Biochar mitigates the biotoxicity of heavy metals in livestock manure during composting
The addition of biochar could mitigate the bioavailability of heavy metals during livestock manure composting. However, the main action mechanism of biochar, such as how it worked, was ambiguous. Therefore, in this study, materials (biochar, alkali modified biochar, pretreated cotton ball) were adde...
Saved in:
Published in | Biochar (Online) Vol. 4; no. 1; pp. 1 - 13 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2022
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The addition of biochar could mitigate the bioavailability of heavy metals during livestock manure composting. However, the main action mechanism of biochar, such as how it worked, was ambiguous. Therefore, in this study, materials (biochar, alkali modified biochar, pretreated cotton ball) were added by embedding with nylon mesh bags to explore the adsorption performance of added materials and its influence on the composting process. The results showed that embedded materials promoted the formation of humic acid and reduced the distribution proportion of bioavailable fraction of heavy metals during composting (Cu: at least 15.72%; Zn: at least 33.44%). The surface of biochar extracted from composting contained attachments, however, the attachment of heavy metal was not detected and functional groups on the materials did no change significantly. This indicated that the addition of biochar did not directly adsorb heavy metals. Most notably, the microbial network changed after embedding materials, and the succession of microbial community promoted the formation of humic acid. Ultimately, structural equation models verified that embedded materials promoted the formation of humic acid through stable microbial groups, thereby accelerating the passivation of heavy metals during composting. This study provides theoretical and technical supports for mitigating the biotoxicity of heavy metals by biochar during composting.
Graphical Abstract
Highlights
Embedded material promoted humic acid formation and reduced the toxicity of metals.
The bacterial community structure and function distribution changed.
Biochar addition promoted humic acid formation through stable community.
The added biochar did not adsorb heavy metals, but promote passivation by humic acid. |
---|---|
AbstractList | The addition of biochar could mitigate the bioavailability of heavy metals during livestock manure composting. However, the main action mechanism of biochar, such as how it worked, was ambiguous. Therefore, in this study, materials (biochar, alkali modified biochar, pretreated cotton ball) were added by embedding with nylon mesh bags to explore the adsorption performance of added materials and its influence on the composting process. The results showed that embedded materials promoted the formation of humic acid and reduced the distribution proportion of bioavailable fraction of heavy metals during composting (Cu: at least 15.72%; Zn: at least 33.44%). The surface of biochar extracted from composting contained attachments, however, the attachment of heavy metal was not detected and functional groups on the materials did no change significantly. This indicated that the addition of biochar did not directly adsorb heavy metals. Most notably, the microbial network changed after embedding materials, and the succession of microbial community promoted the formation of humic acid. Ultimately, structural equation models verified that embedded materials promoted the formation of humic acid through stable microbial groups, thereby accelerating the passivation of heavy metals during composting. This study provides theoretical and technical supports for mitigating the biotoxicity of heavy metals by biochar during composting.
Graphical Abstract Highlights Embedded material promoted humic acid formation and reduced the toxicity of metals. The bacterial community structure and function distribution changed. Biochar addition promoted humic acid formation through stable community. The added biochar did not adsorb heavy metals, but promote passivation by humic acid. The addition of biochar could mitigate the bioavailability of heavy metals during livestock manure composting. However, the main action mechanism of biochar, such as how it worked, was ambiguous. Therefore, in this study, materials (biochar, alkali modified biochar, pretreated cotton ball) were added by embedding with nylon mesh bags to explore the adsorption performance of added materials and its influence on the composting process. The results showed that embedded materials promoted the formation of humic acid and reduced the distribution proportion of bioavailable fraction of heavy metals during composting (Cu: at least 15.72%; Zn: at least 33.44%). The surface of biochar extracted from composting contained attachments, however, the attachment of heavy metal was not detected and functional groups on the materials did no change significantly. This indicated that the addition of biochar did not directly adsorb heavy metals. Most notably, the microbial network changed after embedding materials, and the succession of microbial community promoted the formation of humic acid. Ultimately, structural equation models verified that embedded materials promoted the formation of humic acid through stable microbial groups, thereby accelerating the passivation of heavy metals during composting. This study provides theoretical and technical supports for mitigating the biotoxicity of heavy metals by biochar during composting. Graphical Abstract Highlights Embedded material promoted humic acid formation and reduced the toxicity of metals. The bacterial community structure and function distribution changed. Biochar addition promoted humic acid formation through stable community. The added biochar did not adsorb heavy metals, but promote passivation by humic acid. |
ArticleNumber | 48 |
Author | Du, Zhuang Pan, Chaonan Zhao, Ran Wei, Zimin Jia, Liming Wang, Liqin Chen, Xiaomeng Liu, Dan |
Author_xml | – sequence: 1 givenname: Xiaomeng surname: Chen fullname: Chen, Xiaomeng organization: College of Life Science, Northeast Agricultural University – sequence: 2 givenname: Zhuang surname: Du fullname: Du, Zhuang organization: College of Life Science, Northeast Agricultural University – sequence: 3 givenname: Dan surname: Liu fullname: Liu, Dan organization: College of Life Science, Northeast Agricultural University – sequence: 4 givenname: Liqin surname: Wang fullname: Wang, Liqin organization: College of Life Science, Northeast Agricultural University – sequence: 5 givenname: Chaonan surname: Pan fullname: Pan, Chaonan organization: College of Life Science, Northeast Agricultural University – sequence: 6 givenname: Zimin surname: Wei fullname: Wei, Zimin email: weizimin@neau.edu.cn organization: College of Life Science, Northeast Agricultural University – sequence: 7 givenname: Liming surname: Jia fullname: Jia, Liming organization: Heilongjiang Province Environmental Monitoring Center – sequence: 8 givenname: Ran surname: Zhao fullname: Zhao, Ran organization: Heilongjiang Province Environmental Monitoring Center |
BookMark | eNp9kMtOAyEUQImpifXxA674gVFeM8BSGx9NTNxoXBKGgZbaGRqgTfv3Ums3LrrihnBOuOcSjIYwWABuMbrDCPH7xAjntEKEVAhhzqrtGRiTmrCKi4aPjrPk5ALcpLRACJEa44bKMfh69MHMdYS9z36ms00wzy1sfchh643POxgcnFu92cHeZr1M0A9w6Tc25WC-Ya-HdbSwW0c_zKAJ_SqkXMZrcO7KY3vzd16Bz-enj8lr9fb-Mp08vFWGIZwr6jSqm6ZuhKZIEsuF4NRgTqkmRDpmWuZILVEnm7ajrpOW1KatW4Y64WRL6RWYHrxd0Au1ir7XcaeC9ur3IsSZ0jF7s7SKUdE1gpOipMXaSo0xZsRx7YRxrC4ucXCZGFKK1qmyv84-DDlqv1QYqX1vdeitSm_121ttC0r-ocevnIToAUqrfT0b1SKs41BynaJ-AP1xli8 |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2024_142552 crossref_primary_10_1080_17429145_2024_2401356 crossref_primary_10_1016_j_envres_2023_115468 crossref_primary_10_1016_j_jes_2024_02_015 crossref_primary_10_1016_j_scitotenv_2023_162609 crossref_primary_10_1016_j_jes_2024_01_052 crossref_primary_10_1016_j_cej_2025_159793 crossref_primary_10_1016_j_jece_2024_113326 crossref_primary_10_1016_j_fuel_2023_127701 crossref_primary_10_1016_j_biortech_2025_132070 crossref_primary_10_1007_s42773_024_00347_w crossref_primary_10_1016_j_scitotenv_2023_163067 crossref_primary_10_1016_j_wasman_2023_07_024 crossref_primary_10_1016_j_cej_2023_141380 crossref_primary_10_1007_s13762_024_06316_x crossref_primary_10_1016_j_jhazmat_2025_137916 crossref_primary_10_1016_j_envexpbot_2024_105800 crossref_primary_10_1016_j_jenvman_2022_116852 crossref_primary_10_1016_j_biortech_2023_129329 crossref_primary_10_1016_j_envpol_2024_123712 crossref_primary_10_4014_jmb_2303_03026 crossref_primary_10_1016_j_envpol_2024_124621 crossref_primary_10_3390_ijerph20043761 crossref_primary_10_1007_s42773_024_00315_4 crossref_primary_10_1016_j_jhazmat_2024_136414 crossref_primary_10_1016_j_jhazmat_2025_137842 crossref_primary_10_1016_j_jenvman_2024_123035 crossref_primary_10_1016_j_chemosphere_2023_138683 |
Cites_doi | 10.1016/j.envpol.2021.118624 10.1016/j.wasman.2019.12.053 10.1016/j.tibtech.2020.07.002 10.1016/j.diamond.2021.108360 10.1021/acs.jced.7b00906 10.1016/j.biortech.2016.02.032 10.1016/j.still.2021.105145 10.1016/j.biortech.2016.05.057 10.1016/j.biortech.2020.122962 10.1016/j.biortech.2021.126198 10.1016/j.jhazmat.2020.123634 10.1016/j.envint.2020.105458 10.1016/j.biortech.2018.02.086 10.1016/j.chemosphere.2020.125927 10.1016/j.biortech.2020.124149 10.1016/j.ibiod.2016.09.016 10.1016/j.chemosphere.2019.01.180 10.1016/j.biortech.2017.07.095 10.1007/s42773-019-00004-7 10.1016/j.jhazmat.2021.126635 10.1016/j.polymer.2018.09.030 10.1016/j.bej.2021.108208 10.1016/j.chemosphere.2021.130449 10.1186/s42834-022-00131-0 10.1016/j.scitotenv.2018.01.157 10.3390/su9112020 10.1007/s42773-020-00053-3 10.1016/j.renene.2020.06.137 10.1016/j.matchemphys.2020.122895 10.1016/j.scitotenv.2017.09.028 10.1016/j.scitotenv.2021.147185 10.1016/j.wasman.2020.08.043 10.2166/wrd.2018.018 10.1016/j.jhazmat.2021.125559 10.1016/j.cej.2020.127095 10.1016/S1002-0160(15)30051-5 10.1016/j.resconrec.2018.10.004 10.1111/sum.12360 10.1016/j.biortech.2020.124446 10.1016/j.jhazmat.2020.124593 10.1016/j.psep.2020.01.028 10.1016/j.biortech.2021.126577 10.1016/j.jhazmat.2017.11.020 10.1007/s10668-022-02365-9 10.1016/j.envpol.2020.116040 10.1016/B978-0-12-822933-0.00009-7 10.1007/s10098-021-02254-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 |
Copyright_xml | – notice: The Author(s) 2022 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s42773-022-00174-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2524-7867 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_438d6872b4f34f2b9a11142f7af8cf45 10_1007_s42773_022_00174_x |
GrantInformation_xml | – fundername: National Key Research and Development Project grantid: 2019YFC1906403 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: 51878132; 51978131 funderid: http://dx.doi.org/10.13039/100014718 |
GroupedDBID | 0R~ AAHBH AAHNG AAJSJ AAKKN AAYZJ ABDBF ABECU ABEEZ ABFTV ABKCH ABMQK ABTEG ABTMW ACACY ACOKC ACULB ACZOJ ADKNI ADURQ ADYFF AFGXO AFQWF AGDGC AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AXYYD C24 C6C EBLON EBS EJD FNLPD GROUPED_DOAJ H13 M~E NQJWS OK1 RSV SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AASML AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
ID | FETCH-LOGICAL-c401t-3fa0566568a3092e78873c1733a229f4cb4f2590d96bd3fd9e25cb5b40d8f9b33 |
IEDL.DBID | C24 |
ISSN | 2524-7972 |
IngestDate | Wed Aug 27 01:25:31 EDT 2025 Tue Jul 01 03:16:37 EDT 2025 Thu Apr 24 23:03:36 EDT 2025 Fri Feb 21 02:45:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Action mechanism The biotoxicity of heavy metals Chicken manure composting Biochar addition Humic acid formation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-3fa0566568a3092e78873c1733a229f4cb4f2590d96bd3fd9e25cb5b40d8f9b33 |
OpenAccessLink | https://link.springer.com/10.1007/s42773-022-00174-x |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_438d6872b4f34f2b9a11142f7af8cf45 crossref_citationtrail_10_1007_s42773_022_00174_x crossref_primary_10_1007_s42773_022_00174_x springer_journals_10_1007_s42773_022_00174_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Biochar (Online) |
PublicationTitleAbbrev | Biochar |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore Springer |
Publisher_xml | – name: Springer Nature Singapore – name: Springer |
References | Abdelhameed, EI-Zawahry, Emam (CR1) 2018; 155 Yu, Zhou, Wang, Su, Yang, Feng, Dou, Li (CR40) 2021; 785 Mishra, Tiwari, Mahmoud (CR28) 2022 Zhang, He, Liu, Zhao, Zhang, Chen, Zhang, Ying (CR42) 2020; 136 Wei, Mohamed, Zhao, Zhu, Zhao, Wu (CR35) 2022; 346 Zhang, Wang, Wang (CR41) 2017; 9 Li, Song (CR17) 2020; 136 Qian, Gu, Sun, Wang, Su, Stedfeld (CR31) 2018; 344 Li, Zhang, Tsang, Li (CR18) 2020; 248 Mahmoud, Hosny, EI-Maghrabi, Fawzy (CR27) 2022; 32 Liu, Li, Wu, Tan, Yang (CR25) 2021; 278 Thomas, Borchard, Sarmiento, Atkinson, Ladd (CR34) 2020; 2 Chen, Du, Guo, Wu, Wang, Wei, Jia, Kang (CR7) 2022; 294 Qu, Wu, Li, Zhao, Zhang, Qi, Chen (CR32) 2022; 344 Godlewska, Schmidt, Ok, Oleszczuk (CR12) 2017; 246 Liu, Hou, Li, Yu, Tang, Wang, Zhou (CR23) 2020; 103 Ahmed, Zhou, Ngo, Guo, Chen (CR2) 2016; 214 Li, Li, Yao, Su, Ran, Li, He, Chen, Zhang, Qiu (CR20) 2021; 415 Li, Zhu, Niu, Meng, Yan, Wang, Li (CR19) 2021; 321 Cui, Ou, Wang, Yan, Li, Ding (CR9) 2020; 118 Liu, Ran, Siddiqui, Chtaeva, Siyal, Song, Dai, Deng, Fu, Ao, Jiang, Zhang (CR24) 2020; 160 Wesley, Durairaj, Ramanathan, Obadiah, Justinabraham, Lv, Vasanthkumar (CR36) 2021; 115 Ye, Zeng, Wu, Liang, Zhang, Dai, Xiong, Song, Wu, Yu (CR39) 2019; 140 Guo, Zhao, Xia, Shen, Lv, Liu, Xu (CR14) 2021; 176 Akgül, Maden, Diaz, Jiménez (CR3) 2019; 9 Yao, Joseph, Li, Pan, Lin, Munroe, Pace, Taherymoosavi, Zwieten, Thomas, Nielsen, Ye, Donne (CR38) 2015; 25 Awasthi, Duan, Liu, Zhang, Pandey, Varjani, Awasthi, Taherzadeh (CR6) 2021; 406 Gou, Hu, Zhang, Wang, Hayden, Tang, He (CR13) 2018; 612 An, Miao, Zhao, Li, Zhu (CR4) 2020; 248 Periyasamy, Gopalakannan, Viswanathan (CR30) 2018; 63 Awasthi, Duan, Liu, Awasthi, Zhang (CR5) 2020; 304 Dotaniya, Meena, Saha, Dotaniya, Mahmoud, Meena, Sanwal, Meena, Doutaniya, Solanki, Lata, Rai (CR10) 2022 Liang, Feng, Liu, Zhao, Chen, Sui, Wang (CR21) 2021; 404 Liu, Yin, Tang, Wei, Peng, Lu, Dang (CR22) 2019; 222 Congilosi, Aga (CR8) 2021; 405 Zhang, Wang, Zhang, Tian, Luo (CR43) 2021; 213 Duan, Yang, Guo, Wu, Tian, Li, Awasthi (CR11) 2021; 420 Kumar, Joseph, Tsechansky, Privat, Schreiter, Schüth, Graber (CR16) 2018; 626 Zuo, Liu, Chen (CR47) 2016; 207 Mahmoud, Kathi, Kathi, Devipriya, Thamaraiselvi (CR26) 2022 Zhou, Meng, Zhao, Shen, Hou, Cheng, Song (CR44) 2018; 258 Zhou, Li, Wu, Zhong, Yang (CR45) 2021; 39 Sahin, Taskin, Kaya, Atakol, Emir, Inal, Gunes (CR33) 2017; 33 Hou, Zhang, Chen, Li, Zhang, Lin (CR15) 2021; 272 Zhu, Gao, Liang, Zhu, Li, Jin (CR46) 2021; 319 Novak, Ippolito, Watts, Sigua, Ducey, Johnson (CR29) 2019; 1 Wu, Shen, Yang, Zhou, Li, Zeng, Ai, He (CR37) 2017; 119 Y Liu (174_CR24) 2020; 160 HJ Zhang (174_CR43) 2021; 213 X Qian (174_CR31) 2018; 344 N Zhu (174_CR46) 2021; 319 HH Li (174_CR18) 2020; 248 HB Zhou (174_CR44) 2018; 258 RJ Wesley (174_CR36) 2021; 115 ML Dotaniya (174_CR10) 2022 M Gou (174_CR13) 2018; 612 LJ Hou (174_CR15) 2021; 272 AED Mahmoud (174_CR26) 2022 M Zhang (174_CR42) 2020; 136 ZM Wei (174_CR35) 2022; 346 SJ Ye (174_CR39) 2019; 140 MB Ahmed (174_CR2) 2016; 214 CX Yao (174_CR38) 2015; 25 X Zhang (174_CR41) 2017; 9 XM Chen (174_CR7) 2022; 294 Q Zhou (174_CR45) 2021; 39 H Liu (174_CR22) 2019; 222 HY Guo (174_CR14) 2021; 176 AED Mahmoud (174_CR27) 2022; 32 G Akgül (174_CR3) 2019; 9 JM Novak (174_CR29) 2019; 1 P Godlewska (174_CR12) 2017; 246 YW Liu (174_CR25) 2021; 278 CN Li (174_CR20) 2021; 415 QL Yu (174_CR40) 2021; 785 B Mishra (174_CR28) 2022 Y Liang (174_CR21) 2021; 404 Q An (174_CR4) 2020; 248 YM Duan (174_CR11) 2021; 420 S Periyasamy (174_CR30) 2018; 63 RM Abdelhameed (174_CR1) 2018; 155 XM Liu (174_CR23) 2020; 103 MK Awasthi (174_CR5) 2020; 304 FT Qu (174_CR32) 2022; 344 SH Wu (174_CR37) 2017; 119 JL Congilosi (174_CR8) 2021; 405 G Li (174_CR19) 2021; 321 SK Awasthi (174_CR6) 2021; 406 A Kumar (174_CR16) 2018; 626 JB Li (174_CR17) 2020; 136 H Cui (174_CR9) 2020; 118 E Thomas (174_CR34) 2020; 2 XJ Zuo (174_CR47) 2016; 207 O Sahin (174_CR33) 2017; 33 |
References_xml | – volume: 294 start-page: 118624 year: 2022 ident: CR7 article-title: Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.118624 – volume: 103 start-page: 342 year: 2020 end-page: 351 ident: CR23 article-title: Hyperthermophilic composting of sewage sludge accelerates humic acid formation: elemental and spectroscopic evidence publication-title: Waste Manag doi: 10.1016/j.wasman.2019.12.053 – volume: 39 start-page: 8 year: 2021 end-page: 11 ident: CR45 article-title: Enhanced strategies for antibiotic removal from swine wastewater in anaerobic digestion publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2020.07.002 – volume: 115 start-page: 108360 year: 2021 ident: CR36 article-title: Potato peels biochar composite with copper phthalocyanine for energy storage application publication-title: Diam Relat Mater doi: 10.1016/j.diamond.2021.108360 – volume: 63 start-page: 1286 issue: 5 year: 2018 end-page: 1299 ident: CR30 article-title: Enhanced chromium sorption and quick separation of magnetic hydrotalcite anchored biopolymeric composites using the hydrothermal method publication-title: J Chem Eng Data doi: 10.1021/acs.jced.7b00906 – volume: 207 start-page: 262 year: 2016 end-page: 267 ident: CR47 article-title: Effect of H O concentrations on copper removal using the modified hydrothermal biochar publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.02.032 – volume: 213 start-page: 105145 year: 2021 ident: CR43 article-title: Biochar application enhances microbial interactions in mega-aggregates of farmland black soil publication-title: Soil Till Res doi: 10.1016/j.still.2021.105145 – volume: 214 start-page: 836 year: 2016 end-page: 851 ident: CR2 article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.05.057 – volume: 304 start-page: 122962 year: 2020 ident: CR5 article-title: Relevance of biochar to influence the bacterial succession during pig manure composting publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.122962 – volume: 344 start-page: 126198 year: 2022 ident: CR32 article-title: Effect of Fenton pretreatment combined with bacterial inoculation on dissolved organic matter concentration during rice straw composting publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.126198 – volume: 405 start-page: 123634 year: 2021 ident: CR8 article-title: Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutant in manure during enhanced anaerobic digestion and composting publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123634 – volume: 136 start-page: 105458 year: 2020 ident: CR42 article-title: Variation of antibiotic resistome during commercial livestock manure composting publication-title: Environ Int doi: 10.1016/j.envint.2020.105458 – volume: 258 start-page: 279 year: 2018 end-page: 286 ident: CR44 article-title: Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.02.086 – volume: 248 start-page: 125927 year: 2020 ident: CR18 article-title: Effects of external additives: biochar, bentonite, phosphate, on co-composting for swine manure and corn straw publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125927 – volume: 319 start-page: 124149 year: 2021 ident: CR46 article-title: Thermal pretreatment enhances the degradation and humification of lignocellulose by stimulating thermophilic bacteria during dairy manure composting publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.124149 – volume: 119 start-page: 429 year: 2017 end-page: 436 ident: CR37 article-title: Effects of C/N ratio and bulking agent on speciation of Zn and Cu and enzymatic activity during pig manure composting publication-title: Int Biodeter Biodegr doi: 10.1016/j.ibiod.2016.09.016 – volume: 222 start-page: 517 year: 2019 end-page: 526 ident: CR22 article-title: Effects of benzo [a] pyrene (BaP) on the composting and microbial community of sewage sludge publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.180 – volume: 246 start-page: 193 year: 2017 end-page: 202 ident: CR12 article-title: Biochar for composting improvement and contaminants reduction. A review publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.07.095 – volume: 1 start-page: 97 year: 2019 end-page: 114 ident: CR29 article-title: Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability publication-title: Biochar doi: 10.1007/s42773-019-00004-7 – volume: 420 start-page: 126635 issue: 15 year: 2021 ident: CR11 article-title: Pollution control in biochar-driven clean composting: emphasize on heavy metal passivation and gaseous emissions mitigation publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.126635 – volume: 155 start-page: 225 year: 2018 end-page: 234 ident: CR1 article-title: Efficient removal of organophosphorus pesticides from wastewater using polyethylenimine-modified fabrics publication-title: Polymer doi: 10.1016/j.polymer.2018.09.030 – volume: 176 start-page: 108208 year: 2021 ident: CR14 article-title: Speciation transformation and bioavailability of heavy metals during biogas production from coal slime publication-title: Biochem Eng J doi: 10.1016/j.bej.2021.108208 – volume: 278 start-page: 130449 year: 2021 ident: CR25 article-title: Enhancing anaerobic digestion process with addition of conductive materials publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130449 – volume: 32 start-page: 22 year: 2022 ident: CR27 article-title: Facile synthesis of reduced graphene oxide by extracts for efficient removal of Ni (II) from water: batch experiments and response surface methodology publication-title: Sustain Environ Res doi: 10.1186/s42834-022-00131-0 – volume: 626 start-page: 953 year: 2018 end-page: 961 ident: CR16 article-title: Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.01.157 – volume: 9 start-page: 2020 issue: 11 year: 2017 ident: CR41 article-title: Immobilization of heavy metals in sewage sludge during land application process in China: a review publication-title: Sustainability doi: 10.3390/su9112020 – volume: 2 start-page: 151 year: 2020 end-page: 163 ident: CR34 article-title: Key factors determining biochar sorption capacity for metal contaminants: a literature synthesis publication-title: Biochar doi: 10.1007/s42773-020-00053-3 – volume: 160 start-page: 707 year: 2020 end-page: 720 ident: CR24 article-title: Pyrolysis of sewage sludge in a benchtop fluidized bed reactor: characteristics of condensates and non-condensable gases publication-title: Renew Energ doi: 10.1016/j.renene.2020.06.137 – volume: 248 start-page: 122895 year: 2020 ident: CR4 article-title: An alkali modified biochar for enhancing Mn adsorption: Performance and chemical mechanism publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2020.122895 – volume: 612 start-page: 1300 year: 2018 end-page: 1310 ident: CR13 article-title: Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.09.028 – volume: 785 start-page: 147185 year: 2021 ident: CR40 article-title: Carcass decay deteriorate water quality and modifies the nirS denitrifying communities in different degradation stages publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.147185 – volume: 118 start-page: 360 year: 2020 end-page: 368 ident: CR9 article-title: The passivation effect of heavy metals during biochar-amended composting: emphasize on bacterial communities publication-title: Waste Manag doi: 10.1016/j.wasman.2020.08.043 – volume: 9 start-page: 57 issue: 1 year: 2019 end-page: 66 ident: CR3 article-title: Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO and Cd from aqueous solution publication-title: J Water Reuse Desalt doi: 10.2166/wrd.2018.018 – volume: 415 start-page: 125559 year: 2021 ident: CR20 article-title: Effects of swine manure composting by microbial inoculation: heavy metal fractions, humic substances, and bacterial community metabolism publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125559 – volume: 404 start-page: 127095 year: 2021 ident: CR21 article-title: Enhanced selective adsorption of NSAIDs by covalent organic frameworks via functional group tuning publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127095 – volume: 25 start-page: 703 year: 2015 end-page: 712 ident: CR38 article-title: Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality publication-title: Pedosphere doi: 10.1016/S1002-0160(15)30051-5 – volume: 140 start-page: 278 year: 2019 end-page: 285 ident: CR39 article-title: The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil publication-title: Resour Conserv Recyl doi: 10.1016/j.resconrec.2018.10.004 – volume: 33 start-page: 447 year: 2017 end-page: 456 ident: CR33 article-title: Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil publication-title: Soil Use Manag doi: 10.1111/sum.12360 – volume: 321 start-page: 124446 year: 2021 ident: CR19 article-title: The degradation of organic matter coupled with the functional characteristics of microbial community during composting with different surfactants publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.124446 – volume: 406 start-page: 124593 year: 2021 ident: CR6 article-title: Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting? publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124593 – volume: 136 start-page: 214 year: 2020 end-page: 222 ident: CR17 article-title: Graphene oxide-induced variations in the processing performance, microbial community dynamics and heavy metal speciation during pig manure composting publication-title: Process Saf Environ doi: 10.1016/j.psep.2020.01.028 – volume: 346 start-page: 126577 year: 2022 ident: CR35 article-title: Microhabitat drive microbial anabolism to promote carbon sequestration during composting publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.126577 – volume: 344 start-page: 716 year: 2018 end-page: 722 ident: CR31 article-title: Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2017.11.020 – year: 2022 ident: CR10 article-title: Reuse of poor-quality water for sustainable crop production in the changing scenario of climate publication-title: Environ Dev Sustain doi: 10.1007/s10668-022-02365-9 – volume: 272 start-page: 116040 year: 2021 ident: CR15 article-title: The benefits of biochar: enhanced cadmium remediation, inhibited precursor production of nitrous oxide and a short-term disturbance on rhizosphere microbial community publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.116040 – start-page: 69 year: 2022 end-page: 74 ident: CR26 article-title: Chap. 7—Assessment of biochar application in decontamination of water and wastewater publication-title: Cost effective technologies for solid waste and wastewater treatment doi: 10.1016/B978-0-12-822933-0.00009-7 – year: 2022 ident: CR28 article-title: Microalgal potential for sustainable aquaculture applications: bioremediation, biocontrol, aquafeed publication-title: Clean Technnol Environ Policy doi: 10.1007/s10098-021-02254-1 – volume: 406 start-page: 124593 year: 2021 ident: 174_CR6 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124593 – volume: 346 start-page: 126577 year: 2022 ident: 174_CR35 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.126577 – volume: 404 start-page: 127095 year: 2021 ident: 174_CR21 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127095 – volume: 420 start-page: 126635 issue: 15 year: 2021 ident: 174_CR11 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.126635 – volume: 119 start-page: 429 year: 2017 ident: 174_CR37 publication-title: Int Biodeter Biodegr doi: 10.1016/j.ibiod.2016.09.016 – volume: 222 start-page: 517 year: 2019 ident: 174_CR22 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.180 – start-page: 69 volume-title: Cost effective technologies for solid waste and wastewater treatment year: 2022 ident: 174_CR26 doi: 10.1016/B978-0-12-822933-0.00009-7 – volume: 33 start-page: 447 year: 2017 ident: 174_CR33 publication-title: Soil Use Manag doi: 10.1111/sum.12360 – year: 2022 ident: 174_CR10 publication-title: Environ Dev Sustain doi: 10.1007/s10668-022-02365-9 – volume: 176 start-page: 108208 year: 2021 ident: 174_CR14 publication-title: Biochem Eng J doi: 10.1016/j.bej.2021.108208 – volume: 214 start-page: 836 year: 2016 ident: 174_CR2 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.05.057 – volume: 294 start-page: 118624 year: 2022 ident: 174_CR7 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.118624 – volume: 248 start-page: 122895 year: 2020 ident: 174_CR4 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2020.122895 – volume: 103 start-page: 342 year: 2020 ident: 174_CR23 publication-title: Waste Manag doi: 10.1016/j.wasman.2019.12.053 – volume: 785 start-page: 147185 year: 2021 ident: 174_CR40 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.147185 – volume: 304 start-page: 122962 year: 2020 ident: 174_CR5 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.122962 – volume: 272 start-page: 116040 year: 2021 ident: 174_CR15 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.116040 – volume: 344 start-page: 126198 year: 2022 ident: 174_CR32 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.126198 – year: 2022 ident: 174_CR28 publication-title: Clean Technnol Environ Policy doi: 10.1007/s10098-021-02254-1 – volume: 136 start-page: 105458 year: 2020 ident: 174_CR42 publication-title: Environ Int doi: 10.1016/j.envint.2020.105458 – volume: 9 start-page: 57 issue: 1 year: 2019 ident: 174_CR3 publication-title: J Water Reuse Desalt doi: 10.2166/wrd.2018.018 – volume: 140 start-page: 278 year: 2019 ident: 174_CR39 publication-title: Resour Conserv Recyl doi: 10.1016/j.resconrec.2018.10.004 – volume: 319 start-page: 124149 year: 2021 ident: 174_CR46 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.124149 – volume: 278 start-page: 130449 year: 2021 ident: 174_CR25 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130449 – volume: 213 start-page: 105145 year: 2021 ident: 174_CR43 publication-title: Soil Till Res doi: 10.1016/j.still.2021.105145 – volume: 1 start-page: 97 year: 2019 ident: 174_CR29 publication-title: Biochar doi: 10.1007/s42773-019-00004-7 – volume: 405 start-page: 123634 year: 2021 ident: 174_CR8 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123634 – volume: 160 start-page: 707 year: 2020 ident: 174_CR24 publication-title: Renew Energ doi: 10.1016/j.renene.2020.06.137 – volume: 39 start-page: 8 year: 2021 ident: 174_CR45 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2020.07.002 – volume: 626 start-page: 953 year: 2018 ident: 174_CR16 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.01.157 – volume: 9 start-page: 2020 issue: 11 year: 2017 ident: 174_CR41 publication-title: Sustainability doi: 10.3390/su9112020 – volume: 321 start-page: 124446 year: 2021 ident: 174_CR19 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.124446 – volume: 136 start-page: 214 year: 2020 ident: 174_CR17 publication-title: Process Saf Environ doi: 10.1016/j.psep.2020.01.028 – volume: 248 start-page: 125927 year: 2020 ident: 174_CR18 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125927 – volume: 63 start-page: 1286 issue: 5 year: 2018 ident: 174_CR30 publication-title: J Chem Eng Data doi: 10.1021/acs.jced.7b00906 – volume: 32 start-page: 22 year: 2022 ident: 174_CR27 publication-title: Sustain Environ Res doi: 10.1186/s42834-022-00131-0 – volume: 344 start-page: 716 year: 2018 ident: 174_CR31 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2017.11.020 – volume: 25 start-page: 703 year: 2015 ident: 174_CR38 publication-title: Pedosphere doi: 10.1016/S1002-0160(15)30051-5 – volume: 246 start-page: 193 year: 2017 ident: 174_CR12 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.07.095 – volume: 612 start-page: 1300 year: 2018 ident: 174_CR13 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.09.028 – volume: 415 start-page: 125559 year: 2021 ident: 174_CR20 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125559 – volume: 258 start-page: 279 year: 2018 ident: 174_CR44 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.02.086 – volume: 155 start-page: 225 year: 2018 ident: 174_CR1 publication-title: Polymer doi: 10.1016/j.polymer.2018.09.030 – volume: 115 start-page: 108360 year: 2021 ident: 174_CR36 publication-title: Diam Relat Mater doi: 10.1016/j.diamond.2021.108360 – volume: 118 start-page: 360 year: 2020 ident: 174_CR9 publication-title: Waste Manag doi: 10.1016/j.wasman.2020.08.043 – volume: 207 start-page: 262 year: 2016 ident: 174_CR47 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.02.032 – volume: 2 start-page: 151 year: 2020 ident: 174_CR34 publication-title: Biochar doi: 10.1007/s42773-020-00053-3 |
SSID | ssj0002511639 ssib053820432 ssib046561560 |
Score | 2.3924515 |
Snippet | The addition of biochar could mitigate the bioavailability of heavy metals during livestock manure composting. However, the main action mechanism of biochar,... Highlights Embedded material promoted humic acid formation and reduced the toxicity of metals. The bacterial community structure and function distribution... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Action mechanism Agriculture Biochar addition Ceramics Chicken manure composting Composites Earth and Environmental Science Environment Environmental Engineering/Biotechnology Fossil Fuels (incl. Carbon Capture) Glass Humic acid formation Natural Materials Original Research Renewable and Green Energy Soil Science & Conservation The biotoxicity of heavy metals |
SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iyYsoKq5f5OBNg9skbZKjK4oIenLRW0nSBAruVtwq6793Ju0uK4JevPaD0JlJ5qWZ94aQU69iXkQlmHdyyCBDeaZ1LJisrPO5M6EKSHC-fyhux_LuOX9eafWFNWGdPHBnuAspdFVoxZ2MQkbujM2Q_hmVjdpHmdRLIeetbKYgklAELFsB_jCrkQPKl39fEFgXqc0Yz7lkyijeM2oSr05ypfB4kzNcxSWbf8taSdz_x8lpSkg3W2SzR5L0svuCbbIWpjvkaVQ3SKSikzqJZ4QZBYRHXd20zbz2ALlpEykswB-fdBIAeM9oPaUvqD3bwspIJxaJw7QjL1KsN29mWBi9S8Y3149Xt6zvncA87JhaJqIFaANm0FYMDQ9YNCh8poSwnJsowTURdj7DyhSuErEygefe5eCwSkfjhNgj69NmGvYJDSgBaABIBbgtHfhDB1XIoJXNiiDtgGQL25S-FxbH_hYv5VISOdmzBHuWyZ7lfEDOlu-8drIavz49QpMvn0RJ7HQBAqXsA6X8K1AG5HzhsLKfp7Nfxjz4jzEPyQbHKErlL0dkvX17D8cAYlp3kuL1C4hS5zo priority: 102 providerName: Directory of Open Access Journals |
Title | Biochar mitigates the biotoxicity of heavy metals in livestock manure during composting |
URI | https://link.springer.com/article/10.1007/s42773-022-00174-x https://doaj.org/article/438d6872b4f34f2b9a11142f7af8cf45 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUquLSHqtBW3bYgH3qjlja2448jrEAICU6gcotsx0aR2E21CRVc-O2d8WYDCITEJYfEkeMZf7yJ5z0T8ivoVKqkBQteThmsUIEZkxSTtfOh9DbWEQnOp2fq-EKeXJaXAymsW2e7r7ck80w9kt0k1xr3HDnDqVUyQI6bJcTu2K9nD5rjKABWPAL9MKKR_8nHPy8IqlU-YoyXXDJtNR_YNC9X82TFysL-z3ZN82J09Il8HFAk3V-5fYu8i4tt8mH_ajkoacTP5M9B0yKlis6bLKMROwpYj_qm7dvbJgD4pm2iMBX_u6PzCBC8o82CXqMKbQ9zJJ07pBDTFY2RYuZ522GK9BdycXR4PjtmwykKLEDs1DORHIAcMIpxYmp5xPRBEQothOPcJglOShADTWurfC1SbSMvgy_BdbVJ1gvxlWws2kX8RmhEMUALkCrCY-mFqU3USkajXaGidBNSrC1VhUFiHE-6uK5GceRs3QqsW2XrVrcTsje-83clsPFq6QN0wFgSxbHzjXZ5VQ1jrZLwYcpoDg0T0DZvXYGM4aRdMiHJckJ-r91XDSO2e6XO728r_oO859h7csrLT7LRL2_iDgCX3u_mfopXNdvNwT9cT-8P_wMDEePN |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOQAHBAXEUh4-9FYsNrbjx7FdtVro49SK3izbsVGk7gY1AZV_3xlvdgUUVeKaOHI8M7Y_2_N9JmQ36lyrrAWLQU4ZzFCRGZMVk40PsQ42NQkJzqdnan4hv1zWl6NMDnJh_jq__9RLrjWeNHKGA6pkgBcfSlgpY_reTM3WsYOyX9VvUB_6MbI--Wa_BaG0KheL8ZpLpq3mI4fm39X8MU8VOf87Z6VlCjp6Rp6O2JHur5z9nDxIy23yZP_b9aifkV6Qrwdth0QqumiLeEbqKSA8Gtpu6G7aCJCbdpnCAPzzF10kAN49bZf0CrVnBxgZ6cIjcZiuyIsU8827HhOjX5KLo8Pz2ZyNdyewCCumgYnsAdqAUYwXU8sTJg2KWGkhPOc2S3BNhpXPtLEqNCI3NvE6hhoc1phsgxCvyNayW6bXhCaUALQApBK8lkGYxiStZDLaVypJPyHV2lIujsLieL_FldtIIhfrOrCuK9Z1NxOyt_nm-0pW497SB-iATUmUxC4PIFLc2MOchB9TRnNomIC2Besr5Aln7bOJWdYT8nHtPjf20_6eOt_8X_EP5NH8_PTEnXw-O94hjzlGUkl6eUu2husf6R1AlyG8LzF7C7S539s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkRAcEE-xPH3gBlY3tuPHsV1YlVfFgYreLNuxq0jdpNoNqPx7ZrzZqAhUiWviyMmMH99k5vtMyOuoc62yFiwGOWewQ0VmTFZMNj7EOtjUJCQ4fzlWRyfy42l9eoXFX6rddynJLacBVZq6Yf-iyfsT8U1yrTH_yBkus5IBirwJkUpJ1C7UYjeiUAysuhIAwOxGLiif_sIgwFbluDFec8m01Xxk1vy7mz92ryLy_1cGtWxMy3vk7ogo6cF2CNwnN1L3gNw5OFuPqhrpIfl-2PZIr6KrtkhqpA0F3EdD2w_9ZRsBiNM-U1iWf_6iqwRwfEPbjp6jIu0A6yVdeaQT0y2lkWIVer_BculH5GT5_tviiI0nKrAIcdTARPYAeMAoxou55QlLCUWstBCec5slOCxDPDRvrAqNyI1NvI6hBjc2JtsgxGOy1_VdekJoQmFAC_AqwW0ZhGlM0komo32lkvQzUu0s5eIoN46nXpy7SSi5WNeBdV2xrruckTfTMxdbsY1rWx-iA6aWKJRdLvTrMzfOOyfhxZTRHD5MwLcF6ytkD2fts4lZ1jPyduc-N87ezTV9Pv2_5q_Ira_vlu7zh-NPz8htjgOpVMI8J3vD-kd6AXhmCC_LkP0Ni3DoIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+mitigates+the+biotoxicity+of+heavy+metals+in+livestock+manure+during+composting&rft.jtitle=Biochar+%28Online%29&rft.au=Chen%2C+Xiaomeng&rft.au=Du%2C+Zhuang&rft.au=Liu%2C+Dan&rft.au=Wang%2C+Liqin&rft.date=2022-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2524-7972&rft.eissn=2524-7867&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-022-00174-x&rft.externalDocID=10_1007_s42773_022_00174_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7972&client=summon |