Biochar mitigates the biotoxicity of heavy metals in livestock manure during composting

The addition of biochar could mitigate the bioavailability of heavy metals during livestock manure composting. However, the main action mechanism of biochar, such as how it worked, was ambiguous. Therefore, in this study, materials (biochar, alkali modified biochar, pretreated cotton ball) were adde...

Full description

Saved in:
Bibliographic Details
Published inBiochar (Online) Vol. 4; no. 1; pp. 1 - 13
Main Authors Chen, Xiaomeng, Du, Zhuang, Liu, Dan, Wang, Liqin, Pan, Chaonan, Wei, Zimin, Jia, Liming, Zhao, Ran
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2022
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The addition of biochar could mitigate the bioavailability of heavy metals during livestock manure composting. However, the main action mechanism of biochar, such as how it worked, was ambiguous. Therefore, in this study, materials (biochar, alkali modified biochar, pretreated cotton ball) were added by embedding with nylon mesh bags to explore the adsorption performance of added materials and its influence on the composting process. The results showed that embedded materials promoted the formation of humic acid and reduced the distribution proportion of bioavailable fraction of heavy metals during composting (Cu: at least 15.72%; Zn: at least 33.44%). The surface of biochar extracted from composting contained attachments, however, the attachment of heavy metal was not detected and functional groups on the materials did no change significantly. This indicated that the addition of biochar did not directly adsorb heavy metals. Most notably, the microbial network changed after embedding materials, and the succession of microbial community promoted the formation of humic acid. Ultimately, structural equation models verified that embedded materials promoted the formation of humic acid through stable microbial groups, thereby accelerating the passivation of heavy metals during composting. This study provides theoretical and technical supports for mitigating the biotoxicity of heavy metals by biochar during composting. Graphical Abstract Highlights Embedded material promoted humic acid formation and reduced the toxicity of metals. The bacterial community structure and function distribution changed. Biochar addition promoted humic acid formation through stable community. The added biochar did not adsorb heavy metals, but promote passivation by humic acid.
AbstractList The addition of biochar could mitigate the bioavailability of heavy metals during livestock manure composting. However, the main action mechanism of biochar, such as how it worked, was ambiguous. Therefore, in this study, materials (biochar, alkali modified biochar, pretreated cotton ball) were added by embedding with nylon mesh bags to explore the adsorption performance of added materials and its influence on the composting process. The results showed that embedded materials promoted the formation of humic acid and reduced the distribution proportion of bioavailable fraction of heavy metals during composting (Cu: at least 15.72%; Zn: at least 33.44%). The surface of biochar extracted from composting contained attachments, however, the attachment of heavy metal was not detected and functional groups on the materials did no change significantly. This indicated that the addition of biochar did not directly adsorb heavy metals. Most notably, the microbial network changed after embedding materials, and the succession of microbial community promoted the formation of humic acid. Ultimately, structural equation models verified that embedded materials promoted the formation of humic acid through stable microbial groups, thereby accelerating the passivation of heavy metals during composting. This study provides theoretical and technical supports for mitigating the biotoxicity of heavy metals by biochar during composting. Graphical Abstract
Highlights Embedded material promoted humic acid formation and reduced the toxicity of metals. The bacterial community structure and function distribution changed. Biochar addition promoted humic acid formation through stable community. The added biochar did not adsorb heavy metals, but promote passivation by humic acid.
The addition of biochar could mitigate the bioavailability of heavy metals during livestock manure composting. However, the main action mechanism of biochar, such as how it worked, was ambiguous. Therefore, in this study, materials (biochar, alkali modified biochar, pretreated cotton ball) were added by embedding with nylon mesh bags to explore the adsorption performance of added materials and its influence on the composting process. The results showed that embedded materials promoted the formation of humic acid and reduced the distribution proportion of bioavailable fraction of heavy metals during composting (Cu: at least 15.72%; Zn: at least 33.44%). The surface of biochar extracted from composting contained attachments, however, the attachment of heavy metal was not detected and functional groups on the materials did no change significantly. This indicated that the addition of biochar did not directly adsorb heavy metals. Most notably, the microbial network changed after embedding materials, and the succession of microbial community promoted the formation of humic acid. Ultimately, structural equation models verified that embedded materials promoted the formation of humic acid through stable microbial groups, thereby accelerating the passivation of heavy metals during composting. This study provides theoretical and technical supports for mitigating the biotoxicity of heavy metals by biochar during composting. Graphical Abstract Highlights Embedded material promoted humic acid formation and reduced the toxicity of metals. The bacterial community structure and function distribution changed. Biochar addition promoted humic acid formation through stable community. The added biochar did not adsorb heavy metals, but promote passivation by humic acid.
ArticleNumber 48
Author Du, Zhuang
Pan, Chaonan
Zhao, Ran
Wei, Zimin
Jia, Liming
Wang, Liqin
Chen, Xiaomeng
Liu, Dan
Author_xml – sequence: 1
  givenname: Xiaomeng
  surname: Chen
  fullname: Chen, Xiaomeng
  organization: College of Life Science, Northeast Agricultural University
– sequence: 2
  givenname: Zhuang
  surname: Du
  fullname: Du, Zhuang
  organization: College of Life Science, Northeast Agricultural University
– sequence: 3
  givenname: Dan
  surname: Liu
  fullname: Liu, Dan
  organization: College of Life Science, Northeast Agricultural University
– sequence: 4
  givenname: Liqin
  surname: Wang
  fullname: Wang, Liqin
  organization: College of Life Science, Northeast Agricultural University
– sequence: 5
  givenname: Chaonan
  surname: Pan
  fullname: Pan, Chaonan
  organization: College of Life Science, Northeast Agricultural University
– sequence: 6
  givenname: Zimin
  surname: Wei
  fullname: Wei, Zimin
  email: weizimin@neau.edu.cn
  organization: College of Life Science, Northeast Agricultural University
– sequence: 7
  givenname: Liming
  surname: Jia
  fullname: Jia, Liming
  organization: Heilongjiang Province Environmental Monitoring Center
– sequence: 8
  givenname: Ran
  surname: Zhao
  fullname: Zhao, Ran
  organization: Heilongjiang Province Environmental Monitoring Center
BookMark eNp9kMtOAyEUQImpifXxA674gVFeM8BSGx9NTNxoXBKGgZbaGRqgTfv3Ums3LrrihnBOuOcSjIYwWABuMbrDCPH7xAjntEKEVAhhzqrtGRiTmrCKi4aPjrPk5ALcpLRACJEa44bKMfh69MHMdYS9z36ms00wzy1sfchh643POxgcnFu92cHeZr1M0A9w6Tc25WC-Ya-HdbSwW0c_zKAJ_SqkXMZrcO7KY3vzd16Bz-enj8lr9fb-Mp08vFWGIZwr6jSqm6ZuhKZIEsuF4NRgTqkmRDpmWuZILVEnm7ajrpOW1KatW4Y64WRL6RWYHrxd0Au1ir7XcaeC9ur3IsSZ0jF7s7SKUdE1gpOipMXaSo0xZsRx7YRxrC4ucXCZGFKK1qmyv84-DDlqv1QYqX1vdeitSm_121ttC0r-ocevnIToAUqrfT0b1SKs41BynaJ-AP1xli8
CitedBy_id crossref_primary_10_1016_j_chemosphere_2024_142552
crossref_primary_10_1080_17429145_2024_2401356
crossref_primary_10_1016_j_envres_2023_115468
crossref_primary_10_1016_j_jes_2024_02_015
crossref_primary_10_1016_j_scitotenv_2023_162609
crossref_primary_10_1016_j_jes_2024_01_052
crossref_primary_10_1016_j_cej_2025_159793
crossref_primary_10_1016_j_jece_2024_113326
crossref_primary_10_1016_j_fuel_2023_127701
crossref_primary_10_1016_j_biortech_2025_132070
crossref_primary_10_1007_s42773_024_00347_w
crossref_primary_10_1016_j_scitotenv_2023_163067
crossref_primary_10_1016_j_wasman_2023_07_024
crossref_primary_10_1016_j_cej_2023_141380
crossref_primary_10_1007_s13762_024_06316_x
crossref_primary_10_1016_j_jhazmat_2025_137916
crossref_primary_10_1016_j_envexpbot_2024_105800
crossref_primary_10_1016_j_jenvman_2022_116852
crossref_primary_10_1016_j_biortech_2023_129329
crossref_primary_10_1016_j_envpol_2024_123712
crossref_primary_10_4014_jmb_2303_03026
crossref_primary_10_1016_j_envpol_2024_124621
crossref_primary_10_3390_ijerph20043761
crossref_primary_10_1007_s42773_024_00315_4
crossref_primary_10_1016_j_jhazmat_2024_136414
crossref_primary_10_1016_j_jhazmat_2025_137842
crossref_primary_10_1016_j_jenvman_2024_123035
crossref_primary_10_1016_j_chemosphere_2023_138683
Cites_doi 10.1016/j.envpol.2021.118624
10.1016/j.wasman.2019.12.053
10.1016/j.tibtech.2020.07.002
10.1016/j.diamond.2021.108360
10.1021/acs.jced.7b00906
10.1016/j.biortech.2016.02.032
10.1016/j.still.2021.105145
10.1016/j.biortech.2016.05.057
10.1016/j.biortech.2020.122962
10.1016/j.biortech.2021.126198
10.1016/j.jhazmat.2020.123634
10.1016/j.envint.2020.105458
10.1016/j.biortech.2018.02.086
10.1016/j.chemosphere.2020.125927
10.1016/j.biortech.2020.124149
10.1016/j.ibiod.2016.09.016
10.1016/j.chemosphere.2019.01.180
10.1016/j.biortech.2017.07.095
10.1007/s42773-019-00004-7
10.1016/j.jhazmat.2021.126635
10.1016/j.polymer.2018.09.030
10.1016/j.bej.2021.108208
10.1016/j.chemosphere.2021.130449
10.1186/s42834-022-00131-0
10.1016/j.scitotenv.2018.01.157
10.3390/su9112020
10.1007/s42773-020-00053-3
10.1016/j.renene.2020.06.137
10.1016/j.matchemphys.2020.122895
10.1016/j.scitotenv.2017.09.028
10.1016/j.scitotenv.2021.147185
10.1016/j.wasman.2020.08.043
10.2166/wrd.2018.018
10.1016/j.jhazmat.2021.125559
10.1016/j.cej.2020.127095
10.1016/S1002-0160(15)30051-5
10.1016/j.resconrec.2018.10.004
10.1111/sum.12360
10.1016/j.biortech.2020.124446
10.1016/j.jhazmat.2020.124593
10.1016/j.psep.2020.01.028
10.1016/j.biortech.2021.126577
10.1016/j.jhazmat.2017.11.020
10.1007/s10668-022-02365-9
10.1016/j.envpol.2020.116040
10.1016/B978-0-12-822933-0.00009-7
10.1007/s10098-021-02254-1
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s42773-022-00174-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2524-7867
EndPage 13
ExternalDocumentID oai_doaj_org_article_438d6872b4f34f2b9a11142f7af8cf45
10_1007_s42773_022_00174_x
GrantInformation_xml – fundername: National Key Research and Development Project
  grantid: 2019YFC1906403
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 51878132; 51978131
  funderid: http://dx.doi.org/10.13039/100014718
GroupedDBID 0R~
AAHBH
AAHNG
AAJSJ
AAKKN
AAYZJ
ABDBF
ABECU
ABEEZ
ABFTV
ABKCH
ABMQK
ABTEG
ABTMW
ACACY
ACOKC
ACULB
ACZOJ
ADKNI
ADURQ
ADYFF
AFGXO
AFQWF
AGDGC
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AXYYD
C24
C6C
EBLON
EBS
EJD
FNLPD
GROUPED_DOAJ
H13
M~E
NQJWS
OK1
RSV
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AASML
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ID FETCH-LOGICAL-c401t-3fa0566568a3092e78873c1733a229f4cb4f2590d96bd3fd9e25cb5b40d8f9b33
IEDL.DBID C24
ISSN 2524-7972
IngestDate Wed Aug 27 01:25:31 EDT 2025
Tue Jul 01 03:16:37 EDT 2025
Thu Apr 24 23:03:36 EDT 2025
Fri Feb 21 02:45:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Action mechanism
The biotoxicity of heavy metals
Chicken manure composting
Biochar addition
Humic acid formation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-3fa0566568a3092e78873c1733a229f4cb4f2590d96bd3fd9e25cb5b40d8f9b33
OpenAccessLink https://link.springer.com/10.1007/s42773-022-00174-x
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_438d6872b4f34f2b9a11142f7af8cf45
crossref_citationtrail_10_1007_s42773_022_00174_x
crossref_primary_10_1007_s42773_022_00174_x
springer_journals_10_1007_s42773_022_00174_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Biochar (Online)
PublicationTitleAbbrev Biochar
PublicationYear 2022
Publisher Springer Nature Singapore
Springer
Publisher_xml – name: Springer Nature Singapore
– name: Springer
References Abdelhameed, EI-Zawahry, Emam (CR1) 2018; 155
Yu, Zhou, Wang, Su, Yang, Feng, Dou, Li (CR40) 2021; 785
Mishra, Tiwari, Mahmoud (CR28) 2022
Zhang, He, Liu, Zhao, Zhang, Chen, Zhang, Ying (CR42) 2020; 136
Wei, Mohamed, Zhao, Zhu, Zhao, Wu (CR35) 2022; 346
Zhang, Wang, Wang (CR41) 2017; 9
Li, Song (CR17) 2020; 136
Qian, Gu, Sun, Wang, Su, Stedfeld (CR31) 2018; 344
Li, Zhang, Tsang, Li (CR18) 2020; 248
Mahmoud, Hosny, EI-Maghrabi, Fawzy (CR27) 2022; 32
Liu, Li, Wu, Tan, Yang (CR25) 2021; 278
Thomas, Borchard, Sarmiento, Atkinson, Ladd (CR34) 2020; 2
Chen, Du, Guo, Wu, Wang, Wei, Jia, Kang (CR7) 2022; 294
Qu, Wu, Li, Zhao, Zhang, Qi, Chen (CR32) 2022; 344
Godlewska, Schmidt, Ok, Oleszczuk (CR12) 2017; 246
Liu, Hou, Li, Yu, Tang, Wang, Zhou (CR23) 2020; 103
Ahmed, Zhou, Ngo, Guo, Chen (CR2) 2016; 214
Li, Li, Yao, Su, Ran, Li, He, Chen, Zhang, Qiu (CR20) 2021; 415
Li, Zhu, Niu, Meng, Yan, Wang, Li (CR19) 2021; 321
Cui, Ou, Wang, Yan, Li, Ding (CR9) 2020; 118
Liu, Ran, Siddiqui, Chtaeva, Siyal, Song, Dai, Deng, Fu, Ao, Jiang, Zhang (CR24) 2020; 160
Wesley, Durairaj, Ramanathan, Obadiah, Justinabraham, Lv, Vasanthkumar (CR36) 2021; 115
Ye, Zeng, Wu, Liang, Zhang, Dai, Xiong, Song, Wu, Yu (CR39) 2019; 140
Guo, Zhao, Xia, Shen, Lv, Liu, Xu (CR14) 2021; 176
Akgül, Maden, Diaz, Jiménez (CR3) 2019; 9
Yao, Joseph, Li, Pan, Lin, Munroe, Pace, Taherymoosavi, Zwieten, Thomas, Nielsen, Ye, Donne (CR38) 2015; 25
Awasthi, Duan, Liu, Zhang, Pandey, Varjani, Awasthi, Taherzadeh (CR6) 2021; 406
Gou, Hu, Zhang, Wang, Hayden, Tang, He (CR13) 2018; 612
An, Miao, Zhao, Li, Zhu (CR4) 2020; 248
Periyasamy, Gopalakannan, Viswanathan (CR30) 2018; 63
Awasthi, Duan, Liu, Awasthi, Zhang (CR5) 2020; 304
Dotaniya, Meena, Saha, Dotaniya, Mahmoud, Meena, Sanwal, Meena, Doutaniya, Solanki, Lata, Rai (CR10) 2022
Liang, Feng, Liu, Zhao, Chen, Sui, Wang (CR21) 2021; 404
Liu, Yin, Tang, Wei, Peng, Lu, Dang (CR22) 2019; 222
Congilosi, Aga (CR8) 2021; 405
Zhang, Wang, Zhang, Tian, Luo (CR43) 2021; 213
Duan, Yang, Guo, Wu, Tian, Li, Awasthi (CR11) 2021; 420
Kumar, Joseph, Tsechansky, Privat, Schreiter, Schüth, Graber (CR16) 2018; 626
Zuo, Liu, Chen (CR47) 2016; 207
Mahmoud, Kathi, Kathi, Devipriya, Thamaraiselvi (CR26) 2022
Zhou, Meng, Zhao, Shen, Hou, Cheng, Song (CR44) 2018; 258
Zhou, Li, Wu, Zhong, Yang (CR45) 2021; 39
Sahin, Taskin, Kaya, Atakol, Emir, Inal, Gunes (CR33) 2017; 33
Hou, Zhang, Chen, Li, Zhang, Lin (CR15) 2021; 272
Zhu, Gao, Liang, Zhu, Li, Jin (CR46) 2021; 319
Novak, Ippolito, Watts, Sigua, Ducey, Johnson (CR29) 2019; 1
Wu, Shen, Yang, Zhou, Li, Zeng, Ai, He (CR37) 2017; 119
Y Liu (174_CR24) 2020; 160
HJ Zhang (174_CR43) 2021; 213
X Qian (174_CR31) 2018; 344
N Zhu (174_CR46) 2021; 319
HH Li (174_CR18) 2020; 248
HB Zhou (174_CR44) 2018; 258
RJ Wesley (174_CR36) 2021; 115
ML Dotaniya (174_CR10) 2022
M Gou (174_CR13) 2018; 612
LJ Hou (174_CR15) 2021; 272
AED Mahmoud (174_CR26) 2022
M Zhang (174_CR42) 2020; 136
ZM Wei (174_CR35) 2022; 346
SJ Ye (174_CR39) 2019; 140
MB Ahmed (174_CR2) 2016; 214
CX Yao (174_CR38) 2015; 25
X Zhang (174_CR41) 2017; 9
XM Chen (174_CR7) 2022; 294
Q Zhou (174_CR45) 2021; 39
H Liu (174_CR22) 2019; 222
HY Guo (174_CR14) 2021; 176
AED Mahmoud (174_CR27) 2022; 32
G Akgül (174_CR3) 2019; 9
JM Novak (174_CR29) 2019; 1
P Godlewska (174_CR12) 2017; 246
YW Liu (174_CR25) 2021; 278
CN Li (174_CR20) 2021; 415
QL Yu (174_CR40) 2021; 785
B Mishra (174_CR28) 2022
Y Liang (174_CR21) 2021; 404
Q An (174_CR4) 2020; 248
YM Duan (174_CR11) 2021; 420
S Periyasamy (174_CR30) 2018; 63
RM Abdelhameed (174_CR1) 2018; 155
XM Liu (174_CR23) 2020; 103
MK Awasthi (174_CR5) 2020; 304
FT Qu (174_CR32) 2022; 344
SH Wu (174_CR37) 2017; 119
JL Congilosi (174_CR8) 2021; 405
G Li (174_CR19) 2021; 321
SK Awasthi (174_CR6) 2021; 406
A Kumar (174_CR16) 2018; 626
JB Li (174_CR17) 2020; 136
H Cui (174_CR9) 2020; 118
E Thomas (174_CR34) 2020; 2
XJ Zuo (174_CR47) 2016; 207
O Sahin (174_CR33) 2017; 33
References_xml – volume: 294
  start-page: 118624
  year: 2022
  ident: CR7
  article-title: Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.118624
– volume: 103
  start-page: 342
  year: 2020
  end-page: 351
  ident: CR23
  article-title: Hyperthermophilic composting of sewage sludge accelerates humic acid formation: elemental and spectroscopic evidence
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2019.12.053
– volume: 39
  start-page: 8
  year: 2021
  end-page: 11
  ident: CR45
  article-title: Enhanced strategies for antibiotic removal from swine wastewater in anaerobic digestion
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2020.07.002
– volume: 115
  start-page: 108360
  year: 2021
  ident: CR36
  article-title: Potato peels biochar composite with copper phthalocyanine for energy storage application
  publication-title: Diam Relat Mater
  doi: 10.1016/j.diamond.2021.108360
– volume: 63
  start-page: 1286
  issue: 5
  year: 2018
  end-page: 1299
  ident: CR30
  article-title: Enhanced chromium sorption and quick separation of magnetic hydrotalcite anchored biopolymeric composites using the hydrothermal method
  publication-title: J Chem Eng Data
  doi: 10.1021/acs.jced.7b00906
– volume: 207
  start-page: 262
  year: 2016
  end-page: 267
  ident: CR47
  article-title: Effect of H O concentrations on copper removal using the modified hydrothermal biochar
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.02.032
– volume: 213
  start-page: 105145
  year: 2021
  ident: CR43
  article-title: Biochar application enhances microbial interactions in mega-aggregates of farmland black soil
  publication-title: Soil Till Res
  doi: 10.1016/j.still.2021.105145
– volume: 214
  start-page: 836
  year: 2016
  end-page: 851
  ident: CR2
  article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.05.057
– volume: 304
  start-page: 122962
  year: 2020
  ident: CR5
  article-title: Relevance of biochar to influence the bacterial succession during pig manure composting
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.122962
– volume: 344
  start-page: 126198
  year: 2022
  ident: CR32
  article-title: Effect of Fenton pretreatment combined with bacterial inoculation on dissolved organic matter concentration during rice straw composting
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.126198
– volume: 405
  start-page: 123634
  year: 2021
  ident: CR8
  article-title: Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutant in manure during enhanced anaerobic digestion and composting
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123634
– volume: 136
  start-page: 105458
  year: 2020
  ident: CR42
  article-title: Variation of antibiotic resistome during commercial livestock manure composting
  publication-title: Environ Int
  doi: 10.1016/j.envint.2020.105458
– volume: 258
  start-page: 279
  year: 2018
  end-page: 286
  ident: CR44
  article-title: Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.02.086
– volume: 248
  start-page: 125927
  year: 2020
  ident: CR18
  article-title: Effects of external additives: biochar, bentonite, phosphate, on co-composting for swine manure and corn straw
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125927
– volume: 319
  start-page: 124149
  year: 2021
  ident: CR46
  article-title: Thermal pretreatment enhances the degradation and humification of lignocellulose by stimulating thermophilic bacteria during dairy manure composting
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.124149
– volume: 119
  start-page: 429
  year: 2017
  end-page: 436
  ident: CR37
  article-title: Effects of C/N ratio and bulking agent on speciation of Zn and Cu and enzymatic activity during pig manure composting
  publication-title: Int Biodeter Biodegr
  doi: 10.1016/j.ibiod.2016.09.016
– volume: 222
  start-page: 517
  year: 2019
  end-page: 526
  ident: CR22
  article-title: Effects of benzo [a] pyrene (BaP) on the composting and microbial community of sewage sludge
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.180
– volume: 246
  start-page: 193
  year: 2017
  end-page: 202
  ident: CR12
  article-title: Biochar for composting improvement and contaminants reduction. A review
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.07.095
– volume: 1
  start-page: 97
  year: 2019
  end-page: 114
  ident: CR29
  article-title: Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability
  publication-title: Biochar
  doi: 10.1007/s42773-019-00004-7
– volume: 420
  start-page: 126635
  issue: 15
  year: 2021
  ident: CR11
  article-title: Pollution control in biochar-driven clean composting: emphasize on heavy metal passivation and gaseous emissions mitigation
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.126635
– volume: 155
  start-page: 225
  year: 2018
  end-page: 234
  ident: CR1
  article-title: Efficient removal of organophosphorus pesticides from wastewater using polyethylenimine-modified fabrics
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.09.030
– volume: 176
  start-page: 108208
  year: 2021
  ident: CR14
  article-title: Speciation transformation and bioavailability of heavy metals during biogas production from coal slime
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2021.108208
– volume: 278
  start-page: 130449
  year: 2021
  ident: CR25
  article-title: Enhancing anaerobic digestion process with addition of conductive materials
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130449
– volume: 32
  start-page: 22
  year: 2022
  ident: CR27
  article-title: Facile synthesis of reduced graphene oxide by extracts for efficient removal of Ni (II) from water: batch experiments and response surface methodology
  publication-title: Sustain Environ Res
  doi: 10.1186/s42834-022-00131-0
– volume: 626
  start-page: 953
  year: 2018
  end-page: 961
  ident: CR16
  article-title: Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.01.157
– volume: 9
  start-page: 2020
  issue: 11
  year: 2017
  ident: CR41
  article-title: Immobilization of heavy metals in sewage sludge during land application process in China: a review
  publication-title: Sustainability
  doi: 10.3390/su9112020
– volume: 2
  start-page: 151
  year: 2020
  end-page: 163
  ident: CR34
  article-title: Key factors determining biochar sorption capacity for metal contaminants: a literature synthesis
  publication-title: Biochar
  doi: 10.1007/s42773-020-00053-3
– volume: 160
  start-page: 707
  year: 2020
  end-page: 720
  ident: CR24
  article-title: Pyrolysis of sewage sludge in a benchtop fluidized bed reactor: characteristics of condensates and non-condensable gases
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2020.06.137
– volume: 248
  start-page: 122895
  year: 2020
  ident: CR4
  article-title: An alkali modified biochar for enhancing Mn adsorption: Performance and chemical mechanism
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2020.122895
– volume: 612
  start-page: 1300
  year: 2018
  end-page: 1310
  ident: CR13
  article-title: Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.09.028
– volume: 785
  start-page: 147185
  year: 2021
  ident: CR40
  article-title: Carcass decay deteriorate water quality and modifies the nirS denitrifying communities in different degradation stages
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.147185
– volume: 118
  start-page: 360
  year: 2020
  end-page: 368
  ident: CR9
  article-title: The passivation effect of heavy metals during biochar-amended composting: emphasize on bacterial communities
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2020.08.043
– volume: 9
  start-page: 57
  issue: 1
  year: 2019
  end-page: 66
  ident: CR3
  article-title: Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO and Cd from aqueous solution
  publication-title: J Water Reuse Desalt
  doi: 10.2166/wrd.2018.018
– volume: 415
  start-page: 125559
  year: 2021
  ident: CR20
  article-title: Effects of swine manure composting by microbial inoculation: heavy metal fractions, humic substances, and bacterial community metabolism
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125559
– volume: 404
  start-page: 127095
  year: 2021
  ident: CR21
  article-title: Enhanced selective adsorption of NSAIDs by covalent organic frameworks via functional group tuning
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127095
– volume: 25
  start-page: 703
  year: 2015
  end-page: 712
  ident: CR38
  article-title: Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)30051-5
– volume: 140
  start-page: 278
  year: 2019
  end-page: 285
  ident: CR39
  article-title: The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil
  publication-title: Resour Conserv Recyl
  doi: 10.1016/j.resconrec.2018.10.004
– volume: 33
  start-page: 447
  year: 2017
  end-page: 456
  ident: CR33
  article-title: Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil
  publication-title: Soil Use Manag
  doi: 10.1111/sum.12360
– volume: 321
  start-page: 124446
  year: 2021
  ident: CR19
  article-title: The degradation of organic matter coupled with the functional characteristics of microbial community during composting with different surfactants
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.124446
– volume: 406
  start-page: 124593
  year: 2021
  ident: CR6
  article-title: Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting?
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124593
– volume: 136
  start-page: 214
  year: 2020
  end-page: 222
  ident: CR17
  article-title: Graphene oxide-induced variations in the processing performance, microbial community dynamics and heavy metal speciation during pig manure composting
  publication-title: Process Saf Environ
  doi: 10.1016/j.psep.2020.01.028
– volume: 346
  start-page: 126577
  year: 2022
  ident: CR35
  article-title: Microhabitat drive microbial anabolism to promote carbon sequestration during composting
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.126577
– volume: 344
  start-page: 716
  year: 2018
  end-page: 722
  ident: CR31
  article-title: Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2017.11.020
– year: 2022
  ident: CR10
  article-title: Reuse of poor-quality water for sustainable crop production in the changing scenario of climate
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-022-02365-9
– volume: 272
  start-page: 116040
  year: 2021
  ident: CR15
  article-title: The benefits of biochar: enhanced cadmium remediation, inhibited precursor production of nitrous oxide and a short-term disturbance on rhizosphere microbial community
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.116040
– start-page: 69
  year: 2022
  end-page: 74
  ident: CR26
  article-title: Chap. 7—Assessment of biochar application in decontamination of water and wastewater
  publication-title: Cost effective technologies for solid waste and wastewater treatment
  doi: 10.1016/B978-0-12-822933-0.00009-7
– year: 2022
  ident: CR28
  article-title: Microalgal potential for sustainable aquaculture applications: bioremediation, biocontrol, aquafeed
  publication-title: Clean Technnol Environ Policy
  doi: 10.1007/s10098-021-02254-1
– volume: 406
  start-page: 124593
  year: 2021
  ident: 174_CR6
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124593
– volume: 346
  start-page: 126577
  year: 2022
  ident: 174_CR35
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.126577
– volume: 404
  start-page: 127095
  year: 2021
  ident: 174_CR21
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127095
– volume: 420
  start-page: 126635
  issue: 15
  year: 2021
  ident: 174_CR11
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.126635
– volume: 119
  start-page: 429
  year: 2017
  ident: 174_CR37
  publication-title: Int Biodeter Biodegr
  doi: 10.1016/j.ibiod.2016.09.016
– volume: 222
  start-page: 517
  year: 2019
  ident: 174_CR22
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.180
– start-page: 69
  volume-title: Cost effective technologies for solid waste and wastewater treatment
  year: 2022
  ident: 174_CR26
  doi: 10.1016/B978-0-12-822933-0.00009-7
– volume: 33
  start-page: 447
  year: 2017
  ident: 174_CR33
  publication-title: Soil Use Manag
  doi: 10.1111/sum.12360
– year: 2022
  ident: 174_CR10
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-022-02365-9
– volume: 176
  start-page: 108208
  year: 2021
  ident: 174_CR14
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2021.108208
– volume: 214
  start-page: 836
  year: 2016
  ident: 174_CR2
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.05.057
– volume: 294
  start-page: 118624
  year: 2022
  ident: 174_CR7
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.118624
– volume: 248
  start-page: 122895
  year: 2020
  ident: 174_CR4
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2020.122895
– volume: 103
  start-page: 342
  year: 2020
  ident: 174_CR23
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2019.12.053
– volume: 785
  start-page: 147185
  year: 2021
  ident: 174_CR40
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.147185
– volume: 304
  start-page: 122962
  year: 2020
  ident: 174_CR5
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.122962
– volume: 272
  start-page: 116040
  year: 2021
  ident: 174_CR15
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.116040
– volume: 344
  start-page: 126198
  year: 2022
  ident: 174_CR32
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.126198
– year: 2022
  ident: 174_CR28
  publication-title: Clean Technnol Environ Policy
  doi: 10.1007/s10098-021-02254-1
– volume: 136
  start-page: 105458
  year: 2020
  ident: 174_CR42
  publication-title: Environ Int
  doi: 10.1016/j.envint.2020.105458
– volume: 9
  start-page: 57
  issue: 1
  year: 2019
  ident: 174_CR3
  publication-title: J Water Reuse Desalt
  doi: 10.2166/wrd.2018.018
– volume: 140
  start-page: 278
  year: 2019
  ident: 174_CR39
  publication-title: Resour Conserv Recyl
  doi: 10.1016/j.resconrec.2018.10.004
– volume: 319
  start-page: 124149
  year: 2021
  ident: 174_CR46
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.124149
– volume: 278
  start-page: 130449
  year: 2021
  ident: 174_CR25
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130449
– volume: 213
  start-page: 105145
  year: 2021
  ident: 174_CR43
  publication-title: Soil Till Res
  doi: 10.1016/j.still.2021.105145
– volume: 1
  start-page: 97
  year: 2019
  ident: 174_CR29
  publication-title: Biochar
  doi: 10.1007/s42773-019-00004-7
– volume: 405
  start-page: 123634
  year: 2021
  ident: 174_CR8
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123634
– volume: 160
  start-page: 707
  year: 2020
  ident: 174_CR24
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2020.06.137
– volume: 39
  start-page: 8
  year: 2021
  ident: 174_CR45
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2020.07.002
– volume: 626
  start-page: 953
  year: 2018
  ident: 174_CR16
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.01.157
– volume: 9
  start-page: 2020
  issue: 11
  year: 2017
  ident: 174_CR41
  publication-title: Sustainability
  doi: 10.3390/su9112020
– volume: 321
  start-page: 124446
  year: 2021
  ident: 174_CR19
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.124446
– volume: 136
  start-page: 214
  year: 2020
  ident: 174_CR17
  publication-title: Process Saf Environ
  doi: 10.1016/j.psep.2020.01.028
– volume: 248
  start-page: 125927
  year: 2020
  ident: 174_CR18
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125927
– volume: 63
  start-page: 1286
  issue: 5
  year: 2018
  ident: 174_CR30
  publication-title: J Chem Eng Data
  doi: 10.1021/acs.jced.7b00906
– volume: 32
  start-page: 22
  year: 2022
  ident: 174_CR27
  publication-title: Sustain Environ Res
  doi: 10.1186/s42834-022-00131-0
– volume: 344
  start-page: 716
  year: 2018
  ident: 174_CR31
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2017.11.020
– volume: 25
  start-page: 703
  year: 2015
  ident: 174_CR38
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)30051-5
– volume: 246
  start-page: 193
  year: 2017
  ident: 174_CR12
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.07.095
– volume: 612
  start-page: 1300
  year: 2018
  ident: 174_CR13
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.09.028
– volume: 415
  start-page: 125559
  year: 2021
  ident: 174_CR20
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125559
– volume: 258
  start-page: 279
  year: 2018
  ident: 174_CR44
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.02.086
– volume: 155
  start-page: 225
  year: 2018
  ident: 174_CR1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.09.030
– volume: 115
  start-page: 108360
  year: 2021
  ident: 174_CR36
  publication-title: Diam Relat Mater
  doi: 10.1016/j.diamond.2021.108360
– volume: 118
  start-page: 360
  year: 2020
  ident: 174_CR9
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2020.08.043
– volume: 207
  start-page: 262
  year: 2016
  ident: 174_CR47
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.02.032
– volume: 2
  start-page: 151
  year: 2020
  ident: 174_CR34
  publication-title: Biochar
  doi: 10.1007/s42773-020-00053-3
SSID ssj0002511639
ssib053820432
ssib046561560
Score 2.3924515
Snippet The addition of biochar could mitigate the bioavailability of heavy metals during livestock manure composting. However, the main action mechanism of biochar,...
Highlights Embedded material promoted humic acid formation and reduced the toxicity of metals. The bacterial community structure and function distribution...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Action mechanism
Agriculture
Biochar addition
Ceramics
Chicken manure composting
Composites
Earth and Environmental Science
Environment
Environmental Engineering/Biotechnology
Fossil Fuels (incl. Carbon Capture)
Glass
Humic acid formation
Natural Materials
Original Research
Renewable and Green Energy
Soil Science & Conservation
The biotoxicity of heavy metals
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iyYsoKq5f5OBNg9skbZKjK4oIenLRW0nSBAruVtwq6793Ju0uK4JevPaD0JlJ5qWZ94aQU69iXkQlmHdyyCBDeaZ1LJisrPO5M6EKSHC-fyhux_LuOX9eafWFNWGdPHBnuAspdFVoxZ2MQkbujM2Q_hmVjdpHmdRLIeetbKYgklAELFsB_jCrkQPKl39fEFgXqc0Yz7lkyijeM2oSr05ypfB4kzNcxSWbf8taSdz_x8lpSkg3W2SzR5L0svuCbbIWpjvkaVQ3SKSikzqJZ4QZBYRHXd20zbz2ALlpEykswB-fdBIAeM9oPaUvqD3bwspIJxaJw7QjL1KsN29mWBi9S8Y3149Xt6zvncA87JhaJqIFaANm0FYMDQ9YNCh8poSwnJsowTURdj7DyhSuErEygefe5eCwSkfjhNgj69NmGvYJDSgBaABIBbgtHfhDB1XIoJXNiiDtgGQL25S-FxbH_hYv5VISOdmzBHuWyZ7lfEDOlu-8drIavz49QpMvn0RJ7HQBAqXsA6X8K1AG5HzhsLKfp7Nfxjz4jzEPyQbHKErlL0dkvX17D8cAYlp3kuL1C4hS5zo
  priority: 102
  providerName: Directory of Open Access Journals
Title Biochar mitigates the biotoxicity of heavy metals in livestock manure during composting
URI https://link.springer.com/article/10.1007/s42773-022-00174-x
https://doaj.org/article/438d6872b4f34f2b9a11142f7af8cf45
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUquLSHqtBW3bYgH3qjlja2448jrEAICU6gcotsx0aR2E21CRVc-O2d8WYDCITEJYfEkeMZf7yJ5z0T8ivoVKqkBQteThmsUIEZkxSTtfOh9DbWEQnOp2fq-EKeXJaXAymsW2e7r7ck80w9kt0k1xr3HDnDqVUyQI6bJcTu2K9nD5rjKABWPAL9MKKR_8nHPy8IqlU-YoyXXDJtNR_YNC9X82TFysL-z3ZN82J09Il8HFAk3V-5fYu8i4tt8mH_ajkoacTP5M9B0yKlis6bLKMROwpYj_qm7dvbJgD4pm2iMBX_u6PzCBC8o82CXqMKbQ9zJJ07pBDTFY2RYuZ522GK9BdycXR4PjtmwykKLEDs1DORHIAcMIpxYmp5xPRBEQothOPcJglOShADTWurfC1SbSMvgy_BdbVJ1gvxlWws2kX8RmhEMUALkCrCY-mFqU3USkajXaGidBNSrC1VhUFiHE-6uK5GceRs3QqsW2XrVrcTsje-83clsPFq6QN0wFgSxbHzjXZ5VQ1jrZLwYcpoDg0T0DZvXYGM4aRdMiHJckJ-r91XDSO2e6XO728r_oO859h7csrLT7LRL2_iDgCX3u_mfopXNdvNwT9cT-8P_wMDEePN
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOQAHBAXEUh4-9FYsNrbjx7FdtVro49SK3izbsVGk7gY1AZV_3xlvdgUUVeKaOHI8M7Y_2_N9JmQ36lyrrAWLQU4ZzFCRGZMVk40PsQ42NQkJzqdnan4hv1zWl6NMDnJh_jq__9RLrjWeNHKGA6pkgBcfSlgpY_reTM3WsYOyX9VvUB_6MbI--Wa_BaG0KheL8ZpLpq3mI4fm39X8MU8VOf87Z6VlCjp6Rp6O2JHur5z9nDxIy23yZP_b9aifkV6Qrwdth0QqumiLeEbqKSA8Gtpu6G7aCJCbdpnCAPzzF10kAN49bZf0CrVnBxgZ6cIjcZiuyIsU8827HhOjX5KLo8Pz2ZyNdyewCCumgYnsAdqAUYwXU8sTJg2KWGkhPOc2S3BNhpXPtLEqNCI3NvE6hhoc1phsgxCvyNayW6bXhCaUALQApBK8lkGYxiStZDLaVypJPyHV2lIujsLieL_FldtIIhfrOrCuK9Z1NxOyt_nm-0pW497SB-iATUmUxC4PIFLc2MOchB9TRnNomIC2Besr5Aln7bOJWdYT8nHtPjf20_6eOt_8X_EP5NH8_PTEnXw-O94hjzlGUkl6eUu2husf6R1AlyG8LzF7C7S539s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkRAcEE-xPH3gBlY3tuPHsV1YlVfFgYreLNuxq0jdpNoNqPx7ZrzZqAhUiWviyMmMH99k5vtMyOuoc62yFiwGOWewQ0VmTFZMNj7EOtjUJCQ4fzlWRyfy42l9eoXFX6rddynJLacBVZq6Yf-iyfsT8U1yrTH_yBkus5IBirwJkUpJ1C7UYjeiUAysuhIAwOxGLiif_sIgwFbluDFec8m01Xxk1vy7mz92ryLy_1cGtWxMy3vk7ogo6cF2CNwnN1L3gNw5OFuPqhrpIfl-2PZIr6KrtkhqpA0F3EdD2w_9ZRsBiNM-U1iWf_6iqwRwfEPbjp6jIu0A6yVdeaQT0y2lkWIVer_BculH5GT5_tviiI0nKrAIcdTARPYAeMAoxou55QlLCUWstBCec5slOCxDPDRvrAqNyI1NvI6hBjc2JtsgxGOy1_VdekJoQmFAC_AqwW0ZhGlM0komo32lkvQzUu0s5eIoN46nXpy7SSi5WNeBdV2xrruckTfTMxdbsY1rWx-iA6aWKJRdLvTrMzfOOyfhxZTRHD5MwLcF6ytkD2fts4lZ1jPyduc-N87ezTV9Pv2_5q_Ira_vlu7zh-NPz8htjgOpVMI8J3vD-kd6AXhmCC_LkP0Ni3DoIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+mitigates+the+biotoxicity+of+heavy+metals+in+livestock+manure+during+composting&rft.jtitle=Biochar+%28Online%29&rft.au=Chen%2C+Xiaomeng&rft.au=Du%2C+Zhuang&rft.au=Liu%2C+Dan&rft.au=Wang%2C+Liqin&rft.date=2022-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2524-7972&rft.eissn=2524-7867&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-022-00174-x&rft.externalDocID=10_1007_s42773_022_00174_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7972&client=summon