A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism
[Display omitted] •Catalytic co-pyrolysis of biomass and high-rich feedstock is reviewed.•Synergistic interaction between hydrogen donor feedstock and biomass are presented.•Effective catalysts for biomass deoxygenation and hydrogen transfer are compared.•Co-pyrolysis addresses waste management goal...
Saved in:
Published in | Bioresource technology Vol. 310; p. 123457 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-8524 1873-2976 1873-2976 |
DOI | 10.1016/j.biortech.2020.123457 |
Cover
Abstract | [Display omitted]
•Catalytic co-pyrolysis of biomass and high-rich feedstock is reviewed.•Synergistic interaction between hydrogen donor feedstock and biomass are presented.•Effective catalysts for biomass deoxygenation and hydrogen transfer are compared.•Co-pyrolysis addresses waste management goals by utilizing abundant waste feedstock.
The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development. |
---|---|
AbstractList | [Display omitted]
•Catalytic co-pyrolysis of biomass and high-rich feedstock is reviewed.•Synergistic interaction between hydrogen donor feedstock and biomass are presented.•Effective catalysts for biomass deoxygenation and hydrogen transfer are compared.•Co-pyrolysis addresses waste management goals by utilizing abundant waste feedstock.
The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development. The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development. The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development. The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development.The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization. Particularly, non-edible lignocellulosic biomass is the most attractive renewable feedstock due to its abundance. Pyrolysis of biomass produces highly oxygenated compounds with oxygen content >35 wt%. The cost-effective elimination of oxygen from the pyrolysis oil is the most challenging task impeding the commercialization of biomass to biofuel processes. The effective hydrogen/carbon ratio in biomass pyrolysis oil is low (0.3), requiring external hydrogen supply to produce hydrocarbon-rich oils. Exploiting hydrogen-rich feedstock particularly, solid waste (plastic, tyre and scum) and other low-cost feedstock (lubricant oil, methane, methanol, and ethanol) offer an eco-friendly solution to upgrade the produced bio-oil. Multi-functional catalysts that are capable of cleaving oxygen, promoting hydrogen transfer and depolymerisation must be developed to produce hydrocarbon-rich oil from biomass. This review compares catalytic co-pyrolysis studies based on zeolites, mesoporous silica and metal oxides. Furthermore, a wide range of catalyst modifications and the role of each feedstock were summarised to give a complete picture of the progress made on biomass co-pyrolysis research and development. |
ArticleNumber | 123457 |
Author | Konarova, Muxina Ahmed, Mohamed H.M. Batalha, Nuno Perkins, Greg Mahmudul, Hasan M.D. |
Author_xml | – sequence: 1 givenname: Mohamed H.M. surname: Ahmed fullname: Ahmed, Mohamed H.M. organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia – sequence: 2 givenname: Nuno surname: Batalha fullname: Batalha, Nuno organization: School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia – sequence: 3 givenname: Hasan M.D. surname: Mahmudul fullname: Mahmudul, Hasan M.D. organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia – sequence: 4 givenname: Greg surname: Perkins fullname: Perkins, Greg organization: School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia – sequence: 5 givenname: Muxina surname: Konarova fullname: Konarova, Muxina email: m.konarova@uq.edu.au organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32371033$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuGyEYhVGVqHHSvkLEsouOy2WuVReNol4iRcqmXSMGfmzcGXABO5rHyZuGqe1NN14gJHTO-S8f1-jCeQcI3VKypITWnzbL3vqQQK2XjLD8yHhZNW_QgrYNL1jX1BdoQbqaFG3Fyit0HeOGEMJpw96iK854QwnnC_RyhwPsLTxj77DUe-kUaKxkksOUrMLKF9sp-GGKNmJvcK46yhixdBqvJx38ClwRrFpjA6Bj8urPZ_zgol2tU8TWJY_j5CCsbJzjwBhQ6eOxQExYwx4Gvx3BpX-ZAaRKNvcy5tGks3F8hy6NHCK8P9436Pf3b7_ufxaPTz8e7u8eC1USmoqy1MZ0RtG66qGp6nnUvuWqbUrF2p7ysqwq6OquJ8pwVhFelY2RXFLoqpJrfoM-HHK3wf_dQUxitFHBMEgHfhcFy3vMp23b81LedYzXDSdZenuU7voRtNgGO8owiROBLPhyEKjgYwxghLJJzitIQdpBUCJm4GIjTsDFDFwcgGd7_Z_9VOGs8evBCHmn-QMEEZWFmb4NGZHQ3p6LeAX4jcuF |
CitedBy_id | crossref_primary_10_1007_s13399_024_06047_6 crossref_primary_10_1016_j_jaap_2024_106589 crossref_primary_10_1016_j_cej_2023_145300 crossref_primary_10_1016_j_jaap_2023_106103 crossref_primary_10_1111_gcbb_13124 crossref_primary_10_1016_j_jaap_2022_105491 crossref_primary_10_1016_j_biortech_2022_127515 crossref_primary_10_1016_j_jaap_2023_106181 crossref_primary_10_1016_j_biortech_2021_125336 crossref_primary_10_1016_j_biortech_2023_129537 crossref_primary_10_1016_j_psep_2024_07_034 crossref_primary_10_1007_s13399_023_03915_5 crossref_primary_10_1021_acs_energyfuels_0c03107 crossref_primary_10_1016_j_fuel_2022_124512 crossref_primary_10_1016_j_renene_2021_06_109 crossref_primary_10_1016_j_scitotenv_2023_165443 crossref_primary_10_1016_j_heliyon_2024_e39737 crossref_primary_10_1016_j_combustflame_2023_112671 crossref_primary_10_1016_j_joei_2024_101597 crossref_primary_10_1002_cssc_202100868 crossref_primary_10_1002_jctb_7077 crossref_primary_10_1016_j_biortech_2022_128153 crossref_primary_10_1016_j_joei_2023_101251 crossref_primary_10_1016_j_jaap_2023_106298 crossref_primary_10_1016_j_renene_2021_05_005 crossref_primary_10_1039_D3TA01368E crossref_primary_10_1016_j_energy_2024_131653 crossref_primary_10_1016_j_ijhydene_2021_08_238 crossref_primary_10_1016_j_energy_2022_126362 crossref_primary_10_1016_j_indcrop_2025_120656 crossref_primary_10_1016_j_fuel_2022_126141 crossref_primary_10_1016_j_jhazmat_2020_123539 crossref_primary_10_1016_j_seta_2021_101886 crossref_primary_10_1016_j_wasman_2023_10_020 crossref_primary_10_1016_j_arabjc_2022_104389 crossref_primary_10_1016_j_fuel_2023_128947 crossref_primary_10_1016_j_jaap_2024_106907 crossref_primary_10_1016_j_gee_2021_02_004 crossref_primary_10_1016_j_jaap_2022_105779 crossref_primary_10_1016_j_apcatb_2021_120499 crossref_primary_10_1016_j_jhazmat_2021_127396 crossref_primary_10_1021_acssuschemeng_3c01202 crossref_primary_10_3390_ijerph192416831 crossref_primary_10_1016_j_jaap_2022_105776 crossref_primary_10_1002_er_7622 crossref_primary_10_1016_j_cej_2023_145640 crossref_primary_10_1016_j_energy_2024_131241 crossref_primary_10_1016_j_scitotenv_2024_170577 crossref_primary_10_1016_j_jaap_2024_106365 crossref_primary_10_1016_j_renene_2022_02_106 crossref_primary_10_1016_j_biortech_2020_123805 crossref_primary_10_1016_j_biortech_2021_125396 crossref_primary_10_1016_j_fuel_2023_128177 crossref_primary_10_1080_15567036_2020_1814905 crossref_primary_10_3390_en15114168 crossref_primary_10_1007_s13399_021_02243_w crossref_primary_10_1007_s12155_021_10359_0 crossref_primary_10_1016_j_cej_2024_153031 crossref_primary_10_1002_cssc_202301786 crossref_primary_10_1016_j_fuel_2023_128734 crossref_primary_10_1016_j_ijhydene_2024_09_428 crossref_primary_10_3390_analytica4020015 crossref_primary_10_1016_j_envpol_2020_116016 crossref_primary_10_32604_jrm_2023_045822 crossref_primary_10_1016_j_indcrop_2023_117314 crossref_primary_10_1515_ehs_2022_0132 crossref_primary_10_1007_s11356_023_26908_3 crossref_primary_10_1016_j_joei_2023_101494 crossref_primary_10_3390_ma16010394 crossref_primary_10_1007_s13399_021_02296_x crossref_primary_10_1016_j_indcrop_2024_119340 crossref_primary_10_1021_acs_energyfuels_1c01292 crossref_primary_10_1016_j_biortech_2022_127364 crossref_primary_10_1016_j_joei_2025_101973 crossref_primary_10_1016_j_biortech_2021_126096 crossref_primary_10_1016_j_jaap_2024_106375 crossref_primary_10_1016_j_biortech_2020_123912 crossref_primary_10_1016_j_seta_2022_102211 crossref_primary_10_1016_j_wasman_2020_12_008 crossref_primary_10_1039_D4SE00527A crossref_primary_10_1016_j_jece_2022_107479 crossref_primary_10_1016_j_psep_2024_02_035 crossref_primary_10_1016_j_scitotenv_2020_142174 crossref_primary_10_1016_j_jece_2021_105434 crossref_primary_10_1016_j_jhazmat_2021_127096 crossref_primary_10_1016_j_scitotenv_2021_149397 crossref_primary_10_1007_s11705_022_2230_7 crossref_primary_10_1016_j_jaap_2022_105571 crossref_primary_10_1016_j_apcatb_2021_119962 crossref_primary_10_1016_j_biortech_2021_126067 crossref_primary_10_1016_j_fuel_2021_122765 crossref_primary_10_1039_D2CY00506A crossref_primary_10_1007_s10311_022_01542_6 crossref_primary_10_3390_app12052313 crossref_primary_10_1016_j_biombioe_2022_106415 crossref_primary_10_1016_j_jaap_2025_107084 crossref_primary_10_1039_D3GC01312J crossref_primary_10_1021_acssuschemeng_0c09131 crossref_primary_10_1080_15567036_2022_2143964 crossref_primary_10_1007_s10570_022_04625_3 crossref_primary_10_1016_j_mcat_2021_112063 crossref_primary_10_1016_j_ijhydene_2025_03_219 crossref_primary_10_1016_j_jaap_2024_106710 crossref_primary_10_1002_asia_202400307 crossref_primary_10_1016_j_fuproc_2023_107845 crossref_primary_10_1016_j_biteb_2024_101899 crossref_primary_10_1016_j_joei_2025_102007 crossref_primary_10_1016_j_envpol_2021_116934 crossref_primary_10_1016_j_mcat_2023_113796 crossref_primary_10_1016_j_energy_2025_134907 crossref_primary_10_3389_fevo_2022_964936 crossref_primary_10_1016_j_arabjc_2021_103035 crossref_primary_10_1016_j_fuel_2022_127158 crossref_primary_10_1016_j_renene_2021_09_103 crossref_primary_10_1007_s11708_024_0943_7 crossref_primary_10_1007_s13399_023_03945_z crossref_primary_10_1016_j_arabjc_2021_103282 crossref_primary_10_1016_j_scitotenv_2023_165597 crossref_primary_10_1016_S1872_5813_23_60401_3 crossref_primary_10_1016_j_jaap_2025_106963 crossref_primary_10_1016_j_scitotenv_2023_167251 crossref_primary_10_3390_catal12091067 crossref_primary_10_1016_j_rser_2021_111790 crossref_primary_10_1016_j_fuel_2024_133724 crossref_primary_10_1016_j_jaap_2023_106041 crossref_primary_10_1039_D3SU00097D crossref_primary_10_1016_j_ijhydene_2023_09_231 crossref_primary_10_1016_j_enconman_2021_114502 crossref_primary_10_1016_j_biombioe_2023_106947 crossref_primary_10_1016_j_indcrop_2023_116428 crossref_primary_10_1039_D3CY00445G crossref_primary_10_1016_j_biortech_2022_128419 crossref_primary_10_1016_j_energy_2023_127733 crossref_primary_10_1021_acsomega_1c02783 crossref_primary_10_1039_D2CY00382A crossref_primary_10_1016_j_fuel_2023_128819 crossref_primary_10_1016_j_psep_2025_106803 crossref_primary_10_1016_j_scp_2023_101092 crossref_primary_10_1007_s13399_021_01818_x crossref_primary_10_1016_j_wasman_2024_11_005 crossref_primary_10_1080_15435075_2024_2439917 crossref_primary_10_1016_j_jece_2021_106436 crossref_primary_10_1016_j_cjche_2020_09_074 crossref_primary_10_1016_j_energy_2025_135019 crossref_primary_10_1016_j_jaap_2021_105267 crossref_primary_10_1080_13647830_2022_2063194 crossref_primary_10_3390_catal13121484 crossref_primary_10_1016_j_biortech_2020_124529 crossref_primary_10_1002_slct_202300383 crossref_primary_10_1016_j_biortech_2020_123835 crossref_primary_10_1016_j_scp_2025_101976 crossref_primary_10_1016_j_jaecs_2022_100061 crossref_primary_10_1016_j_catcom_2023_106795 crossref_primary_10_1016_j_rser_2022_112715 crossref_primary_10_1016_j_energy_2021_122234 crossref_primary_10_1016_j_cej_2021_132965 crossref_primary_10_1016_j_rineng_2024_103098 crossref_primary_10_1016_j_scitotenv_2024_171106 crossref_primary_10_1016_j_jclepro_2022_133971 crossref_primary_10_1016_j_renene_2024_120508 crossref_primary_10_1016_j_joei_2024_101880 |
Cites_doi | 10.1515/ijcre-2016-0133 10.1016/0920-5861(95)00294-4 10.1038/nature08019 10.1039/c3gc42251h 10.1016/j.cattod.2016.11.045 10.1016/j.biortech.2017.09.184 10.1016/j.rser.2019.109400 10.1016/j.micromeso.2018.06.036 10.1016/j.biortech.2016.11.072 10.1016/S0021-9517(02)00124-0 10.1016/j.fuproc.2013.02.022 10.1016/j.apcatb.2015.02.015 10.1039/C7CY01229B 10.1016/j.enconman.2009.12.005 10.1016/j.jaap.2018.06.010 10.1016/j.jaap.2015.09.007 10.1016/j.biortech.2018.03.138 10.1016/j.rser.2018.03.048 10.1016/j.jaap.2016.11.025 10.1039/C3GC41575A 10.1016/j.jcat.2011.01.019 10.1016/j.enconman.2017.08.073 10.1016/j.enconman.2014.07.007 10.1557/mrs.2019.133 10.1021/ef301469t 10.1038/27638 10.1016/S0016-2361(02)00195-3 10.1016/j.fuel.2012.01.075 10.1016/j.enconman.2009.11.039 10.1039/C6GC02497A 10.2202/1542-6580.1559 10.1016/j.enconman.2019.111816 10.1039/C5RA02947C 10.1016/0021-9517(86)90102-8 10.1021/cs400501h 10.1002/er.1804 10.1038/s41929-019-0273-z 10.1016/j.chempr.2016.05.002 10.1016/j.jaap.2018.04.009 10.1021/acscatal.6b00245 10.1016/j.fuel.2016.02.031 10.1016/j.fuel.2015.07.039 10.1016/0009-2509(94)00392-0 10.1016/j.jaap.2016.12.012 10.1016/j.fuel.2014.03.013 10.3390/catal8120656 10.1016/S0960-8524(01)00118-3 10.1016/S0167-2991(07)80810-X 10.1016/j.fuel.2007.06.021 10.1016/j.cattod.2017.06.006 10.3390/rs12010151 10.3390/en3111805 10.1016/j.cattod.2017.09.009 10.1016/j.jcat.2011.10.004 10.1016/j.jaap.2017.07.027 10.1016/j.fuproc.2010.05.022 10.1016/j.catcom.2017.06.048 10.1016/j.biortech.2017.05.129 10.1016/j.fuel.2017.06.098 10.1016/j.apcata.2007.08.026 10.1016/j.fuel.2015.10.125 10.1016/j.apcata.2013.01.038 10.1126/science.1194218 10.1016/j.enconman.2014.12.082 10.1016/j.enconman.2006.05.010 10.1016/j.jcat.2007.04.006 10.1016/j.apcatb.2012.08.030 10.1007/s10098-016-1162-7 10.1016/j.biortech.2017.03.010 10.3390/en5124952 10.1016/j.biombioe.2019.01.014 10.1016/j.jcat.2015.10.001 10.1016/j.jaap.2011.12.015 10.1016/j.scitotenv.2018.03.239 10.1039/C9CY00576E 10.1016/j.apcata.2014.05.015 10.1016/j.jaap.2010.07.008 10.1016/0021-9517(82)90075-6 10.1039/c2gc35767d 10.1021/sc400354g 10.1016/j.wasman.2013.10.036 10.1016/j.biortech.2016.09.026 10.1016/j.biortech.2017.04.104 10.1016/j.biortech.2015.03.092 10.1039/c1ee01230d 10.1016/j.joei.2017.10.009 10.1016/j.apcatb.2012.09.002 10.1016/j.biortech.2012.08.089 10.1021/cs500791w 10.1016/j.cej.2019.02.055 10.1016/j.ijhydene.2017.04.139 10.1016/j.enconman.2016.10.001 10.1021/acs.energyfuels.7b01651 10.1039/C1GC15619E 10.1016/j.enconman.2017.02.047 10.1007/s13399-012-0043-5 10.1016/j.biortech.2017.09.178 10.1016/j.biortech.2015.12.085 10.1016/j.wasman.2018.07.021 10.1016/j.biortech.2019.03.137 10.1023/A:1019087313679 10.1016/j.cattod.2017.03.008 10.1016/j.apcata.2014.09.009 10.1016/j.fuel.2015.08.020 10.3390/en6010514 10.1016/j.jaap.2017.11.012 10.1039/C5RA24395E 10.1016/j.wasman.2017.01.010 10.1016/j.rser.2015.12.202 10.1039/C5GC01023C 10.1039/C7GC02947K 10.1016/j.jaap.2016.06.021 10.1016/j.fuproc.2015.11.003 10.1016/j.biortech.2015.05.040 10.1016/j.biortech.2018.07.108 10.1111/j.1365-2486.2007.01343.x 10.1007/s13399-017-0266-6 10.1016/j.enconman.2017.04.033 10.1016/j.cej.2019.05.049 10.1016/j.scitotenv.2017.11.045 10.1021/acssuschemeng.5b01381 10.1016/j.fuel.2019.116994 10.1016/0165-2370(94)00877-4 10.1021/acs.iecr.8b06158 10.1021/ie020107q 10.1016/S2542-5196(19)30267-0 10.1016/j.apenergy.2016.04.071 10.1016/j.resconrec.2011.04.002 10.1016/j.jcat.2011.02.007 10.1016/j.energy.2016.03.015 10.1021/acs.energyfuels.6b02250 10.1016/j.micromeso.2016.12.008 10.1016/j.apcatb.2014.12.044 10.1016/S0960-8524(01)00119-5 10.1016/j.apcatb.2014.07.006 10.1007/s10661-016-5093-x 10.1016/j.fuel.2015.04.033 10.1002/cctc.201902023 10.1016/j.enconman.2018.06.053 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2020.123457 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 32371033 10_1016_j_biortech_2020_123457 S096085242030729X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS EFLBG 7S9 L.6 |
ID | FETCH-LOGICAL-c401t-44dff9fc165be7560317b83c874c28b134455e969b0cf32503547fa3a1e9543d3 |
IEDL.DBID | AIKHN |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Sep 05 15:08:01 EDT 2025 Fri Sep 05 09:23:52 EDT 2025 Wed Feb 19 02:30:09 EST 2025 Thu Apr 24 22:54:45 EDT 2025 Tue Jul 01 03:18:44 EDT 2025 Sat Aug 10 15:31:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomass deoxygenation Hydrogen transfer Co-pyrolysis Zeolite Active sites |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-44dff9fc165be7560317b83c874c28b134455e969b0cf32503547fa3a1e9543d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 32371033 |
PQID | 2399236730 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524252888 proquest_miscellaneous_2399236730 pubmed_primary_32371033 crossref_citationtrail_10_1016_j_biortech_2020_123457 crossref_primary_10_1016_j_biortech_2020_123457 elsevier_sciencedirect_doi_10_1016_j_biortech_2020_123457 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 2020-Aug 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhao, Wang, Duan, Ruan, Fan, Zhou, Dai, Lv, Liu (b0705) 2018; 249 Chen, Wang, Sun, Gao, Sun, Wang, Wang, Wang (b0080) 2017; 100 Elsayed, Eseyin (b0150) 2016; 174 Keller, Bhasin (b0255) 1982; 73 Zhang, Lei, Zhu, Qian, Zhu, Wu, Chen (b0695) 2016; 173 Abnisa, Daud (b0005) 2014; 87 Serrano, García, Vicente, Linares, Procházková, Čejka (b0455) 2011; 279 Wagenaar, Prins, Van Swaaij (b0520) 1994; 49 Xiang, Liang, Morgan, Liu, Mao, Bu (b0575) 2018; 247 Xue, Zhuo, Liu, Chi, Zhang, Yao (b0595) 2017; 31 Matthews (b0355) 2007; 13 Vamvuka (b0510) 2011; 35 Zhang, Cheng, Vispute, Xiao, Huber (b0670) 2011; 4 Horne, Nugranad, Williams (b0205) 1995; 34 Song, Yang, Zhao, Sun, Wang, Mao, Ma (b0485) 2017; 123 Shafaghat, Lee, Tsang, Oh, Jae, Jung, Ko, Lam, Park (b0465) 2019; 366 Chen, Walsh, Koenig (b0085) 1988; Vol. 376 Rezaei, Oh, Hong, Kim, Jae, Jung, Jeon, Park (b0435) 2017; 151 Fan, Chen, Zhang, Liu, Liu, Wang, Dai, Ruan (b0155) 2017; 225 Zhang, Zhou, Cheng, Chen, Li, Qiao, Chen, Lu, Ouyang, Fu (b0700) 2019 Elliott, Neuenschwander (b0145) 1997 Pacchioni (b0395) 2014; 4 Lin, Zhang, Sun, Guo, Wang (b0315) 2015; 116 Hoffert, Caldeira, Jain, Haites, Harvey, Potter, Schlesinger, Schneider, Watts, Wigley, Wuebbles (b0195) 1998; 395 Valle, Castaño, Olazar, Bilbao, Gayubo (b0500) 2012; 285 Dorado, Mullen, Boateng (b0135) 2015; 162 Cheng, Huber (b0090) 2012; 14 Wang, Zhang, Zhong, Ding, Xie, Ruan, Policy (b0540) 2016; 18 Azhar Uddin, Tsuda, Wu, Sasaoka (b0050) 2008; 87 Hernando, Moreno, Fermoso, Ochoa-Hernández, Pizarro, Coronado, Čejka, Serrano (b0190) 2017; 7 Singh, Mallapragada, Agrawal, Tyner (b0475) 2012; 2 Wang, Xiao, Zhang, He (b0530) 2010; 89 Jae, Tompsett, Foster, Hammond, Auerbach, Lobo, Huber (b0235) 2011; 279 Piemonte, Capocelli, Orticello, Di Paola (b0425) 2016 Kim, Jae, Kim, Hong, Jung, Park (b0265) 2017; 149 Kim, Lee, Jae, Jung, Jung, Watanabe, Park (b0275) 2017; 298 Kadlimatti, Mohan, Saidutta (b0250) 2019; 123 Li, Yu, Li, Wang, Yu, Deng, Huang, Wang, Wang (b0300) 2015; 172 Pham, Sooknoi, Crossley, Resasco (b0420) 2013; 3 Chattopadhyay, Pathak, Srivastava, Singh (b0075) 2016; 103 Xue, Kelkar, Bai (b0605) 2016; 166 Xue, Zhou, Brown, Kelkar, Bai (b0610) 2015; 156 Amutio, Lopez, Artetxe, Elordi, Olazar, Bilbao (b0035) 2012; 59 Yao, Li, Feng, Wang, Zhang, Chen, Komarneni, Wang (b0625) 2015; 5 Degnan, Shinde (b0110) 2019; 44 Dickerson, Soria (b0115) 2013; 6 Weitkamp, J., Hunger, M. 2007. Chapter 22 – acid and base catalysis on zeolites. In: Studies in Surface Science and Catalysis, (Eds.) J. Čejka, H. van Bekkum, A. Corma, F. Schüth, Vol. 168, Elsevier, pp. 787–835. Liu, Xie, Zhang, Cheng, Liu, Chen, Ruan (b0325) 2016; 204 McKendry (b0365) 2002; 83 Wang, Xu, Qi, Gong, Wang, Gao, Wang, Feng, Liu, Deng (b0525) 2015; 332 Mullen, Boateng (b0380) 2010; 91 Asadieraghi, Wan Daud (b0040) 2015; 92 Valle, Gayubo, Atutxa, Alonso, Bilbao (b0505) 2007; 5 Yang, Kumar, Apblett (b0615) 2016; 120 Zhang, Likun, Xiao (b0675) 2018; 618 Kulkarni, Zhao, Siahrostami, Nørskov, Studt (b0280) 2018; 8 Zhang, Zhong, Min, Ding, Xie, Ruan (b0655) 2015; 189 Akubo, Nahil, Williams (b0020) 2019; 92 Lin, Zhang, Zhang, Sun, Wang, Pittman (b0320) 2018; 79 Mu, Han, Jiang (b0375) 2020; 265 Henrich, Dahmen, Weirich, Reimert, Kornmayer (b0185) 2016; 143 Ding, He, Zhong, Fan, Liu, Wang, Liu, Chen, Lei, Ruan (b0120) 2018; 268 Srinivasan, Adhikari, Chattanathan, Park (b0490) 2012; 26 Mathew, Muruganandam (b0350) 2017; 15 Iliopoulou, Stefanidis, Kalogiannis, Delimitis, Lappas, Triantafyllidis (b0230) 2012; 127 Fernandez-Akarregi, Makibar, Lopez, Amutio, Olazar (b0165) 2013; 112 Hong, Lee, Rezaei, Kim, Jeon, Jae, Jung, Kim, Park (b0200) 2017; 293–294 Yang, Kumar, Apblett, Moneeb (b0620) 2017; 19 Otsuka, Jinno, Morikawa (b0390) 1986; 100 Park, Park, Jeon, Kim, Ryoo, Jeong, Park, Park (b0400) 2012; 97 Wang, Dai, Fan, Duan, Liu, Ruan, Yu, Liu, Jiang (b0555) 2017; 123 Hassan, Lim, Hameed (b0180) 2019; 284 Zhang, Zhong, Chen, Ruan (b0650) 2017; 127 Xie, Addy, Liu, Zhang, Cheng, Wan, Li, Liu, Lin, Chen, Ruan (b0580) 2015; 160 Alvarez, Amutio, Lopez, Bilbao, Olazar (b0030) 2015; 159 Zhang, Wang, Nolte, Choi, Brown, Shanks (b0685) 2016; 6 Fan, Zhang, Liu, Zhou, Chen, Cheng, Addy, Lu, Omar, Liu, Wang, Dai, Anderson, Peng, Lei, Ruan (b0160) 2017; 241 Morais, Jiménez-Sánchez, Hernando, Ochoa-Hernández, Pizarro, Araujo, Serrano (b0370) 2019; 58 Czernik, French, Feik, Chornet (b0100) 2002; 41 Bu, Lei, Zacher, Wang, Ren, Liang, Wei, Liu, Tang, Zhang, Ruan (b0070) 2012; 124 Chi, Xue, Zhuo, Zhang, Liu, Yao (b0095) 2018; 633 Xue, Pan, Zhang, Wang, Xie, Zhang (b0600) 2018; 134 McKendry (b0360) 2002; 83 Xu, Wang, Liu, Ma, Zhang, Zheng, Zong (b0585) 2016; 188 Mullen, Dorado, Boateng (b0385) 2018; 129 Ding, Zhong, Wang, Zhang, Fan, Liu, Wang, Liu, Zhong, Chen (b0125) 2018; 261 Hassan, Lim, Hameed (b0175) 2016; 221 Iisa, French, Orton, Dutta, Schaidle (b0215) 2017; 207 Ahmed, Muraza, Galadima, Yoshioka, Yamani, Yokoi (b0010) 2019; 273 Tessonnier, Louis, Rigolet, Ledoux, Pham-Huu (b0495) 2008; 336 Yildiz, Ronsse, Duren, Prins (b0630) 2016; 57 Yu, Xu, Abramson, Li, Guo (b0645) 2020; 4 Allen, Frame, Huntingford, Jones, Lowe, Meinshausen, Meinshausen (b0025) 2009; 458 Bridgwater (b0065) 1996; 29 Rizkiana, Guan, Widayatno, Yang, Hao, Matsuoka, Abudula (b0440) 2016; 6 Dorado, Mullen, Boateng (b0130) 2014; 2 Atanda, Batalha, Stark, Tabulo, Perkins, Wang, Odedairo, Wang, Konarova (b0045) 2020; 12 Li, Zhang, Li, Su, Zuo, Komarneni, Wang (b0310) 2013; 455 Xu, Bao, Lin (b0590) 2003; 216 Solak, Rutkowski (b0480) 2014; 34 Dayton, Carpenter, Kataria, Peters, Barbee, Mante, Gupta (b0105) 2015; 17 Wang, Dai, Fan, Cao, Zhou, Zhao, Liu, Ruan (b0550) 2017; 61 Duan, Wang, Dai, Ruan, Zhao, Fan, Tayier, Liu (b0140) 2017; 241 Vispute, Zhang, Sanna, Xiao, Huber (b0515) 2010; 330 Huang, Qiu, Oduro, Guo, Fang (b0210) 2016; 30 Yildiz, Ronsse, Venderbosch, van Duren, Kersten, Prins (b0635) 2015; 168 Zhang, Carlson, Xiao, Huber (b0665) 2012; 14 Park, Siddiqui, Kang, Watanabe, Lee, Jeong, Kim, Kim (b0405) 2018; 8 Wang, Luo, Li, Xue, Yang (b0545) 2019; 9 Lee, Kim, Jae, Jeon, Jung, Kim, Park (b0290) 2016; 129 Shafaghat, Jae, Jung, Jeon, Ko, Park (b0460) 2018; 303 Kim, Kim, Lee, Jae, Kim, Jung, Watanabe, Park (b0260) 2016; 4 Zhou, Li, Yu, Li, Wang, Wang, Komarneni (b0715) 2014; 487 Zhang, Zhong, Zhang, Ruan (b0660) 2018; 133 Jiang, Wang, Cui, Xu (b0245) 1999; 57 Ryu, Tsang, Lee, Jae, Jung, Lam, Park, Park (b0445) 2019; 373 Zhang, Xiao, Nie, Jin, Shao, Xiao (b0680) 2015; 192 Lu, Zhang, Dong, Zhu (b0345) 2010; 3 Bai, Kim, Brown, Dalluge, Hutchinson, Lee, Dalluge (b0055) 2014; 128 Perkins, Batalha, Kumar, Bhaskar, Konarova (b0410) 2019; 115 Lizundia-Loiola, Pettinari, Chuvieco (b0340) 2020; 12 Liu, Hu, Yang, Tong, Zhu, Zhang, Zhao (b0330) 2013; 129 Zhang, Chang, Wang, Xu (b0690) 2007; 48 Wu, Moteki, Gokhale, Flaherty, Toste (b0570) 2016; 1 Liu, Hu, Yang, Tong, Li, Zhu (b0335) 2010; 51 Bjørgen, Svelle, Joensen, Nerlov, Kolboe, Bonino, Palumbo, Bordiga, Olsbye (b0060) 2007; 249 Lappas, Samolada, Iatridis, Voutetakis, Vasalos (b0285) 2002; 81 Zheng, Zhao, Chang, Huang, Zhao, Wu, Wang, He, Li (b0710) 2014; 16 Iisa, Robichaud, Watson, ten Dam, Dutta, Mukarakate, Kim, Nimlos, Baldwin (b0220) 2018; 20 Jahirul, Rasul, Chowdhury, Ashwath (b0240) 2012; 5 Filiciotto, Balu, Van der Waal, Luque (b0170) 2018; 302 Sanahuja-Parejo, Veses, Navarro, López, Murillo, Callén, García (b0450) 2018; 171 Ahmed, Muraza, Yoshioka, Yokoi (b0015) 2017; 241 Shen, Zhu, Liu, Zhang, Tan (b0470) 2010; 51 Iliopoulou, Stefanidis, Kalogiannis, Psarras, Delimitis, Triantafyllidis, Lappas (b0225) 2014; 16 Wang, Zhang, Zhong, Ding, Deng, Min, Chen, Ruan (b0535) 2017; 139 Wei, Guo, Gong, Ding, Yu (b0560) 2017; 234 Perkins, Bhaskar, Konarova (b0415) 2018; 90 Kim, Lee, Choi, Jeon, Park, Jung, Kim, Park (b0270) 2017; 42 Li, Li, Zhou, Feng, Wang, Yu, Deng, Huang, Wang (b0305) 2014; 481 Lee (b0295) 2012; 94 Yu, Hui, Li (b0640) 2019; 198 Ravi, Sushkevich, Knorpp, Newton, Palagin, Pinar, Ranocchiari, van Bokhoven (b0430) 2019; 2 Wang (10.1016/j.biortech.2020.123457_b0545) 2019; 9 Ahmed (10.1016/j.biortech.2020.123457_b0010) 2019; 273 Fan (10.1016/j.biortech.2020.123457_b0155) 2017; 225 Jiang (10.1016/j.biortech.2020.123457_b0245) 1999; 57 Ryu (10.1016/j.biortech.2020.123457_b0445) 2019; 373 Hong (10.1016/j.biortech.2020.123457_b0200) 2017; 293–294 Wang (10.1016/j.biortech.2020.123457_b0535) 2017; 139 Iliopoulou (10.1016/j.biortech.2020.123457_b0230) 2012; 127 Ding (10.1016/j.biortech.2020.123457_b0125) 2018; 261 Xu (10.1016/j.biortech.2020.123457_b0590) 2003; 216 Yao (10.1016/j.biortech.2020.123457_b0625) 2015; 5 Mathew (10.1016/j.biortech.2020.123457_b0350) 2017; 15 Wang (10.1016/j.biortech.2020.123457_b0530) 2010; 89 Atanda (10.1016/j.biortech.2020.123457_b0045) 2020; 12 Ravi (10.1016/j.biortech.2020.123457_b0430) 2019; 2 Morais (10.1016/j.biortech.2020.123457_b0370) 2019; 58 Zhang (10.1016/j.biortech.2020.123457_b0675) 2018; 618 Park (10.1016/j.biortech.2020.123457_b0400) 2012; 97 Li (10.1016/j.biortech.2020.123457_b0310) 2013; 455 Alvarez (10.1016/j.biortech.2020.123457_b0030) 2015; 159 Shen (10.1016/j.biortech.2020.123457_b0470) 2010; 51 Chi (10.1016/j.biortech.2020.123457_b0095) 2018; 633 Zhang (10.1016/j.biortech.2020.123457_b0680) 2015; 192 Yu (10.1016/j.biortech.2020.123457_b0640) 2019; 198 Kim (10.1016/j.biortech.2020.123457_b0260) 2016; 4 Kim (10.1016/j.biortech.2020.123457_b0265) 2017; 149 Liu (10.1016/j.biortech.2020.123457_b0335) 2010; 51 Bjørgen (10.1016/j.biortech.2020.123457_b0060) 2007; 249 Elliott (10.1016/j.biortech.2020.123457_b0145) 1997 Wang (10.1016/j.biortech.2020.123457_b0555) 2017; 123 Mu (10.1016/j.biortech.2020.123457_b0375) 2020; 265 Ahmed (10.1016/j.biortech.2020.123457_b0015) 2017; 241 Zhang (10.1016/j.biortech.2020.123457_b0665) 2012; 14 Kulkarni (10.1016/j.biortech.2020.123457_b0280) 2018; 8 Zhang (10.1016/j.biortech.2020.123457_b0670) 2011; 4 Zhou (10.1016/j.biortech.2020.123457_b0715) 2014; 487 Dorado (10.1016/j.biortech.2020.123457_b0130) 2014; 2 Kadlimatti (10.1016/j.biortech.2020.123457_b0250) 2019; 123 Xue (10.1016/j.biortech.2020.123457_b0610) 2015; 156 Hassan (10.1016/j.biortech.2020.123457_b0180) 2019; 284 Lu (10.1016/j.biortech.2020.123457_b0345) 2010; 3 Shafaghat (10.1016/j.biortech.2020.123457_b0465) 2019; 366 Duan (10.1016/j.biortech.2020.123457_b0140) 2017; 241 Wei (10.1016/j.biortech.2020.123457_b0560) 2017; 234 Serrano (10.1016/j.biortech.2020.123457_b0455) 2011; 279 Lin (10.1016/j.biortech.2020.123457_b0320) 2018; 79 Solak (10.1016/j.biortech.2020.123457_b0480) 2014; 34 Lin (10.1016/j.biortech.2020.123457_b0315) 2015; 116 Rezaei (10.1016/j.biortech.2020.123457_b0435) 2017; 151 Zhang (10.1016/j.biortech.2020.123457_b0695) 2016; 173 Liu (10.1016/j.biortech.2020.123457_b0330) 2013; 129 Zhang (10.1016/j.biortech.2020.123457_b0685) 2016; 6 Rizkiana (10.1016/j.biortech.2020.123457_b0440) 2016; 6 Yang (10.1016/j.biortech.2020.123457_b0615) 2016; 120 Bai (10.1016/j.biortech.2020.123457_b0055) 2014; 128 Otsuka (10.1016/j.biortech.2020.123457_b0390) 1986; 100 Jae (10.1016/j.biortech.2020.123457_b0235) 2011; 279 Zheng (10.1016/j.biortech.2020.123457_b0710) 2014; 16 Chen (10.1016/j.biortech.2020.123457_b0080) 2017; 100 Lizundia-Loiola (10.1016/j.biortech.2020.123457_b0340) 2020; 12 Valle (10.1016/j.biortech.2020.123457_b0500) 2012; 285 Yu (10.1016/j.biortech.2020.123457_b0645) 2020; 4 Zhang (10.1016/j.biortech.2020.123457_b0660) 2018; 133 Hernando (10.1016/j.biortech.2020.123457_b0190) 2017; 7 Dayton (10.1016/j.biortech.2020.123457_b0105) 2015; 17 Bu (10.1016/j.biortech.2020.123457_b0070) 2012; 124 Fan (10.1016/j.biortech.2020.123457_b0160) 2017; 241 Song (10.1016/j.biortech.2020.123457_b0485) 2017; 123 Xiang (10.1016/j.biortech.2020.123457_b0575) 2018; 247 Dickerson (10.1016/j.biortech.2020.123457_b0115) 2013; 6 Zhang (10.1016/j.biortech.2020.123457_b0690) 2007; 48 Horne (10.1016/j.biortech.2020.123457_b0205) 1995; 34 10.1016/j.biortech.2020.123457_b0565 Asadieraghi (10.1016/j.biortech.2020.123457_b0040) 2015; 92 Allen (10.1016/j.biortech.2020.123457_b0025) 2009; 458 Xie (10.1016/j.biortech.2020.123457_b0580) 2015; 160 Srinivasan (10.1016/j.biortech.2020.123457_b0490) 2012; 26 Zhang (10.1016/j.biortech.2020.123457_b0655) 2015; 189 Singh (10.1016/j.biortech.2020.123457_b0475) 2012; 2 Matthews (10.1016/j.biortech.2020.123457_b0355) 2007; 13 Valle (10.1016/j.biortech.2020.123457_b0505) 2007; 5 Amutio (10.1016/j.biortech.2020.123457_b0035) 2012; 59 Kim (10.1016/j.biortech.2020.123457_b0275) 2017; 298 McKendry (10.1016/j.biortech.2020.123457_b0360) 2002; 83 Hoffert (10.1016/j.biortech.2020.123457_b0195) 1998; 395 Wang (10.1016/j.biortech.2020.123457_b0540) 2016; 18 Elsayed (10.1016/j.biortech.2020.123457_b0150) 2016; 174 Li (10.1016/j.biortech.2020.123457_b0305) 2014; 481 Liu (10.1016/j.biortech.2020.123457_b0325) 2016; 204 Pacchioni (10.1016/j.biortech.2020.123457_b0395) 2014; 4 Dorado (10.1016/j.biortech.2020.123457_b0135) 2015; 162 Czernik (10.1016/j.biortech.2020.123457_b0100) 2002; 41 Kim (10.1016/j.biortech.2020.123457_b0270) 2017; 42 Piemonte (10.1016/j.biortech.2020.123457_b0425) 2016 Chen (10.1016/j.biortech.2020.123457_b0085) 1988; Vol. 376 Vispute (10.1016/j.biortech.2020.123457_b0515) 2010; 330 Degnan (10.1016/j.biortech.2020.123457_b0110) 2019; 44 Akubo (10.1016/j.biortech.2020.123457_b0020) 2019; 92 Lee (10.1016/j.biortech.2020.123457_b0290) 2016; 129 Wang (10.1016/j.biortech.2020.123457_b0525) 2015; 332 Azhar Uddin (10.1016/j.biortech.2020.123457_b0050) 2008; 87 Lappas (10.1016/j.biortech.2020.123457_b0285) 2002; 81 Iliopoulou (10.1016/j.biortech.2020.123457_b0225) 2014; 16 Abnisa (10.1016/j.biortech.2020.123457_b0005) 2014; 87 Filiciotto (10.1016/j.biortech.2020.123457_b0170) 2018; 302 Jahirul (10.1016/j.biortech.2020.123457_b0240) 2012; 5 Zhang (10.1016/j.biortech.2020.123457_b0700) 2019 Yang (10.1016/j.biortech.2020.123457_b0620) 2017; 19 Mullen (10.1016/j.biortech.2020.123457_b0380) 2010; 91 Park (10.1016/j.biortech.2020.123457_b0405) 2018; 8 Keller (10.1016/j.biortech.2020.123457_b0255) 1982; 73 Henrich (10.1016/j.biortech.2020.123457_b0185) 2016; 143 Zhao (10.1016/j.biortech.2020.123457_b0705) 2018; 249 Huang (10.1016/j.biortech.2020.123457_b0210) 2016; 30 Perkins (10.1016/j.biortech.2020.123457_b0410) 2019; 115 Xue (10.1016/j.biortech.2020.123457_b0605) 2016; 166 Iisa (10.1016/j.biortech.2020.123457_b0215) 2017; 207 Shafaghat (10.1016/j.biortech.2020.123457_b0460) 2018; 303 Lee (10.1016/j.biortech.2020.123457_b0295) 2012; 94 Wang (10.1016/j.biortech.2020.123457_b0550) 2017; 61 Pham (10.1016/j.biortech.2020.123457_b0420) 2013; 3 McKendry (10.1016/j.biortech.2020.123457_b0365) 2002; 83 Xu (10.1016/j.biortech.2020.123457_b0585) 2016; 188 Ding (10.1016/j.biortech.2020.123457_b0120) 2018; 268 Bridgwater (10.1016/j.biortech.2020.123457_b0065) 1996; 29 Xue (10.1016/j.biortech.2020.123457_b0600) 2018; 134 Perkins (10.1016/j.biortech.2020.123457_b0415) 2018; 90 Vamvuka (10.1016/j.biortech.2020.123457_b0510) 2011; 35 Cheng (10.1016/j.biortech.2020.123457_b0090) 2012; 14 Wu (10.1016/j.biortech.2020.123457_b0570) 2016; 1 Tessonnier (10.1016/j.biortech.2020.123457_b0495) 2008; 336 Hassan (10.1016/j.biortech.2020.123457_b0175) 2016; 221 Fernandez-Akarregi (10.1016/j.biortech.2020.123457_b0165) 2013; 112 Wagenaar (10.1016/j.biortech.2020.123457_b0520) 1994; 49 Iisa (10.1016/j.biortech.2020.123457_b0220) 2018; 20 Xue (10.1016/j.biortech.2020.123457_b0595) 2017; 31 Chattopadhyay (10.1016/j.biortech.2020.123457_b0075) 2016; 103 Yildiz (10.1016/j.biortech.2020.123457_b0630) 2016; 57 Sanahuja-Parejo (10.1016/j.biortech.2020.123457_b0450) 2018; 171 Zhang (10.1016/j.biortech.2020.123457_b0650) 2017; 127 Li (10.1016/j.biortech.2020.123457_b0300) 2015; 172 Mullen (10.1016/j.biortech.2020.123457_b0385) 2018; 129 Yildiz (10.1016/j.biortech.2020.123457_b0635) 2015; 168 |
References_xml | – volume: 279 start-page: 257 year: 2011 end-page: 268 ident: b0235 article-title: Investigation into the shape selectivity of zeolite catalysts for biomass conversion publication-title: J. Catal. – volume: 284 start-page: 406 year: 2019 end-page: 414 ident: b0180 article-title: Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite publication-title: Bioresour. Technol. – volume: 366 start-page: 330 year: 2019 end-page: 338 ident: b0465 article-title: In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts publication-title: Chem. Eng. J. – volume: 17 start-page: 4680 year: 2015 end-page: 4689 ident: b0105 article-title: Design and operation of a pilot-scale catalytic biomass pyrolysis unit publication-title: Green Chem. – volume: 79 start-page: 38 year: 2018 end-page: 47 ident: b0320 article-title: Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts publication-title: Waste Manage. – volume: Vol. 376 start-page: 277 year: 1988 end-page: 289 ident: b0085 publication-title: Fluidized-bed Upgrading of Wood Pyrolysis Liquids and Related Compounds – volume: 133 start-page: 147 year: 2018 end-page: 153 ident: b0660 article-title: Catalytic fast co-pyrolysis of biomass and fusel alcohol to enhance aromatic hydrocarbon production over ZSM-5 catalyst in a fluidized bed reactor publication-title: J. Anal. Appl. Pyrol. – volume: 241 start-page: 1118 year: 2017 end-page: 1126 ident: b0160 article-title: Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters publication-title: Bioresour. Technol. – volume: 29 start-page: 285 year: 1996 end-page: 295 ident: b0065 article-title: Production of high grade fuels and chemicals from catalytic pyrolysis of biomass publication-title: Catal. Today – volume: 139 start-page: 222 year: 2017 end-page: 231 ident: b0535 article-title: Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: Analytical PY-GC/MS study publication-title: J. Energy Convers. Manage. – volume: 5 year: 2007 ident: b0505 article-title: Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil publication-title: Int. J. Chem. Reactor Eng. – volume: 241 start-page: 207 year: 2017 end-page: 213 ident: b0140 article-title: Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating publication-title: Bioresour. Technol. – volume: 302 start-page: 2 year: 2018 end-page: 15 ident: b0170 article-title: Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins publication-title: Catal. Today – volume: 15 year: 2017 ident: b0350 article-title: Pyrolysis of agricultural biomass using an auger reactor: a parametric optimization publication-title: Int. J. Chem. Reactor Eng. – volume: 336 start-page: 79 year: 2008 end-page: 88 ident: b0495 article-title: Methane dehydro-aromatization on Mo/ZSM-5: about the hidden role of Brønsted acid sites publication-title: Appl. Catal. A – volume: 198 year: 2019 ident: b0640 article-title: Two-step catalytic co-pyrolysis of walnut shell and LDPE for aromatic-rich oil publication-title: Energy Convers. Manage. – volume: 192 start-page: 68 year: 2015 end-page: 74 ident: b0680 article-title: Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor publication-title: Bioresour. Technol. – volume: 166 start-page: 227 year: 2016 end-page: 236 ident: b0605 article-title: Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer publication-title: Fuel – volume: 156 start-page: 40 year: 2015 end-page: 46 ident: b0610 article-title: Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor publication-title: Fuel – volume: 249 start-page: 69 year: 2018 end-page: 75 ident: b0705 article-title: Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production publication-title: Bioresour. Technol. – volume: 633 start-page: 1105 year: 2018 end-page: 1113 ident: b0095 article-title: Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41 publication-title: Sci. Total Environ. – volume: 481 start-page: 173 year: 2014 end-page: 182 ident: b0305 article-title: Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites publication-title: Appl. Catal. A – volume: 48 start-page: 87 year: 2007 end-page: 92 ident: b0690 article-title: Review of biomass pyrolysis oil properties and upgrading research publication-title: Energy Convers. Manage. – volume: 41 start-page: 4209 year: 2002 end-page: 4215 ident: b0100 article-title: Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes publication-title: Ind. Eng. Chem. Res. – volume: 61 start-page: 276 year: 2017 end-page: 282 ident: b0550 article-title: Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production publication-title: Waste Manage. – volume: 279 start-page: 366 year: 2011 end-page: 380 ident: b0455 article-title: Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units publication-title: J. Catal. – volume: 261 start-page: 86 year: 2018 end-page: 92 ident: b0125 article-title: Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5 publication-title: Bioresour. Technol. – volume: 97 start-page: 379 year: 2012 end-page: 384 ident: b0400 article-title: Production of phenolics and aromatics by pyrolysis of miscanthus publication-title: Fuel – volume: 273 start-page: 249 year: 2019 end-page: 255 ident: b0010 article-title: Choreographing boron-aluminum acidity and hierarchical porosity in *BEA zeolite by in-situ hydrothermal synthesis for a highly selective methanol to propylene catalyst publication-title: Microporous Mesoporous Mater. – volume: 8 start-page: 114 year: 2018 end-page: 123 ident: b0280 article-title: Cation-exchanged zeolites for the selective oxidation of methane to methanol publication-title: Catal. Sci. Technol. – volume: 127 start-page: 246 year: 2017 end-page: 257 ident: b0650 article-title: Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5 publication-title: J. Anal. Appl. Pyrol. – volume: 216 start-page: 386 year: 2003 end-page: 395 ident: b0590 article-title: Direct conversion of methane under nonoxidative conditions publication-title: J. Catal. – volume: 34 start-page: 87 year: 1995 end-page: 108 ident: b0205 article-title: Catalytic coprocessing of biomass-derived pyrolysis vapours and methanol publication-title: J. Anal. Appl. Pyrol. – volume: 123 start-page: 152 year: 2017 end-page: 159 ident: b0485 article-title: Microwave pyrolysis of tire powders: evolution of yields and composition of products publication-title: J. Anal. Appl. Pyrol. – volume: 128 start-page: 170 year: 2014 end-page: 179 ident: b0055 article-title: Formation of phenolic oligomers during fast pyrolysis of lignin publication-title: Fuel – volume: 293–294 start-page: 151 year: 2017 end-page: 158 ident: b0200 article-title: In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5 publication-title: Catal. Today – volume: 234 start-page: 33 year: 2017 end-page: 39 ident: b0560 article-title: Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char publication-title: Bioresour. Technol. – volume: 2 start-page: 301 year: 2014 end-page: 311 ident: b0130 article-title: H-ZSM5 catalyzed co-pyrolysis of biomass and plastics publication-title: ACS Sustainable Chem. Eng. – volume: 12 start-page: 151 year: 2020 ident: b0340 article-title: Temporal anomalies in burned area trends: satellite estimations of the Amazonian 2019 fire crisis publication-title: Remote Sensing – volume: 2 start-page: 141 year: 2012 end-page: 148 ident: b0475 article-title: Economic analysis of novel synergistic biofuel (H 2 Bioil) processes publication-title: Biomass Conversion – volume: 204 start-page: 164 year: 2016 end-page: 170 ident: b0325 article-title: Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst publication-title: Bioresour. Technol. – volume: 332 start-page: 127 year: 2015 end-page: 137 ident: b0525 article-title: Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5 publication-title: J. Catal. – volume: 31 start-page: 9576 year: 2017 end-page: 9584 ident: b0595 article-title: Synergetic effect of co-pyrolysis of cellulose and polypropylene over an all-silica mesoporous catalyst MCM-41 using thermogravimetry-fourier transform infrared spectroscopy and pyrolysis-gas chromatography–mass spectrometry publication-title: Energy Fuels – volume: 112 start-page: 48 year: 2013 end-page: 56 ident: b0165 article-title: Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis publication-title: Fuel Process. Technol. – volume: 49 start-page: 5109 year: 1994 end-page: 5126 ident: b0520 article-title: Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification publication-title: Chem. Eng. Sci. – volume: 18 start-page: 2701 year: 2016 end-page: 2708 ident: b0540 article-title: Catalytic fast co-pyrolysis of mushroom waste and waste oil to promote the formation of aromatics publication-title: Clean Technol. Environ. Policy – volume: 618 start-page: 151 year: 2018 end-page: 156 ident: b0675 article-title: Improving the hydrocarbon production via co-pyrolysis of bagasse with bio-plastic and dual-catalysts layout publication-title: Sci. Total Environ. – volume: 51 start-page: 983 year: 2010 end-page: 987 ident: b0470 article-title: The prediction of elemental composition of biomass based on proximate analysis publication-title: Energy Convers. Manage. – volume: 265 year: 2020 ident: b0375 article-title: Interactions between oil shale and hydrogen-rich wastes during co-pyrolysis: 1. Co-pyrolysis of oil shale and polyolefins publication-title: Fuel – volume: 92 start-page: 195 year: 2019 end-page: 202 ident: b0020 article-title: Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts publication-title: J. Energy Inst. – volume: 143 start-page: 151 year: 2016 end-page: 161 ident: b0185 article-title: Fast pyrolysis of lignocellulosics in a twin screw mixer reactor publication-title: Fuel Process. Technol. – volume: 268 start-page: 1 year: 2018 end-page: 8 ident: b0120 article-title: Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis publication-title: Bioresour. Technol. – volume: 285 start-page: 304 year: 2012 end-page: 314 ident: b0500 article-title: Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst publication-title: J. Catal. – volume: 19 start-page: 757 year: 2017 end-page: 768 ident: b0620 article-title: Co-Pyrolysis of torrefied biomass and methane over molybdenum modified bimetallic HZSM-5 catalyst for hydrocarbons production publication-title: Green Chem. – volume: 81 start-page: 2087 year: 2002 end-page: 2095 ident: b0285 article-title: Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals publication-title: Fuel – volume: 87 start-page: 451 year: 2008 end-page: 459 ident: b0050 article-title: Catalytic decomposition of biomass tars with iron oxide catalysts publication-title: Fuel – volume: 89 start-page: 171 year: 2010 end-page: 177 ident: b0530 article-title: Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis publication-title: J. Anal. Appl. Pyrol. – volume: 42 start-page: 18434 year: 2017 end-page: 18441 ident: b0270 article-title: Catalytic co-pyrolysis of polypropylene and Laminaria japonica over zeolitic materials publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 1354 year: 2016 end-page: 1363 ident: b0260 article-title: Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY publication-title: ACS Sustainable Chem. Eng. – volume: 83 start-page: 47 year: 2002 end-page: 54 ident: b0365 article-title: Energy production from biomass (part 2): conversion technologies publication-title: Bioresour. Technol. – volume: 455 start-page: 114 year: 2013 end-page: 121 ident: b0310 article-title: Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene publication-title: Appl. Catal. A – volume: 34 start-page: 504 year: 2014 end-page: 512 ident: b0480 article-title: The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene publication-title: Waste Manage. – volume: 249 start-page: 195 year: 2007 end-page: 207 ident: b0060 article-title: Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species publication-title: J. Catal. – volume: 12 start-page: 1403 year: 2020 end-page: 1412 ident: b0045 article-title: Hybridization of ZSM-5 with spinel oxides for biomass vapour upgrading publication-title: ChemCatChem – volume: 207 start-page: 413 year: 2017 end-page: 422 ident: b0215 article-title: Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating publication-title: Fuel – volume: 149 start-page: 966 year: 2017 end-page: 973 ident: b0265 article-title: Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts publication-title: Energy Convers. Manage. – volume: 115 year: 2019 ident: b0410 article-title: Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes publication-title: Renew. Sustain. Energy Rev. – volume: 188 start-page: 125 year: 2016 ident: b0585 article-title: Ecological risk assessment of heavy metals in soils surrounding oil waste disposal areas publication-title: J. Environ. Monitor. Assessment – volume: 100 start-page: 353 year: 1986 end-page: 359 ident: b0390 article-title: Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane publication-title: J. Catal. – volume: 30 start-page: 9524 year: 2016 end-page: 9531 ident: b0210 article-title: Production of high-yield bio-oil with a high effective hydrogen/carbon molar ratio through acidolysis and in situ hydrogenation publication-title: Energy & Fuels – volume: 373 start-page: 375 year: 2019 end-page: 381 ident: b0445 article-title: Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties publication-title: Chem. Eng. J. – volume: 395 start-page: 881 year: 1998 end-page: 884 ident: b0195 article-title: Energy implications of future stabilization of atmospheric CO2 content publication-title: Nature – volume: 58 year: 2019 ident: b0370 article-title: Catalytic copyrolysis of lignocellulose and polyethylene blends over HBeta zeolite publication-title: Ind. Eng. Chem. Res. – volume: 1 start-page: 32 year: 2016 end-page: 58 ident: b0570 article-title: Production of fuels and chemicals from biomass: condensation reactions and beyond publication-title: Chem – volume: 2 start-page: 485 year: 2019 end-page: 494 ident: b0430 article-title: Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites publication-title: Nat. Catal. – volume: 14 start-page: 3114 year: 2012 end-page: 3125 ident: b0090 article-title: Production of targeted aromatics by using Diels-Alder classes of reactions with furans and olefins over ZSM-5 publication-title: Green Chem. – volume: 162 start-page: 338 year: 2015 end-page: 345 ident: b0135 article-title: Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling publication-title: Appl. Catal. B – volume: 8 start-page: 656 year: 2018 ident: b0405 article-title: Increased aromatics formation by the use of high-density polyethylene on the catalytic pyrolysis of mandarin peel over HY and HZSM-5 publication-title: Catalysts – volume: 9 start-page: 3525 year: 2019 end-page: 3536 ident: b0545 article-title: Effects of the controllable mesostructure of nano-sized ZSM-5 on the co-cracking of phenolic bio-oil model compounds and ethanol publication-title: Catal. Sci. Technol. – volume: 16 start-page: 662 year: 2014 end-page: 674 ident: b0225 article-title: Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours publication-title: Green Chem. – volume: 174 start-page: 317 year: 2016 end-page: 324 ident: b0150 article-title: Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene publication-title: Fuel – volume: 83 start-page: 37 year: 2002 end-page: 46 ident: b0360 article-title: Energy production from biomass (part 1): overview of biomass publication-title: Bioresour. Technol. – volume: 92 start-page: 448 year: 2015 end-page: 458 ident: b0040 article-title: In-situ catalytic upgrading of biomass pyrolysis vapor: co-feeding with methanol in a multi-zone fixed bed reactor publication-title: Energy Convers. Manage. – volume: 100 start-page: 107 year: 2017 end-page: 111 ident: b0080 article-title: Aggregates of nano-sized ZSM-5 crystals synthesized with template-free and alkali-treated seeds for improving the catalytic performance in MTP reaction publication-title: Catal. Commun. – volume: 3 start-page: 2456 year: 2013 end-page: 2473 ident: b0420 article-title: Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion publication-title: ACS Catal. – volume: 91 start-page: 1446 year: 2010 end-page: 1458 ident: b0380 article-title: Catalytic pyrolysis-GC/MS of lignin from several sources publication-title: Fuel Process. Technol. – volume: 160 start-page: 577 year: 2015 end-page: 582 ident: b0580 article-title: Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production publication-title: Fuel – volume: 3 start-page: 1805 year: 2010 end-page: 1820 ident: b0345 article-title: Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study publication-title: Energies – volume: 90 start-page: 292 year: 2018 end-page: 315 ident: b0415 article-title: Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass publication-title: Renew. Sustain. Energy Rev. – volume: 134 start-page: 209 year: 2018 end-page: 217 ident: b0600 article-title: Segmented catalytic co-pyrolysis of biomass and high-density polyethylene for aromatics production with MgCl2 and HZSM-5 publication-title: J. Anal. Appl. Pyrol. – volume: 247 start-page: 804 year: 2018 end-page: 811 ident: b0575 article-title: Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis publication-title: Bioresour. Technol. – volume: 6 start-page: 2096 year: 2016 end-page: 2105 ident: b0440 article-title: Mg-modified ultra-stable Y type zeolite for the rapid catalytic co-pyrolysis of low-rank coal and biomass publication-title: RSC Adv. – reference: Weitkamp, J., Hunger, M. 2007. Chapter 22 – acid and base catalysis on zeolites. In: Studies in Surface Science and Catalysis, (Eds.) J. Čejka, H. van Bekkum, A. Corma, F. Schüth, Vol. 168, Elsevier, pp. 787–835. – volume: 57 start-page: 95 year: 1999 end-page: 102 ident: b0245 article-title: Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit publication-title: Catal. Lett. – volume: 120 start-page: 484 year: 2016 end-page: 492 ident: b0615 article-title: Integration of biomass catalytic pyrolysis and methane aromatization over Mo/HZSM-5 catalysts publication-title: J. Anal. Appl. Pyrol. – volume: 5 start-page: 30485 year: 2015 end-page: 30494 ident: b0625 article-title: Thermally stable phosphorus and nickel modified ZSM-5 zeolites for catalytic co-pyrolysis of biomass and plastics publication-title: RSC Adv. – volume: 225 start-page: 199 year: 2017 end-page: 205 ident: b0155 article-title: Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality publication-title: Bioresour. Technol. – volume: 168 start-page: 203 year: 2015 end-page: 211 ident: b0635 article-title: Effect of biomass ash in catalytic fast pyrolysis of pine wood publication-title: Appl. Catal. B – volume: 303 start-page: 200 year: 2018 end-page: 206 ident: b0460 article-title: Effect of methane co-feeding on product selectivity of catalytic pyrolysis of biomass publication-title: Catal. Today – volume: 124 start-page: 470 year: 2012 end-page: 477 ident: b0070 article-title: A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis publication-title: Bioresour. Technol. – volume: 129 start-page: 195 year: 2018 end-page: 203 ident: b0385 article-title: Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: catalyst deactivation and coke formation publication-title: J. Anal. Appl. Pyrol. – year: 2019 ident: b0700 article-title: Optimizing the aromatic yield via catalytic fast co-pyrolysis of rice straw and waste oil over HZSM-5 catalysts publication-title: Energy Fuels – volume: 189 start-page: 30 year: 2015 end-page: 35 ident: b0655 article-title: Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: analytical Py–GC/MS study publication-title: Bioresour. Technol. – volume: 5 start-page: 4952 year: 2012 end-page: 5001 ident: b0240 article-title: Biofuels production through biomass pyrolysis—a technological review publication-title: Energies – volume: 123 start-page: 25 year: 2019 end-page: 33 ident: b0250 article-title: Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology publication-title: Biomass Bioenergy – volume: 6 start-page: 2608 year: 2016 end-page: 2621 ident: b0685 article-title: Catalytic deoxygenation of bio-oil model compounds over acid-base bifunctional catalysts publication-title: ACS Catal. – volume: 241 start-page: 79 year: 2017 end-page: 88 ident: b0015 article-title: Effect of multi-step desilication and dealumination treatments on the performance of hierarchical EU-1 zeolite for converting methanol to olefins publication-title: Microporous Mesoporous Mater. – volume: 151 start-page: 116 year: 2017 end-page: 122 ident: b0435 article-title: In-situ catalytic co-pyrolysis of yellow poplar and high-density polyethylene over mesoporous catalysts publication-title: Energy Convers. Manage. – volume: 51 start-page: 1025 year: 2010 end-page: 1032 ident: b0335 article-title: Influence of ZSM-5 zeolite on the pyrolytic intermediates from the co-pyrolysis of pubescens and LDPE publication-title: Energy Convers. Manage. – volume: 172 start-page: 154 year: 2015 end-page: 164 ident: b0300 article-title: Maximizing carbon efficiency of petrochemical production from catalytic co-pyrolysis of biomass and plastics using gallium-containing MFI zeolites publication-title: Appl. Catal. B – volume: 487 start-page: 45 year: 2014 end-page: 53 ident: b0715 article-title: Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene publication-title: Appl. Catal. A – volume: 298 start-page: 46 year: 2017 end-page: 52 ident: b0275 article-title: Catalytic co-pyrolysis of biomass carbohydrates with LLDPE over Al-SBA-15 and mesoporous ZSM-5 publication-title: Catal. Today – volume: 129 start-page: 202 year: 2013 end-page: 213 ident: b0330 article-title: Study on the effect of metal types in (Me)-Al-MCM-41 on the mesoporous structure and catalytic behavior during the vapor-catalyzed co-pyrolysis of pubescens and LDPE publication-title: Appl. Catal. B – volume: 16 start-page: 2580 year: 2014 end-page: 2586 ident: b0710 article-title: Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production publication-title: Green Chem. – volume: 116 start-page: 223 year: 2015 end-page: 230 ident: b0315 article-title: Effects of phosphorus-modified HZSM-5 on distribution of hydrocarbon compounds from wood–plastic composite pyrolysis using Py-GC/MS publication-title: J. Anal. Appl. Pyrol. – volume: 221 start-page: 645 year: 2016 end-page: 655 ident: b0175 article-title: Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil publication-title: Bioresour. Technol. – volume: 159 start-page: 810 year: 2015 end-page: 818 ident: b0030 article-title: Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor publication-title: Fuel – volume: 6 start-page: 514 year: 2013 end-page: 538 ident: b0115 article-title: Catalytic fast pyrolysis: a review publication-title: Energies – volume: 94 start-page: 209 year: 2012 end-page: 214 ident: b0295 article-title: Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil publication-title: J. Anal. Appl. Pyrol. – volume: 330 start-page: 1222 year: 2010 ident: b0515 article-title: Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils publication-title: Science – volume: 20 start-page: 567 year: 2018 end-page: 582 ident: b0220 article-title: Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading publication-title: Green Chem. – volume: 13 start-page: 1068 year: 2007 end-page: 1078 ident: b0355 article-title: Implications of CO2 fertilization for future climate change in a coupled climate–carbon model publication-title: Glob. Change Biol. – volume: 123 start-page: 224 year: 2017 end-page: 228 ident: b0555 article-title: Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production publication-title: J. Anal. Appl. Pyrol. – volume: 87 start-page: 71 year: 2014 end-page: 85 ident: b0005 article-title: A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil publication-title: Energy Convers. Manage. – volume: 4 start-page: e7 year: 2020 end-page: e8 ident: b0645 article-title: Bushfires in Australia: a serious health emergency under climate change publication-title: Lancet Planet. Health – volume: 73 start-page: 9 year: 1982 end-page: 19 ident: b0255 article-title: Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts publication-title: J. Catal. – volume: 7 start-page: 289 year: 2017 end-page: 304 ident: b0190 article-title: Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides publication-title: Biomass Convers. Biorefin. – volume: 59 start-page: 23 year: 2012 end-page: 31 ident: b0035 article-title: Influence of temperature on biomass pyrolysis in a conical spouted bed reactor publication-title: Resour. Conserv. Recycl. – volume: 173 start-page: 418 year: 2016 end-page: 430 ident: b0695 article-title: Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions publication-title: Appl. Energy – volume: 44 start-page: 436 year: 2019 end-page: 437 ident: b0110 article-title: Waste-plastic processing provides global challenges and opportunities publication-title: MRS Bull. – volume: 458 start-page: 1163 year: 2009 end-page: 1166 ident: b0025 article-title: Warming caused by cumulative carbon emissions towards the trillionth tonne publication-title: Nature – volume: 57 start-page: 1596 year: 2016 end-page: 1610 ident: b0630 article-title: Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass publication-title: Renewable Sustainable Energy Rev. – start-page: 263 year: 2016 end-page: 287 ident: b0425 article-title: Bio-oil production and upgrading: new challenges for membrane applications. publication-title: Membrane Technologies for Biorefining – volume: 171 start-page: 1202 year: 2018 end-page: 1212 ident: b0450 article-title: Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels publication-title: Energy Convers. Manage. – volume: 103 start-page: 513 year: 2016 end-page: 521 ident: b0075 article-title: Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis publication-title: Energy – volume: 4 start-page: 2297 year: 2011 end-page: 2307 ident: b0670 article-title: Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio publication-title: Energy Environ. Sci. – volume: 129 start-page: 81 year: 2016 end-page: 88 ident: b0290 article-title: Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene publication-title: Energy Convers. Manage. – volume: 127 start-page: 281 year: 2012 end-page: 290 ident: b0230 article-title: Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite publication-title: Appl. Catal. B – volume: 4 start-page: 2874 year: 2014 end-page: 2888 ident: b0395 article-title: Ketonization of carboxylic acids in biomass conversion over TiO2 and ZrO2 surfaces: a DFT perspective publication-title: ACS Catal. – start-page: 611 year: 1997 end-page: 621 ident: b0145 article-title: Liquid fuels by low-severity hydrotreating of biocrude publication-title: Developments in Thermochemical Biomass Conversion – volume: 26 start-page: 7347 year: 2012 end-page: 7353 ident: b0490 article-title: Catalytic pyrolysis of torrefied biomass for hydrocarbons production publication-title: Energy Fuels – volume: 35 start-page: 835 year: 2011 end-page: 862 ident: b0510 article-title: Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—an overview publication-title: Int. J. Energy Res. – volume: 14 start-page: 98 year: 2012 end-page: 110 ident: b0665 article-title: Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor publication-title: Green Chem. – volume: 15 issue: 3 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0350 article-title: Pyrolysis of agricultural biomass using an auger reactor: a parametric optimization publication-title: Int. J. Chem. Reactor Eng. doi: 10.1515/ijcre-2016-0133 – volume: 29 start-page: 285 issue: 1 year: 1996 ident: 10.1016/j.biortech.2020.123457_b0065 article-title: Production of high grade fuels and chemicals from catalytic pyrolysis of biomass publication-title: Catal. Today doi: 10.1016/0920-5861(95)00294-4 – volume: 458 start-page: 1163 issue: 7242 year: 2009 ident: 10.1016/j.biortech.2020.123457_b0025 article-title: Warming caused by cumulative carbon emissions towards the trillionth tonne publication-title: Nature doi: 10.1038/nature08019 – volume: 16 start-page: 2580 issue: 5 year: 2014 ident: 10.1016/j.biortech.2020.123457_b0710 article-title: Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production publication-title: Green Chem. doi: 10.1039/c3gc42251h – volume: 293–294 start-page: 151 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0200 article-title: In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5 publication-title: Catal. Today doi: 10.1016/j.cattod.2016.11.045 – volume: 249 start-page: 69 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0705 article-title: Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.184 – volume: 115 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0410 article-title: Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109400 – volume: 273 start-page: 249 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0010 article-title: Choreographing boron-aluminum acidity and hierarchical porosity in *BEA zeolite by in-situ hydrothermal synthesis for a highly selective methanol to propylene catalyst publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2018.06.036 – volume: 225 start-page: 199 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0155 article-title: Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.11.072 – volume: 216 start-page: 386 issue: 1–2 year: 2003 ident: 10.1016/j.biortech.2020.123457_b0590 article-title: Direct conversion of methane under nonoxidative conditions publication-title: J. Catal. doi: 10.1016/S0021-9517(02)00124-0 – volume: 112 start-page: 48 year: 2013 ident: 10.1016/j.biortech.2020.123457_b0165 article-title: Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2013.02.022 – volume: 172 start-page: 154 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0300 article-title: Maximizing carbon efficiency of petrochemical production from catalytic co-pyrolysis of biomass and plastics using gallium-containing MFI zeolites publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.02.015 – volume: 8 start-page: 114 issue: 1 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0280 article-title: Cation-exchanged zeolites for the selective oxidation of methane to methanol publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01229B – volume: 51 start-page: 1025 issue: 5 year: 2010 ident: 10.1016/j.biortech.2020.123457_b0335 article-title: Influence of ZSM-5 zeolite on the pyrolytic intermediates from the co-pyrolysis of pubescens and LDPE publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2009.12.005 – volume: 134 start-page: 209 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0600 article-title: Segmented catalytic co-pyrolysis of biomass and high-density polyethylene for aromatics production with MgCl2 and HZSM-5 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2018.06.010 – volume: 116 start-page: 223 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0315 article-title: Effects of phosphorus-modified HZSM-5 on distribution of hydrocarbon compounds from wood–plastic composite pyrolysis using Py-GC/MS publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2015.09.007 – volume: 261 start-page: 86 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0125 article-title: Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.03.138 – volume: 90 start-page: 292 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0415 article-title: Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.048 – volume: 123 start-page: 224 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0555 article-title: Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2016.11.025 – start-page: 263 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0425 article-title: Bio-oil production and upgrading: new challenges for membrane applications. – volume: 16 start-page: 662 issue: 2 year: 2014 ident: 10.1016/j.biortech.2020.123457_b0225 article-title: Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours publication-title: Green Chem. doi: 10.1039/C3GC41575A – volume: 279 start-page: 257 issue: 2 year: 2011 ident: 10.1016/j.biortech.2020.123457_b0235 article-title: Investigation into the shape selectivity of zeolite catalysts for biomass conversion publication-title: J. Catal. doi: 10.1016/j.jcat.2011.01.019 – volume: 151 start-page: 116 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0435 article-title: In-situ catalytic co-pyrolysis of yellow poplar and high-density polyethylene over mesoporous catalysts publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.08.073 – volume: 87 start-page: 71 year: 2014 ident: 10.1016/j.biortech.2020.123457_b0005 article-title: A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.07.007 – volume: 44 start-page: 436 issue: 6 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0110 article-title: Waste-plastic processing provides global challenges and opportunities publication-title: MRS Bull. doi: 10.1557/mrs.2019.133 – volume: 26 start-page: 7347 issue: 12 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0490 article-title: Catalytic pyrolysis of torrefied biomass for hydrocarbons production publication-title: Energy Fuels doi: 10.1021/ef301469t – volume: 395 start-page: 881 issue: 6705 year: 1998 ident: 10.1016/j.biortech.2020.123457_b0195 article-title: Energy implications of future stabilization of atmospheric CO2 content publication-title: Nature doi: 10.1038/27638 – volume: 81 start-page: 2087 issue: 16 year: 2002 ident: 10.1016/j.biortech.2020.123457_b0285 article-title: Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals publication-title: Fuel doi: 10.1016/S0016-2361(02)00195-3 – volume: 97 start-page: 379 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0400 article-title: Production of phenolics and aromatics by pyrolysis of miscanthus publication-title: Fuel doi: 10.1016/j.fuel.2012.01.075 – volume: 51 start-page: 983 issue: 5 year: 2010 ident: 10.1016/j.biortech.2020.123457_b0470 article-title: The prediction of elemental composition of biomass based on proximate analysis publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2009.11.039 – volume: 19 start-page: 757 issue: 3 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0620 article-title: Co-Pyrolysis of torrefied biomass and methane over molybdenum modified bimetallic HZSM-5 catalyst for hydrocarbons production publication-title: Green Chem. doi: 10.1039/C6GC02497A – volume: 5 issue: 1 year: 2007 ident: 10.1016/j.biortech.2020.123457_b0505 article-title: Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil publication-title: Int. J. Chem. Reactor Eng. doi: 10.2202/1542-6580.1559 – volume: 198 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0640 article-title: Two-step catalytic co-pyrolysis of walnut shell and LDPE for aromatic-rich oil publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.111816 – year: 2019 ident: 10.1016/j.biortech.2020.123457_b0700 article-title: Optimizing the aromatic yield via catalytic fast co-pyrolysis of rice straw and waste oil over HZSM-5 catalysts publication-title: Energy Fuels – volume: 5 start-page: 30485 issue: 39 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0625 article-title: Thermally stable phosphorus and nickel modified ZSM-5 zeolites for catalytic co-pyrolysis of biomass and plastics publication-title: RSC Adv. doi: 10.1039/C5RA02947C – volume: 100 start-page: 353 issue: 2 year: 1986 ident: 10.1016/j.biortech.2020.123457_b0390 article-title: Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane publication-title: J. Catal. doi: 10.1016/0021-9517(86)90102-8 – volume: 3 start-page: 2456 issue: 11 year: 2013 ident: 10.1016/j.biortech.2020.123457_b0420 article-title: Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion publication-title: ACS Catal. doi: 10.1021/cs400501h – volume: 35 start-page: 835 issue: 10 year: 2011 ident: 10.1016/j.biortech.2020.123457_b0510 article-title: Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—an overview publication-title: Int. J. Energy Res. doi: 10.1002/er.1804 – volume: 2 start-page: 485 issue: 6 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0430 article-title: Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites publication-title: Nat. Catal. doi: 10.1038/s41929-019-0273-z – volume: 1 start-page: 32 issue: 1 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0570 article-title: Production of fuels and chemicals from biomass: condensation reactions and beyond publication-title: Chem doi: 10.1016/j.chempr.2016.05.002 – volume: 133 start-page: 147 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0660 article-title: Catalytic fast co-pyrolysis of biomass and fusel alcohol to enhance aromatic hydrocarbon production over ZSM-5 catalyst in a fluidized bed reactor publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2018.04.009 – volume: 6 start-page: 2608 issue: 4 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0685 article-title: Catalytic deoxygenation of bio-oil model compounds over acid-base bifunctional catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.6b00245 – volume: 174 start-page: 317 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0150 article-title: Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene publication-title: Fuel doi: 10.1016/j.fuel.2016.02.031 – volume: 159 start-page: 810 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0030 article-title: Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor publication-title: Fuel doi: 10.1016/j.fuel.2015.07.039 – volume: 49 start-page: 5109 issue: 24 year: 1994 ident: 10.1016/j.biortech.2020.123457_b0520 article-title: Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(94)00392-0 – volume: 123 start-page: 152 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0485 article-title: Microwave pyrolysis of tire powders: evolution of yields and composition of products publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2016.12.012 – volume: 128 start-page: 170 year: 2014 ident: 10.1016/j.biortech.2020.123457_b0055 article-title: Formation of phenolic oligomers during fast pyrolysis of lignin publication-title: Fuel doi: 10.1016/j.fuel.2014.03.013 – volume: 8 start-page: 656 issue: 12 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0405 article-title: Increased aromatics formation by the use of high-density polyethylene on the catalytic pyrolysis of mandarin peel over HY and HZSM-5 publication-title: Catalysts doi: 10.3390/catal8120656 – volume: 83 start-page: 37 issue: 1 year: 2002 ident: 10.1016/j.biortech.2020.123457_b0360 article-title: Energy production from biomass (part 1): overview of biomass publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00118-3 – ident: 10.1016/j.biortech.2020.123457_b0565 doi: 10.1016/S0167-2991(07)80810-X – volume: 87 start-page: 451 issue: 4 year: 2008 ident: 10.1016/j.biortech.2020.123457_b0050 article-title: Catalytic decomposition of biomass tars with iron oxide catalysts publication-title: Fuel doi: 10.1016/j.fuel.2007.06.021 – volume: 298 start-page: 46 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0275 article-title: Catalytic co-pyrolysis of biomass carbohydrates with LLDPE over Al-SBA-15 and mesoporous ZSM-5 publication-title: Catal. Today doi: 10.1016/j.cattod.2017.06.006 – volume: 12 start-page: 151 issue: 1 year: 2020 ident: 10.1016/j.biortech.2020.123457_b0340 article-title: Temporal anomalies in burned area trends: satellite estimations of the Amazonian 2019 fire crisis publication-title: Remote Sensing doi: 10.3390/rs12010151 – volume: 3 start-page: 1805 issue: 11 year: 2010 ident: 10.1016/j.biortech.2020.123457_b0345 article-title: Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study publication-title: Energies doi: 10.3390/en3111805 – volume: 303 start-page: 200 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0460 article-title: Effect of methane co-feeding on product selectivity of catalytic pyrolysis of biomass publication-title: Catal. Today doi: 10.1016/j.cattod.2017.09.009 – volume: 285 start-page: 304 issue: 1 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0500 article-title: Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst publication-title: J. Catal. doi: 10.1016/j.jcat.2011.10.004 – volume: 127 start-page: 246 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0650 article-title: Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2017.07.027 – volume: 91 start-page: 1446 issue: 11 year: 2010 ident: 10.1016/j.biortech.2020.123457_b0380 article-title: Catalytic pyrolysis-GC/MS of lignin from several sources publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2010.05.022 – volume: 100 start-page: 107 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0080 article-title: Aggregates of nano-sized ZSM-5 crystals synthesized with template-free and alkali-treated seeds for improving the catalytic performance in MTP reaction publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.06.048 – volume: 241 start-page: 1118 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0160 article-title: Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.129 – start-page: 611 year: 1997 ident: 10.1016/j.biortech.2020.123457_b0145 article-title: Liquid fuels by low-severity hydrotreating of biocrude – volume: 207 start-page: 413 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0215 article-title: Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating publication-title: Fuel doi: 10.1016/j.fuel.2017.06.098 – volume: 336 start-page: 79 issue: 1–2 year: 2008 ident: 10.1016/j.biortech.2020.123457_b0495 article-title: Methane dehydro-aromatization on Mo/ZSM-5: about the hidden role of Brønsted acid sites publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2007.08.026 – volume: 166 start-page: 227 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0605 article-title: Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer publication-title: Fuel doi: 10.1016/j.fuel.2015.10.125 – volume: 455 start-page: 114 year: 2013 ident: 10.1016/j.biortech.2020.123457_b0310 article-title: Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2013.01.038 – volume: 330 start-page: 1222 issue: 6008 year: 2010 ident: 10.1016/j.biortech.2020.123457_b0515 article-title: Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils publication-title: Science doi: 10.1126/science.1194218 – volume: 92 start-page: 448 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0040 article-title: In-situ catalytic upgrading of biomass pyrolysis vapor: co-feeding with methanol in a multi-zone fixed bed reactor publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.12.082 – volume: 48 start-page: 87 issue: 1 year: 2007 ident: 10.1016/j.biortech.2020.123457_b0690 article-title: Review of biomass pyrolysis oil properties and upgrading research publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2006.05.010 – volume: 249 start-page: 195 issue: 2 year: 2007 ident: 10.1016/j.biortech.2020.123457_b0060 article-title: Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species publication-title: J. Catal. doi: 10.1016/j.jcat.2007.04.006 – volume: 127 start-page: 281 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0230 article-title: Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.08.030 – volume: 18 start-page: 2701 issue: 8 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0540 article-title: Catalytic fast co-pyrolysis of mushroom waste and waste oil to promote the formation of aromatics publication-title: Clean Technol. Environ. Policy doi: 10.1007/s10098-016-1162-7 – volume: 234 start-page: 33 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0560 article-title: Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.010 – volume: 5 start-page: 4952 issue: 12 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0240 article-title: Biofuels production through biomass pyrolysis—a technological review publication-title: Energies doi: 10.3390/en5124952 – volume: 123 start-page: 25 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0250 article-title: Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2019.01.014 – volume: 332 start-page: 127 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0525 article-title: Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.10.001 – volume: 94 start-page: 209 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0295 article-title: Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2011.12.015 – volume: 633 start-page: 1105 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0095 article-title: Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.239 – volume: 9 start-page: 3525 issue: 13 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0545 article-title: Effects of the controllable mesostructure of nano-sized ZSM-5 on the co-cracking of phenolic bio-oil model compounds and ethanol publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY00576E – volume: 481 start-page: 173 year: 2014 ident: 10.1016/j.biortech.2020.123457_b0305 article-title: Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2014.05.015 – volume: 89 start-page: 171 issue: 2 year: 2010 ident: 10.1016/j.biortech.2020.123457_b0530 article-title: Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2010.07.008 – volume: 73 start-page: 9 issue: 1 year: 1982 ident: 10.1016/j.biortech.2020.123457_b0255 article-title: Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts publication-title: J. Catal. doi: 10.1016/0021-9517(82)90075-6 – volume: 14 start-page: 3114 issue: 11 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0090 article-title: Production of targeted aromatics by using Diels-Alder classes of reactions with furans and olefins over ZSM-5 publication-title: Green Chem. doi: 10.1039/c2gc35767d – volume: 2 start-page: 301 issue: 2 year: 2014 ident: 10.1016/j.biortech.2020.123457_b0130 article-title: H-ZSM5 catalyzed co-pyrolysis of biomass and plastics publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc400354g – volume: 34 start-page: 504 issue: 2 year: 2014 ident: 10.1016/j.biortech.2020.123457_b0480 article-title: The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene publication-title: Waste Manage. doi: 10.1016/j.wasman.2013.10.036 – volume: 221 start-page: 645 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0175 article-title: Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.026 – volume: 241 start-page: 207 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0140 article-title: Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.104 – volume: 189 start-page: 30 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0655 article-title: Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: analytical Py–GC/MS study publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.03.092 – volume: 4 start-page: 2297 issue: 6 year: 2011 ident: 10.1016/j.biortech.2020.123457_b0670 article-title: Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01230d – volume: 92 start-page: 195 issue: 1 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0020 article-title: Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts publication-title: J. Energy Inst. doi: 10.1016/j.joei.2017.10.009 – volume: 129 start-page: 202 year: 2013 ident: 10.1016/j.biortech.2020.123457_b0330 article-title: Study on the effect of metal types in (Me)-Al-MCM-41 on the mesoporous structure and catalytic behavior during the vapor-catalyzed co-pyrolysis of pubescens and LDPE publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.09.002 – volume: 124 start-page: 470 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0070 article-title: A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.08.089 – volume: 4 start-page: 2874 issue: 9 year: 2014 ident: 10.1016/j.biortech.2020.123457_b0395 article-title: Ketonization of carboxylic acids in biomass conversion over TiO2 and ZrO2 surfaces: a DFT perspective publication-title: ACS Catal. doi: 10.1021/cs500791w – volume: 366 start-page: 330 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0465 article-title: In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.055 – volume: 42 start-page: 18434 issue: 29 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0270 article-title: Catalytic co-pyrolysis of polypropylene and Laminaria japonica over zeolitic materials publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.139 – volume: 129 start-page: 81 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0290 article-title: Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.10.001 – volume: 31 start-page: 9576 issue: 9 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0595 article-title: Synergetic effect of co-pyrolysis of cellulose and polypropylene over an all-silica mesoporous catalyst MCM-41 using thermogravimetry-fourier transform infrared spectroscopy and pyrolysis-gas chromatography–mass spectrometry publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b01651 – volume: 14 start-page: 98 issue: 1 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0665 article-title: Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor publication-title: Green Chem. doi: 10.1039/C1GC15619E – volume: 139 start-page: 222 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0535 article-title: Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: Analytical PY-GC/MS study publication-title: J. Energy Convers. Manage. doi: 10.1016/j.enconman.2017.02.047 – volume: 2 start-page: 141 issue: 2 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0475 article-title: Economic analysis of novel synergistic biofuel (H 2 Bioil) processes publication-title: Biomass Conversion doi: 10.1007/s13399-012-0043-5 – volume: 247 start-page: 804 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0575 article-title: Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.178 – volume: 204 start-page: 164 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0325 article-title: Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.12.085 – volume: 79 start-page: 38 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0320 article-title: Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts publication-title: Waste Manage. doi: 10.1016/j.wasman.2018.07.021 – volume: 284 start-page: 406 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0180 article-title: Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.03.137 – volume: 57 start-page: 95 issue: 3 year: 1999 ident: 10.1016/j.biortech.2020.123457_b0245 article-title: Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit publication-title: Catal. Lett. doi: 10.1023/A:1019087313679 – volume: 302 start-page: 2 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0170 article-title: Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins publication-title: Catal. Today doi: 10.1016/j.cattod.2017.03.008 – volume: 487 start-page: 45 year: 2014 ident: 10.1016/j.biortech.2020.123457_b0715 article-title: Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2014.09.009 – volume: 160 start-page: 577 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0580 article-title: Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production publication-title: Fuel doi: 10.1016/j.fuel.2015.08.020 – volume: 6 start-page: 514 issue: 1 year: 2013 ident: 10.1016/j.biortech.2020.123457_b0115 article-title: Catalytic fast pyrolysis: a review publication-title: Energies doi: 10.3390/en6010514 – volume: 129 start-page: 195 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0385 article-title: Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: catalyst deactivation and coke formation publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2017.11.012 – volume: 6 start-page: 2096 issue: 3 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0440 article-title: Mg-modified ultra-stable Y type zeolite for the rapid catalytic co-pyrolysis of low-rank coal and biomass publication-title: RSC Adv. doi: 10.1039/C5RA24395E – volume: 61 start-page: 276 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0550 article-title: Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production publication-title: Waste Manage. doi: 10.1016/j.wasman.2017.01.010 – volume: 57 start-page: 1596 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0630 article-title: Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2015.12.202 – volume: 17 start-page: 4680 issue: 9 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0105 article-title: Design and operation of a pilot-scale catalytic biomass pyrolysis unit publication-title: Green Chem. doi: 10.1039/C5GC01023C – volume: 20 start-page: 567 issue: 3 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0220 article-title: Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading publication-title: Green Chem. doi: 10.1039/C7GC02947K – volume: 120 start-page: 484 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0615 article-title: Integration of biomass catalytic pyrolysis and methane aromatization over Mo/HZSM-5 catalysts publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2016.06.021 – volume: 143 start-page: 151 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0185 article-title: Fast pyrolysis of lignocellulosics in a twin screw mixer reactor publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.11.003 – volume: 192 start-page: 68 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0680 article-title: Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.040 – volume: 268 start-page: 1 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0120 article-title: Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.07.108 – volume: 13 start-page: 1068 issue: 5 year: 2007 ident: 10.1016/j.biortech.2020.123457_b0355 article-title: Implications of CO2 fertilization for future climate change in a coupled climate–carbon model publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2007.01343.x – volume: 7 start-page: 289 issue: 3 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0190 article-title: Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides publication-title: Biomass Convers. Biorefin. doi: 10.1007/s13399-017-0266-6 – volume: 149 start-page: 966 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0265 article-title: Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.04.033 – volume: 373 start-page: 375 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0445 article-title: Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.049 – volume: 618 start-page: 151 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0675 article-title: Improving the hydrocarbon production via co-pyrolysis of bagasse with bio-plastic and dual-catalysts layout publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.045 – volume: 4 start-page: 1354 issue: 3 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0260 article-title: Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b01381 – volume: 265 year: 2020 ident: 10.1016/j.biortech.2020.123457_b0375 article-title: Interactions between oil shale and hydrogen-rich wastes during co-pyrolysis: 1. Co-pyrolysis of oil shale and polyolefins publication-title: Fuel doi: 10.1016/j.fuel.2019.116994 – volume: 34 start-page: 87 issue: 1 year: 1995 ident: 10.1016/j.biortech.2020.123457_b0205 article-title: Catalytic coprocessing of biomass-derived pyrolysis vapours and methanol publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/0165-2370(94)00877-4 – volume: Vol. 376 start-page: 277 year: 1988 ident: 10.1016/j.biortech.2020.123457_b0085 publication-title: Fluidized-bed Upgrading of Wood Pyrolysis Liquids and Related Compounds – volume: 58 issue: 16 year: 2019 ident: 10.1016/j.biortech.2020.123457_b0370 article-title: Catalytic copyrolysis of lignocellulose and polyethylene blends over HBeta zeolite publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b06158 – volume: 41 start-page: 4209 issue: 17 year: 2002 ident: 10.1016/j.biortech.2020.123457_b0100 article-title: Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020107q – volume: 4 start-page: e7 issue: 1 year: 2020 ident: 10.1016/j.biortech.2020.123457_b0645 article-title: Bushfires in Australia: a serious health emergency under climate change publication-title: Lancet Planet. Health doi: 10.1016/S2542-5196(19)30267-0 – volume: 173 start-page: 418 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0695 article-title: Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.04.071 – volume: 59 start-page: 23 year: 2012 ident: 10.1016/j.biortech.2020.123457_b0035 article-title: Influence of temperature on biomass pyrolysis in a conical spouted bed reactor publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2011.04.002 – volume: 279 start-page: 366 issue: 2 year: 2011 ident: 10.1016/j.biortech.2020.123457_b0455 article-title: Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units publication-title: J. Catal. doi: 10.1016/j.jcat.2011.02.007 – volume: 103 start-page: 513 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0075 article-title: Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis publication-title: Energy doi: 10.1016/j.energy.2016.03.015 – volume: 30 start-page: 9524 issue: 11 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0210 article-title: Production of high-yield bio-oil with a high effective hydrogen/carbon molar ratio through acidolysis and in situ hydrogenation publication-title: Energy & Fuels doi: 10.1021/acs.energyfuels.6b02250 – volume: 241 start-page: 79 year: 2017 ident: 10.1016/j.biortech.2020.123457_b0015 article-title: Effect of multi-step desilication and dealumination treatments on the performance of hierarchical EU-1 zeolite for converting methanol to olefins publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2016.12.008 – volume: 168 start-page: 203 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0635 article-title: Effect of biomass ash in catalytic fast pyrolysis of pine wood publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.12.044 – volume: 83 start-page: 47 issue: 1 year: 2002 ident: 10.1016/j.biortech.2020.123457_b0365 article-title: Energy production from biomass (part 2): conversion technologies publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00119-5 – volume: 162 start-page: 338 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0135 article-title: Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.07.006 – volume: 188 start-page: 125 issue: 2 year: 2016 ident: 10.1016/j.biortech.2020.123457_b0585 article-title: Ecological risk assessment of heavy metals in soils surrounding oil waste disposal areas publication-title: J. Environ. Monitor. Assessment doi: 10.1007/s10661-016-5093-x – volume: 156 start-page: 40 year: 2015 ident: 10.1016/j.biortech.2020.123457_b0610 article-title: Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor publication-title: Fuel doi: 10.1016/j.fuel.2015.04.033 – volume: 12 start-page: 1403 issue: 5 year: 2020 ident: 10.1016/j.biortech.2020.123457_b0045 article-title: Hybridization of ZSM-5 with spinel oxides for biomass vapour upgrading publication-title: ChemCatChem doi: 10.1002/cctc.201902023 – volume: 171 start-page: 1202 year: 2018 ident: 10.1016/j.biortech.2020.123457_b0450 article-title: Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.06.053 |
SSID | ssj0003172 |
Score | 2.6531134 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Catalytic co-pyrolysis of biomass and high-rich feedstock is reviewed.•Synergistic interaction between hydrogen donor feedstock and biomass... The depletion of fossil fuel reserves and the growing demand for alternative energy sources are the main drivers of biomass and carbonaceous waste utilization.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 123457 |
SubjectTerms | Active sites Biofuels Biomass Biomass deoxygenation carbon Catalysis catalysts Co-pyrolysis commercialization cost effectiveness depolymerization ethanol feedstocks fossil fuels Hot Temperature Hydrogen Hydrogen transfer lignocellulose lubricants methane methanol oils oxygen porous media Pyrolysis pyrolysis oils reaction mechanisms research and development silica solid wastes synergism technology tires waste utilization Zeolite zeolites |
Title | A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism |
URI | https://dx.doi.org/10.1016/j.biortech.2020.123457 https://www.ncbi.nlm.nih.gov/pubmed/32371033 https://www.proquest.com/docview/2399236730 https://www.proquest.com/docview/2524252888 |
Volume | 310 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB612wNwQFBey6MyEkfS3Y3tJOa2WlFtQeoFKu0tih-hKTRZbdLDXvgv_FNmHGcpEtADxyS2Y2XGns_xN58B3qSFnmoc0JFXuxWujCOtXBGZkjjviEBc4dkWZ8nyXHxYydUeLIZcGKJVhrm_n9P9bB3uTMLXnKyravKJwHcmMcSQn8ZqtQ8HMVeJHMHB_PTj8mw3IWOI9JsJWD6iCjcShS-PdUWkVr8vEZPWAhcUqf4co_6GQX0sOnkA9wOIZPO-nw9hz9WHcG_-ZROENNwh3FkMJ7nhkxuig4_gx5z1-SqsqdlAAWD-N84W22OmidbbTeOlSlhTMkrQR4TNitqyi63dNOhyEb7pgpUY-RA7mq_v2Gnd0iq_ZVXdNazdUkahl4BmPWHkbXhB2zH7i6bk20TU6nMr2JWjLOSqvXoM5yfvPy-WUTioITK4POsiIWxZqtLMEqldKung6lRn3GSpMHGmZ1wIKZ1KlJ6akiPo4lKkZcGLmVNScMufwKhuavcMmMosmtNMjbUG46vQJGaJIAZRWqZswscgB9PkJqiY02Ea3_KBrnaZDybNyaR5b9IxTHb11r2Ox6011GD5_DePzDHY3Fr39eAqOdqa9mCK2jXXbU6pxCSax6f_KENOLeMsy8bwtPezXZ95zBETcv78P3r3Au7SVU9jfAmjbnPtXiG06vQR7B9_nx2FAfQTHk0lgw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nc9MwEN0p6aFwYEr5ClAQMxwxSSwptrllMu0ktORCO5ObxpKl1oXamdg95OfwT9mV7bTMAD1wtayP8a60T9bbJ4APUaqHGid04NVuhXVhoBObBsYR5x0RiE0922Ixnp2LL0u53IFplwtDtMp27W_WdL9at08G7dccrPJ88I3AdywxxJCfhsnyAewKibu9HuxO5iezxXZBxhDpDxPw_YAq3EkUvvqkcyK1-nOJkLQWuKBI9ecY9TcM6mPR8T48bkEkmzTjfAI7tjiAR5OLdSukYQ9gb9rd5IYld0QHn8LPCWvyVVhZsI4CwPxvnA22x0wZrDbr0kuVsNIxStBHhM3SImOXm2xdossF2NMlcxj5EDua75_ZvKhol1-xvKhLVm0oo9BLQLOGMPKx7aCqWXZLU_JtImr1uRXs2lIWcl5dP4Pz46Oz6SxoL2oIDG7P6kCIzLnEmdFYahtJurg60jE3cSRMGOsRF0JKm4wTPTSOI-jiUkQu5enIJlLwjD-HXlEW9iWwJM7QnGZossxgfBWaxCwRxCBKi5NszPsgO9Mo06qY02UaP1RHV7tSnUkVmVQ1Ju3DYFtv1eh43Fsj6SyvfvNIhcHm3rrvO1dRaGs6g0kLW95UilKJSTSPD__xDjm1DOM47sOLxs-2Y-YhR0zI-av_GN072JudfT1Vp_PFyWt4SCUNpfEN9Or1jT1EmFXrt-00-gUiWSdy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+advanced+catalytic+co-pyrolysis+of+biomass+and+hydrogen-rich+feedstock%3A+Insights+into+synergistic+effect%2C+catalyst+development+and+reaction+mechanism&rft.jtitle=Bioresource+technology&rft.au=Ahmed%2C+Mohamed+H.M.&rft.au=Batalha%2C+Nuno&rft.au=Hasan%2C+Mahmudul&rft.au=Perkins%2C+Greg&rft.date=2020-08-01&rft.issn=0960-8524&rft.volume=310+p.123457-&rft_id=info:doi/10.1016%2Fj.biortech.2020.123457&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |