Cavitation to fracture transition in a soft solid

When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 13; no. 37; pp. 6372 - 6376
Main Authors Kang, Jingtian, Wang, Changguo, Cai, Shengqiang
Format Journal Article
LanguageEnglish
Published England 27.09.2017
Online AccessGet full text
ISSN1744-683X
1744-6848
1744-6848
DOI10.1039/c7sm01479a

Cover

Abstract When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is usually referred to as cavitation instability in soft solids. Several recent experiments have shown that fractures may occur in the material when the hydrostatic tension is far below the critical value. In this article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer subject to hydrostatic tension. We compute the energy release rate associated with the extension of the ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the pressure-control mode, the energy release rate increases with the increase of the crack size as well as the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy release rate increases with the increase of the crack size when the crack is short; the energy release rate maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture transition in soft solids subject to different loading conditions. When large hydrostatic tension is applied onto a soft solid, crack extension can be induced during the cavitating process.
AbstractList When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is usually referred to as cavitation instability in soft solids. Several recent experiments have shown that fractures may occur in the material when the hydrostatic tension is far below the critical value. In this article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer subject to hydrostatic tension. We compute the energy release rate associated with the extension of the ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the pressure-control mode, the energy release rate increases with the increase of the crack size as well as the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy release rate increases with the increase of the crack size when the crack is short; the energy release rate maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture transition in soft solids subject to different loading conditions. When large hydrostatic tension is applied onto a soft solid, crack extension can be induced during the cavitating process.
When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is usually referred to as cavitation instability in soft solids. Several recent experiments have shown that fractures may occur in the material when the hydrostatic tension is far below the critical value. In this article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer subject to hydrostatic tension. We compute the energy release rate associated with the extension of the ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the pressure-control mode, the energy release rate increases with the increase of the crack size as well as the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy release rate increases with the increase of the crack size when the crack is short; the energy release rate maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture transition in soft solids subject to different loading conditions.
When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is usually referred to as cavitation instability in soft solids. Several recent experiments have shown that fractures may occur in the material when the hydrostatic tension is far below the critical value. In this article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer subject to hydrostatic tension. We compute the energy release rate associated with the extension of the ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the pressure-control mode, the energy release rate increases with the increase of the crack size as well as the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy release rate increases with the increase of the crack size when the crack is short; the energy release rate maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture transition in soft solids subject to different loading conditions.When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when the hydrostatic tension approaches a critical value: 2.5 times its shear modulus, the initially small cavity can expand unboundedly. Such a phenomenon is usually referred to as cavitation instability in soft solids. Several recent experiments have shown that fractures may occur in the material when the hydrostatic tension is far below the critical value. In this article, we study a spherical cavity with a ring crack on its wall and inside a neo-Hookean elastomer subject to hydrostatic tension. We compute the energy release rate associated with the extension of the ring crack, for both pressure-control and (cavity) volume-control loading modes. We find that for the pressure-control mode, the energy release rate increases with the increase of the crack size as well as the magnitude of pressure; for the (cavity) volume-control mode, with a fixed cavity volume, the energy release rate increases with the increase of the crack size when the crack is short; the energy release rate maximizes for an intermediate crack size, and decreases with the increase of crack size when the crack is long. The results obtained in this article may be helpful for understanding cavitation-to-fracture transition in soft solids subject to different loading conditions.
Author Cai, Shengqiang
Kang, Jingtian
Wang, Changguo
AuthorAffiliation Harbin Institute of Technology
Department of Mechanical and Aerospace Engineering
University of California
Center for Composite Material and Structure
AuthorAffiliation_xml – name: University of California
– name: Center for Composite Material and Structure
– name: Harbin Institute of Technology
– name: Department of Mechanical and Aerospace Engineering
Author_xml – sequence: 1
  givenname: Jingtian
  surname: Kang
  fullname: Kang, Jingtian
– sequence: 2
  givenname: Changguo
  surname: Wang
  fullname: Wang, Changguo
– sequence: 3
  givenname: Shengqiang
  surname: Cai
  fullname: Cai, Shengqiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28868551$$D View this record in MEDLINE/PubMed
BookMark eNp90UlLxDAUB_AgI44zevGu1JsI1bwk3Y5DcYMRDyp4C2kWiHQZk1Tw29tZBREvSUh-78H_ZYJGbddqhE4AXwGmxbXMfIOBZYXYQ4eQMRanOctHuzN9G6OJ9-8Y05xBeoDGJM_TPEngEEEpPm0QwXZtFLrIOCFD73QUnGi9XV3bNhKR70wYltqqI7RvRO318Wafotfbm5fyPp4_3T2Us3ksGYYQs1RVmKicsCQDiomROCWgUiEFVEYYBYYN70UCmhhCMq00VCzNQJuM5bSiU3Sx7rtw3UevfeCN9VLXtWh113sOBU3YMjYe6NmG9lWjFV842wj3xbcxB4DXQLrOe6cNl5vQQ05bc8B8OUleZs-Pq0nOhpLLXyXbrn_i8zV2Xu7cz7fwhTKDOf3P0G-XEods
CitedBy_id crossref_primary_10_1016_j_ijnonlinmec_2022_104076
crossref_primary_10_2139_ssrn_3962085
crossref_primary_10_1039_C8SM01560K
crossref_primary_10_1039_C9SM01023H
crossref_primary_10_1016_j_ijnonlinmec_2020_103562
crossref_primary_10_1039_C9SM00570F
crossref_primary_10_1016_j_polymertesting_2019_106221
crossref_primary_10_1038_s41567_024_02504_1
crossref_primary_10_1016_j_eml_2021_101444
crossref_primary_10_1039_C8SM02142B
crossref_primary_10_1039_D2SM00400C
crossref_primary_10_1016_j_ijmecsci_2021_106730
crossref_primary_10_1039_D1SM00325A
crossref_primary_10_1016_j_jmps_2022_105192
crossref_primary_10_1142_S1758825121500277
crossref_primary_10_1063_1_5009747
crossref_primary_10_1016_j_ijadhadh_2024_103867
crossref_primary_10_1007_s00417_021_05289_8
crossref_primary_10_1039_D4SM01203H
crossref_primary_10_1016_j_engfracmech_2022_108653
crossref_primary_10_1039_C8SM01464G
crossref_primary_10_1016_j_xphs_2020_10_008
crossref_primary_10_1016_j_ijmecsci_2020_105934
crossref_primary_10_1080_1539445X_2019_1655052
crossref_primary_10_1016_j_eml_2022_101673
crossref_primary_10_1016_j_jmbbm_2023_105901
crossref_primary_10_1039_D0SM00710B
crossref_primary_10_1016_j_jmps_2023_105223
crossref_primary_10_1073_pnas_1920168117
crossref_primary_10_1016_j_bpj_2022_06_016
crossref_primary_10_1007_s10704_019_00380_y
crossref_primary_10_1016_j_actbio_2022_02_017
crossref_primary_10_1126_sciadv_aaz0418
Cites_doi 10.1063/1.3211917
10.1007/s10704-016-0176-9
10.1039/b617050a
10.1243/03093247V072132
10.1039/b925407b
10.1039/C5SM02055G
10.1002/polb.21968
10.1016/j.matdes.2013.06.058
10.1007/BF00184154
10.1016/j.jmbbm.2015.06.023
10.1016/S0167-6636(02)00174-6
10.5254/1.3538266
10.1098/rspa.1959.0016
10.1023/B:FRAC.0000026510.60747.3a
10.1007/BF01124691
10.1201/9781315370293
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1039/c7sm01479a
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 6376
ExternalDocumentID 28868551
10_1039_C7SM01479A
c7sm01479a
Genre Journal Article
GroupedDBID -JG
0-7
1TJ
705
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
BSQNT
C6K
EE0
EF-
GNO
H~N
J3I
R7B
RCNCU
RPMJG
RRC
RSCEA
SKA
SLH
VH6
0R~
0UZ
123
4.4
53G
71~
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACPRK
ACRPL
ADMRA
ADNMO
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRAH
AFRZK
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AVWKF
AZFZN
BBWZM
BLAPV
C1A
CITATION
CS3
EBS
ECGLT
EEHRC
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~9
J3G
J3H
KZ1
L-8
M4U
N9A
NDZJH
O9-
P2P
R56
RAOCF
RCLXC
RNS
XJT
NPM
OK1
7X8
ID FETCH-LOGICAL-c401t-46db02d824571302fc0621d6aca1bfafd1f402d951e2f227ede1b4671ef7483b3
ISSN 1744-683X
1744-6848
IngestDate Thu Jul 10 18:49:05 EDT 2025
Wed Feb 19 02:40:13 EST 2025
Tue Jul 01 03:13:08 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
Sun Jun 02 15:24:45 EDT 2019
Mon Jan 28 17:15:17 EST 2019
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-46db02d824571302fc0621d6aca1bfafd1f402d951e2f227ede1b4671ef7483b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6852-7680
PMID 28868551
PQID 1935401470
PQPubID 23479
PageCount 5
ParticipantIDs pubmed_primary_28868551
proquest_miscellaneous_1935401470
crossref_citationtrail_10_1039_C7SM01479A
crossref_primary_10_1039_C7SM01479A
rsc_primary_c7sm01479a
ProviderPackageCode J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
RPMJG
1TJ
SKA
-JG
AGSTE
EF-
BSQNT
ADSRN
ABGFH
705
R7B
AAEMU
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170927
PublicationDateYYYYMMDD 2017-09-27
PublicationDate_xml – month: 9
  year: 2017
  text: 20170927
  day: 27
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2017
References Zimberlin (C7SM01479A-(cit3)/*[position()=1]) 2007; 3
Yeoh (C7SM01479A-(cit15)/*[position()=1]) 2002; 34
Zimberlin (C7SM01479A-(cit18)/*[position()=1]) 2010; 48
Poulain (C7SM01479A-(cit6)/*[position()=1]) 2017; 205
Williams (C7SM01479A-(cit7)/*[position()=1]) 1965; 1
C7SM01479A-(cit12)/*[position()=1]
Gent (C7SM01479A-(cit8)/*[position()=1]) 1991; 26
Lin (C7SM01479A-(cit9)/*[position()=1]) 2004; 126
Gent (C7SM01479A-(cit1)/*[position()=1]) 1959; 249
Zimberlin (C7SM01479A-(cit4)/*[position()=1]) 2010; 6
Gent (C7SM01479A-(cit11)/*[position()=1]) 1990; 63
Jansen (C7SM01479A-(cit5)/*[position()=1]) 2015; 50
Lindley (C7SM01479A-(cit14)/*[position()=1]) 1972; 7
Hutchens (C7SM01479A-(cit10)/*[position()=1]) 2016; 12
Anderson (C7SM01479A-(cit16)/*[position()=1]) 2017
Hamdi (C7SM01479A-(cit2)/*[position()=1]) 2014; 53
Lake (C7SM01479A-(cit13)/*[position()=1]) 1970
Hong (C7SM01479A-(cit17)/*[position()=1]) 2009; 95
References_xml – issn: 1970
  end-page: 47
  publication-title: Int. Conf. Yeld, Deformation and Fracture of Polymers
  doi: Lake
– issn: 2017
  publication-title: Fracture mechanics: fundamentals and applications
  doi: Anderson
– volume: 95
  start-page: 111901
  year: 2009
  ident: C7SM01479A-(cit17)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3211917
– volume: 205
  start-page: 1
  year: 2017
  ident: C7SM01479A-(cit6)/*[position()=1]
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-016-0176-9
– volume: 3
  start-page: 763
  year: 2007
  ident: C7SM01479A-(cit3)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/b617050a
– volume: 7
  start-page: 132
  year: 1972
  ident: C7SM01479A-(cit14)/*[position()=1]
  publication-title: J. Strain Anal.
  doi: 10.1243/03093247V072132
– volume: 6
  start-page: 3632
  year: 2010
  ident: C7SM01479A-(cit4)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/b925407b
– ident: C7SM01479A-(cit12)/*[position()=1]
– volume: 12
  start-page: 2557
  year: 2016
  ident: C7SM01479A-(cit10)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C5SM02055G
– volume: 48
  start-page: 1423
  year: 2010
  ident: C7SM01479A-(cit18)/*[position()=1]
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.21968
– volume: 53
  start-page: 497
  year: 2014
  ident: C7SM01479A-(cit2)/*[position()=1]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.06.058
– volume: 1
  start-page: 64
  year: 1965
  ident: C7SM01479A-(cit7)/*[position()=1]
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00184154
– volume: 50
  start-page: 299
  year: 2015
  ident: C7SM01479A-(cit5)/*[position()=1]
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.06.023
– volume: 34
  start-page: 459
  year: 2002
  ident: C7SM01479A-(cit15)/*[position()=1]
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(02)00174-6
– volume: 63
  start-page: 49
  year: 1990
  ident: C7SM01479A-(cit11)/*[position()=1]
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3538266
– volume: 249
  start-page: 195
  year: 1959
  ident: C7SM01479A-(cit1)/*[position()=1]
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1959.0016
– volume: 126
  start-page: 205
  year: 2004
  ident: C7SM01479A-(cit9)/*[position()=1]
  publication-title: Int. J. Fract.
  doi: 10.1023/B:FRAC.0000026510.60747.3a
– volume: 26
  start-page: 3392
  year: 1991
  ident: C7SM01479A-(cit8)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01124691
– start-page: 47
  volume-title: Int. Conf. Yeld, Deformation and Fracture of Polymers
  year: 1970
  ident: C7SM01479A-(cit13)/*[position()=1]
– volume-title: Fracture mechanics: fundamentals and applications
  year: 2017
  ident: C7SM01479A-(cit16)/*[position()=1]
  doi: 10.1201/9781315370293
SSID ssj0038416
Score 2.3943129
Snippet When a soft solid such as rubber, gel and soft tissue is subject to hydrostatic tension, a small cavity inside the solid expands. For a neo-Hookean solid, when...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6372
Title Cavitation to fracture transition in a soft solid
URI https://www.ncbi.nlm.nih.gov/pubmed/28868551
https://www.proquest.com/docview/1935401470
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BKyQuiK3gbjKCC0KG2DOeGR-rqKgUyiWp6M2aNY3UOqVxOPTX82Y8XkpzaLlYyct45Lxv9Ba_DaEPOZfEGW0JSEiZEE5xInXOE7AFNKgnjZmf3nDykx6dkuOz_KyfVOirS2r5Wd2srSv5H1SBBri6KtkHINttCgT4DPjCFRCG670wHos_ocW2MyGtK3hy8YDa6Z95m8UoPi1B1MLlYn5rKOfEUS9FPcjP_R5eHh-7tPrBufkV6L4UYbZa9IELnwswOTfV7Desnw3fIYBecmEVNhB7jJCEcj-ZF7TCkNb0wexkJR6ciaZbS5B8FDcjeIIWha90rYQeYdfgdMwmJ-CcsaLrcdq3wf5HPXVJgz5cjouyv_cx2swYc9H5zYPD6bcfrQrGLpbaVMI2f6vtS4uLL_3dty2RO-4FGBvX7RAYb2xMn6NnwUuIDxrIX6BHpnqJnvhsXbV8hdIe-LhexC3wcQ98PK9iETvgYw_8a3T69XA6PkrC7ItEgcdbJ4RqOco0z0jOXGzZqhHNUk2FEqm0wurUguevwT42mc0yZrRJJSi91FhGOJZ4C21Ui8q8RXGhFaaKKiu5IMARSYSWhhVM54KZnEfoY8uHUoWHd_NJLsq7HI_Q-27tVdMOZe2qdy07S5BWLgQlKrNYLUtwF8BFgEWjCL1p-Nztk3FOORjwEdoCxndkxZaXflsRoe31P5RX2m7f68l20NP-_O-ijfp6ZfbAqqzlfjhDfwELwHK_
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cavitation+to+fracture+transition+in+a+soft+solid&rft.jtitle=Soft+matter&rft.au=Kang%2C+Jingtian&rft.au=Wang%2C+Changguo&rft.au=Cai%2C+Shengqiang&rft.date=2017-09-27&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=13&rft.issue=37&rft.spage=6372&rft.epage=6376&rft_id=info:doi/10.1039%2FC7SM01479A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7SM01479A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon