A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism

[Display omitted] •Catalytic co-pyrolysis of biomass and high-rich feedstock is reviewed.•Synergistic interaction between hydrogen donor feedstock and biomass are presented.•Effective catalysts for biomass deoxygenation and hydrogen transfer are compared.•Co-pyrolysis addresses waste management goal...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 310; p. 123457
Main Authors Ahmed, Mohamed H.M., Batalha, Nuno, Mahmudul, Hasan M.D., Perkins, Greg, Konarova, Muxina
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2020
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2020.123457

Cover

Abstract [Display omitted] •Catalytic co-pyrolysis of biomass and high-rich feedstock is reviewed.•Synergistic interaction between hydrogen donor feedstock and biomass are presented.•Effective catalysts for biomass deoxygenation and hydrogen transfer are compared.•Co-pyrolysis addresses waste management goals by utilizing abundant waste feedstock. The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development.
AbstractList [Display omitted] •Catalytic co-pyrolysis of biomass and high-rich feedstock is reviewed.•Synergistic interaction between hydrogen donor feedstock and biomass are presented.•Effective catalysts for biomass deoxygenation and hydrogen transfer are compared.•Co-pyrolysis addresses waste management goals by utilizing abundant waste feedstock. The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development.
The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development.
The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development.
The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development.The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development.
ArticleNumber 123457
Author Konarova, Muxina
Ahmed, Mohamed H.M.
Batalha, Nuno
Perkins, Greg
Mahmudul, Hasan M.D.
Author_xml – sequence: 1
  givenname: Mohamed H.M.
  surname: Ahmed
  fullname: Ahmed, Mohamed H.M.
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
– sequence: 2
  givenname: Nuno
  surname: Batalha
  fullname: Batalha, Nuno
  organization: School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
– sequence: 3
  givenname: Hasan M.D.
  surname: Mahmudul
  fullname: Mahmudul, Hasan M.D.
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
– sequence: 4
  givenname: Greg
  surname: Perkins
  fullname: Perkins, Greg
  organization: School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
– sequence: 5
  givenname: Muxina
  surname: Konarova
  fullname: Konarova, Muxina
  email: m.konarova@uq.edu.au
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32371033$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuGyEYhVGVqHHSvkLEsouOy2WuVReNol4iRcqmXSMGfmzcGXABO5rHyZuGqe1NN14gJHTO-S8f1-jCeQcI3VKypITWnzbL3vqQQK2XjLD8yHhZNW_QgrYNL1jX1BdoQbqaFG3Fyit0HeOGEMJpw96iK854QwnnC_RyhwPsLTxj77DUe-kUaKxkksOUrMLKF9sp-GGKNmJvcK46yhixdBqvJx38ClwRrFpjA6Bj8urPZ_zgol2tU8TWJY_j5CCsbJzjwBhQ6eOxQExYwx4Gvx3BpX-ZAaRKNvcy5tGks3F8hy6NHCK8P9436Pf3b7_ufxaPTz8e7u8eC1USmoqy1MZ0RtG66qGp6nnUvuWqbUrF2p7ysqwq6OquJ8pwVhFelY2RXFLoqpJrfoM-HHK3wf_dQUxitFHBMEgHfhcFy3vMp23b81LedYzXDSdZenuU7voRtNgGO8owiROBLPhyEKjgYwxghLJJzitIQdpBUCJm4GIjTsDFDFwcgGd7_Z_9VOGs8evBCHmn-QMEEZWFmb4NGZHQ3p6LeAX4jcuF
CitedBy_id crossref_primary_10_1007_s13399_024_06047_6
crossref_primary_10_1016_j_jaap_2024_106589
crossref_primary_10_1016_j_cej_2023_145300
crossref_primary_10_1016_j_jaap_2023_106103
crossref_primary_10_1111_gcbb_13124
crossref_primary_10_1016_j_jaap_2022_105491
crossref_primary_10_1016_j_biortech_2022_127515
crossref_primary_10_1016_j_jaap_2023_106181
crossref_primary_10_1016_j_biortech_2021_125336
crossref_primary_10_1016_j_biortech_2023_129537
crossref_primary_10_1016_j_psep_2024_07_034
crossref_primary_10_1007_s13399_023_03915_5
crossref_primary_10_1021_acs_energyfuels_0c03107
crossref_primary_10_1016_j_fuel_2022_124512
crossref_primary_10_1016_j_renene_2021_06_109
crossref_primary_10_1016_j_scitotenv_2023_165443
crossref_primary_10_1016_j_heliyon_2024_e39737
crossref_primary_10_1016_j_combustflame_2023_112671
crossref_primary_10_1016_j_joei_2024_101597
crossref_primary_10_1002_cssc_202100868
crossref_primary_10_1002_jctb_7077
crossref_primary_10_1016_j_biortech_2022_128153
crossref_primary_10_1016_j_joei_2023_101251
crossref_primary_10_1016_j_jaap_2023_106298
crossref_primary_10_1016_j_renene_2021_05_005
crossref_primary_10_1039_D3TA01368E
crossref_primary_10_1016_j_energy_2024_131653
crossref_primary_10_1016_j_ijhydene_2021_08_238
crossref_primary_10_1016_j_energy_2022_126362
crossref_primary_10_1016_j_indcrop_2025_120656
crossref_primary_10_1016_j_fuel_2022_126141
crossref_primary_10_1016_j_jhazmat_2020_123539
crossref_primary_10_1016_j_seta_2021_101886
crossref_primary_10_1016_j_wasman_2023_10_020
crossref_primary_10_1016_j_arabjc_2022_104389
crossref_primary_10_1016_j_fuel_2023_128947
crossref_primary_10_1016_j_jaap_2024_106907
crossref_primary_10_1016_j_gee_2021_02_004
crossref_primary_10_1016_j_jaap_2022_105779
crossref_primary_10_1016_j_apcatb_2021_120499
crossref_primary_10_1016_j_jhazmat_2021_127396
crossref_primary_10_1021_acssuschemeng_3c01202
crossref_primary_10_3390_ijerph192416831
crossref_primary_10_1016_j_jaap_2022_105776
crossref_primary_10_1002_er_7622
crossref_primary_10_1016_j_cej_2023_145640
crossref_primary_10_1016_j_energy_2024_131241
crossref_primary_10_1016_j_scitotenv_2024_170577
crossref_primary_10_1016_j_jaap_2024_106365
crossref_primary_10_1016_j_renene_2022_02_106
crossref_primary_10_1016_j_biortech_2020_123805
crossref_primary_10_1016_j_biortech_2021_125396
crossref_primary_10_1016_j_fuel_2023_128177
crossref_primary_10_1080_15567036_2020_1814905
crossref_primary_10_3390_en15114168
crossref_primary_10_1007_s13399_021_02243_w
crossref_primary_10_1007_s12155_021_10359_0
crossref_primary_10_1016_j_cej_2024_153031
crossref_primary_10_1002_cssc_202301786
crossref_primary_10_1016_j_fuel_2023_128734
crossref_primary_10_1016_j_ijhydene_2024_09_428
crossref_primary_10_3390_analytica4020015
crossref_primary_10_1016_j_envpol_2020_116016
crossref_primary_10_32604_jrm_2023_045822
crossref_primary_10_1016_j_indcrop_2023_117314
crossref_primary_10_1515_ehs_2022_0132
crossref_primary_10_1007_s11356_023_26908_3
crossref_primary_10_1016_j_joei_2023_101494
crossref_primary_10_3390_ma16010394
crossref_primary_10_1007_s13399_021_02296_x
crossref_primary_10_1016_j_indcrop_2024_119340
crossref_primary_10_1021_acs_energyfuels_1c01292
crossref_primary_10_1016_j_biortech_2022_127364
crossref_primary_10_1016_j_joei_2025_101973
crossref_primary_10_1016_j_biortech_2021_126096
crossref_primary_10_1016_j_jaap_2024_106375
crossref_primary_10_1016_j_biortech_2020_123912
crossref_primary_10_1016_j_seta_2022_102211
crossref_primary_10_1016_j_wasman_2020_12_008
crossref_primary_10_1039_D4SE00527A
crossref_primary_10_1016_j_jece_2022_107479
crossref_primary_10_1016_j_psep_2024_02_035
crossref_primary_10_1016_j_scitotenv_2020_142174
crossref_primary_10_1016_j_jece_2021_105434
crossref_primary_10_1016_j_jhazmat_2021_127096
crossref_primary_10_1016_j_scitotenv_2021_149397
crossref_primary_10_1007_s11705_022_2230_7
crossref_primary_10_1016_j_jaap_2022_105571
crossref_primary_10_1016_j_apcatb_2021_119962
crossref_primary_10_1016_j_biortech_2021_126067
crossref_primary_10_1016_j_fuel_2021_122765
crossref_primary_10_1039_D2CY00506A
crossref_primary_10_1007_s10311_022_01542_6
crossref_primary_10_3390_app12052313
crossref_primary_10_1016_j_biombioe_2022_106415
crossref_primary_10_1016_j_jaap_2025_107084
crossref_primary_10_1039_D3GC01312J
crossref_primary_10_1021_acssuschemeng_0c09131
crossref_primary_10_1080_15567036_2022_2143964
crossref_primary_10_1007_s10570_022_04625_3
crossref_primary_10_1016_j_mcat_2021_112063
crossref_primary_10_1016_j_ijhydene_2025_03_219
crossref_primary_10_1016_j_jaap_2024_106710
crossref_primary_10_1002_asia_202400307
crossref_primary_10_1016_j_fuproc_2023_107845
crossref_primary_10_1016_j_biteb_2024_101899
crossref_primary_10_1016_j_joei_2025_102007
crossref_primary_10_1016_j_envpol_2021_116934
crossref_primary_10_1016_j_mcat_2023_113796
crossref_primary_10_1016_j_energy_2025_134907
crossref_primary_10_3389_fevo_2022_964936
crossref_primary_10_1016_j_arabjc_2021_103035
crossref_primary_10_1016_j_fuel_2022_127158
crossref_primary_10_1016_j_renene_2021_09_103
crossref_primary_10_1007_s11708_024_0943_7
crossref_primary_10_1007_s13399_023_03945_z
crossref_primary_10_1016_j_arabjc_2021_103282
crossref_primary_10_1016_j_scitotenv_2023_165597
crossref_primary_10_1016_S1872_5813_23_60401_3
crossref_primary_10_1016_j_jaap_2025_106963
crossref_primary_10_1016_j_scitotenv_2023_167251
crossref_primary_10_3390_catal12091067
crossref_primary_10_1016_j_rser_2021_111790
crossref_primary_10_1016_j_fuel_2024_133724
crossref_primary_10_1016_j_jaap_2023_106041
crossref_primary_10_1039_D3SU00097D
crossref_primary_10_1016_j_ijhydene_2023_09_231
crossref_primary_10_1016_j_enconman_2021_114502
crossref_primary_10_1016_j_biombioe_2023_106947
crossref_primary_10_1016_j_indcrop_2023_116428
crossref_primary_10_1039_D3CY00445G
crossref_primary_10_1016_j_biortech_2022_128419
crossref_primary_10_1016_j_energy_2023_127733
crossref_primary_10_1021_acsomega_1c02783
crossref_primary_10_1039_D2CY00382A
crossref_primary_10_1016_j_fuel_2023_128819
crossref_primary_10_1016_j_psep_2025_106803
crossref_primary_10_1016_j_scp_2023_101092
crossref_primary_10_1007_s13399_021_01818_x
crossref_primary_10_1016_j_wasman_2024_11_005
crossref_primary_10_1080_15435075_2024_2439917
crossref_primary_10_1016_j_jece_2021_106436
crossref_primary_10_1016_j_cjche_2020_09_074
crossref_primary_10_1016_j_energy_2025_135019
crossref_primary_10_1016_j_jaap_2021_105267
crossref_primary_10_1080_13647830_2022_2063194
crossref_primary_10_3390_catal13121484
crossref_primary_10_1016_j_biortech_2020_124529
crossref_primary_10_1002_slct_202300383
crossref_primary_10_1016_j_biortech_2020_123835
crossref_primary_10_1016_j_scp_2025_101976
crossref_primary_10_1016_j_jaecs_2022_100061
crossref_primary_10_1016_j_catcom_2023_106795
crossref_primary_10_1016_j_rser_2022_112715
crossref_primary_10_1016_j_energy_2021_122234
crossref_primary_10_1016_j_cej_2021_132965
crossref_primary_10_1016_j_rineng_2024_103098
crossref_primary_10_1016_j_scitotenv_2024_171106
crossref_primary_10_1016_j_jclepro_2022_133971
crossref_primary_10_1016_j_renene_2024_120508
crossref_primary_10_1016_j_joei_2024_101880
Cites_doi 10.1515/ijcre-2016-0133
10.1016/0920-5861(95)00294-4
10.1038/nature08019
10.1039/c3gc42251h
10.1016/j.cattod.2016.11.045
10.1016/j.biortech.2017.09.184
10.1016/j.rser.2019.109400
10.1016/j.micromeso.2018.06.036
10.1016/j.biortech.2016.11.072
10.1016/S0021-9517(02)00124-0
10.1016/j.fuproc.2013.02.022
10.1016/j.apcatb.2015.02.015
10.1039/C7CY01229B
10.1016/j.enconman.2009.12.005
10.1016/j.jaap.2018.06.010
10.1016/j.jaap.2015.09.007
10.1016/j.biortech.2018.03.138
10.1016/j.rser.2018.03.048
10.1016/j.jaap.2016.11.025
10.1039/C3GC41575A
10.1016/j.jcat.2011.01.019
10.1016/j.enconman.2017.08.073
10.1016/j.enconman.2014.07.007
10.1557/mrs.2019.133
10.1021/ef301469t
10.1038/27638
10.1016/S0016-2361(02)00195-3
10.1016/j.fuel.2012.01.075
10.1016/j.enconman.2009.11.039
10.1039/C6GC02497A
10.2202/1542-6580.1559
10.1016/j.enconman.2019.111816
10.1039/C5RA02947C
10.1016/0021-9517(86)90102-8
10.1021/cs400501h
10.1002/er.1804
10.1038/s41929-019-0273-z
10.1016/j.chempr.2016.05.002
10.1016/j.jaap.2018.04.009
10.1021/acscatal.6b00245
10.1016/j.fuel.2016.02.031
10.1016/j.fuel.2015.07.039
10.1016/0009-2509(94)00392-0
10.1016/j.jaap.2016.12.012
10.1016/j.fuel.2014.03.013
10.3390/catal8120656
10.1016/S0960-8524(01)00118-3
10.1016/S0167-2991(07)80810-X
10.1016/j.fuel.2007.06.021
10.1016/j.cattod.2017.06.006
10.3390/rs12010151
10.3390/en3111805
10.1016/j.cattod.2017.09.009
10.1016/j.jcat.2011.10.004
10.1016/j.jaap.2017.07.027
10.1016/j.fuproc.2010.05.022
10.1016/j.catcom.2017.06.048
10.1016/j.biortech.2017.05.129
10.1016/j.fuel.2017.06.098
10.1016/j.apcata.2007.08.026
10.1016/j.fuel.2015.10.125
10.1016/j.apcata.2013.01.038
10.1126/science.1194218
10.1016/j.enconman.2014.12.082
10.1016/j.enconman.2006.05.010
10.1016/j.jcat.2007.04.006
10.1016/j.apcatb.2012.08.030
10.1007/s10098-016-1162-7
10.1016/j.biortech.2017.03.010
10.3390/en5124952
10.1016/j.biombioe.2019.01.014
10.1016/j.jcat.2015.10.001
10.1016/j.jaap.2011.12.015
10.1016/j.scitotenv.2018.03.239
10.1039/C9CY00576E
10.1016/j.apcata.2014.05.015
10.1016/j.jaap.2010.07.008
10.1016/0021-9517(82)90075-6
10.1039/c2gc35767d
10.1021/sc400354g
10.1016/j.wasman.2013.10.036
10.1016/j.biortech.2016.09.026
10.1016/j.biortech.2017.04.104
10.1016/j.biortech.2015.03.092
10.1039/c1ee01230d
10.1016/j.joei.2017.10.009
10.1016/j.apcatb.2012.09.002
10.1016/j.biortech.2012.08.089
10.1021/cs500791w
10.1016/j.cej.2019.02.055
10.1016/j.ijhydene.2017.04.139
10.1016/j.enconman.2016.10.001
10.1021/acs.energyfuels.7b01651
10.1039/C1GC15619E
10.1016/j.enconman.2017.02.047
10.1007/s13399-012-0043-5
10.1016/j.biortech.2017.09.178
10.1016/j.biortech.2015.12.085
10.1016/j.wasman.2018.07.021
10.1016/j.biortech.2019.03.137
10.1023/A:1019087313679
10.1016/j.cattod.2017.03.008
10.1016/j.apcata.2014.09.009
10.1016/j.fuel.2015.08.020
10.3390/en6010514
10.1016/j.jaap.2017.11.012
10.1039/C5RA24395E
10.1016/j.wasman.2017.01.010
10.1016/j.rser.2015.12.202
10.1039/C5GC01023C
10.1039/C7GC02947K
10.1016/j.jaap.2016.06.021
10.1016/j.fuproc.2015.11.003
10.1016/j.biortech.2015.05.040
10.1016/j.biortech.2018.07.108
10.1111/j.1365-2486.2007.01343.x
10.1007/s13399-017-0266-6
10.1016/j.enconman.2017.04.033
10.1016/j.cej.2019.05.049
10.1016/j.scitotenv.2017.11.045
10.1021/acssuschemeng.5b01381
10.1016/j.fuel.2019.116994
10.1016/0165-2370(94)00877-4
10.1021/acs.iecr.8b06158
10.1021/ie020107q
10.1016/S2542-5196(19)30267-0
10.1016/j.apenergy.2016.04.071
10.1016/j.resconrec.2011.04.002
10.1016/j.jcat.2011.02.007
10.1016/j.energy.2016.03.015
10.1021/acs.energyfuels.6b02250
10.1016/j.micromeso.2016.12.008
10.1016/j.apcatb.2014.12.044
10.1016/S0960-8524(01)00119-5
10.1016/j.apcatb.2014.07.006
10.1007/s10661-016-5093-x
10.1016/j.fuel.2015.04.033
10.1002/cctc.201902023
10.1016/j.enconman.2018.06.053
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2020.123457
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 32371033
10_1016_j_biortech_2020_123457
S096085242030729X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
EFLBG
7S9
L.6
ID FETCH-LOGICAL-c401t-44dff9fc165be7560317b83c874c28b134455e969b0cf32503547fa3a1e9543d3
IEDL.DBID AIKHN
ISSN 0960-8524
1873-2976
IngestDate Fri Sep 05 15:08:01 EDT 2025
Fri Sep 05 09:23:52 EDT 2025
Wed Feb 19 02:30:09 EST 2025
Thu Apr 24 22:54:45 EDT 2025
Tue Jul 01 03:18:44 EDT 2025
Sat Aug 10 15:31:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Biomass deoxygenation
Hydrogen transfer
Co-pyrolysis
Zeolite
Active sites
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-44dff9fc165be7560317b83c874c28b134455e969b0cf32503547fa3a1e9543d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 32371033
PQID 2399236730
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524252888
proquest_miscellaneous_2399236730
pubmed_primary_32371033
crossref_citationtrail_10_1016_j_biortech_2020_123457
crossref_primary_10_1016_j_biortech_2020_123457
elsevier_sciencedirect_doi_10_1016_j_biortech_2020_123457
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
2020-Aug
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Wang, Duan, Ruan, Fan, Zhou, Dai, Lv, Liu (b0705) 2018; 249
Chen, Wang, Sun, Gao, Sun, Wang, Wang, Wang (b0080) 2017; 100
Elsayed, Eseyin (b0150) 2016; 174
Keller, Bhasin (b0255) 1982; 73
Zhang, Lei, Zhu, Qian, Zhu, Wu, Chen (b0695) 2016; 173
Abnisa, Daud (b0005) 2014; 87
Serrano, García, Vicente, Linares, Procházková, Čejka (b0455) 2011; 279
Wagenaar, Prins, Van Swaaij (b0520) 1994; 49
Xiang, Liang, Morgan, Liu, Mao, Bu (b0575) 2018; 247
Xue, Zhuo, Liu, Chi, Zhang, Yao (b0595) 2017; 31
Matthews (b0355) 2007; 13
Vamvuka (b0510) 2011; 35
Zhang, Cheng, Vispute, Xiao, Huber (b0670) 2011; 4
Horne, Nugranad, Williams (b0205) 1995; 34
Song, Yang, Zhao, Sun, Wang, Mao, Ma (b0485) 2017; 123
Shafaghat, Lee, Tsang, Oh, Jae, Jung, Ko, Lam, Park (b0465) 2019; 366
Chen, Walsh, Koenig (b0085) 1988; Vol. 376
Rezaei, Oh, Hong, Kim, Jae, Jung, Jeon, Park (b0435) 2017; 151
Fan, Chen, Zhang, Liu, Liu, Wang, Dai, Ruan (b0155) 2017; 225
Zhang, Zhou, Cheng, Chen, Li, Qiao, Chen, Lu, Ouyang, Fu (b0700) 2019
Elliott, Neuenschwander (b0145) 1997
Pacchioni (b0395) 2014; 4
Lin, Zhang, Sun, Guo, Wang (b0315) 2015; 116
Hoffert, Caldeira, Jain, Haites, Harvey, Potter, Schlesinger, Schneider, Watts, Wigley, Wuebbles (b0195) 1998; 395
Valle, Castaño, Olazar, Bilbao, Gayubo (b0500) 2012; 285
Dorado, Mullen, Boateng (b0135) 2015; 162
Cheng, Huber (b0090) 2012; 14
Wang, Zhang, Zhong, Ding, Xie, Ruan, Policy (b0540) 2016; 18
Azhar Uddin, Tsuda, Wu, Sasaoka (b0050) 2008; 87
Hernando, Moreno, Fermoso, Ochoa-Hernández, Pizarro, Coronado, Čejka, Serrano (b0190) 2017; 7
Singh, Mallapragada, Agrawal, Tyner (b0475) 2012; 2
Wang, Xiao, Zhang, He (b0530) 2010; 89
Jae, Tompsett, Foster, Hammond, Auerbach, Lobo, Huber (b0235) 2011; 279
Piemonte, Capocelli, Orticello, Di Paola (b0425) 2016
Kim, Jae, Kim, Hong, Jung, Park (b0265) 2017; 149
Kim, Lee, Jae, Jung, Jung, Watanabe, Park (b0275) 2017; 298
Kadlimatti, Mohan, Saidutta (b0250) 2019; 123
Li, Yu, Li, Wang, Yu, Deng, Huang, Wang, Wang (b0300) 2015; 172
Pham, Sooknoi, Crossley, Resasco (b0420) 2013; 3
Chattopadhyay, Pathak, Srivastava, Singh (b0075) 2016; 103
Xue, Kelkar, Bai (b0605) 2016; 166
Xue, Zhou, Brown, Kelkar, Bai (b0610) 2015; 156
Amutio, Lopez, Artetxe, Elordi, Olazar, Bilbao (b0035) 2012; 59
Yao, Li, Feng, Wang, Zhang, Chen, Komarneni, Wang (b0625) 2015; 5
Degnan, Shinde (b0110) 2019; 44
Dickerson, Soria (b0115) 2013; 6
Weitkamp, J., Hunger, M. 2007. Chapter 22 – acid and base catalysis on zeolites. In: Studies in Surface Science and Catalysis, (Eds.) J. Čejka, H. van Bekkum, A. Corma, F. Schüth, Vol. 168, Elsevier, pp. 787–835.
Liu, Xie, Zhang, Cheng, Liu, Chen, Ruan (b0325) 2016; 204
McKendry (b0365) 2002; 83
Wang, Xu, Qi, Gong, Wang, Gao, Wang, Feng, Liu, Deng (b0525) 2015; 332
Mullen, Boateng (b0380) 2010; 91
Asadieraghi, Wan Daud (b0040) 2015; 92
Valle, Gayubo, Atutxa, Alonso, Bilbao (b0505) 2007; 5
Yang, Kumar, Apblett (b0615) 2016; 120
Zhang, Likun, Xiao (b0675) 2018; 618
Kulkarni, Zhao, Siahrostami, Nørskov, Studt (b0280) 2018; 8
Zhang, Zhong, Min, Ding, Xie, Ruan (b0655) 2015; 189
Akubo, Nahil, Williams (b0020) 2019; 92
Lin, Zhang, Zhang, Sun, Wang, Pittman (b0320) 2018; 79
Mu, Han, Jiang (b0375) 2020; 265
Henrich, Dahmen, Weirich, Reimert, Kornmayer (b0185) 2016; 143
Ding, He, Zhong, Fan, Liu, Wang, Liu, Chen, Lei, Ruan (b0120) 2018; 268
Srinivasan, Adhikari, Chattanathan, Park (b0490) 2012; 26
Mathew, Muruganandam (b0350) 2017; 15
Iliopoulou, Stefanidis, Kalogiannis, Delimitis, Lappas, Triantafyllidis (b0230) 2012; 127
Fernandez-Akarregi, Makibar, Lopez, Amutio, Olazar (b0165) 2013; 112
Hong, Lee, Rezaei, Kim, Jeon, Jae, Jung, Kim, Park (b0200) 2017; 293–294
Yang, Kumar, Apblett, Moneeb (b0620) 2017; 19
Otsuka, Jinno, Morikawa (b0390) 1986; 100
Park, Park, Jeon, Kim, Ryoo, Jeong, Park, Park (b0400) 2012; 97
Wang, Dai, Fan, Duan, Liu, Ruan, Yu, Liu, Jiang (b0555) 2017; 123
Hassan, Lim, Hameed (b0180) 2019; 284
Zhang, Zhong, Chen, Ruan (b0650) 2017; 127
Xie, Addy, Liu, Zhang, Cheng, Wan, Li, Liu, Lin, Chen, Ruan (b0580) 2015; 160
Alvarez, Amutio, Lopez, Bilbao, Olazar (b0030) 2015; 159
Zhang, Wang, Nolte, Choi, Brown, Shanks (b0685) 2016; 6
Fan, Zhang, Liu, Zhou, Chen, Cheng, Addy, Lu, Omar, Liu, Wang, Dai, Anderson, Peng, Lei, Ruan (b0160) 2017; 241
Morais, Jiménez-Sánchez, Hernando, Ochoa-Hernández, Pizarro, Araujo, Serrano (b0370) 2019; 58
Czernik, French, Feik, Chornet (b0100) 2002; 41
Bu, Lei, Zacher, Wang, Ren, Liang, Wei, Liu, Tang, Zhang, Ruan (b0070) 2012; 124
Chi, Xue, Zhuo, Zhang, Liu, Yao (b0095) 2018; 633
Xue, Pan, Zhang, Wang, Xie, Zhang (b0600) 2018; 134
McKendry (b0360) 2002; 83
Xu, Wang, Liu, Ma, Zhang, Zheng, Zong (b0585) 2016; 188
Mullen, Dorado, Boateng (b0385) 2018; 129
Ding, Zhong, Wang, Zhang, Fan, Liu, Wang, Liu, Zhong, Chen (b0125) 2018; 261
Hassan, Lim, Hameed (b0175) 2016; 221
Iisa, French, Orton, Dutta, Schaidle (b0215) 2017; 207
Ahmed, Muraza, Galadima, Yoshioka, Yamani, Yokoi (b0010) 2019; 273
Tessonnier, Louis, Rigolet, Ledoux, Pham-Huu (b0495) 2008; 336
Yildiz, Ronsse, Duren, Prins (b0630) 2016; 57
Yu, Xu, Abramson, Li, Guo (b0645) 2020; 4
Allen, Frame, Huntingford, Jones, Lowe, Meinshausen, Meinshausen (b0025) 2009; 458
Bridgwater (b0065) 1996; 29
Rizkiana, Guan, Widayatno, Yang, Hao, Matsuoka, Abudula (b0440) 2016; 6
Dorado, Mullen, Boateng (b0130) 2014; 2
Atanda, Batalha, Stark, Tabulo, Perkins, Wang, Odedairo, Wang, Konarova (b0045) 2020; 12
Li, Zhang, Li, Su, Zuo, Komarneni, Wang (b0310) 2013; 455
Xu, Bao, Lin (b0590) 2003; 216
Solak, Rutkowski (b0480) 2014; 34
Dayton, Carpenter, Kataria, Peters, Barbee, Mante, Gupta (b0105) 2015; 17
Wang, Dai, Fan, Cao, Zhou, Zhao, Liu, Ruan (b0550) 2017; 61
Duan, Wang, Dai, Ruan, Zhao, Fan, Tayier, Liu (b0140) 2017; 241
Vispute, Zhang, Sanna, Xiao, Huber (b0515) 2010; 330
Huang, Qiu, Oduro, Guo, Fang (b0210) 2016; 30
Yildiz, Ronsse, Venderbosch, van Duren, Kersten, Prins (b0635) 2015; 168
Zhang, Carlson, Xiao, Huber (b0665) 2012; 14
Park, Siddiqui, Kang, Watanabe, Lee, Jeong, Kim, Kim (b0405) 2018; 8
Wang, Luo, Li, Xue, Yang (b0545) 2019; 9
Lee, Kim, Jae, Jeon, Jung, Kim, Park (b0290) 2016; 129
Shafaghat, Jae, Jung, Jeon, Ko, Park (b0460) 2018; 303
Kim, Kim, Lee, Jae, Kim, Jung, Watanabe, Park (b0260) 2016; 4
Zhou, Li, Yu, Li, Wang, Wang, Komarneni (b0715) 2014; 487
Zhang, Zhong, Zhang, Ruan (b0660) 2018; 133
Jiang, Wang, Cui, Xu (b0245) 1999; 57
Ryu, Tsang, Lee, Jae, Jung, Lam, Park, Park (b0445) 2019; 373
Zhang, Xiao, Nie, Jin, Shao, Xiao (b0680) 2015; 192
Lu, Zhang, Dong, Zhu (b0345) 2010; 3
Bai, Kim, Brown, Dalluge, Hutchinson, Lee, Dalluge (b0055) 2014; 128
Perkins, Batalha, Kumar, Bhaskar, Konarova (b0410) 2019; 115
Lizundia-Loiola, Pettinari, Chuvieco (b0340) 2020; 12
Liu, Hu, Yang, Tong, Zhu, Zhang, Zhao (b0330) 2013; 129
Zhang, Chang, Wang, Xu (b0690) 2007; 48
Wu, Moteki, Gokhale, Flaherty, Toste (b0570) 2016; 1
Liu, Hu, Yang, Tong, Li, Zhu (b0335) 2010; 51
Bjørgen, Svelle, Joensen, Nerlov, Kolboe, Bonino, Palumbo, Bordiga, Olsbye (b0060) 2007; 249
Lappas, Samolada, Iatridis, Voutetakis, Vasalos (b0285) 2002; 81
Zheng, Zhao, Chang, Huang, Zhao, Wu, Wang, He, Li (b0710) 2014; 16
Iisa, Robichaud, Watson, ten Dam, Dutta, Mukarakate, Kim, Nimlos, Baldwin (b0220) 2018; 20
Jahirul, Rasul, Chowdhury, Ashwath (b0240) 2012; 5
Filiciotto, Balu, Van der Waal, Luque (b0170) 2018; 302
Sanahuja-Parejo, Veses, Navarro, López, Murillo, Callén, García (b0450) 2018; 171
Ahmed, Muraza, Yoshioka, Yokoi (b0015) 2017; 241
Shen, Zhu, Liu, Zhang, Tan (b0470) 2010; 51
Iliopoulou, Stefanidis, Kalogiannis, Psarras, Delimitis, Triantafyllidis, Lappas (b0225) 2014; 16
Wang, Zhang, Zhong, Ding, Deng, Min, Chen, Ruan (b0535) 2017; 139
Wei, Guo, Gong, Ding, Yu (b0560) 2017; 234
Perkins, Bhaskar, Konarova (b0415) 2018; 90
Kim, Lee, Choi, Jeon, Park, Jung, Kim, Park (b0270) 2017; 42
Li, Li, Zhou, Feng, Wang, Yu, Deng, Huang, Wang (b0305) 2014; 481
Lee (b0295) 2012; 94
Yu, Hui, Li (b0640) 2019; 198
Ravi, Sushkevich, Knorpp, Newton, Palagin, Pinar, Ranocchiari, van Bokhoven (b0430) 2019; 2
Wang (10.1016/j.biortech.2020.123457_b0545) 2019; 9
Ahmed (10.1016/j.biortech.2020.123457_b0010) 2019; 273
Fan (10.1016/j.biortech.2020.123457_b0155) 2017; 225
Jiang (10.1016/j.biortech.2020.123457_b0245) 1999; 57
Ryu (10.1016/j.biortech.2020.123457_b0445) 2019; 373
Hong (10.1016/j.biortech.2020.123457_b0200) 2017; 293–294
Wang (10.1016/j.biortech.2020.123457_b0535) 2017; 139
Iliopoulou (10.1016/j.biortech.2020.123457_b0230) 2012; 127
Ding (10.1016/j.biortech.2020.123457_b0125) 2018; 261
Xu (10.1016/j.biortech.2020.123457_b0590) 2003; 216
Yao (10.1016/j.biortech.2020.123457_b0625) 2015; 5
Mathew (10.1016/j.biortech.2020.123457_b0350) 2017; 15
Wang (10.1016/j.biortech.2020.123457_b0530) 2010; 89
Atanda (10.1016/j.biortech.2020.123457_b0045) 2020; 12
Ravi (10.1016/j.biortech.2020.123457_b0430) 2019; 2
Morais (10.1016/j.biortech.2020.123457_b0370) 2019; 58
Zhang (10.1016/j.biortech.2020.123457_b0675) 2018; 618
Park (10.1016/j.biortech.2020.123457_b0400) 2012; 97
Li (10.1016/j.biortech.2020.123457_b0310) 2013; 455
Alvarez (10.1016/j.biortech.2020.123457_b0030) 2015; 159
Shen (10.1016/j.biortech.2020.123457_b0470) 2010; 51
Chi (10.1016/j.biortech.2020.123457_b0095) 2018; 633
Zhang (10.1016/j.biortech.2020.123457_b0680) 2015; 192
Yu (10.1016/j.biortech.2020.123457_b0640) 2019; 198
Kim (10.1016/j.biortech.2020.123457_b0260) 2016; 4
Kim (10.1016/j.biortech.2020.123457_b0265) 2017; 149
Liu (10.1016/j.biortech.2020.123457_b0335) 2010; 51
Bjørgen (10.1016/j.biortech.2020.123457_b0060) 2007; 249
Elliott (10.1016/j.biortech.2020.123457_b0145) 1997
Wang (10.1016/j.biortech.2020.123457_b0555) 2017; 123
Mu (10.1016/j.biortech.2020.123457_b0375) 2020; 265
Ahmed (10.1016/j.biortech.2020.123457_b0015) 2017; 241
Zhang (10.1016/j.biortech.2020.123457_b0665) 2012; 14
Kulkarni (10.1016/j.biortech.2020.123457_b0280) 2018; 8
Zhang (10.1016/j.biortech.2020.123457_b0670) 2011; 4
Zhou (10.1016/j.biortech.2020.123457_b0715) 2014; 487
Dorado (10.1016/j.biortech.2020.123457_b0130) 2014; 2
Kadlimatti (10.1016/j.biortech.2020.123457_b0250) 2019; 123
Xue (10.1016/j.biortech.2020.123457_b0610) 2015; 156
Hassan (10.1016/j.biortech.2020.123457_b0180) 2019; 284
Lu (10.1016/j.biortech.2020.123457_b0345) 2010; 3
Shafaghat (10.1016/j.biortech.2020.123457_b0465) 2019; 366
Duan (10.1016/j.biortech.2020.123457_b0140) 2017; 241
Wei (10.1016/j.biortech.2020.123457_b0560) 2017; 234
Serrano (10.1016/j.biortech.2020.123457_b0455) 2011; 279
Lin (10.1016/j.biortech.2020.123457_b0320) 2018; 79
Solak (10.1016/j.biortech.2020.123457_b0480) 2014; 34
Lin (10.1016/j.biortech.2020.123457_b0315) 2015; 116
Rezaei (10.1016/j.biortech.2020.123457_b0435) 2017; 151
Zhang (10.1016/j.biortech.2020.123457_b0695) 2016; 173
Liu (10.1016/j.biortech.2020.123457_b0330) 2013; 129
Zhang (10.1016/j.biortech.2020.123457_b0685) 2016; 6
Rizkiana (10.1016/j.biortech.2020.123457_b0440) 2016; 6
Yang (10.1016/j.biortech.2020.123457_b0615) 2016; 120
Bai (10.1016/j.biortech.2020.123457_b0055) 2014; 128
Otsuka (10.1016/j.biortech.2020.123457_b0390) 1986; 100
Jae (10.1016/j.biortech.2020.123457_b0235) 2011; 279
Zheng (10.1016/j.biortech.2020.123457_b0710) 2014; 16
Chen (10.1016/j.biortech.2020.123457_b0080) 2017; 100
Lizundia-Loiola (10.1016/j.biortech.2020.123457_b0340) 2020; 12
Valle (10.1016/j.biortech.2020.123457_b0500) 2012; 285
Yu (10.1016/j.biortech.2020.123457_b0645) 2020; 4
Zhang (10.1016/j.biortech.2020.123457_b0660) 2018; 133
Hernando (10.1016/j.biortech.2020.123457_b0190) 2017; 7
Dayton (10.1016/j.biortech.2020.123457_b0105) 2015; 17
Bu (10.1016/j.biortech.2020.123457_b0070) 2012; 124
Fan (10.1016/j.biortech.2020.123457_b0160) 2017; 241
Song (10.1016/j.biortech.2020.123457_b0485) 2017; 123
Xiang (10.1016/j.biortech.2020.123457_b0575) 2018; 247
Dickerson (10.1016/j.biortech.2020.123457_b0115) 2013; 6
Zhang (10.1016/j.biortech.2020.123457_b0690) 2007; 48
Horne (10.1016/j.biortech.2020.123457_b0205) 1995; 34
10.1016/j.biortech.2020.123457_b0565
Asadieraghi (10.1016/j.biortech.2020.123457_b0040) 2015; 92
Allen (10.1016/j.biortech.2020.123457_b0025) 2009; 458
Xie (10.1016/j.biortech.2020.123457_b0580) 2015; 160
Srinivasan (10.1016/j.biortech.2020.123457_b0490) 2012; 26
Zhang (10.1016/j.biortech.2020.123457_b0655) 2015; 189
Singh (10.1016/j.biortech.2020.123457_b0475) 2012; 2
Matthews (10.1016/j.biortech.2020.123457_b0355) 2007; 13
Valle (10.1016/j.biortech.2020.123457_b0505) 2007; 5
Amutio (10.1016/j.biortech.2020.123457_b0035) 2012; 59
Kim (10.1016/j.biortech.2020.123457_b0275) 2017; 298
McKendry (10.1016/j.biortech.2020.123457_b0360) 2002; 83
Hoffert (10.1016/j.biortech.2020.123457_b0195) 1998; 395
Wang (10.1016/j.biortech.2020.123457_b0540) 2016; 18
Elsayed (10.1016/j.biortech.2020.123457_b0150) 2016; 174
Li (10.1016/j.biortech.2020.123457_b0305) 2014; 481
Liu (10.1016/j.biortech.2020.123457_b0325) 2016; 204
Pacchioni (10.1016/j.biortech.2020.123457_b0395) 2014; 4
Dorado (10.1016/j.biortech.2020.123457_b0135) 2015; 162
Czernik (10.1016/j.biortech.2020.123457_b0100) 2002; 41
Kim (10.1016/j.biortech.2020.123457_b0270) 2017; 42
Piemonte (10.1016/j.biortech.2020.123457_b0425) 2016
Chen (10.1016/j.biortech.2020.123457_b0085) 1988; Vol. 376
Vispute (10.1016/j.biortech.2020.123457_b0515) 2010; 330
Degnan (10.1016/j.biortech.2020.123457_b0110) 2019; 44
Akubo (10.1016/j.biortech.2020.123457_b0020) 2019; 92
Lee (10.1016/j.biortech.2020.123457_b0290) 2016; 129
Wang (10.1016/j.biortech.2020.123457_b0525) 2015; 332
Azhar Uddin (10.1016/j.biortech.2020.123457_b0050) 2008; 87
Lappas (10.1016/j.biortech.2020.123457_b0285) 2002; 81
Iliopoulou (10.1016/j.biortech.2020.123457_b0225) 2014; 16
Abnisa (10.1016/j.biortech.2020.123457_b0005) 2014; 87
Filiciotto (10.1016/j.biortech.2020.123457_b0170) 2018; 302
Jahirul (10.1016/j.biortech.2020.123457_b0240) 2012; 5
Zhang (10.1016/j.biortech.2020.123457_b0700) 2019
Yang (10.1016/j.biortech.2020.123457_b0620) 2017; 19
Mullen (10.1016/j.biortech.2020.123457_b0380) 2010; 91
Park (10.1016/j.biortech.2020.123457_b0405) 2018; 8
Keller (10.1016/j.biortech.2020.123457_b0255) 1982; 73
Henrich (10.1016/j.biortech.2020.123457_b0185) 2016; 143
Zhao (10.1016/j.biortech.2020.123457_b0705) 2018; 249
Huang (10.1016/j.biortech.2020.123457_b0210) 2016; 30
Perkins (10.1016/j.biortech.2020.123457_b0410) 2019; 115
Xue (10.1016/j.biortech.2020.123457_b0605) 2016; 166
Iisa (10.1016/j.biortech.2020.123457_b0215) 2017; 207
Shafaghat (10.1016/j.biortech.2020.123457_b0460) 2018; 303
Lee (10.1016/j.biortech.2020.123457_b0295) 2012; 94
Wang (10.1016/j.biortech.2020.123457_b0550) 2017; 61
Pham (10.1016/j.biortech.2020.123457_b0420) 2013; 3
McKendry (10.1016/j.biortech.2020.123457_b0365) 2002; 83
Xu (10.1016/j.biortech.2020.123457_b0585) 2016; 188
Ding (10.1016/j.biortech.2020.123457_b0120) 2018; 268
Bridgwater (10.1016/j.biortech.2020.123457_b0065) 1996; 29
Xue (10.1016/j.biortech.2020.123457_b0600) 2018; 134
Perkins (10.1016/j.biortech.2020.123457_b0415) 2018; 90
Vamvuka (10.1016/j.biortech.2020.123457_b0510) 2011; 35
Cheng (10.1016/j.biortech.2020.123457_b0090) 2012; 14
Wu (10.1016/j.biortech.2020.123457_b0570) 2016; 1
Tessonnier (10.1016/j.biortech.2020.123457_b0495) 2008; 336
Hassan (10.1016/j.biortech.2020.123457_b0175) 2016; 221
Fernandez-Akarregi (10.1016/j.biortech.2020.123457_b0165) 2013; 112
Wagenaar (10.1016/j.biortech.2020.123457_b0520) 1994; 49
Iisa (10.1016/j.biortech.2020.123457_b0220) 2018; 20
Xue (10.1016/j.biortech.2020.123457_b0595) 2017; 31
Chattopadhyay (10.1016/j.biortech.2020.123457_b0075) 2016; 103
Yildiz (10.1016/j.biortech.2020.123457_b0630) 2016; 57
Sanahuja-Parejo (10.1016/j.biortech.2020.123457_b0450) 2018; 171
Zhang (10.1016/j.biortech.2020.123457_b0650) 2017; 127
Li (10.1016/j.biortech.2020.123457_b0300) 2015; 172
Mullen (10.1016/j.biortech.2020.123457_b0385) 2018; 129
Yildiz (10.1016/j.biortech.2020.123457_b0635) 2015; 168
References_xml – volume: 279
  start-page: 257
  year: 2011
  end-page: 268
  ident: b0235
  article-title: Investigation into the shape selectivity of zeolite catalysts for biomass conversion
  publication-title: J. Catal.
– volume: 284
  start-page: 406
  year: 2019
  end-page: 414
  ident: b0180
  article-title: Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite
  publication-title: Bioresour. Technol.
– volume: 366
  start-page: 330
  year: 2019
  end-page: 338
  ident: b0465
  article-title: In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts
  publication-title: Chem. Eng. J.
– volume: 17
  start-page: 4680
  year: 2015
  end-page: 4689
  ident: b0105
  article-title: Design and operation of a pilot-scale catalytic biomass pyrolysis unit
  publication-title: Green Chem.
– volume: 79
  start-page: 38
  year: 2018
  end-page: 47
  ident: b0320
  article-title: Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts
  publication-title: Waste Manage.
– volume: Vol. 376
  start-page: 277
  year: 1988
  end-page: 289
  ident: b0085
  publication-title: Fluidized-bed Upgrading of Wood Pyrolysis Liquids and Related Compounds
– volume: 133
  start-page: 147
  year: 2018
  end-page: 153
  ident: b0660
  article-title: Catalytic fast co-pyrolysis of biomass and fusel alcohol to enhance aromatic hydrocarbon production over ZSM-5 catalyst in a fluidized bed reactor
  publication-title: J. Anal. Appl. Pyrol.
– volume: 241
  start-page: 1118
  year: 2017
  end-page: 1126
  ident: b0160
  article-title: Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters
  publication-title: Bioresour. Technol.
– volume: 29
  start-page: 285
  year: 1996
  end-page: 295
  ident: b0065
  article-title: Production of high grade fuels and chemicals from catalytic pyrolysis of biomass
  publication-title: Catal. Today
– volume: 139
  start-page: 222
  year: 2017
  end-page: 231
  ident: b0535
  article-title: Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: Analytical PY-GC/MS study
  publication-title: J. Energy Convers. Manage.
– volume: 5
  year: 2007
  ident: b0505
  article-title: Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil
  publication-title: Int. J. Chem. Reactor Eng.
– volume: 241
  start-page: 207
  year: 2017
  end-page: 213
  ident: b0140
  article-title: Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating
  publication-title: Bioresour. Technol.
– volume: 302
  start-page: 2
  year: 2018
  end-page: 15
  ident: b0170
  article-title: Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins
  publication-title: Catal. Today
– volume: 15
  year: 2017
  ident: b0350
  article-title: Pyrolysis of agricultural biomass using an auger reactor: a parametric optimization
  publication-title: Int. J. Chem. Reactor Eng.
– volume: 336
  start-page: 79
  year: 2008
  end-page: 88
  ident: b0495
  article-title: Methane dehydro-aromatization on Mo/ZSM-5: about the hidden role of Brønsted acid sites
  publication-title: Appl. Catal. A
– volume: 198
  year: 2019
  ident: b0640
  article-title: Two-step catalytic co-pyrolysis of walnut shell and LDPE for aromatic-rich oil
  publication-title: Energy Convers. Manage.
– volume: 192
  start-page: 68
  year: 2015
  end-page: 74
  ident: b0680
  article-title: Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor
  publication-title: Bioresour. Technol.
– volume: 166
  start-page: 227
  year: 2016
  end-page: 236
  ident: b0605
  article-title: Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer
  publication-title: Fuel
– volume: 156
  start-page: 40
  year: 2015
  end-page: 46
  ident: b0610
  article-title: Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor
  publication-title: Fuel
– volume: 249
  start-page: 69
  year: 2018
  end-page: 75
  ident: b0705
  article-title: Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production
  publication-title: Bioresour. Technol.
– volume: 633
  start-page: 1105
  year: 2018
  end-page: 1113
  ident: b0095
  article-title: Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41
  publication-title: Sci. Total Environ.
– volume: 481
  start-page: 173
  year: 2014
  end-page: 182
  ident: b0305
  article-title: Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites
  publication-title: Appl. Catal. A
– volume: 48
  start-page: 87
  year: 2007
  end-page: 92
  ident: b0690
  article-title: Review of biomass pyrolysis oil properties and upgrading research
  publication-title: Energy Convers. Manage.
– volume: 41
  start-page: 4209
  year: 2002
  end-page: 4215
  ident: b0100
  article-title: Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 61
  start-page: 276
  year: 2017
  end-page: 282
  ident: b0550
  article-title: Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production
  publication-title: Waste Manage.
– volume: 279
  start-page: 366
  year: 2011
  end-page: 380
  ident: b0455
  article-title: Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units
  publication-title: J. Catal.
– volume: 261
  start-page: 86
  year: 2018
  end-page: 92
  ident: b0125
  article-title: Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5
  publication-title: Bioresour. Technol.
– volume: 97
  start-page: 379
  year: 2012
  end-page: 384
  ident: b0400
  article-title: Production of phenolics and aromatics by pyrolysis of miscanthus
  publication-title: Fuel
– volume: 273
  start-page: 249
  year: 2019
  end-page: 255
  ident: b0010
  article-title: Choreographing boron-aluminum acidity and hierarchical porosity in *BEA zeolite by in-situ hydrothermal synthesis for a highly selective methanol to propylene catalyst
  publication-title: Microporous Mesoporous Mater.
– volume: 8
  start-page: 114
  year: 2018
  end-page: 123
  ident: b0280
  article-title: Cation-exchanged zeolites for the selective oxidation of methane to methanol
  publication-title: Catal. Sci. Technol.
– volume: 127
  start-page: 246
  year: 2017
  end-page: 257
  ident: b0650
  article-title: Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5
  publication-title: J. Anal. Appl. Pyrol.
– volume: 216
  start-page: 386
  year: 2003
  end-page: 395
  ident: b0590
  article-title: Direct conversion of methane under nonoxidative conditions
  publication-title: J. Catal.
– volume: 34
  start-page: 87
  year: 1995
  end-page: 108
  ident: b0205
  article-title: Catalytic coprocessing of biomass-derived pyrolysis vapours and methanol
  publication-title: J. Anal. Appl. Pyrol.
– volume: 123
  start-page: 152
  year: 2017
  end-page: 159
  ident: b0485
  article-title: Microwave pyrolysis of tire powders: evolution of yields and composition of products
  publication-title: J. Anal. Appl. Pyrol.
– volume: 128
  start-page: 170
  year: 2014
  end-page: 179
  ident: b0055
  article-title: Formation of phenolic oligomers during fast pyrolysis of lignin
  publication-title: Fuel
– volume: 293–294
  start-page: 151
  year: 2017
  end-page: 158
  ident: b0200
  article-title: In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5
  publication-title: Catal. Today
– volume: 234
  start-page: 33
  year: 2017
  end-page: 39
  ident: b0560
  article-title: Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 301
  year: 2014
  end-page: 311
  ident: b0130
  article-title: H-ZSM5 catalyzed co-pyrolysis of biomass and plastics
  publication-title: ACS Sustainable Chem. Eng.
– volume: 12
  start-page: 151
  year: 2020
  ident: b0340
  article-title: Temporal anomalies in burned area trends: satellite estimations of the Amazonian 2019 fire crisis
  publication-title: Remote Sensing
– volume: 2
  start-page: 141
  year: 2012
  end-page: 148
  ident: b0475
  article-title: Economic analysis of novel synergistic biofuel (H 2 Bioil) processes
  publication-title: Biomass Conversion
– volume: 204
  start-page: 164
  year: 2016
  end-page: 170
  ident: b0325
  article-title: Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst
  publication-title: Bioresour. Technol.
– volume: 332
  start-page: 127
  year: 2015
  end-page: 137
  ident: b0525
  article-title: Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5
  publication-title: J. Catal.
– volume: 31
  start-page: 9576
  year: 2017
  end-page: 9584
  ident: b0595
  article-title: Synergetic effect of co-pyrolysis of cellulose and polypropylene over an all-silica mesoporous catalyst MCM-41 using thermogravimetry-fourier transform infrared spectroscopy and pyrolysis-gas chromatography–mass spectrometry
  publication-title: Energy Fuels
– volume: 112
  start-page: 48
  year: 2013
  end-page: 56
  ident: b0165
  article-title: Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis
  publication-title: Fuel Process. Technol.
– volume: 49
  start-page: 5109
  year: 1994
  end-page: 5126
  ident: b0520
  article-title: Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification
  publication-title: Chem. Eng. Sci.
– volume: 18
  start-page: 2701
  year: 2016
  end-page: 2708
  ident: b0540
  article-title: Catalytic fast co-pyrolysis of mushroom waste and waste oil to promote the formation of aromatics
  publication-title: Clean Technol. Environ. Policy
– volume: 618
  start-page: 151
  year: 2018
  end-page: 156
  ident: b0675
  article-title: Improving the hydrocarbon production via co-pyrolysis of bagasse with bio-plastic and dual-catalysts layout
  publication-title: Sci. Total Environ.
– volume: 51
  start-page: 983
  year: 2010
  end-page: 987
  ident: b0470
  article-title: The prediction of elemental composition of biomass based on proximate analysis
  publication-title: Energy Convers. Manage.
– volume: 265
  year: 2020
  ident: b0375
  article-title: Interactions between oil shale and hydrogen-rich wastes during co-pyrolysis: 1. Co-pyrolysis of oil shale and polyolefins
  publication-title: Fuel
– volume: 92
  start-page: 195
  year: 2019
  end-page: 202
  ident: b0020
  article-title: Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts
  publication-title: J. Energy Inst.
– volume: 143
  start-page: 151
  year: 2016
  end-page: 161
  ident: b0185
  article-title: Fast pyrolysis of lignocellulosics in a twin screw mixer reactor
  publication-title: Fuel Process. Technol.
– volume: 268
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0120
  article-title: Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis
  publication-title: Bioresour. Technol.
– volume: 285
  start-page: 304
  year: 2012
  end-page: 314
  ident: b0500
  article-title: Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst
  publication-title: J. Catal.
– volume: 19
  start-page: 757
  year: 2017
  end-page: 768
  ident: b0620
  article-title: Co-Pyrolysis of torrefied biomass and methane over molybdenum modified bimetallic HZSM-5 catalyst for hydrocarbons production
  publication-title: Green Chem.
– volume: 81
  start-page: 2087
  year: 2002
  end-page: 2095
  ident: b0285
  article-title: Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals
  publication-title: Fuel
– volume: 87
  start-page: 451
  year: 2008
  end-page: 459
  ident: b0050
  article-title: Catalytic decomposition of biomass tars with iron oxide catalysts
  publication-title: Fuel
– volume: 89
  start-page: 171
  year: 2010
  end-page: 177
  ident: b0530
  article-title: Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis
  publication-title: J. Anal. Appl. Pyrol.
– volume: 42
  start-page: 18434
  year: 2017
  end-page: 18441
  ident: b0270
  article-title: Catalytic co-pyrolysis of polypropylene and Laminaria japonica over zeolitic materials
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 1354
  year: 2016
  end-page: 1363
  ident: b0260
  article-title: Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY
  publication-title: ACS Sustainable Chem. Eng.
– volume: 83
  start-page: 47
  year: 2002
  end-page: 54
  ident: b0365
  article-title: Energy production from biomass (part 2): conversion technologies
  publication-title: Bioresour. Technol.
– volume: 455
  start-page: 114
  year: 2013
  end-page: 121
  ident: b0310
  article-title: Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene
  publication-title: Appl. Catal. A
– volume: 34
  start-page: 504
  year: 2014
  end-page: 512
  ident: b0480
  article-title: The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene
  publication-title: Waste Manage.
– volume: 249
  start-page: 195
  year: 2007
  end-page: 207
  ident: b0060
  article-title: Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species
  publication-title: J. Catal.
– volume: 12
  start-page: 1403
  year: 2020
  end-page: 1412
  ident: b0045
  article-title: Hybridization of ZSM-5 with spinel oxides for biomass vapour upgrading
  publication-title: ChemCatChem
– volume: 207
  start-page: 413
  year: 2017
  end-page: 422
  ident: b0215
  article-title: Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating
  publication-title: Fuel
– volume: 149
  start-page: 966
  year: 2017
  end-page: 973
  ident: b0265
  article-title: Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts
  publication-title: Energy Convers. Manage.
– volume: 115
  year: 2019
  ident: b0410
  article-title: Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes
  publication-title: Renew. Sustain. Energy Rev.
– volume: 188
  start-page: 125
  year: 2016
  ident: b0585
  article-title: Ecological risk assessment of heavy metals in soils surrounding oil waste disposal areas
  publication-title: J. Environ. Monitor. Assessment
– volume: 100
  start-page: 353
  year: 1986
  end-page: 359
  ident: b0390
  article-title: Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane
  publication-title: J. Catal.
– volume: 30
  start-page: 9524
  year: 2016
  end-page: 9531
  ident: b0210
  article-title: Production of high-yield bio-oil with a high effective hydrogen/carbon molar ratio through acidolysis and in situ hydrogenation
  publication-title: Energy & Fuels
– volume: 373
  start-page: 375
  year: 2019
  end-page: 381
  ident: b0445
  article-title: Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties
  publication-title: Chem. Eng. J.
– volume: 395
  start-page: 881
  year: 1998
  end-page: 884
  ident: b0195
  article-title: Energy implications of future stabilization of atmospheric CO2 content
  publication-title: Nature
– volume: 58
  year: 2019
  ident: b0370
  article-title: Catalytic copyrolysis of lignocellulose and polyethylene blends over HBeta zeolite
  publication-title: Ind. Eng. Chem. Res.
– volume: 1
  start-page: 32
  year: 2016
  end-page: 58
  ident: b0570
  article-title: Production of fuels and chemicals from biomass: condensation reactions and beyond
  publication-title: Chem
– volume: 2
  start-page: 485
  year: 2019
  end-page: 494
  ident: b0430
  article-title: Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites
  publication-title: Nat. Catal.
– volume: 14
  start-page: 3114
  year: 2012
  end-page: 3125
  ident: b0090
  article-title: Production of targeted aromatics by using Diels-Alder classes of reactions with furans and olefins over ZSM-5
  publication-title: Green Chem.
– volume: 162
  start-page: 338
  year: 2015
  end-page: 345
  ident: b0135
  article-title: Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling
  publication-title: Appl. Catal. B
– volume: 8
  start-page: 656
  year: 2018
  ident: b0405
  article-title: Increased aromatics formation by the use of high-density polyethylene on the catalytic pyrolysis of mandarin peel over HY and HZSM-5
  publication-title: Catalysts
– volume: 9
  start-page: 3525
  year: 2019
  end-page: 3536
  ident: b0545
  article-title: Effects of the controllable mesostructure of nano-sized ZSM-5 on the co-cracking of phenolic bio-oil model compounds and ethanol
  publication-title: Catal. Sci. Technol.
– volume: 16
  start-page: 662
  year: 2014
  end-page: 674
  ident: b0225
  article-title: Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours
  publication-title: Green Chem.
– volume: 174
  start-page: 317
  year: 2016
  end-page: 324
  ident: b0150
  article-title: Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene
  publication-title: Fuel
– volume: 83
  start-page: 37
  year: 2002
  end-page: 46
  ident: b0360
  article-title: Energy production from biomass (part 1): overview of biomass
  publication-title: Bioresour. Technol.
– volume: 92
  start-page: 448
  year: 2015
  end-page: 458
  ident: b0040
  article-title: In-situ catalytic upgrading of biomass pyrolysis vapor: co-feeding with methanol in a multi-zone fixed bed reactor
  publication-title: Energy Convers. Manage.
– volume: 100
  start-page: 107
  year: 2017
  end-page: 111
  ident: b0080
  article-title: Aggregates of nano-sized ZSM-5 crystals synthesized with template-free and alkali-treated seeds for improving the catalytic performance in MTP reaction
  publication-title: Catal. Commun.
– volume: 3
  start-page: 2456
  year: 2013
  end-page: 2473
  ident: b0420
  article-title: Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion
  publication-title: ACS Catal.
– volume: 91
  start-page: 1446
  year: 2010
  end-page: 1458
  ident: b0380
  article-title: Catalytic pyrolysis-GC/MS of lignin from several sources
  publication-title: Fuel Process. Technol.
– volume: 160
  start-page: 577
  year: 2015
  end-page: 582
  ident: b0580
  article-title: Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production
  publication-title: Fuel
– volume: 3
  start-page: 1805
  year: 2010
  end-page: 1820
  ident: b0345
  article-title: Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study
  publication-title: Energies
– volume: 90
  start-page: 292
  year: 2018
  end-page: 315
  ident: b0415
  article-title: Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass
  publication-title: Renew. Sustain. Energy Rev.
– volume: 134
  start-page: 209
  year: 2018
  end-page: 217
  ident: b0600
  article-title: Segmented catalytic co-pyrolysis of biomass and high-density polyethylene for aromatics production with MgCl2 and HZSM-5
  publication-title: J. Anal. Appl. Pyrol.
– volume: 247
  start-page: 804
  year: 2018
  end-page: 811
  ident: b0575
  article-title: Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 2096
  year: 2016
  end-page: 2105
  ident: b0440
  article-title: Mg-modified ultra-stable Y type zeolite for the rapid catalytic co-pyrolysis of low-rank coal and biomass
  publication-title: RSC Adv.
– reference: Weitkamp, J., Hunger, M. 2007. Chapter 22 – acid and base catalysis on zeolites. In: Studies in Surface Science and Catalysis, (Eds.) J. Čejka, H. van Bekkum, A. Corma, F. Schüth, Vol. 168, Elsevier, pp. 787–835.
– volume: 57
  start-page: 95
  year: 1999
  end-page: 102
  ident: b0245
  article-title: Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit
  publication-title: Catal. Lett.
– volume: 120
  start-page: 484
  year: 2016
  end-page: 492
  ident: b0615
  article-title: Integration of biomass catalytic pyrolysis and methane aromatization over Mo/HZSM-5 catalysts
  publication-title: J. Anal. Appl. Pyrol.
– volume: 5
  start-page: 30485
  year: 2015
  end-page: 30494
  ident: b0625
  article-title: Thermally stable phosphorus and nickel modified ZSM-5 zeolites for catalytic co-pyrolysis of biomass and plastics
  publication-title: RSC Adv.
– volume: 225
  start-page: 199
  year: 2017
  end-page: 205
  ident: b0155
  article-title: Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality
  publication-title: Bioresour. Technol.
– volume: 168
  start-page: 203
  year: 2015
  end-page: 211
  ident: b0635
  article-title: Effect of biomass ash in catalytic fast pyrolysis of pine wood
  publication-title: Appl. Catal. B
– volume: 303
  start-page: 200
  year: 2018
  end-page: 206
  ident: b0460
  article-title: Effect of methane co-feeding on product selectivity of catalytic pyrolysis of biomass
  publication-title: Catal. Today
– volume: 124
  start-page: 470
  year: 2012
  end-page: 477
  ident: b0070
  article-title: A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis
  publication-title: Bioresour. Technol.
– volume: 129
  start-page: 195
  year: 2018
  end-page: 203
  ident: b0385
  article-title: Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: catalyst deactivation and coke formation
  publication-title: J. Anal. Appl. Pyrol.
– year: 2019
  ident: b0700
  article-title: Optimizing the aromatic yield via catalytic fast co-pyrolysis of rice straw and waste oil over HZSM-5 catalysts
  publication-title: Energy Fuels
– volume: 189
  start-page: 30
  year: 2015
  end-page: 35
  ident: b0655
  article-title: Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: analytical Py–GC/MS study
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 4952
  year: 2012
  end-page: 5001
  ident: b0240
  article-title: Biofuels production through biomass pyrolysis—a technological review
  publication-title: Energies
– volume: 123
  start-page: 25
  year: 2019
  end-page: 33
  ident: b0250
  article-title: Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology
  publication-title: Biomass Bioenergy
– volume: 6
  start-page: 2608
  year: 2016
  end-page: 2621
  ident: b0685
  article-title: Catalytic deoxygenation of bio-oil model compounds over acid-base bifunctional catalysts
  publication-title: ACS Catal.
– volume: 241
  start-page: 79
  year: 2017
  end-page: 88
  ident: b0015
  article-title: Effect of multi-step desilication and dealumination treatments on the performance of hierarchical EU-1 zeolite for converting methanol to olefins
  publication-title: Microporous Mesoporous Mater.
– volume: 151
  start-page: 116
  year: 2017
  end-page: 122
  ident: b0435
  article-title: In-situ catalytic co-pyrolysis of yellow poplar and high-density polyethylene over mesoporous catalysts
  publication-title: Energy Convers. Manage.
– volume: 51
  start-page: 1025
  year: 2010
  end-page: 1032
  ident: b0335
  article-title: Influence of ZSM-5 zeolite on the pyrolytic intermediates from the co-pyrolysis of pubescens and LDPE
  publication-title: Energy Convers. Manage.
– volume: 172
  start-page: 154
  year: 2015
  end-page: 164
  ident: b0300
  article-title: Maximizing carbon efficiency of petrochemical production from catalytic co-pyrolysis of biomass and plastics using gallium-containing MFI zeolites
  publication-title: Appl. Catal. B
– volume: 487
  start-page: 45
  year: 2014
  end-page: 53
  ident: b0715
  article-title: Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene
  publication-title: Appl. Catal. A
– volume: 298
  start-page: 46
  year: 2017
  end-page: 52
  ident: b0275
  article-title: Catalytic co-pyrolysis of biomass carbohydrates with LLDPE over Al-SBA-15 and mesoporous ZSM-5
  publication-title: Catal. Today
– volume: 129
  start-page: 202
  year: 2013
  end-page: 213
  ident: b0330
  article-title: Study on the effect of metal types in (Me)-Al-MCM-41 on the mesoporous structure and catalytic behavior during the vapor-catalyzed co-pyrolysis of pubescens and LDPE
  publication-title: Appl. Catal. B
– volume: 16
  start-page: 2580
  year: 2014
  end-page: 2586
  ident: b0710
  article-title: Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production
  publication-title: Green Chem.
– volume: 116
  start-page: 223
  year: 2015
  end-page: 230
  ident: b0315
  article-title: Effects of phosphorus-modified HZSM-5 on distribution of hydrocarbon compounds from wood–plastic composite pyrolysis using Py-GC/MS
  publication-title: J. Anal. Appl. Pyrol.
– volume: 221
  start-page: 645
  year: 2016
  end-page: 655
  ident: b0175
  article-title: Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil
  publication-title: Bioresour. Technol.
– volume: 159
  start-page: 810
  year: 2015
  end-page: 818
  ident: b0030
  article-title: Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor
  publication-title: Fuel
– volume: 6
  start-page: 514
  year: 2013
  end-page: 538
  ident: b0115
  article-title: Catalytic fast pyrolysis: a review
  publication-title: Energies
– volume: 94
  start-page: 209
  year: 2012
  end-page: 214
  ident: b0295
  article-title: Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil
  publication-title: J. Anal. Appl. Pyrol.
– volume: 330
  start-page: 1222
  year: 2010
  ident: b0515
  article-title: Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils
  publication-title: Science
– volume: 20
  start-page: 567
  year: 2018
  end-page: 582
  ident: b0220
  article-title: Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading
  publication-title: Green Chem.
– volume: 13
  start-page: 1068
  year: 2007
  end-page: 1078
  ident: b0355
  article-title: Implications of CO2 fertilization for future climate change in a coupled climate–carbon model
  publication-title: Glob. Change Biol.
– volume: 123
  start-page: 224
  year: 2017
  end-page: 228
  ident: b0555
  article-title: Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production
  publication-title: J. Anal. Appl. Pyrol.
– volume: 87
  start-page: 71
  year: 2014
  end-page: 85
  ident: b0005
  article-title: A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil
  publication-title: Energy Convers. Manage.
– volume: 4
  start-page: e7
  year: 2020
  end-page: e8
  ident: b0645
  article-title: Bushfires in Australia: a serious health emergency under climate change
  publication-title: Lancet Planet. Health
– volume: 73
  start-page: 9
  year: 1982
  end-page: 19
  ident: b0255
  article-title: Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts
  publication-title: J. Catal.
– volume: 7
  start-page: 289
  year: 2017
  end-page: 304
  ident: b0190
  article-title: Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides
  publication-title: Biomass Convers. Biorefin.
– volume: 59
  start-page: 23
  year: 2012
  end-page: 31
  ident: b0035
  article-title: Influence of temperature on biomass pyrolysis in a conical spouted bed reactor
  publication-title: Resour. Conserv. Recycl.
– volume: 173
  start-page: 418
  year: 2016
  end-page: 430
  ident: b0695
  article-title: Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions
  publication-title: Appl. Energy
– volume: 44
  start-page: 436
  year: 2019
  end-page: 437
  ident: b0110
  article-title: Waste-plastic processing provides global challenges and opportunities
  publication-title: MRS Bull.
– volume: 458
  start-page: 1163
  year: 2009
  end-page: 1166
  ident: b0025
  article-title: Warming caused by cumulative carbon emissions towards the trillionth tonne
  publication-title: Nature
– volume: 57
  start-page: 1596
  year: 2016
  end-page: 1610
  ident: b0630
  article-title: Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass
  publication-title: Renewable Sustainable Energy Rev.
– start-page: 263
  year: 2016
  end-page: 287
  ident: b0425
  article-title: Bio-oil production and upgrading: new challenges for membrane applications.
  publication-title: Membrane Technologies for Biorefining
– volume: 171
  start-page: 1202
  year: 2018
  end-page: 1212
  ident: b0450
  article-title: Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels
  publication-title: Energy Convers. Manage.
– volume: 103
  start-page: 513
  year: 2016
  end-page: 521
  ident: b0075
  article-title: Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis
  publication-title: Energy
– volume: 4
  start-page: 2297
  year: 2011
  end-page: 2307
  ident: b0670
  article-title: Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio
  publication-title: Energy Environ. Sci.
– volume: 129
  start-page: 81
  year: 2016
  end-page: 88
  ident: b0290
  article-title: Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene
  publication-title: Energy Convers. Manage.
– volume: 127
  start-page: 281
  year: 2012
  end-page: 290
  ident: b0230
  article-title: Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite
  publication-title: Appl. Catal. B
– volume: 4
  start-page: 2874
  year: 2014
  end-page: 2888
  ident: b0395
  article-title: Ketonization of carboxylic acids in biomass conversion over TiO2 and ZrO2 surfaces: a DFT perspective
  publication-title: ACS Catal.
– start-page: 611
  year: 1997
  end-page: 621
  ident: b0145
  article-title: Liquid fuels by low-severity hydrotreating of biocrude
  publication-title: Developments in Thermochemical Biomass Conversion
– volume: 26
  start-page: 7347
  year: 2012
  end-page: 7353
  ident: b0490
  article-title: Catalytic pyrolysis of torrefied biomass for hydrocarbons production
  publication-title: Energy Fuels
– volume: 35
  start-page: 835
  year: 2011
  end-page: 862
  ident: b0510
  article-title: Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—an overview
  publication-title: Int. J. Energy Res.
– volume: 14
  start-page: 98
  year: 2012
  end-page: 110
  ident: b0665
  article-title: Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor
  publication-title: Green Chem.
– volume: 15
  issue: 3
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0350
  article-title: Pyrolysis of agricultural biomass using an auger reactor: a parametric optimization
  publication-title: Int. J. Chem. Reactor Eng.
  doi: 10.1515/ijcre-2016-0133
– volume: 29
  start-page: 285
  issue: 1
  year: 1996
  ident: 10.1016/j.biortech.2020.123457_b0065
  article-title: Production of high grade fuels and chemicals from catalytic pyrolysis of biomass
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(95)00294-4
– volume: 458
  start-page: 1163
  issue: 7242
  year: 2009
  ident: 10.1016/j.biortech.2020.123457_b0025
  article-title: Warming caused by cumulative carbon emissions towards the trillionth tonne
  publication-title: Nature
  doi: 10.1038/nature08019
– volume: 16
  start-page: 2580
  issue: 5
  year: 2014
  ident: 10.1016/j.biortech.2020.123457_b0710
  article-title: Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production
  publication-title: Green Chem.
  doi: 10.1039/c3gc42251h
– volume: 293–294
  start-page: 151
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0200
  article-title: In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.11.045
– volume: 249
  start-page: 69
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0705
  article-title: Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.184
– volume: 115
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0410
  article-title: Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109400
– volume: 273
  start-page: 249
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0010
  article-title: Choreographing boron-aluminum acidity and hierarchical porosity in *BEA zeolite by in-situ hydrothermal synthesis for a highly selective methanol to propylene catalyst
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2018.06.036
– volume: 225
  start-page: 199
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0155
  article-title: Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.11.072
– volume: 216
  start-page: 386
  issue: 1–2
  year: 2003
  ident: 10.1016/j.biortech.2020.123457_b0590
  article-title: Direct conversion of methane under nonoxidative conditions
  publication-title: J. Catal.
  doi: 10.1016/S0021-9517(02)00124-0
– volume: 112
  start-page: 48
  year: 2013
  ident: 10.1016/j.biortech.2020.123457_b0165
  article-title: Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2013.02.022
– volume: 172
  start-page: 154
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0300
  article-title: Maximizing carbon efficiency of petrochemical production from catalytic co-pyrolysis of biomass and plastics using gallium-containing MFI zeolites
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.02.015
– volume: 8
  start-page: 114
  issue: 1
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0280
  article-title: Cation-exchanged zeolites for the selective oxidation of methane to methanol
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY01229B
– volume: 51
  start-page: 1025
  issue: 5
  year: 2010
  ident: 10.1016/j.biortech.2020.123457_b0335
  article-title: Influence of ZSM-5 zeolite on the pyrolytic intermediates from the co-pyrolysis of pubescens and LDPE
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2009.12.005
– volume: 134
  start-page: 209
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0600
  article-title: Segmented catalytic co-pyrolysis of biomass and high-density polyethylene for aromatics production with MgCl2 and HZSM-5
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2018.06.010
– volume: 116
  start-page: 223
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0315
  article-title: Effects of phosphorus-modified HZSM-5 on distribution of hydrocarbon compounds from wood–plastic composite pyrolysis using Py-GC/MS
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2015.09.007
– volume: 261
  start-page: 86
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0125
  article-title: Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.03.138
– volume: 90
  start-page: 292
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0415
  article-title: Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.048
– volume: 123
  start-page: 224
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0555
  article-title: Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2016.11.025
– start-page: 263
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0425
  article-title: Bio-oil production and upgrading: new challenges for membrane applications.
– volume: 16
  start-page: 662
  issue: 2
  year: 2014
  ident: 10.1016/j.biortech.2020.123457_b0225
  article-title: Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours
  publication-title: Green Chem.
  doi: 10.1039/C3GC41575A
– volume: 279
  start-page: 257
  issue: 2
  year: 2011
  ident: 10.1016/j.biortech.2020.123457_b0235
  article-title: Investigation into the shape selectivity of zeolite catalysts for biomass conversion
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.01.019
– volume: 151
  start-page: 116
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0435
  article-title: In-situ catalytic co-pyrolysis of yellow poplar and high-density polyethylene over mesoporous catalysts
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.08.073
– volume: 87
  start-page: 71
  year: 2014
  ident: 10.1016/j.biortech.2020.123457_b0005
  article-title: A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.07.007
– volume: 44
  start-page: 436
  issue: 6
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0110
  article-title: Waste-plastic processing provides global challenges and opportunities
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2019.133
– volume: 26
  start-page: 7347
  issue: 12
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0490
  article-title: Catalytic pyrolysis of torrefied biomass for hydrocarbons production
  publication-title: Energy Fuels
  doi: 10.1021/ef301469t
– volume: 395
  start-page: 881
  issue: 6705
  year: 1998
  ident: 10.1016/j.biortech.2020.123457_b0195
  article-title: Energy implications of future stabilization of atmospheric CO2 content
  publication-title: Nature
  doi: 10.1038/27638
– volume: 81
  start-page: 2087
  issue: 16
  year: 2002
  ident: 10.1016/j.biortech.2020.123457_b0285
  article-title: Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals
  publication-title: Fuel
  doi: 10.1016/S0016-2361(02)00195-3
– volume: 97
  start-page: 379
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0400
  article-title: Production of phenolics and aromatics by pyrolysis of miscanthus
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.01.075
– volume: 51
  start-page: 983
  issue: 5
  year: 2010
  ident: 10.1016/j.biortech.2020.123457_b0470
  article-title: The prediction of elemental composition of biomass based on proximate analysis
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2009.11.039
– volume: 19
  start-page: 757
  issue: 3
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0620
  article-title: Co-Pyrolysis of torrefied biomass and methane over molybdenum modified bimetallic HZSM-5 catalyst for hydrocarbons production
  publication-title: Green Chem.
  doi: 10.1039/C6GC02497A
– volume: 5
  issue: 1
  year: 2007
  ident: 10.1016/j.biortech.2020.123457_b0505
  article-title: Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil
  publication-title: Int. J. Chem. Reactor Eng.
  doi: 10.2202/1542-6580.1559
– volume: 198
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0640
  article-title: Two-step catalytic co-pyrolysis of walnut shell and LDPE for aromatic-rich oil
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.111816
– year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0700
  article-title: Optimizing the aromatic yield via catalytic fast co-pyrolysis of rice straw and waste oil over HZSM-5 catalysts
  publication-title: Energy Fuels
– volume: 5
  start-page: 30485
  issue: 39
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0625
  article-title: Thermally stable phosphorus and nickel modified ZSM-5 zeolites for catalytic co-pyrolysis of biomass and plastics
  publication-title: RSC Adv.
  doi: 10.1039/C5RA02947C
– volume: 100
  start-page: 353
  issue: 2
  year: 1986
  ident: 10.1016/j.biortech.2020.123457_b0390
  article-title: Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(86)90102-8
– volume: 3
  start-page: 2456
  issue: 11
  year: 2013
  ident: 10.1016/j.biortech.2020.123457_b0420
  article-title: Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion
  publication-title: ACS Catal.
  doi: 10.1021/cs400501h
– volume: 35
  start-page: 835
  issue: 10
  year: 2011
  ident: 10.1016/j.biortech.2020.123457_b0510
  article-title: Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—an overview
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1804
– volume: 2
  start-page: 485
  issue: 6
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0430
  article-title: Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0273-z
– volume: 1
  start-page: 32
  issue: 1
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0570
  article-title: Production of fuels and chemicals from biomass: condensation reactions and beyond
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.05.002
– volume: 133
  start-page: 147
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0660
  article-title: Catalytic fast co-pyrolysis of biomass and fusel alcohol to enhance aromatic hydrocarbon production over ZSM-5 catalyst in a fluidized bed reactor
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2018.04.009
– volume: 6
  start-page: 2608
  issue: 4
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0685
  article-title: Catalytic deoxygenation of bio-oil model compounds over acid-base bifunctional catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00245
– volume: 174
  start-page: 317
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0150
  article-title: Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.02.031
– volume: 159
  start-page: 810
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0030
  article-title: Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.07.039
– volume: 49
  start-page: 5109
  issue: 24
  year: 1994
  ident: 10.1016/j.biortech.2020.123457_b0520
  article-title: Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(94)00392-0
– volume: 123
  start-page: 152
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0485
  article-title: Microwave pyrolysis of tire powders: evolution of yields and composition of products
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2016.12.012
– volume: 128
  start-page: 170
  year: 2014
  ident: 10.1016/j.biortech.2020.123457_b0055
  article-title: Formation of phenolic oligomers during fast pyrolysis of lignin
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.03.013
– volume: 8
  start-page: 656
  issue: 12
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0405
  article-title: Increased aromatics formation by the use of high-density polyethylene on the catalytic pyrolysis of mandarin peel over HY and HZSM-5
  publication-title: Catalysts
  doi: 10.3390/catal8120656
– volume: 83
  start-page: 37
  issue: 1
  year: 2002
  ident: 10.1016/j.biortech.2020.123457_b0360
  article-title: Energy production from biomass (part 1): overview of biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(01)00118-3
– ident: 10.1016/j.biortech.2020.123457_b0565
  doi: 10.1016/S0167-2991(07)80810-X
– volume: 87
  start-page: 451
  issue: 4
  year: 2008
  ident: 10.1016/j.biortech.2020.123457_b0050
  article-title: Catalytic decomposition of biomass tars with iron oxide catalysts
  publication-title: Fuel
  doi: 10.1016/j.fuel.2007.06.021
– volume: 298
  start-page: 46
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0275
  article-title: Catalytic co-pyrolysis of biomass carbohydrates with LLDPE over Al-SBA-15 and mesoporous ZSM-5
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.06.006
– volume: 12
  start-page: 151
  issue: 1
  year: 2020
  ident: 10.1016/j.biortech.2020.123457_b0340
  article-title: Temporal anomalies in burned area trends: satellite estimations of the Amazonian 2019 fire crisis
  publication-title: Remote Sensing
  doi: 10.3390/rs12010151
– volume: 3
  start-page: 1805
  issue: 11
  year: 2010
  ident: 10.1016/j.biortech.2020.123457_b0345
  article-title: Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study
  publication-title: Energies
  doi: 10.3390/en3111805
– volume: 303
  start-page: 200
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0460
  article-title: Effect of methane co-feeding on product selectivity of catalytic pyrolysis of biomass
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.09.009
– volume: 285
  start-page: 304
  issue: 1
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0500
  article-title: Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.10.004
– volume: 127
  start-page: 246
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0650
  article-title: Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2017.07.027
– volume: 91
  start-page: 1446
  issue: 11
  year: 2010
  ident: 10.1016/j.biortech.2020.123457_b0380
  article-title: Catalytic pyrolysis-GC/MS of lignin from several sources
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2010.05.022
– volume: 100
  start-page: 107
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0080
  article-title: Aggregates of nano-sized ZSM-5 crystals synthesized with template-free and alkali-treated seeds for improving the catalytic performance in MTP reaction
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.06.048
– volume: 241
  start-page: 1118
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0160
  article-title: Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.05.129
– start-page: 611
  year: 1997
  ident: 10.1016/j.biortech.2020.123457_b0145
  article-title: Liquid fuels by low-severity hydrotreating of biocrude
– volume: 207
  start-page: 413
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0215
  article-title: Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.06.098
– volume: 336
  start-page: 79
  issue: 1–2
  year: 2008
  ident: 10.1016/j.biortech.2020.123457_b0495
  article-title: Methane dehydro-aromatization on Mo/ZSM-5: about the hidden role of Brønsted acid sites
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2007.08.026
– volume: 166
  start-page: 227
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0605
  article-title: Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.10.125
– volume: 455
  start-page: 114
  year: 2013
  ident: 10.1016/j.biortech.2020.123457_b0310
  article-title: Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2013.01.038
– volume: 330
  start-page: 1222
  issue: 6008
  year: 2010
  ident: 10.1016/j.biortech.2020.123457_b0515
  article-title: Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils
  publication-title: Science
  doi: 10.1126/science.1194218
– volume: 92
  start-page: 448
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0040
  article-title: In-situ catalytic upgrading of biomass pyrolysis vapor: co-feeding with methanol in a multi-zone fixed bed reactor
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.12.082
– volume: 48
  start-page: 87
  issue: 1
  year: 2007
  ident: 10.1016/j.biortech.2020.123457_b0690
  article-title: Review of biomass pyrolysis oil properties and upgrading research
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2006.05.010
– volume: 249
  start-page: 195
  issue: 2
  year: 2007
  ident: 10.1016/j.biortech.2020.123457_b0060
  article-title: Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2007.04.006
– volume: 127
  start-page: 281
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0230
  article-title: Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2012.08.030
– volume: 18
  start-page: 2701
  issue: 8
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0540
  article-title: Catalytic fast co-pyrolysis of mushroom waste and waste oil to promote the formation of aromatics
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-016-1162-7
– volume: 234
  start-page: 33
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0560
  article-title: Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.010
– volume: 5
  start-page: 4952
  issue: 12
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0240
  article-title: Biofuels production through biomass pyrolysis—a technological review
  publication-title: Energies
  doi: 10.3390/en5124952
– volume: 123
  start-page: 25
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0250
  article-title: Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2019.01.014
– volume: 332
  start-page: 127
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0525
  article-title: Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.10.001
– volume: 94
  start-page: 209
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0295
  article-title: Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2011.12.015
– volume: 633
  start-page: 1105
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0095
  article-title: Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.239
– volume: 9
  start-page: 3525
  issue: 13
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0545
  article-title: Effects of the controllable mesostructure of nano-sized ZSM-5 on the co-cracking of phenolic bio-oil model compounds and ethanol
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY00576E
– volume: 481
  start-page: 173
  year: 2014
  ident: 10.1016/j.biortech.2020.123457_b0305
  article-title: Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2014.05.015
– volume: 89
  start-page: 171
  issue: 2
  year: 2010
  ident: 10.1016/j.biortech.2020.123457_b0530
  article-title: Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2010.07.008
– volume: 73
  start-page: 9
  issue: 1
  year: 1982
  ident: 10.1016/j.biortech.2020.123457_b0255
  article-title: Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(82)90075-6
– volume: 14
  start-page: 3114
  issue: 11
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0090
  article-title: Production of targeted aromatics by using Diels-Alder classes of reactions with furans and olefins over ZSM-5
  publication-title: Green Chem.
  doi: 10.1039/c2gc35767d
– volume: 2
  start-page: 301
  issue: 2
  year: 2014
  ident: 10.1016/j.biortech.2020.123457_b0130
  article-title: H-ZSM5 catalyzed co-pyrolysis of biomass and plastics
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc400354g
– volume: 34
  start-page: 504
  issue: 2
  year: 2014
  ident: 10.1016/j.biortech.2020.123457_b0480
  article-title: The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2013.10.036
– volume: 221
  start-page: 645
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0175
  article-title: Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.09.026
– volume: 241
  start-page: 207
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0140
  article-title: Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.04.104
– volume: 189
  start-page: 30
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0655
  article-title: Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: analytical Py–GC/MS study
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.03.092
– volume: 4
  start-page: 2297
  issue: 6
  year: 2011
  ident: 10.1016/j.biortech.2020.123457_b0670
  article-title: Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01230d
– volume: 92
  start-page: 195
  issue: 1
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0020
  article-title: Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2017.10.009
– volume: 129
  start-page: 202
  year: 2013
  ident: 10.1016/j.biortech.2020.123457_b0330
  article-title: Study on the effect of metal types in (Me)-Al-MCM-41 on the mesoporous structure and catalytic behavior during the vapor-catalyzed co-pyrolysis of pubescens and LDPE
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2012.09.002
– volume: 124
  start-page: 470
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0070
  article-title: A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.08.089
– volume: 4
  start-page: 2874
  issue: 9
  year: 2014
  ident: 10.1016/j.biortech.2020.123457_b0395
  article-title: Ketonization of carboxylic acids in biomass conversion over TiO2 and ZrO2 surfaces: a DFT perspective
  publication-title: ACS Catal.
  doi: 10.1021/cs500791w
– volume: 366
  start-page: 330
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0465
  article-title: In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.055
– volume: 42
  start-page: 18434
  issue: 29
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0270
  article-title: Catalytic co-pyrolysis of polypropylene and Laminaria japonica over zeolitic materials
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.139
– volume: 129
  start-page: 81
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0290
  article-title: Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.10.001
– volume: 31
  start-page: 9576
  issue: 9
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0595
  article-title: Synergetic effect of co-pyrolysis of cellulose and polypropylene over an all-silica mesoporous catalyst MCM-41 using thermogravimetry-fourier transform infrared spectroscopy and pyrolysis-gas chromatography–mass spectrometry
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b01651
– volume: 14
  start-page: 98
  issue: 1
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0665
  article-title: Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor
  publication-title: Green Chem.
  doi: 10.1039/C1GC15619E
– volume: 139
  start-page: 222
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0535
  article-title: Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: Analytical PY-GC/MS study
  publication-title: J. Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.02.047
– volume: 2
  start-page: 141
  issue: 2
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0475
  article-title: Economic analysis of novel synergistic biofuel (H 2 Bioil) processes
  publication-title: Biomass Conversion
  doi: 10.1007/s13399-012-0043-5
– volume: 247
  start-page: 804
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0575
  article-title: Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.178
– volume: 204
  start-page: 164
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0325
  article-title: Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.12.085
– volume: 79
  start-page: 38
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0320
  article-title: Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2018.07.021
– volume: 284
  start-page: 406
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0180
  article-title: Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.03.137
– volume: 57
  start-page: 95
  issue: 3
  year: 1999
  ident: 10.1016/j.biortech.2020.123457_b0245
  article-title: Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit
  publication-title: Catal. Lett.
  doi: 10.1023/A:1019087313679
– volume: 302
  start-page: 2
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0170
  article-title: Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.03.008
– volume: 487
  start-page: 45
  year: 2014
  ident: 10.1016/j.biortech.2020.123457_b0715
  article-title: Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2014.09.009
– volume: 160
  start-page: 577
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0580
  article-title: Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.08.020
– volume: 6
  start-page: 514
  issue: 1
  year: 2013
  ident: 10.1016/j.biortech.2020.123457_b0115
  article-title: Catalytic fast pyrolysis: a review
  publication-title: Energies
  doi: 10.3390/en6010514
– volume: 129
  start-page: 195
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0385
  article-title: Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: catalyst deactivation and coke formation
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2017.11.012
– volume: 6
  start-page: 2096
  issue: 3
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0440
  article-title: Mg-modified ultra-stable Y type zeolite for the rapid catalytic co-pyrolysis of low-rank coal and biomass
  publication-title: RSC Adv.
  doi: 10.1039/C5RA24395E
– volume: 61
  start-page: 276
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0550
  article-title: Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2017.01.010
– volume: 57
  start-page: 1596
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0630
  article-title: Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2015.12.202
– volume: 17
  start-page: 4680
  issue: 9
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0105
  article-title: Design and operation of a pilot-scale catalytic biomass pyrolysis unit
  publication-title: Green Chem.
  doi: 10.1039/C5GC01023C
– volume: 20
  start-page: 567
  issue: 3
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0220
  article-title: Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading
  publication-title: Green Chem.
  doi: 10.1039/C7GC02947K
– volume: 120
  start-page: 484
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0615
  article-title: Integration of biomass catalytic pyrolysis and methane aromatization over Mo/HZSM-5 catalysts
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2016.06.021
– volume: 143
  start-page: 151
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0185
  article-title: Fast pyrolysis of lignocellulosics in a twin screw mixer reactor
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2015.11.003
– volume: 192
  start-page: 68
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0680
  article-title: Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.05.040
– volume: 268
  start-page: 1
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0120
  article-title: Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.07.108
– volume: 13
  start-page: 1068
  issue: 5
  year: 2007
  ident: 10.1016/j.biortech.2020.123457_b0355
  article-title: Implications of CO2 fertilization for future climate change in a coupled climate–carbon model
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2007.01343.x
– volume: 7
  start-page: 289
  issue: 3
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0190
  article-title: Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides
  publication-title: Biomass Convers. Biorefin.
  doi: 10.1007/s13399-017-0266-6
– volume: 149
  start-page: 966
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0265
  article-title: Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.04.033
– volume: 373
  start-page: 375
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0445
  article-title: Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.049
– volume: 618
  start-page: 151
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0675
  article-title: Improving the hydrocarbon production via co-pyrolysis of bagasse with bio-plastic and dual-catalysts layout
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.045
– volume: 4
  start-page: 1354
  issue: 3
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0260
  article-title: Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01381
– volume: 265
  year: 2020
  ident: 10.1016/j.biortech.2020.123457_b0375
  article-title: Interactions between oil shale and hydrogen-rich wastes during co-pyrolysis: 1. Co-pyrolysis of oil shale and polyolefins
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116994
– volume: 34
  start-page: 87
  issue: 1
  year: 1995
  ident: 10.1016/j.biortech.2020.123457_b0205
  article-title: Catalytic coprocessing of biomass-derived pyrolysis vapours and methanol
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/0165-2370(94)00877-4
– volume: Vol. 376
  start-page: 277
  year: 1988
  ident: 10.1016/j.biortech.2020.123457_b0085
  publication-title: Fluidized-bed Upgrading of Wood Pyrolysis Liquids and Related Compounds
– volume: 58
  issue: 16
  year: 2019
  ident: 10.1016/j.biortech.2020.123457_b0370
  article-title: Catalytic copyrolysis of lignocellulose and polyethylene blends over HBeta zeolite
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b06158
– volume: 41
  start-page: 4209
  issue: 17
  year: 2002
  ident: 10.1016/j.biortech.2020.123457_b0100
  article-title: Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020107q
– volume: 4
  start-page: e7
  issue: 1
  year: 2020
  ident: 10.1016/j.biortech.2020.123457_b0645
  article-title: Bushfires in Australia: a serious health emergency under climate change
  publication-title: Lancet Planet. Health
  doi: 10.1016/S2542-5196(19)30267-0
– volume: 173
  start-page: 418
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0695
  article-title: Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.04.071
– volume: 59
  start-page: 23
  year: 2012
  ident: 10.1016/j.biortech.2020.123457_b0035
  article-title: Influence of temperature on biomass pyrolysis in a conical spouted bed reactor
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2011.04.002
– volume: 279
  start-page: 366
  issue: 2
  year: 2011
  ident: 10.1016/j.biortech.2020.123457_b0455
  article-title: Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.02.007
– volume: 103
  start-page: 513
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0075
  article-title: Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.015
– volume: 30
  start-page: 9524
  issue: 11
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0210
  article-title: Production of high-yield bio-oil with a high effective hydrogen/carbon molar ratio through acidolysis and in situ hydrogenation
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.6b02250
– volume: 241
  start-page: 79
  year: 2017
  ident: 10.1016/j.biortech.2020.123457_b0015
  article-title: Effect of multi-step desilication and dealumination treatments on the performance of hierarchical EU-1 zeolite for converting methanol to olefins
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2016.12.008
– volume: 168
  start-page: 203
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0635
  article-title: Effect of biomass ash in catalytic fast pyrolysis of pine wood
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.12.044
– volume: 83
  start-page: 47
  issue: 1
  year: 2002
  ident: 10.1016/j.biortech.2020.123457_b0365
  article-title: Energy production from biomass (part 2): conversion technologies
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(01)00119-5
– volume: 162
  start-page: 338
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0135
  article-title: Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.07.006
– volume: 188
  start-page: 125
  issue: 2
  year: 2016
  ident: 10.1016/j.biortech.2020.123457_b0585
  article-title: Ecological risk assessment of heavy metals in soils surrounding oil waste disposal areas
  publication-title: J. Environ. Monitor. Assessment
  doi: 10.1007/s10661-016-5093-x
– volume: 156
  start-page: 40
  year: 2015
  ident: 10.1016/j.biortech.2020.123457_b0610
  article-title: Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.04.033
– volume: 12
  start-page: 1403
  issue: 5
  year: 2020
  ident: 10.1016/j.biortech.2020.123457_b0045
  article-title: Hybridization of ZSM-5 with spinel oxides for biomass vapour upgrading
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201902023
– volume: 171
  start-page: 1202
  year: 2018
  ident: 10.1016/j.biortech.2020.123457_b0450
  article-title: Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.06.053
SSID ssj0003172
Score 2.6531134
SecondaryResourceType review_article
Snippet [Display omitted] •Catalytic co-pyrolysis of biomass and high-rich feedstock is reviewed.•Synergistic interaction between hydrogen donor feedstock and biomass...
The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123457
SubjectTerms Active sites
Biofuels
Biomass
Biomass deoxygenation
carbon
Catalysis
catalysts
Co-pyrolysis
commercialization
cost effectiveness
depolymerization
ethanol
feedstocks
fossil fuels
Hot Temperature
Hydrogen
Hydrogen transfer
lignocellulose
lubricants
methane
methanol
oils
oxygen
porous media
Pyrolysis
pyrolysis oils
reaction mechanisms
research and development
silica
solid wastes
synergism
technology
tires
waste utilization
Zeolite
zeolites
Title A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism
URI https://dx.doi.org/10.1016/j.biortech.2020.123457
https://www.ncbi.nlm.nih.gov/pubmed/32371033
https://www.proquest.com/docview/2399236730
https://www.proquest.com/docview/2524252888
Volume 310
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB612wNwQFBey6MyEkfS3Y3tJOa2WlFtQeoFKu0tih-hKTRZbdLDXvgv_FNmHGcpEtADxyS2Y2XGns_xN58B3qSFnmoc0JFXuxWujCOtXBGZkjjviEBc4dkWZ8nyXHxYydUeLIZcGKJVhrm_n9P9bB3uTMLXnKyravKJwHcmMcSQn8ZqtQ8HMVeJHMHB_PTj8mw3IWOI9JsJWD6iCjcShS-PdUWkVr8vEZPWAhcUqf4co_6GQX0sOnkA9wOIZPO-nw9hz9WHcG_-ZROENNwh3FkMJ7nhkxuig4_gx5z1-SqsqdlAAWD-N84W22OmidbbTeOlSlhTMkrQR4TNitqyi63dNOhyEb7pgpUY-RA7mq_v2Gnd0iq_ZVXdNazdUkahl4BmPWHkbXhB2zH7i6bk20TU6nMr2JWjLOSqvXoM5yfvPy-WUTioITK4POsiIWxZqtLMEqldKung6lRn3GSpMHGmZ1wIKZ1KlJ6akiPo4lKkZcGLmVNScMufwKhuavcMmMosmtNMjbUG46vQJGaJIAZRWqZswscgB9PkJqiY02Ea3_KBrnaZDybNyaR5b9IxTHb11r2Ox6011GD5_DePzDHY3Fr39eAqOdqa9mCK2jXXbU6pxCSax6f_KENOLeMsy8bwtPezXZ95zBETcv78P3r3Au7SVU9jfAmjbnPtXiG06vQR7B9_nx2FAfQTHk0lgw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nc9MwEN0p6aFwYEr5ClAQMxwxSSwptrllMu0ktORCO5ObxpKl1oXamdg95OfwT9mV7bTMAD1wtayP8a60T9bbJ4APUaqHGid04NVuhXVhoBObBsYR5x0RiE0922Ixnp2LL0u53IFplwtDtMp27W_WdL9at08G7dccrPJ88I3AdywxxJCfhsnyAewKibu9HuxO5iezxXZBxhDpDxPw_YAq3EkUvvqkcyK1-nOJkLQWuKBI9ecY9TcM6mPR8T48bkEkmzTjfAI7tjiAR5OLdSukYQ9gb9rd5IYld0QHn8LPCWvyVVhZsI4CwPxvnA22x0wZrDbr0kuVsNIxStBHhM3SImOXm2xdossF2NMlcxj5EDua75_ZvKhol1-xvKhLVm0oo9BLQLOGMPKx7aCqWXZLU_JtImr1uRXs2lIWcl5dP4Pz46Oz6SxoL2oIDG7P6kCIzLnEmdFYahtJurg60jE3cSRMGOsRF0JKm4wTPTSOI-jiUkQu5enIJlLwjD-HXlEW9iWwJM7QnGZossxgfBWaxCwRxCBKi5NszPsgO9Mo06qY02UaP1RHV7tSnUkVmVQ1Ju3DYFtv1eh43Fsj6SyvfvNIhcHm3rrvO1dRaGs6g0kLW95UilKJSTSPD__xDjm1DOM47sOLxs-2Y-YhR0zI-av_GN072JudfT1Vp_PFyWt4SCUNpfEN9Or1jT1EmFXrt-00-gUiWSdy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+advanced+catalytic+co-pyrolysis+of+biomass+and+hydrogen-rich+feedstock%3A+Insights+into+synergistic+effect%2C+catalyst+development+and+reaction+mechanism&rft.jtitle=Bioresource+technology&rft.au=Ahmed%2C+Mohamed+H.M.&rft.au=Batalha%2C+Nuno&rft.au=Hasan%2C+Mahmudul&rft.au=Perkins%2C+Greg&rft.date=2020-08-01&rft.issn=0960-8524&rft.volume=310+p.123457-&rft_id=info:doi/10.1016%2Fj.biortech.2020.123457&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon