 ident: C7SM01479A-(cit4)/*[position()=1] publication-title: Soft Matter doi: 10.1039/b925407b – ident: C7SM01479A-(cit12)/*[position()=1] – volume: 12 start-page: 2557 year: 2016 ident: C7SM01479A-(cit10)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C5SM02055G – volume: 48 start-page: 1423 year: 2010 ident: C7SM01479A-(cit18)/*[position()=1] publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.21968 – volume: 53 start-page: 497 year: 2014 ident: C7SM01479A-(cit2)/*[position()=1] publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.06.058 – volume: 1 start-page: 64 year: 1965 ident: C7SM01479A-(cit7)/*[position()=1] publication-title: Int. J. Fract. doi: 10.1007/BF00184154 – volume: 50 start-page: 299 year: 2015 ident: C7SM01479A-(cit5)/*[position()=1] publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.06.023 – volume: 34 start-page: 459 year: 2002 ident: C7SM01479A-(cit15)/*[position()=1] publication-title: Mech. Mater. doi: 10.1016/S0167-6636(02)00174-6 – volume: 63 start-page: 49 year: 1990 ident: C7SM01479A-(cit11)/*[position()=1] publication-title: Rubber Chem. Technol. doi: 10.5254/1.3538266 – volume: 249 start-page: 195 year: 1959 ident: C7SM01479A-(cit1)/*[position()=1] publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1959.0016 – volume: 126 start-page: 205 year: 2004 ident: C7SM01479A-(cit9)/*[position()=1] publication-title: Int. J. Fract. doi: 10.1023/B:FRAC.0000026510.60747.3a – volume: 26 start-page: 3392 year: 1991 ident: C7SM01479A-(cit8)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/BF01124691 – start-page: 47 volume-title: Int. Conf. Yeld, Deformation and Fracture of Polymers year: 1970 ident: C7SM01479A-(cit13)/*[position()=1] – volume-title: Fracture mechanics: fundamentals and applications year: 2017 ident: C7SM01479A-(cit16)/*[position()=1] doi: 10.1201/9781315370293 |
SSID | ssj0038416 |
Score | 2.3943129 |
Snippet | When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6372 |
Title | Cavitation to fracture transition in a soft solid |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28868551 https://www.proquest.com/docview/1935401470 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BKyQuiK3gbjKCC0KG2DOeGR-rqKgUyiWp6M2aNY3UOqVxOPTX82Y8XkpzaLlYyct45Lxv9Ba_DaEPOZfEGW0JSEiZEE5xInXOE7AFNKgnjZmf3nDykx6dkuOz_KyfVOirS2r5Wd2srSv5H1SBBri6KtkHINttCgT4DPjCFRCG670wHos_ocW2MyGtK3hy8YDa6Z95m8UoPi1B1MLlYn5rKOfEUS9FPcjP_R5eHh-7tPrBufkV6L4UYbZa9IELnwswOTfV7Desnw3fIYBecmEVNhB7jJCEcj-ZF7TCkNb0wexkJR6ciaZbS5B8FDcjeIIWha90rYQeYdfgdMwmJ-CcsaLrcdq3wf5HPXVJgz5cjouyv_cx2swYc9H5zYPD6bcfrQrGLpbaVMI2f6vtS4uLL_3dty2RO-4FGBvX7RAYb2xMn6NnwUuIDxrIX6BHpnqJnvhsXbV8hdIe-LhexC3wcQ98PK9iETvgYw_8a3T69XA6PkrC7ItEgcdbJ4RqOco0z0jOXGzZqhHNUk2FEqm0wurUguevwT42mc0yZrRJJSi91FhGOJZ4C21Ui8q8RXGhFaaKKiu5IMARSYSWhhVM54KZnEfoY8uHUoWHd_NJLsq7HI_Q-27tVdMOZe2qdy07S5BWLgQlKrNYLUtwF8BFgEWjCL1p-Nztk3FOORjwEdoCxndkxZaXflsRoe31P5RX2m7f68l20NP-_O-ijfp6ZfbAqqzlfjhDfwELwHK_ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cavitation+to+fracture+transition+in+a+soft+solid&rft.jtitle=Soft+matter&rft.au=Kang%2C+Jingtian&rft.au=Wang%2C+Changguo&rft.au=Cai%2C+Shengqiang&rft.date=2017-09-27&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=13&rft.issue=37&rft.spage=6372&rft.epage=6376&rft_id=info:doi/10.1039%2FC7SM01479A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7SM01479A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |