Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review
[Display omitted] •Advanced pretreatment techniques focused on destruction of lignocellulosic biomass.•Recent genetic engineering approach in lignocellulose to bioproducts conversion.•Alternative biofuels synthesized from the lignocellulosic biomass was rationalized.•Explored high value bioproducts...
Saved in:
Published in | Bioresource technology Vol. 344; no. Pt B; p. 126195 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Advanced pretreatment techniques focused on destruction of lignocellulosic biomass.•Recent genetic engineering approach in lignocellulose to bioproducts conversion.•Alternative biofuels synthesized from the lignocellulosic biomass was rationalized.•Explored high value bioproducts and biochemicals from lignocellulosic biomass.•Current techno-economic assessment considered for efficient biomass valorization.
Lignocellulosic biomass is a highly renewable, economical, and carbon–neutral feedstock containing sugar-rich moieties that can be processed to produce second-generation biofuels and bio-sourced compounds. However, due to their heterogeneous multi-scale structure, the lignocellulosic materials have major limitations to valorization and exhibit recalcitrance to saccharification or hydrolysis by enzymes. In this context, this review focuses on the latest methods available and state-of-the-art technologies in the pretreatment of lignocellulosic biomass, which aids the disintegration of the complex materials into monomeric units. In addition, this review deals with the genetic engineering techniques to develop advanced strategies for fermentation processes or microbial cell factories to generate desired products in native or modified hosts. Further, it also intends to bridge the gap in developing various economically feasible lignocellulosic products and chemicals using biorefining technologies. |
---|---|
AbstractList | Lignocellulosic biomass is a highly renewable, economical, and carbon-neutral feedstock containing sugar-rich moieties that can be processed to produce second-generation biofuels and bio-sourced compounds. However, due to their heterogeneous multi-scale structure, the lignocellulosic materials have major limitations to valorization and exhibit recalcitrance to saccharification or hydrolysis by enzymes. In this context, this review focuses on the latest methods available and state-of-the-art technologies in the pretreatment of lignocellulosic biomass, which aids the disintegration of the complex materials into monomeric units. In addition, this review deals with the genetic engineering techniques to develop advanced strategies for fermentation processes or microbial cell factories to generate desired products in native or modified hosts. Further, it also intends to bridge the gap in developing various economically feasible lignocellulosic products and chemicals using biorefining technologies.Lignocellulosic biomass is a highly renewable, economical, and carbon-neutral feedstock containing sugar-rich moieties that can be processed to produce second-generation biofuels and bio-sourced compounds. However, due to their heterogeneous multi-scale structure, the lignocellulosic materials have major limitations to valorization and exhibit recalcitrance to saccharification or hydrolysis by enzymes. In this context, this review focuses on the latest methods available and state-of-the-art technologies in the pretreatment of lignocellulosic biomass, which aids the disintegration of the complex materials into monomeric units. In addition, this review deals with the genetic engineering techniques to develop advanced strategies for fermentation processes or microbial cell factories to generate desired products in native or modified hosts. Further, it also intends to bridge the gap in developing various economically feasible lignocellulosic products and chemicals using biorefining technologies. Lignocellulosic biomass is a highly renewable, economical, and carbon–neutral feedstock containing sugar-rich moieties that can be processed to produce second-generation biofuels and bio-sourced compounds. However, due to their heterogeneous multi-scale structure, the lignocellulosic materials have major limitations to valorization and exhibit recalcitrance to saccharification or hydrolysis by enzymes. In this context, this review focuses on the latest methods available and state-of-the-art technologies in the pretreatment of lignocellulosic biomass, which aids the disintegration of the complex materials into monomeric units. In addition, this review deals with the genetic engineering techniques to develop advanced strategies for fermentation processes or microbial cell factories to generate desired products in native or modified hosts. Further, it also intends to bridge the gap in developing various economically feasible lignocellulosic products and chemicals using biorefining technologies. [Display omitted] •Advanced pretreatment techniques focused on destruction of lignocellulosic biomass.•Recent genetic engineering approach in lignocellulose to bioproducts conversion.•Alternative biofuels synthesized from the lignocellulosic biomass was rationalized.•Explored high value bioproducts and biochemicals from lignocellulosic biomass.•Current techno-economic assessment considered for efficient biomass valorization. Lignocellulosic biomass is a highly renewable, economical, and carbon–neutral feedstock containing sugar-rich moieties that can be processed to produce second-generation biofuels and bio-sourced compounds. However, due to their heterogeneous multi-scale structure, the lignocellulosic materials have major limitations to valorization and exhibit recalcitrance to saccharification or hydrolysis by enzymes. In this context, this review focuses on the latest methods available and state-of-the-art technologies in the pretreatment of lignocellulosic biomass, which aids the disintegration of the complex materials into monomeric units. In addition, this review deals with the genetic engineering techniques to develop advanced strategies for fermentation processes or microbial cell factories to generate desired products in native or modified hosts. Further, it also intends to bridge the gap in developing various economically feasible lignocellulosic products and chemicals using biorefining technologies. |
ArticleNumber | 126195 |
Author | Chen, Wei-Hsin Chuetor, Santi Kumar, Gopalakrishnan Ashokkumar, Veeramuthu Jayashree, Shanmugam Ngamcharussrivichai, Chawalit Venkatkarthick, Radhakrishnan Dharmaraj, Selvakumar |
Author_xml | – sequence: 1 givenname: Veeramuthu surname: Ashokkumar fullname: Ashokkumar, Veeramuthu email: rvashok2008@gmail.com organization: Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand – sequence: 2 givenname: Radhakrishnan surname: Venkatkarthick fullname: Venkatkarthick, Radhakrishnan organization: Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Bangkok 10330, Thailand – sequence: 3 givenname: Shanmugam surname: Jayashree fullname: Jayashree, Shanmugam organization: Department of Biotechnology, Stella Maris College (Autonomous), Chennai, Tamil Nadu 600086, India – sequence: 4 givenname: Santi surname: Chuetor fullname: Chuetor, Santi organization: Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand – sequence: 5 givenname: Selvakumar surname: Dharmaraj fullname: Dharmaraj, Selvakumar organization: Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India – sequence: 6 givenname: Gopalakrishnan surname: Kumar fullname: Kumar, Gopalakrishnan organization: School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea – sequence: 7 givenname: Wei-Hsin surname: Chen fullname: Chen, Wei-Hsin organization: Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan – sequence: 8 givenname: Chawalit surname: Ngamcharussrivichai fullname: Ngamcharussrivichai, Chawalit organization: Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34710596$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URKeFV6i8ZJPBl8SOJRZUFTepEhKCteXYx8Ujj11sZyrenoTpbNjM2fhI_v9z-67QRcoJELqhZEsJFe922ynk0sD-2jLC6JYyQdXwAm3oKHnHlBQXaEOUIN04sP4SXdW6I4RwKtkrdMl7ScmgxAY9fAcLqWHjDiZZqDgkHMNDyhZinGOuweKl097Uin0ua-5niBWb5PDBxBk64xy49eOxZDfbVnGHb7EtoQVrIi5wCPD0Gr30JlZ48_xeo5-fPv64-9Ldf_v89e72vrM9oa3jntpBjeMkPbETGMO9cJY4PinoZe_GcRgYSG-MmaZ_OxglRumXmLxnil-jt8e6yzC_Z6hN70NddzEJ8lw1E1wIKUfOzksHRSgnishFevMsnac9OP1Ywt6UP_p0x0Xw_iiwJddawGsbmmkhp1ZMiJoSvWLTO33Cplds-ohtsYv_7KcOZ40fjsYFyXrnoqsNsIB0oYBt2uVwrsRfUry3Nw |
CitedBy_id | crossref_primary_10_1016_j_bcab_2024_103311 crossref_primary_10_1111_gcbb_13120 crossref_primary_10_3390_ijms24076368 crossref_primary_10_1002_ep_14521 crossref_primary_10_1039_D4GC04788E crossref_primary_10_3390_fermentation9030281 crossref_primary_10_1007_s12155_025_10818_y crossref_primary_10_1016_j_mcat_2022_112893 crossref_primary_10_3390_ijms232214310 crossref_primary_10_1016_j_cej_2022_139783 crossref_primary_10_3390_fermentation9070611 crossref_primary_10_1016_j_biortech_2022_127631 crossref_primary_10_1016_j_biortech_2022_128169 crossref_primary_10_1016_j_ijbiomac_2024_130740 crossref_primary_10_1007_s10971_023_06068_z crossref_primary_10_1080_21501203_2024_2316824 crossref_primary_10_1016_j_copbio_2025_103257 crossref_primary_10_1021_acscatal_4c07497 crossref_primary_10_3390_app13106159 crossref_primary_10_1007_s11274_024_04241_2 crossref_primary_10_1007_s13399_023_05108_6 crossref_primary_10_1016_j_wmb_2024_11_006 crossref_primary_10_3390_catal13111439 crossref_primary_10_1016_j_biortech_2022_128394 crossref_primary_10_1016_j_joei_2025_101992 crossref_primary_10_1002_bbb_2718 crossref_primary_10_1002_bbb_2719 crossref_primary_10_1021_acs_iecr_4c01984 crossref_primary_10_3389_fmolb_2023_1352163 crossref_primary_10_1016_j_cej_2023_142546 crossref_primary_10_1186_s13068_024_02572_8 crossref_primary_10_1186_s13068_022_02246_3 crossref_primary_10_1016_j_renene_2024_122311 crossref_primary_10_1016_j_biortech_2022_127620 crossref_primary_10_1016_j_fuel_2022_126141 crossref_primary_10_3390_biomass4010009 crossref_primary_10_1007_s00203_024_04011_6 crossref_primary_10_1007_s13399_023_03995_3 crossref_primary_10_1016_j_biortech_2022_127624 crossref_primary_10_1016_j_scitotenv_2022_160560 crossref_primary_10_1039_D2GC04336J crossref_primary_10_1016_j_biortech_2022_127738 crossref_primary_10_1186_s13068_024_02583_5 crossref_primary_10_1016_j_scitotenv_2022_159333 crossref_primary_10_1016_j_indcrop_2025_120803 crossref_primary_10_3389_fenrg_2022_972074 crossref_primary_10_55147_efse_1289656 crossref_primary_10_1016_j_biombioe_2023_106840 crossref_primary_10_1016_j_indcrop_2023_116671 crossref_primary_10_1007_s10570_024_06339_0 crossref_primary_10_1016_j_biortech_2022_128270 crossref_primary_10_3390_recycling8040061 crossref_primary_10_1088_1742_6596_2648_1_012072 crossref_primary_10_3839_jabc_2024_036 crossref_primary_10_1016_j_heliyon_2024_e35077 crossref_primary_10_3390_en17215322 crossref_primary_10_1007_s13399_024_05393_9 crossref_primary_10_1007_s13399_025_06730_2 crossref_primary_10_1016_j_ijbiomac_2024_132466 crossref_primary_10_1016_j_energy_2024_133548 crossref_primary_10_1186_s44329_024_00016_0 crossref_primary_10_3390_polym17040553 crossref_primary_10_1007_s13399_024_06387_3 crossref_primary_10_1016_j_seta_2022_102856 crossref_primary_10_1016_j_wasman_2023_09_034 crossref_primary_10_1016_j_biortech_2025_132130 crossref_primary_10_1080_17597269_2024_2429053 crossref_primary_10_1002_cssc_202201846 crossref_primary_10_1016_j_biotechadv_2023_108265 crossref_primary_10_1007_s12010_024_04972_w crossref_primary_10_1016_j_psep_2024_10_123 crossref_primary_10_1016_j_copbio_2023_103030 crossref_primary_10_1016_j_jclepro_2023_140509 crossref_primary_10_1016_j_renene_2024_120819 crossref_primary_10_1016_j_fuel_2024_132396 crossref_primary_10_1002_bit_28698 crossref_primary_10_1016_j_biortech_2023_129560 crossref_primary_10_1002_bit_28694 crossref_primary_10_1016_j_fuel_2022_126364 crossref_primary_10_1002_cssc_202201284 crossref_primary_10_1016_j_heliyon_2024_e28449 crossref_primary_10_1016_j_heliyon_2024_e40677 crossref_primary_10_1002_appl_202300119 crossref_primary_10_1016_j_biortech_2022_127517 crossref_primary_10_1016_j_scp_2022_100900 crossref_primary_10_1016_j_wmb_2024_11_011 crossref_primary_10_1016_j_joei_2023_101309 crossref_primary_10_1016_j_ijhydene_2023_12_184 crossref_primary_10_1039_D2RA08224A crossref_primary_10_1016_j_enbenv_2024_04_002 crossref_primary_10_1590_1809_4430_eng_agric_v43nepe20220140_2023 crossref_primary_10_1016_j_psep_2024_01_055 crossref_primary_10_2174_0113852728325684240911063353 crossref_primary_10_1016_j_fuel_2024_133304 crossref_primary_10_3390_en17225668 crossref_primary_10_1007_s12649_023_02252_y crossref_primary_10_1039_D4SE01293C crossref_primary_10_3389_fpls_2023_1099009 crossref_primary_10_1016_j_ecmx_2025_100933 crossref_primary_10_1039_D4GC00985A crossref_primary_10_1007_s13399_024_06388_2 crossref_primary_10_1016_j_ijbiomac_2025_140347 crossref_primary_10_1039_D3RA00177F crossref_primary_10_3389_fenrg_2022_917081 crossref_primary_10_1016_j_indcrop_2023_117618 crossref_primary_10_3390_catal12121501 crossref_primary_10_1016_j_jiec_2024_10_066 crossref_primary_10_1021_acssuschemeng_3c03014 crossref_primary_10_1016_j_gce_2022_04_007 crossref_primary_10_1016_j_indcrop_2024_119633 crossref_primary_10_1016_j_biortech_2022_128471 crossref_primary_10_1016_j_carbpol_2024_122351 crossref_primary_10_1016_j_biortech_2023_130177 crossref_primary_10_1016_j_biortech_2024_130338 crossref_primary_10_3390_fermentation8090440 crossref_primary_10_3390_app142311326 crossref_primary_10_1016_j_jlp_2024_105317 crossref_primary_10_1016_j_psep_2024_12_035 crossref_primary_10_3390_ijms24054489 crossref_primary_10_3389_finmi_2023_1319774 crossref_primary_10_1016_j_rser_2024_115285 crossref_primary_10_1007_s12649_025_02890_4 crossref_primary_10_1016_j_indcrop_2025_120614 crossref_primary_10_1016_j_fuel_2022_125250 crossref_primary_10_1016_j_biortech_2022_127268 crossref_primary_10_1016_j_biortech_2022_128356 crossref_primary_10_1016_j_renene_2025_122454 crossref_primary_10_1016_j_rser_2023_113840 crossref_primary_10_1021_acs_iecr_4c04772 crossref_primary_10_1590_0001_3765202320220635 crossref_primary_10_1007_s12649_022_01681_5 crossref_primary_10_1007_s12010_023_04776_4 crossref_primary_10_1016_j_susmat_2024_e01077 crossref_primary_10_1021_acssuschemeng_3c07981 crossref_primary_10_1016_j_indcrop_2022_115969 crossref_primary_10_1021_acssusresmgt_4c00302 crossref_primary_10_1016_j_biortech_2024_131551 crossref_primary_10_3390_catal13010083 crossref_primary_10_1021_acssuschemeng_4c03693 crossref_primary_10_1016_j_matpr_2023_04_454 crossref_primary_10_1016_j_fuel_2024_132236 crossref_primary_10_1016_j_biortech_2023_129758 crossref_primary_10_1016_j_biortech_2022_128027 crossref_primary_10_1016_j_jbiotec_2024_07_012 crossref_primary_10_3390_polym15204046 crossref_primary_10_1007_s12155_022_10500_7 crossref_primary_10_1007_s10570_022_04967_y crossref_primary_10_1016_j_renene_2023_118940 crossref_primary_10_1016_j_saa_2022_121912 crossref_primary_10_1002_cssc_202200718 crossref_primary_10_1016_j_mtsust_2024_100907 crossref_primary_10_1016_j_cattod_2024_114666 crossref_primary_10_1016_j_envres_2024_120134 crossref_primary_10_1016_j_indcrop_2024_118207 crossref_primary_10_1016_j_scenv_2023_100051 crossref_primary_10_1016_j_cattod_2022_08_012 crossref_primary_10_1002_cssc_202402522 crossref_primary_10_1016_j_biortech_2024_131204 crossref_primary_10_1038_s41598_024_81124_4 crossref_primary_10_1002_smo_20240019 crossref_primary_10_1016_j_rser_2024_114651 crossref_primary_10_1016_j_biortech_2022_128256 crossref_primary_10_1016_j_envres_2024_119137 crossref_primary_10_1093_jambio_lxac061 crossref_primary_10_1002_app_56465 crossref_primary_10_1007_s13369_024_09930_6 crossref_primary_10_1016_j_copbio_2023_102942 crossref_primary_10_1016_j_biortech_2023_130072 crossref_primary_10_1039_D4GC03448A crossref_primary_10_1016_j_jenvman_2025_124877 crossref_primary_10_3390_chemengineering7040072 crossref_primary_10_3389_fenrg_2022_994220 crossref_primary_10_1007_s00253_025_13408_2 crossref_primary_10_1016_j_carres_2024_109208 crossref_primary_10_58692_jotcsb_1350439 crossref_primary_10_1016_j_fuel_2023_130686 crossref_primary_10_3390_catal13101372 crossref_primary_10_3390_reactions5040059 crossref_primary_10_1016_j_jiec_2024_03_025 crossref_primary_10_3390_jof10060407 crossref_primary_10_1016_j_biortech_2023_129499 crossref_primary_10_1016_j_biteb_2023_101341 crossref_primary_10_1007_s13399_024_06296_5 crossref_primary_10_1016_j_supflu_2024_106425 crossref_primary_10_1007_s13399_025_06675_6 crossref_primary_10_1016_j_fuel_2023_128792 crossref_primary_10_1016_j_biortech_2022_128328 crossref_primary_10_1016_j_fuel_2022_124474 crossref_primary_10_1016_j_fuel_2023_128795 crossref_primary_10_1007_s13399_024_06130_y crossref_primary_10_1134_S0026261722601282 crossref_primary_10_1002_bbb_2424 crossref_primary_10_1016_j_biortech_2023_129492 crossref_primary_10_3389_fmicb_2022_933882 crossref_primary_10_1007_s13399_023_04075_2 crossref_primary_10_1016_j_joei_2023_101493 crossref_primary_10_1016_j_biteb_2023_101594 crossref_primary_10_1016_j_energy_2025_134423 crossref_primary_10_1016_j_indcrop_2023_117481 crossref_primary_10_1016_j_renene_2025_122777 crossref_primary_10_1016_j_biortech_2022_127466 crossref_primary_10_1016_j_proci_2024_105669 crossref_primary_10_1016_j_bej_2023_108837 crossref_primary_10_1016_j_ijbiomac_2024_135474 crossref_primary_10_1016_j_jclepro_2022_135815 crossref_primary_10_1016_j_inoche_2023_111357 crossref_primary_10_1016_j_biortech_2024_131193 crossref_primary_10_1016_j_micres_2024_127623 crossref_primary_10_1021_acs_biomac_4c00187 crossref_primary_10_3390_catal12121550 crossref_primary_10_1016_j_ijhydene_2025_01_158 crossref_primary_10_1016_j_indcrop_2023_116830 crossref_primary_10_1016_j_wasman_2024_05_001 crossref_primary_10_3390_su16031275 crossref_primary_10_1002_cctc_202400394 crossref_primary_10_3389_fchem_2022_939289 crossref_primary_10_1016_j_biortech_2022_127496 crossref_primary_10_1080_10962247_2024_2447480 crossref_primary_10_1016_j_seta_2023_103150 crossref_primary_10_1016_j_biortech_2023_129397 crossref_primary_10_3390_en16196789 crossref_primary_10_3390_en16176384 crossref_primary_10_1007_s11426_022_1511_2 crossref_primary_10_3390_molecules27217658 crossref_primary_10_1016_j_envres_2025_121023 crossref_primary_10_1007_s11244_024_01971_3 crossref_primary_10_3390_catal14110814 crossref_primary_10_1016_j_ces_2024_119760 crossref_primary_10_1016_j_heliyon_2024_e32649 crossref_primary_10_3390_en15238987 crossref_primary_10_1007_s13399_025_06576_8 crossref_primary_10_1016_j_indcrop_2023_117036 crossref_primary_10_1007_s11356_024_32975_x crossref_primary_10_3390_en16020844 crossref_primary_10_1016_j_biortech_2024_130675 crossref_primary_10_1002_cssc_202400129 crossref_primary_10_1007_s11356_023_26988_1 crossref_primary_10_1016_j_biteb_2023_101572 crossref_primary_10_1016_j_biortech_2022_127001 crossref_primary_10_1016_j_biteb_2022_100986 crossref_primary_10_1016_j_copbio_2022_102840 crossref_primary_10_1021_acs_iecr_2c04658 crossref_primary_10_3934_environsci_2024043 crossref_primary_10_1016_j_biortech_2022_126706 crossref_primary_10_1016_j_ijbiomac_2024_136412 crossref_primary_10_1016_j_greenca_2024_01_003 crossref_primary_10_1016_j_indcrop_2023_117948 crossref_primary_10_1016_j_biortech_2023_129280 crossref_primary_10_1016_j_jiec_2024_12_082 crossref_primary_10_24857_rgsa_v18n12_076 crossref_primary_10_1016_j_indcrop_2024_119863 crossref_primary_10_1016_j_jaap_2023_106303 crossref_primary_10_1016_j_biortech_2022_128084 crossref_primary_10_1016_j_biortech_2023_129450 crossref_primary_10_1021_acs_iecr_2c03411 crossref_primary_10_1515_gps_2023_0129 crossref_primary_10_1016_j_rechem_2025_102052 crossref_primary_10_1016_j_biortech_2022_127434 crossref_primary_10_3390_catal15010035 crossref_primary_10_3390_polym14122313 crossref_primary_10_1007_s12649_025_03015_7 crossref_primary_10_1016_j_wasman_2023_06_003 crossref_primary_10_1021_acssuschemeng_2c07372 crossref_primary_10_1039_D3SE01590D crossref_primary_10_1002_macp_202200017 crossref_primary_10_1016_j_fuel_2022_124313 crossref_primary_10_1016_j_scitotenv_2023_161441 crossref_primary_10_1007_s42824_025_00160_1 crossref_primary_10_3390_en16052257 crossref_primary_10_3390_polym15061451 crossref_primary_10_1093_jambio_lxac002 crossref_primary_10_1016_j_indcrop_2023_116248 crossref_primary_10_3390_catal13091301 crossref_primary_10_3390_polym15081862 crossref_primary_10_1016_j_biortech_2022_128075 crossref_primary_10_1016_j_biortech_2022_128073 crossref_primary_10_1016_j_energy_2024_133117 crossref_primary_10_1039_D3GC04501C crossref_primary_10_1016_j_biortech_2023_129460 crossref_primary_10_1016_j_jece_2024_112243 crossref_primary_10_1016_j_biombioe_2025_107732 crossref_primary_10_1016_j_enconman_2022_116201 crossref_primary_10_1016_j_biortech_2022_127300 crossref_primary_10_1016_j_molliq_2024_124253 crossref_primary_10_1021_acsomega_3c09246 crossref_primary_10_1016_j_biotechadv_2024_108339 crossref_primary_10_1039_D4LC00892H crossref_primary_10_1002_bbb_2593 crossref_primary_10_1016_j_gee_2022_07_003 crossref_primary_10_1021_acs_energyfuels_2c02907 crossref_primary_10_1021_acssuschemeng_3c02691 crossref_primary_10_1016_j_fuel_2023_130145 crossref_primary_10_1515_npprj_2023_0005 crossref_primary_10_1002_cssc_202400396 crossref_primary_10_1016_j_ijhydene_2025_03_107 crossref_primary_10_1021_acssuschemeng_4c07893 crossref_primary_10_1016_j_biortech_2024_130864 crossref_primary_10_3390_molecules27196359 crossref_primary_10_1016_j_jece_2024_115303 crossref_primary_10_1016_j_crbiot_2024_100191 crossref_primary_10_1007_s12155_024_10792_x crossref_primary_10_1016_j_ijft_2024_100588 crossref_primary_10_1007_s12155_023_10696_2 crossref_primary_10_1016_j_fuel_2022_124532 crossref_primary_10_3390_ijms25021090 crossref_primary_10_1016_j_jechem_2024_09_011 crossref_primary_10_1016_j_biortech_2024_131164 crossref_primary_10_1016_j_biotechadv_2024_108460 crossref_primary_10_1016_j_indcrop_2024_119498 crossref_primary_10_1039_D2GC02724K crossref_primary_10_1016_j_indcrop_2023_117117 crossref_primary_10_1016_j_biortech_2024_130753 crossref_primary_10_1016_j_indcrop_2025_120792 crossref_primary_10_1016_j_biortech_2022_128096 crossref_primary_10_1016_j_biortech_2023_130231 crossref_primary_10_3390_fuels5030023 crossref_primary_10_1016_j_ccst_2023_100178 crossref_primary_10_1007_s10973_023_12013_7 crossref_primary_10_1016_j_mtchem_2022_101022 crossref_primary_10_3390_cleantechnol6020035 crossref_primary_10_3390_microorganisms10020410 crossref_primary_10_1016_j_envres_2024_118205 crossref_primary_10_1016_j_fbio_2024_105221 crossref_primary_10_1007_s13399_024_06410_7 crossref_primary_10_1021_acs_energyfuels_4c01442 crossref_primary_10_3390_molecules28031418 crossref_primary_10_1016_j_wasman_2022_10_015 crossref_primary_10_1016_j_biortech_2022_127565 crossref_primary_10_1016_j_nxmate_2025_100536 crossref_primary_10_1007_s13399_022_03204_7 crossref_primary_10_1016_j_ijhydene_2023_10_315 crossref_primary_10_1016_j_biortech_2024_131172 crossref_primary_10_3390_polym14091662 crossref_primary_10_1016_j_mcat_2024_114093 crossref_primary_10_5327_Z2176_94781814 |
Cites_doi | 10.1016/j.biortech.2021.125632 10.1016/j.enconman.2019.112220 10.3389/fbioe.2020.00252 10.1016/j.cej.2017.07.020 10.1021/acssuschemeng.6b00243 10.3390/polym10060623 10.1016/j.biortech.2021.125235 10.1039/c2gc35933b 10.1007/s10570-019-02914-y 10.1039/C4EE01067A 10.1016/j.powtec.2016.12.072 10.1002/cssc.201800967 10.1002/bab.1869 10.1016/j.tibtech.2018.08.007 10.1016/j.ibiod.2021.105246 10.3390/su13052697 10.1016/j.biortech.2021.125195 10.1186/s13068-020-1661-y 10.1016/j.scitotenv.2020.140630 10.1039/C3GC41324A 10.1021/acsomega.1c01026 10.3390/agriculture8060076 10.1016/j.rser.2020.109965 10.1002/aic.16106 10.1039/C5EE02666K 10.1021/acs.chemrev.5b00155 10.1007/s11103-019-00850-w 10.1007/s11274-017-2246-1 10.1016/j.rser.2015.02.032 10.1016/j.rser.2017.01.022 10.1016/j.copbio.2019.02.018 10.1007/s10295-018-2053-1 10.1007/s00253-015-7179-8 10.1016/j.biortech.2008.05.027 10.3390/biomass1010003 10.1007/s00253-016-7884-y 10.1186/s40643-020-00310-0 10.1093/protein/gzx026 10.1186/s13068-017-0995-6 10.1016/j.jenvman.2021.113422 10.1016/j.pecs.2009.11.004 10.1111/gcbb.12656 10.1021/acsomega.0c00506 10.1111/gcbb.12586 10.1016/j.renene.2020.08.135 10.1186/s13068-017-0751-y 10.3390/pr7040230 10.1016/j.biortech.2019.121966 10.1002/bab.1529 10.1039/C5PY00263J 10.1016/j.biortech.2021.125005 10.1002/aic.14019 10.1186/s13068-017-1007-6 10.1007/s11103-016-0551-y 10.1016/j.rser.2020.110442 10.1016/j.ces.2016.12.054 10.1039/C9GC00473D 10.1002/er.6697 10.3390/molecules25122815 10.1039/c3gc41214h 10.1186/s13065-021-00762-1 10.1016/j.biortech.2019.122633 10.1016/j.biortech.2015.08.061 10.1016/j.rser.2020.109944 10.1021/jacs.8b09917 10.1016/j.biortech.2020.124619 10.1186/s13068-021-01950-w 10.1016/B978-0-12-802323-5.00025-6 10.1186/s13068-015-0332-x 10.1016/j.biortech.2015.08.085 10.1021/acssuschemeng.0c07925 10.1016/j.biortech.2020.124631 10.1016/j.biortech.2020.124625 10.1186/s13068-021-02021-w 10.1016/j.biortech.2019.02.096 10.3390/en14061600 10.1021/acssuschemeng.0c01109 10.1007/s00253-018-9362-1 10.1016/j.ymben.2016.07.001 10.1016/j.biortech.2019.122724 10.1016/j.biortech.2018.08.042 10.1016/j.biortech.2019.122558 10.1016/j.biotechadv.2014.10.007 10.1016/j.rser.2021.111258 10.1038/srep39984 10.1007/s00267-010-9494-2 10.1021/acssuschemeng.8b00209 10.1111/gcbb.12699 10.1016/j.biortech.2014.06.020 10.1016/j.biortech.2019.122585 10.1002/cctc.201601203 10.3390/polym11050751 10.1016/S0169-409X(01)00203-4 10.1039/b210714g 10.1016/j.biortech.2016.05.106 10.1039/C4GC00737A 10.1016/j.biortech.2020.122848 10.1002/bit.27529 10.1002/ente.201700594 10.1016/j.pecs.2012.03.002 10.1016/B978-0-444-63453-5.00001-X 10.1007/s10570-021-03940-5 10.1186/s13068-017-0953-3 10.3390/ma13225062 10.1016/j.indcrop.2021.113420 10.1016/j.rser.2021.111516 10.1016/j.indcrop.2020.112783 10.1186/s13068-021-01904-2 10.1039/C5GC02114F 10.1002/bbb.1331 10.1016/j.biortech.2019.01.049 10.1039/C9GC03062J 10.1007/s00438-018-1452-3 10.1016/j.biombioe.2017.05.008 10.1016/j.cej.2014.09.106 10.1186/s13068-021-01988-w 10.1016/j.biortech.2019.122725 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2021.126195 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 34710596 10_1016_j_biortech_2021_126195 S0960852421015376 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c401t-3f1c5988b7f0cbeaa3f6dc0d3b9e474d88552e7faaabb71059a9687ffffbff293 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 09:17:39 EDT 2025 Thu Jul 10 21:56:26 EDT 2025 Wed Feb 19 02:27:49 EST 2025 Thu Apr 24 23:07:38 EDT 2025 Tue Jul 01 03:18:59 EDT 2025 Fri Feb 23 02:41:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt B |
Keywords | Biorefineries Techno-economic Assessment Genetic engineering Pretreatment techniques Lignocellulosic biomass |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-3f1c5988b7f0cbeaa3f6dc0d3b9e474d88552e7faaabb71059a9687ffffbff293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 34710596 |
PQID | 2590130907 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636677832 proquest_miscellaneous_2590130907 pubmed_primary_34710596 crossref_citationtrail_10_1016_j_biortech_2021_126195 crossref_primary_10_1016_j_biortech_2021_126195 elsevier_sciencedirect_doi_10_1016_j_biortech_2021_126195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 2022-Jan 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Saha, Abu-Omar (b0475) 2014; 16 Brandt, García-Aparicio, Görgens, van Zyl (b0085) 2021; 14 Abraham, Mathew, Park, Choi, Sindhu, Parameswaran, Pandey, Park, Sang (b0010) 2020; 301 Zhao, Chen, Fang (b0665) 2018; 102 Mariscal, Maireles-Torres, Ojeda, Sádaba, López Granados (b0395) 2016; 9 Yiin, Yap, Ku, Chin, Lock, Cheah, Loy, Chan (b0630) 2021; 333 Suhas, Gupta, V.K., Carrott, P.J.M., Singh, R., Chaudhary, M., Kushwaha, S. 2016. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresource Technology, 216, 1066-1076. Escobar, E.L.N., da Silva, T.A., Pirich, C.L., Corazza, M.L., Pereira Ramos, L. 2020. Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation. Frontiers in Bioengineering and Biotechnology, 8(252). Kim, Karthikeyan (b0270) 2021; 340 Kumar, Yadav, Kumar, Ahluwalia (b0310) 2020; 299 Bianchini, Costa, Dell’Omo, Colantoni, Cecchini, Monarca (b0065) 2021; 14 Patri, Mohan, Pu, Yoo, Ragauskas, Kumar, Kisailus, Cai, Wyman (b0445) 2021; 14 Speight (b0520) 2020 Zeng, Himmel, Ding (b0660) 2017; 10 Ihssen, Jankowska, Ramsauer, Reiss, Luchsinger, Wiesli, Schubert, Thöny-Meyer, Faccio (b0245) 2017; 30 Ding, Wang, Xi, Liu, Lu, Wang (b0170) 2014; 16 Isikgor, Becer (b0250) 2015; 6 IEA., F.P. 2019. Are aviation biofuels ready for take off? IEA, Paris. Islam, Wang, Rehman, Dong, Hsu, Lin, Leu (b0255) 2020; 298 Sheng, Tan, Gu, Zhou, Tu, Xu (b0510) 2021; 163 Sun, Sun, Cao, Sun (b0540) 2016; 199 Gezae Daful, Görgens (b0190) 2017; 162 Kumar, Binod, Sindhu, Gnansounou, Ahluwalia (b0305) 2018; 269 Hendriks, Zeeman (b0230) 2009; 100 Wu, Ge, Xia, Mei, Kim, Cai, Smith, Lee, Shi (b0600) 2021; 136 Roy, Dikshit, Sherpa, Singh, Jacob, Chandra Rajak (b0470) 2021; 297 Usmani, Sharma, Karpichev, Pandey, Chander Kuhad, Bhat, Punia, Aghbashlo, Tabatabaei, Gupta (b0570) 2020; 131 Ubando, Felix, Chen (b0555) 2020; 299 Usmani, Sharma, Awasthi, Lukk, Tuohy, Gong, Nguyen-Tri, Goddard, Bill, Nayak, Gupta (b0565) 2021; 148 Cai, Zhang, Kumar, Wyman (b0095) 2013; 15 Mankar, Pandey, Modak, Pant (b0385) 2021; 334 Mussatto, S.I., Bikaki, N. 2016. Chapter 25 - Technoeconomic Considerations for Biomass Fractionation in a Biorefinery Context. in: Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, (Ed.) S.I. Mussatto, Elsevier. Amsterdam, pp. 587-610. Nazli, Gulnaz, Kafkas, Tansi (b0415) 2021 Baig (b0020) 2020; 7 Chen, Maneerung, Tsang, Ok, Wang (b0110) 2017; 328 Yadav, Paritosh, Chawade, Pareek, Vivekanand (b0610) 2018; 8 Guirimand, Sasaki, Inokuma, Bamba, Hasunuma, Kondo (b0205) 2016; 100 Niu, Fang, Shang, Guo (b0420) 2018; 293 Yang, Ching, Chuah (b0615) 2019; 11 Mazzoli (b0400) 2020; 67 Yao, Wu, An, Meng, Ding, Li, Yuan (b0620) 2018; 64 Guo, Li, Liu, Guo, Wang (b0210) 2018; 11 Cho, Karaaslan, Chowdhury, Ko, Renneckar (b0115) 2018; 6 Yook, Kim, Gong, Ko, Um, Han, Lee (b0635) 2020; 12 Chuetor, Champreda, Laosiripojana (b0130) 2019; 292 Okolie, Mukherjee, Nanda, Dalai, Kozinski (b0430) 2021; 45 Yousuf, Pirozzi, Sannino (b0640) 2020 Sasaki, Ohsawa (b0485) 2021; 6 Li, Zhang, Li, Sun, Tian (b0340) 2020; 13 Jędrzejczyk, Soszka, Czapnik, Ruppert, Grams (b0260) 2019 Korányi, Fridrich, Pineda, Barta (b0295) 2020; 25 Das, Achinivu, Barcelos, Sundstrom, Amer, Baidoo, Simmons, Sun, Gladden (b0150) 2021; 9 Mu, Seager, Rao, Zhao (b0405) 2010; 46 Chaves, Presley, Michener (b0105) 2019; 7 Lorenci Woiciechowski, Dalmas Neto, de Souza, Vandenberghe, de Carvalho Neto, Novak Sydney, Letti, Karp, Zevallos Torres, Soccol (b0375) 2020; 304 de Jong, E., Jungmeier, G. 2015. Chapter 1 - Biorefinery Concepts in Comparison to Petrochemical Refineries. in: Industrial Biorefineries & White Biotechnology, (Eds.) A. Pandey, R. Höfer, M. Taherzadeh, K.M. Nampoothiri, C. Larroche, Elsevier. Amsterdam, pp. 3-33. Srifa, Faungnawakij, Itthibenchapong, Assabumrungrat (b0525) 2015; 278 Straub, Bing, Otten, Keller, Zeldes, Adams, Kelly (b0530) 2020; 117 Batog, Wawro (b0045) 2021 Eswaran, Subramaniam, Geleynse, Brandt, Wolcott, Zhang (b0180) 2021; 151 Jiang, Liu, Jiang, Yang, Yang (b0265) 2015; 33 Xin, Dong, Zhang, Ma, Jiang (b0605) 2019; 37 Zhao, Zhang, Liu (b0670) 2012; 6 Brunecky, Subramanian, Yarbrough, Donohoe, Vinzant, Vanderwall, Knott, Chaudhari, Bomble, Himmel, Decker (b0090) 2020; 22 Dadwal, Sharma, Satyanarayana (b0140) 2020; 11 Rahim, Man, Sarwono, Muhammad, Khan, Hamzah, Yunus, Elsheikh (b0460) 2020; 27 Tran, Breuer, Avanasi Narasimhan, Parreiras, Zhang, Sato, Durrett (b0550) 2017; 10 Scelsi, Angelini, Pastore (b0490) 2021; 1 Chuetor, Barakat, Rouau, Ruiz (b0125) 2017; 310 Kim, Lee, Kim (b0275) 2016; 199 Biddy, Davis, Humbird, Tao, Dowe, Guarnieri, Linger, Karp, Salvachúa, Vardon, Beckham (b0075) 2016; 4 Han, Geng, Guo, Jia, Liu, Zhang, Wang (b0215) 2016; 18 Poursorkhabi, Abdelwahab, Misra, Khalil, Gharabaghi, Mohanty (b0450) 2020; 8 Shen, Xiong, Fu, Yang, Qiu, Qi, Tsang (b0500) 2020; 130 Sheng, Lam, Wu, Ge, Wu, Cai, Huang, Le, Sonne, Xia (b0505) 2021; 324 Mao, Feng, Wang, Ren (b0390) 2015; 45 Delidovich, Leonhard, Palkovits (b0165) 2014; 7 Baral, Munagala, Shastri, Kumar, Agrawal (b0030) 2021; 28 Hayashi, Yamaguchi, Kamata, Tsunoda, Kumagai, Oba, Hara (b0220) 2019; 141 Vu, Nguyen, Vu, Johir, McLaughlan, Nghiem (b0585) 2020; 743 Saito, Brown, Hunt, Pickel, Pickel, Messman, Baker, Keller, Naskar (b0480) 2012; 14 Yu, Chen, Li (b0645) 2017; 64 Noppawan, Lanctôt, Magro, Navarro, Supanchaiyamat, Attard, Hunt (b0425) 2021; 15 Li, Zhao, Wang, Huber, Zhang (b0335) 2015; 115 Ummalyma, Supriya, Sindhu, Binod, Nair, Pandey, Gnansounou (b0560) 2019 Leskinen, Kelley, Argyropoulos (b0330) 2017; 103 Grisolia, Peralta, Valdez, Barchiesi, Gomez-Casati, Busi (b0200) 2017; 93 Okolie, Nanda, Dalai, Kozinski (b0435) 2021; 331 Abbott, Capper, Davies, Rasheed, Tambyrajah (b0005) 2003; 1 Capolupo, Faraco (b0100) 2016; 100 Ko, Enkh-Amgalan, Gong, Um, Lee (b0290) 2020; 12 Ghatalam (b0195) 2020 Singh, Sinha, Kundu (b0515) 2021 Baruah, Nath, Sharma, Kumar, Deka, Baruah, Kalita (b0035) 2018; 6 Wang, Ren, Liu, Lu, Wang (b0590) 2013; 59 Long, Weng, Wang (b0370) 2018; 10 Reem, Pogorelko, Lionetti, Chambers, Held, Bellincampi, Zabotina (b0465) 2016; 7 Thilo, Z. 2018. New” oil plants and their potential as feedstock for biokerosene production. In: Kaltschmitt M, Neuling U, eds. Biokerosene: Status and Prospects. Springer Nature; , Status and Prospects. Berlin, Heidelberg: Biokerosene. Leal Silva, Grekin, Mariano, Maciel Filho (b0320) 2018; 6 Bellido, Loureiro Pinto, Coca, González-Benito, García-Cubero (b0050) 2014; 167 Liu, Fan, Mou, Liu, Huang, Dong, Song (b0360) 2021; 165 Luo, Zeng, Han, Wang, Dong, Bi, Zhao (b0380) 2017; 33 Zoghlami, Paës (b0675) 2019; 7 Bhatia, Lad, Bosch, Bryant, Leak, Hallett, Franco, Gallagher (b0055) 2021; 323 Wang, P., Zhang, J., Feng, J., Wang, S., Guo, L., Wang, Y., Lee, Y.Y., Taylor, S., McDonald, T., Wang, Y. 2019. Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass. Bioresource Technology, 281, 217-225. Yi, T., Zhao, H., Mo, Q., Pan, D., Liu, Y., Huang, L., Xu, H., Hu, B., Song, H. 2020. From Cellulose to Cellulose Nanofibrils—A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils. Materials, 13(22). Aznar, Chalvin, Shih, Maimann, Ebert, Birdseye, Loqué, Scheller (b0015) 2018; 11 Flores-Gómez, Escamilla Silva, Zhong, Dale, da Costa Sousa, Balan (b0185) 2018; 11 Li, Peng, Liu, Xia, Wang (b0350) 2017; 9 Knothe (b0285) 2010; 36 Kuo, Yu (b0315) 2020; 155 Patel, Singhania, Sim, Pandey (b0440) 2019; 279 Yu, Wang, Yi, Wang, Zeng, Li, Yang, Tan (b0650) 2020; 5 Brandon, Scheller (b0080) 2020; 11 Qiu, Park (b0455) 2001; 53 Vásquez-Garay, Carrillo-Varela, Vidal, Reyes-Contreras, Faccini, Teixeira Mendonça (b0580) 2021; 13 Bichot, Lerosty, Radoiu, Méchin, Bernet, Delgenès, García-Bernet (b0070) 2020; 203 Vanholme, De Meester, Ralph, Boerjan (b0575) 2019; 56 Baskar, Aiswarya, Kalavathy, Pandey, Gnansounou, Raman, Praveen Kumar (b0040) 2020 del Río, Rencoret, Gutiérrez, Elder, Kim, Ralph (b0160) 2020; 8 Li, Wang, Liu, Zhang, Ren, Liu, Lu, Wei, Wei (b0345) 2019; 100 Bhatia, Jagtap, Bedekar, Bhatia, Patel, Pant, Rajesh Banu, Rao, Kim, Yang (b0060) 2020; 300 Chuetor, Ruiz, Barakat, Laosiripojana, Champreda, Sriariyanun (b0135) 2021; 323 Heleniak (b0225) 2020 Dahmen, Lewandowski, Zibek, Weidtmann (b0145) 2019; 11 Shafrin, Ferdous, Sarkar, Ahmed, Amin, Hossain, Sarker, Rencoret, Gutiérrez, del Rio, Sanan-Mishra, Khan (b0495) 2017; 7 Limayem, Ricke (b0355) 2012; 38 Balderas-Hernández, Correia, Mahadevan (b0025) 2018; 45 Huang, Singh, Qureshi (b0235) 2015; 8 Kirby, Geiselman, Yaegashi, Kim, Zhuang, Tran-Gyamfi, Prahl, Sundstrom, Gao, Munoz, Burnum-Johnson, Benites, Baidoo, Fuhrmann, Seibel, Webb-Robertson, Zucker, Nicora, Tanjore, Magnuson, Skerker, Gladden (b0280) 2021; 14 Zanellati, Spina, Bonaterra, Dinuccio, Varese, Scarpeci (b0655) 2021; 161 Chu, Tong, Chen, Wu, Jin, Hu, Song (b0120) 2021; 14 Kumar, Singh, Korstad (b0300) 2017; 73 Ledesma-Amaro, Lazar, Rakicka, Guo, Fouchard, Coq, Nicaud (b0325) 2016; 38 Liu, Nie, Lu, Zhang, He, Pan, Zhou, Liu, Ji, Zhang (b0365) 2019; 21 Vanholme (10.1016/j.biortech.2021.126195_b0575) 2019; 56 Long (10.1016/j.biortech.2021.126195_b0370) 2018; 10 Hayashi (10.1016/j.biortech.2021.126195_b0220) 2019; 141 Noppawan (10.1016/j.biortech.2021.126195_b0425) 2021; 15 Kuo (10.1016/j.biortech.2021.126195_b0315) 2020; 155 Shen (10.1016/j.biortech.2021.126195_b0500) 2020; 130 Chuetor (10.1016/j.biortech.2021.126195_b0130) 2019; 292 Yook (10.1016/j.biortech.2021.126195_b0635) 2020; 12 Li (10.1016/j.biortech.2021.126195_b0335) 2015; 115 Sasaki (10.1016/j.biortech.2021.126195_b0485) 2021; 6 Biddy (10.1016/j.biortech.2021.126195_b0075) 2016; 4 Chu (10.1016/j.biortech.2021.126195_b0120) 2021; 14 Zoghlami (10.1016/j.biortech.2021.126195_b0675) 2019; 7 Speight (10.1016/j.biortech.2021.126195_b0520) 2020 Saito (10.1016/j.biortech.2021.126195_b0480) 2012; 14 Bellido (10.1016/j.biortech.2021.126195_b0050) 2014; 167 Mao (10.1016/j.biortech.2021.126195_b0390) 2015; 45 Ko (10.1016/j.biortech.2021.126195_b0290) 2020; 12 Grisolia (10.1016/j.biortech.2021.126195_b0200) 2017; 93 Isikgor (10.1016/j.biortech.2021.126195_b0250) 2015; 6 Srifa (10.1016/j.biortech.2021.126195_b0525) 2015; 278 Sheng (10.1016/j.biortech.2021.126195_b0510) 2021; 163 10.1016/j.biortech.2021.126195_b0595 Balderas-Hernández (10.1016/j.biortech.2021.126195_b0025) 2018; 45 Okolie (10.1016/j.biortech.2021.126195_b0430) 2021; 45 Abraham (10.1016/j.biortech.2021.126195_b0010) 2020; 301 Baskar (10.1016/j.biortech.2021.126195_b0040) 2020 Yu (10.1016/j.biortech.2021.126195_b0645) 2017; 64 Ding (10.1016/j.biortech.2021.126195_b0170) 2014; 16 Korányi (10.1016/j.biortech.2021.126195_b0295) 2020; 25 10.1016/j.biortech.2021.126195_b0625 Yiin (10.1016/j.biortech.2021.126195_b0630) 2021; 333 Mariscal (10.1016/j.biortech.2021.126195_b0395) 2016; 9 Capolupo (10.1016/j.biortech.2021.126195_b0100) 2016; 100 Dahmen (10.1016/j.biortech.2021.126195_b0145) 2019; 11 Hendriks (10.1016/j.biortech.2021.126195_b0230) 2009; 100 Jędrzejczyk (10.1016/j.biortech.2021.126195_b0260) 2019 Zhao (10.1016/j.biortech.2021.126195_b0665) 2018; 102 Islam (10.1016/j.biortech.2021.126195_b0255) 2020; 298 Saha (10.1016/j.biortech.2021.126195_b0475) 2014; 16 Liu (10.1016/j.biortech.2021.126195_b0365) 2019; 21 Singh (10.1016/j.biortech.2021.126195_b0515) 2021 Usmani (10.1016/j.biortech.2021.126195_b0570) 2020; 131 Knothe (10.1016/j.biortech.2021.126195_b0285) 2010; 36 Luo (10.1016/j.biortech.2021.126195_b0380) 2017; 33 Zhao (10.1016/j.biortech.2021.126195_b0670) 2012; 6 Patri (10.1016/j.biortech.2021.126195_b0445) 2021; 14 Kim (10.1016/j.biortech.2021.126195_b0270) 2021; 340 Lorenci Woiciechowski (10.1016/j.biortech.2021.126195_b0375) 2020; 304 Zeng (10.1016/j.biortech.2021.126195_b0660) 2017; 10 Guirimand (10.1016/j.biortech.2021.126195_b0205) 2016; 100 Mazzoli (10.1016/j.biortech.2021.126195_b0400) 2020; 67 Vásquez-Garay (10.1016/j.biortech.2021.126195_b0580) 2021; 13 Li (10.1016/j.biortech.2021.126195_b0340) 2020; 13 Chen (10.1016/j.biortech.2021.126195_b0110) 2017; 328 Tran (10.1016/j.biortech.2021.126195_b0550) 2017; 10 Shafrin (10.1016/j.biortech.2021.126195_b0495) 2017; 7 10.1016/j.biortech.2021.126195_b0175 Leskinen (10.1016/j.biortech.2021.126195_b0330) 2017; 103 Ubando (10.1016/j.biortech.2021.126195_b0555) 2020; 299 Sun (10.1016/j.biortech.2021.126195_b0540) 2016; 199 Leal Silva (10.1016/j.biortech.2021.126195_b0320) 2018; 6 Ihssen (10.1016/j.biortech.2021.126195_b0245) 2017; 30 Scelsi (10.1016/j.biortech.2021.126195_b0490) 2021; 1 Reem (10.1016/j.biortech.2021.126195_b0465) 2016; 7 Yu (10.1016/j.biortech.2021.126195_b0650) 2020; 5 Bhatia (10.1016/j.biortech.2021.126195_b0060) 2020; 300 Mu (10.1016/j.biortech.2021.126195_b0405) 2010; 46 Brandon (10.1016/j.biortech.2021.126195_b0080) 2020; 11 Limayem (10.1016/j.biortech.2021.126195_b0355) 2012; 38 Baig (10.1016/j.biortech.2021.126195_b0020) 2020; 7 Kumar (10.1016/j.biortech.2021.126195_b0310) 2020; 299 Xin (10.1016/j.biortech.2021.126195_b0605) 2019; 37 Yao (10.1016/j.biortech.2021.126195_b0620) 2018; 64 10.1016/j.biortech.2021.126195_b0410 Li (10.1016/j.biortech.2021.126195_b0350) 2017; 9 Okolie (10.1016/j.biortech.2021.126195_b0435) 2021; 331 Wang (10.1016/j.biortech.2021.126195_b0590) 2013; 59 Qiu (10.1016/j.biortech.2021.126195_b0455) 2001; 53 10.1016/j.biortech.2021.126195_b0535 Gezae Daful (10.1016/j.biortech.2021.126195_b0190) 2017; 162 Yang (10.1016/j.biortech.2021.126195_b0615) 2019; 11 Baral (10.1016/j.biortech.2021.126195_b0030) 2021; 28 Bianchini (10.1016/j.biortech.2021.126195_b0065) 2021; 14 Bhatia (10.1016/j.biortech.2021.126195_b0055) 2021; 323 Li (10.1016/j.biortech.2021.126195_b0345) 2019; 100 Kumar (10.1016/j.biortech.2021.126195_b0305) 2018; 269 Dadwal (10.1016/j.biortech.2021.126195_b0140) 2020; 11 del Río (10.1016/j.biortech.2021.126195_b0160) 2020; 8 Kim (10.1016/j.biortech.2021.126195_b0275) 2016; 199 Rahim (10.1016/j.biortech.2021.126195_b0460) 2020; 27 Wu (10.1016/j.biortech.2021.126195_b0600) 2021; 136 Brunecky (10.1016/j.biortech.2021.126195_b0090) 2020; 22 Ghatalam (10.1016/j.biortech.2021.126195_b0195) 2020 Nazli (10.1016/j.biortech.2021.126195_b0415) 2021 10.1016/j.biortech.2021.126195_b0155 Brandt (10.1016/j.biortech.2021.126195_b0085) 2021; 14 Flores-Gómez (10.1016/j.biortech.2021.126195_b0185) 2018; 11 Kumar (10.1016/j.biortech.2021.126195_b0300) 2017; 73 10.1016/j.biortech.2021.126195_b0545 Cho (10.1016/j.biortech.2021.126195_b0115) 2018; 6 Han (10.1016/j.biortech.2021.126195_b0215) 2016; 18 Chuetor (10.1016/j.biortech.2021.126195_b0125) 2017; 310 Niu (10.1016/j.biortech.2021.126195_b0420) 2018; 293 Vu (10.1016/j.biortech.2021.126195_b0585) 2020; 743 Aznar (10.1016/j.biortech.2021.126195_b0015) 2018; 11 Sheng (10.1016/j.biortech.2021.126195_b0505) 2021; 324 Delidovich (10.1016/j.biortech.2021.126195_b0165) 2014; 7 Cai (10.1016/j.biortech.2021.126195_b0095) 2013; 15 Eswaran (10.1016/j.biortech.2021.126195_b0180) 2021; 151 Heleniak (10.1016/j.biortech.2021.126195_b0225) 2020 Patel (10.1016/j.biortech.2021.126195_b0440) 2019; 279 10.1016/j.biortech.2021.126195_b0240 Abbott (10.1016/j.biortech.2021.126195_b0005) 2003; 1 Baruah (10.1016/j.biortech.2021.126195_b0035) 2018; 6 Yadav (10.1016/j.biortech.2021.126195_b0610) 2018; 8 Huang (10.1016/j.biortech.2021.126195_b0235) 2015; 8 Jiang (10.1016/j.biortech.2021.126195_b0265) 2015; 33 Mankar (10.1016/j.biortech.2021.126195_b0385) 2021; 334 Chuetor (10.1016/j.biortech.2021.126195_b0135) 2021; 323 Liu (10.1016/j.biortech.2021.126195_b0360) 2021; 165 Straub (10.1016/j.biortech.2021.126195_b0530) 2020; 117 Das (10.1016/j.biortech.2021.126195_b0150) 2021; 9 Usmani (10.1016/j.biortech.2021.126195_b0565) 2021; 148 Yousuf (10.1016/j.biortech.2021.126195_b0640) 2020 Zanellati (10.1016/j.biortech.2021.126195_b0655) 2021; 161 Ledesma-Amaro (10.1016/j.biortech.2021.126195_b0325) 2016; 38 Ummalyma (10.1016/j.biortech.2021.126195_b0560) 2019 Bichot (10.1016/j.biortech.2021.126195_b0070) 2020; 203 Kirby (10.1016/j.biortech.2021.126195_b0280) 2021; 14 Roy (10.1016/j.biortech.2021.126195_b0470) 2021; 297 Poursorkhabi (10.1016/j.biortech.2021.126195_b0450) 2020; 8 Batog (10.1016/j.biortech.2021.126195_b0045) 2021 Guo (10.1016/j.biortech.2021.126195_b0210) 2018; 11 Chaves (10.1016/j.biortech.2021.126195_b0105) 2019; 7 |
References_xml | – volume: 6 start-page: 613 year: 2018 end-page: 639 ident: b0320 article-title: Making Levulinic Acid and Ethyl Levulinate Economically Viable: A Worldwide Technoeconomic and Environmental Assessment of Possible Routes publication-title: Energy Technology – volume: 11 start-page: 7 year: 2018 ident: b0185 article-title: Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery publication-title: Biotechnol. Biofuels – volume: 151 year: 2021 ident: b0180 article-title: Techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production publication-title: Renew. Sustain. Energy Rev. – volume: 1 start-page: 29 year: 2021 end-page: 59 ident: b0490 article-title: Deep eutectic solvents for the valorisation of lignocellulosic biomasses towards fine chemicals publication-title: Biomass – start-page: 143 year: 2019 end-page: 196 ident: b0260 article-title: Chapter 6 - physical and chemical pretreatment of lignocellulosic biomass publication-title: Second and Third Generation of Feedstocks – volume: 18 start-page: 1597 year: 2016 end-page: 1604 ident: b0215 article-title: Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C–O–Mg catalyst publication-title: Green Chem. – volume: 203 year: 2020 ident: b0070 article-title: Decoupling thermal and non-thermal effects of the microwaves for lignocellulosic biomass pretreatment publication-title: Energy Convers. Manage. – volume: 100 start-page: 215 year: 2019 end-page: 230 ident: b0345 article-title: Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco publication-title: Plant Mol. Biol. – start-page: 343 year: 2020 end-page: 389 ident: b0520 article-title: 10 - non–fossil fuel feedstocks publication-title: The Refinery of the Future (Second Edition) – volume: 117 start-page: 3799 year: 2020 end-page: 3808 ident: b0530 article-title: Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose publication-title: Biotechnol. Bioeng. – reference: Wang, P., Zhang, J., Feng, J., Wang, S., Guo, L., Wang, Y., Lee, Y.Y., Taylor, S., McDonald, T., Wang, Y. 2019. Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass. Bioresource Technology, 281, 217-225. – volume: 304 year: 2020 ident: b0375 article-title: Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances publication-title: Bioresour. Technol. – volume: 59 start-page: 2558 year: 2013 end-page: 2566 ident: b0590 article-title: High yield production and purification of 5-hydroxymethylfurfural publication-title: AIChE J. – volume: 7 start-page: 230 year: 2019 ident: b0105 article-title: Modular engineering of biomass degradation pathways publication-title: Processes – volume: 102 start-page: 9577 year: 2018 end-page: 9584 ident: b0665 article-title: Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa publication-title: Appl. Microbiol. Biotechnol. – volume: 328 start-page: 246 year: 2017 end-page: 273 ident: b0110 article-title: Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts publication-title: Chem. Eng. J. – volume: 67 start-page: 61 year: 2020 end-page: 72 ident: b0400 article-title: Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass publication-title: Biotechnol. Appl. Biochem. – volume: 155 year: 2020 ident: b0315 article-title: Process simulation and techno-economic analysis for production of industrial sugars from lignocellulosic biomass publication-title: Ind. Crops Prod. – volume: 7 start-page: 39984 year: 2017 ident: b0495 article-title: Modification of monolignol biosynthetic pathway in jute: different gene publication-title: Different Consequence. – start-page: 1 year: 2020 end-page: 15 ident: b0640 article-title: Chapter 1 - Fundamentals of lignocellulosic biomass publication-title: Lignocellulosic Biomass to Liquid Biofuels – volume: 310 start-page: 74 year: 2017 end-page: 79 ident: b0125 article-title: Analysis of ground rice straw with a hydro-textural approach publication-title: Powder Technol. – volume: 269 start-page: 443 year: 2018 end-page: 451 ident: b0305 article-title: Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities publication-title: Bioresour. Technol. – volume: 36 start-page: 364 year: 2010 end-page: 373 ident: b0285 article-title: Biodiesel and renewable diesel: a comparison publication-title: Prog. Energy Combust. Sci. – volume: 56 start-page: 230 year: 2019 end-page: 239 ident: b0575 article-title: Lignin biosynthesis and its integration into metabolism publication-title: Curr. Opin. Biotechnol. – start-page: 1 year: 2021 end-page: 12 ident: b0045 article-title: Chemical and biological deconstruction in the conversion process of sorghum biomass for bioethanol publication-title: J. Nat. Fibers – volume: 28 start-page: 6305 year: 2021 end-page: 6322 ident: b0030 article-title: Cost reduction approaches for fermentable sugar production from sugarcane bagasse and its impact on techno-economics and the environment publication-title: Cellulose – volume: 45 start-page: 735 year: 2018 end-page: 751 ident: b0025 article-title: Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid publication-title: J. Ind. Microbiol. Biotechnol. – volume: 8 start-page: 4997 year: 2020 end-page: 5012 ident: b0160 article-title: Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall publication-title: ACS Sustainable Chem. Eng. – volume: 16 start-page: 24 year: 2014 end-page: 38 ident: b0475 article-title: Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents publication-title: Green Chem. – volume: 148 year: 2021 ident: b0565 article-title: Lignocellulosic biorefineries: the current state of challenges and strategies for efficient commercialization publication-title: Renew. Sustain. Energy Rev. – volume: 161 year: 2021 ident: b0655 article-title: Screening and evaluation of phenols and furans degrading fungi for the biological pretreatment of lignocellulosic biomass publication-title: Int. Biodeterior. Biodegrad. – reference: Mussatto, S.I., Bikaki, N. 2016. Chapter 25 - Technoeconomic Considerations for Biomass Fractionation in a Biorefinery Context. in: Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, (Ed.) S.I. Mussatto, Elsevier. Amsterdam, pp. 587-610. – volume: 15 start-page: 3140 year: 2013 end-page: 3145 ident: b0095 article-title: THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass publication-title: Green Chem. – volume: 10 start-page: 263 year: 2017 ident: b0660 article-title: Visualizing chemical functionality in plant cell walls publication-title: Biotechnol. Biofuels – volume: 100 start-page: 10 year: 2009 end-page: 18 ident: b0230 article-title: Pretreatments to enhance the digestibility of lignocellulosic biomass publication-title: Bioresour. Technol. – reference: de Jong, E., Jungmeier, G. 2015. Chapter 1 - Biorefinery Concepts in Comparison to Petrochemical Refineries. in: Industrial Biorefineries & White Biotechnology, (Eds.) A. Pandey, R. Höfer, M. Taherzadeh, K.M. Nampoothiri, C. Larroche, Elsevier. Amsterdam, pp. 3-33. – volume: 324 year: 2021 ident: b0505 article-title: Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin publication-title: Bioresour. Technol. – reference: Suhas, Gupta, V.K., Carrott, P.J.M., Singh, R., Chaudhary, M., Kushwaha, S. 2016. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresource Technology, 216, 1066-1076. – volume: 11 start-page: 2758 year: 2018 end-page: 2765 ident: b0210 article-title: Catalytic transformation of lignocellulosic biomass into arenes, 5-hydroxymethylfurfural, and furfural publication-title: ChemSusChem – volume: 165 year: 2021 ident: b0360 article-title: Preparation and characterization of xylan by an efficient approach with mechanical pretreatments publication-title: Ind. Crops Prod. – volume: 131 year: 2020 ident: b0570 article-title: Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context publication-title: Renew. Sustain. Energy Rev. – volume: 11 year: 2020 ident: b0080 article-title: Engineering of bioenergy crops: dominant genetic approaches to improve polysaccharide properties and composition in biomass publication-title: Front. Plant Sci. – volume: 27 start-page: 2135 year: 2020 end-page: 2148 ident: b0460 article-title: Probe sonication assisted ionic liquid treatment for rapid dissolution of lignocellulosic biomass publication-title: Cellulose – volume: 6 start-page: 465 year: 2012 end-page: 482 ident: b0670 article-title: Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose publication-title: Biofuels, Bioprod. Biorefin. – reference: Escobar, E.L.N., da Silva, T.A., Pirich, C.L., Corazza, M.L., Pereira Ramos, L. 2020. Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation. Frontiers in Bioengineering and Biotechnology, 8(252). – volume: 293 start-page: 1191 year: 2018 end-page: 1204 ident: b0420 article-title: Ectopic expression of GhCOBL9A, a cotton glycosyl-phosphatidyl inositol-anchored protein encoding gene, promotes cell elongation, thickening and increased plant biomass in transgenic Arabidopsis publication-title: Mol. Genet. Genomics – volume: 10 start-page: 69 year: 2017 ident: b0550 article-title: Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose publication-title: Biotechnol. Biofuels – volume: 11 start-page: 2 year: 2018 ident: b0015 article-title: Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass publication-title: Biotechnol. Biofuels – volume: 298 year: 2020 ident: b0255 article-title: Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery publication-title: Bioresour. Technol. – volume: 14 start-page: 3295 year: 2012 end-page: 3303 ident: b0480 article-title: Turning renewable resources into value-added polymer: development of lignin-based thermoplastic publication-title: Green Chem. – volume: 7 start-page: 21 year: 2020 ident: b0020 article-title: Interaction of enzymes with lignocellulosic materials: causes, mechanism and influencing factors publication-title: Bioresources and Bioprocessing – volume: 279 start-page: 385 year: 2019 end-page: 392 ident: b0440 article-title: Thermostable cellulases: current status and perspectives publication-title: Bioresour. Technol. – volume: 199 start-page: 49 year: 2016 end-page: 58 ident: b0540 article-title: The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials publication-title: Bioresour. Technol. – volume: 13 start-page: 23 year: 2020 ident: b0340 article-title: Metabolic engineering of the cellulolytic thermophilic fungus Myceliophthora thermophila to produce ethanol from cellobiose publication-title: Biotechnol. Biofuels – volume: 6 year: 2018 ident: b0035 article-title: Recent trends in the pretreatment of lignocellulosic biomass for value-added products publication-title: Front. Energy Res. – volume: 141 start-page: 890 year: 2019 end-page: 900 ident: b0220 article-title: Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid publication-title: J. Am. Chem. Soc. – volume: 7 year: 2019 ident: b0675 article-title: Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis publication-title: Front. Chem. – year: 2020 ident: b0195 article-title: Sustainable aviation fuel policy in the United States: a pragmatic way forward – volume: 130 year: 2020 ident: b0500 article-title: Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources publication-title: Renew. Sustain. Energy Rev. – volume: 11 start-page: 751 year: 2019 ident: b0615 article-title: Applications of lignocellulosic fibers and lignin in bioplastics: a review publication-title: Polymers – volume: 14 start-page: 136 year: 2021 ident: b0120 article-title: Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization publication-title: Biotechnol. Biofuels – volume: 30 start-page: 449 year: 2017 end-page: 453 ident: b0245 article-title: Engineered Bacillus pumilus laccase-like multi-copper oxidase for enhanced oxidation of the lignin model compound guaiacol publication-title: Protein Eng. Des. Sel. – volume: 6 start-page: 14252 year: 2021 end-page: 14259 ident: b0485 article-title: Hydrolysis of Lignocellulosic Biomass in Hot-Compressed Water with Supercritical Carbon Dioxide publication-title: ACS Omega – volume: 46 start-page: 565 year: 2010 end-page: 578 ident: b0405 article-title: Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion publication-title: Environ Manage – volume: 299 start-page: 122633 year: 2020 ident: b0310 article-title: A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment publication-title: Bioresour. Technol. – year: 2021 ident: b0415 article-title: Comparison of different chemical pretreatments for their effects on fermentable sugar production from miscanthus biomass – volume: 340 year: 2021 ident: b0270 article-title: Effects of severe pretreatment conditions and lignocellulose-derived furan byproducts on anaerobic digestion of dairy manure publication-title: Bioresour. Technol. – volume: 5 start-page: 5580 year: 2020 end-page: 5588 ident: b0650 article-title: Comparison of Deep Eutectic Solvents on Pretreatment of Raw Ramie Fibers for Cellulose Nanofibril Production publication-title: ACS Omega – volume: 10 start-page: 623 year: 2018 ident: b0370 article-title: Cellulose Aerogels: Synthesis, Applications, and Prospects publication-title: Polymers – volume: 33 start-page: 1493 year: 2015 end-page: 1501 ident: b0265 article-title: Current status and prospects of industrial bio-production of n-butanol in China publication-title: Biotechnol. Adv. – volume: 743 year: 2020 ident: b0585 article-title: A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks publication-title: Sci. Total Environ. – volume: 25 start-page: 2815 year: 2020 ident: b0295 article-title: Development of ‘lignin-first’ approaches for the valorization of lignocellulosic biomass publication-title: Molecules – volume: 73 start-page: 654 year: 2017 end-page: 671 ident: b0300 article-title: Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel publication-title: Renew. Sustain. Energy Rev. – volume: 38 start-page: 449 year: 2012 end-page: 467 ident: b0355 article-title: Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects publication-title: Prog. Energy Combust. Sci. – volume: 9 start-page: 2739 year: 2017 end-page: 2746 ident: b0350 article-title: Comprehensive Understanding of the Role of Brønsted and Lewis Acid Sites in Glucose Conversion into 5-Hydromethylfurfural publication-title: ChemCatChem – reference: IEA., F.P. 2019. Are aviation biofuels ready for take off? IEA, Paris. – volume: 136 year: 2021 ident: b0600 article-title: Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose publication-title: Renew. Sustain. Energy Rev. – volume: 333 year: 2021 ident: b0630 article-title: Recent advances in green solvents for lignocellulosic biomass pretreatment: Potential of choline chloride (ChCl) based solvents publication-title: Bioresour. Technol. – volume: 13 start-page: 2697 year: 2021 ident: b0580 article-title: A review on the lignin biopolymer and its integration in the elaboration of sustainable materials publication-title: Sustainability – volume: 64 start-page: 606 year: 2017 end-page: 619 ident: b0645 article-title: Enhancing microbial production of biofuels by expanding microbial metabolic pathways publication-title: Biotechnol. Appl. Biochem. – volume: 16 start-page: 3846 year: 2014 end-page: 3853 ident: b0170 article-title: High-yield production of levulinic acid from cellulose and its upgrading to γ-valerolactone publication-title: Green Chem. – volume: 9 start-page: 4422 year: 2021 end-page: 4432 ident: b0150 article-title: Deconstruction of woody biomass via protic and aprotic ionic liquid pretreatment for ethanol production publication-title: ACS Sustainable Chem. Eng. – volume: 167 start-page: 198 year: 2014 end-page: 205 ident: b0050 article-title: Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates publication-title: Bioresour Technol – volume: 6 start-page: 6434 year: 2018 end-page: 6444 ident: b0115 article-title: Skipping oxidative thermal stabilization for lignin-based carbon nanofibers publication-title: ACS Sustainable Chem. Eng. – volume: 11 start-page: 107 year: 2019 end-page: 117 ident: b0145 article-title: Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives publication-title: GCB Bioenergy – volume: 301 year: 2020 ident: b0010 article-title: Pretreatment strategies for enhanced biogas production from lignocellulosic biomass publication-title: Bioresour. Technol. – start-page: 135 year: 2020 end-page: 147 ident: b0040 article-title: 6 - A Biorefinery approach towards development of renewable platform chemicals from sustainable biomass publication-title: Refining Biomass Residues for Sustainable Energy and Bioproducts – volume: 33 start-page: 76 year: 2017 ident: b0380 article-title: High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition publication-title: World J Microbiol Biotechnol – start-page: 197 year: 2019 end-page: 212 ident: b0560 article-title: Chapter 7 - Biological pretreatment of lignocellulosic biomass—current trends and future perspectives publication-title: Second and Third Generation of Feedstocks – volume: 8 start-page: 76 year: 2018 ident: b0610 article-title: Genetic engineering of energy crops to reduce recalcitrance and enhance biomass digestibility publication-title: Agriculture – volume: 6 start-page: 4497 year: 2015 end-page: 4559 ident: b0250 article-title: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers publication-title: Polym. Chem. – volume: 323 year: 2021 ident: b0055 article-title: Production of oligosaccharides and biofuels from Miscanthus using combinatorial steam explosion and ionic liquid pretreatment publication-title: Bioresour. Technol. – volume: 15 start-page: 37 year: 2021 ident: b0425 article-title: High pressure systems as sustainable extraction and pre-treatment technologies for a holistic corn stover biorefinery publication-title: BMC Chemistry – volume: 163 start-page: 732 year: 2021 end-page: 739 ident: b0510 article-title: Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues publication-title: Renewable Energy – volume: 45 start-page: 540 year: 2015 end-page: 555 ident: b0390 article-title: Review on research achievements of biogas from anaerobic digestion publication-title: Renew. Sustain. Energy Rev. – volume: 14 start-page: 173 year: 2021 ident: b0085 article-title: Rational engineering of Saccharomyces cerevisiae towards improved tolerance to multiple inhibitors in lignocellulose fermentations publication-title: Biotechnol. Biofuels – volume: 199 start-page: 42 year: 2016 end-page: 48 ident: b0275 article-title: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass publication-title: Bioresour. Technol. – volume: 299 year: 2020 ident: b0555 article-title: Biorefineries in circular bioeconomy: A comprehensive review publication-title: Bioresour. Technol. – volume: 103 start-page: 21 year: 2017 end-page: 28 ident: b0330 article-title: E-beam irradiation & steam explosion as biomass pretreatment, and the complex role of lignin in substrate recalcitrance publication-title: Biomass Bioenergy – volume: 331 year: 2021 ident: b0435 article-title: Techno-economic evaluation and sensitivity analysis of a conceptual design for supercritical water gasification of soybean straw to produce hydrogen publication-title: Bioresour. Technol. – volume: 38 start-page: 115 year: 2016 end-page: 124 ident: b0325 article-title: Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose publication-title: Metab. Eng. – volume: 1 start-page: 70 year: 2003 end-page: 71 ident: b0005 article-title: Novel solvent properties of choline chloride/urea mixtures publication-title: Chemical Communications – volume: 323 year: 2021 ident: b0135 article-title: Evaluation of rice straw biopowder from alkaline-mechanical pretreatment by hydro-textural approach publication-title: Bioresour. Technol. – volume: 115 start-page: 11559 year: 2015 end-page: 11624 ident: b0335 article-title: Catalytic Transformation of Lignin for the Production of Chemicals and Fuels publication-title: Chem. Rev. – volume: 21 start-page: 3499 year: 2019 end-page: 3535 ident: b0365 article-title: Cascade utilization of lignocellulosic biomass to high-value products publication-title: Green Chem. – volume: 12 start-page: 670 year: 2020 end-page: 679 ident: b0635 article-title: High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica publication-title: GCB Bioenergy – volume: 93 start-page: 121 year: 2017 end-page: 135 ident: b0200 article-title: The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties publication-title: Plant Mol Biol – volume: 292 year: 2019 ident: b0130 article-title: Evaluation of combined semi-humid chemo-mechanical pretreatment of lignocellulosic biomass in energy efficiency and waste generation publication-title: Bioresour. Technol. – volume: 53 start-page: 321 year: 2001 end-page: 339 ident: b0455 article-title: Environment-sensitive hydrogels for drug delivery publication-title: Adv Drug Deliv Rev – reference: Yi, T., Zhao, H., Mo, Q., Pan, D., Liu, Y., Huang, L., Xu, H., Hu, B., Song, H. 2020. From Cellulose to Cellulose Nanofibrils—A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils. Materials, 13(22). – volume: 334 year: 2021 ident: b0385 article-title: Pretreatment of lignocellulosic biomass: A review on recent advances publication-title: Bioresour. Technol. – volume: 100 start-page: 9451 year: 2016 end-page: 9467 ident: b0100 article-title: Green methods of lignocellulose pretreatment for biorefinery development publication-title: Appl. Microbiol. Biotechnol. – volume: 8 year: 2020 ident: b0450 article-title: Processing, carbonization, and characterization of lignin based electrospun carbon fibers: a review publication-title: Front. Energy Res. – volume: 22 start-page: 478 year: 2020 end-page: 489 ident: b0090 article-title: Synthetic fungal multifunctional cellulases for enhanced biomass conversion publication-title: Green Chem. – start-page: 1 year: 2020 end-page: 17 ident: b0225 article-title: The future of the arctic populations publication-title: Polar Geogr. – volume: 4 start-page: 3196 year: 2016 end-page: 3211 ident: b0075 article-title: The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass publication-title: ACS Sustainable Chem. Eng. – year: 2021 ident: b0515 article-title: Role of organosolv pretreatment on enzymatic hydrolysis of mustard biomass for increased saccharification publication-title: Biomass Convers. Biorefin. – volume: 14 start-page: 101 year: 2021 ident: b0280 article-title: Further engineering of R. toruloides for the production of terpenes from lignocellulosic biomass publication-title: Biotechnol. Biofuels – volume: 300 year: 2020 ident: b0060 article-title: Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges publication-title: Bioresour. Technol. – volume: 14 start-page: 1600 year: 2021 ident: b0065 article-title: An industrial scale, mechanical process for improving pellet quality and biogas production from hazelnut and olive pruning publication-title: Energies – volume: 278 start-page: 249 year: 2015 end-page: 258 ident: b0525 article-title: Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel publication-title: Chem. Eng. J. – volume: 64 start-page: 1954 year: 2018 end-page: 1964 ident: b0620 article-title: Hydrothermal pretreatment for deconstruction of plant cell wall: Part II. Effect on cellulose structure and bioconversion publication-title: AIChE J. – volume: 162 start-page: 53 year: 2017 end-page: 65 ident: b0190 article-title: Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production publication-title: Chem. Eng. Sci. – volume: 37 start-page: 167 year: 2019 end-page: 180 ident: b0605 article-title: Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing publication-title: Trends Biotechnol. – volume: 45 start-page: 14145 year: 2021 end-page: 14169 ident: b0430 article-title: Next-generation biofuels and platform biochemicals from lignocellulosic biomass publication-title: Int. J. Energy Res. – volume: 8 start-page: 147 year: 2015 ident: b0235 article-title: Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution publication-title: Biotechnol. Biofuels – volume: 9 start-page: 1144 year: 2016 end-page: 1189 ident: b0395 article-title: Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels publication-title: Energy Environ. Sci. – volume: 12 start-page: 90 year: 2020 end-page: 100 ident: b0290 article-title: Improved bioconversion of lignocellulosic biomass by Saccharomyces cerevisiae engineered for tolerance to acetic acid publication-title: GCB Bioenergy – volume: 7 year: 2016 ident: b0465 article-title: Decreased polysaccharide feruloylation compromises plant cell wall integrity and increases susceptibility to necrotrophic fungal pathogens publication-title: Front. Plant Sci. – volume: 100 start-page: 3477 year: 2016 end-page: 3487 ident: b0205 article-title: Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate publication-title: Appl. Microbiol. Biotechnol. – volume: 11 year: 2020 ident: b0140 article-title: Progress in ameliorating beneficial characteristics of microbial cellulases by genetic engineering approaches for cellulose saccharification publication-title: Front. Microbiol. – volume: 297 year: 2021 ident: b0470 article-title: Recent nanobiotechnological advancements in lignocellulosic biomass valorization: A review publication-title: J. Environ. Manage. – volume: 7 start-page: 2803 year: 2014 end-page: 2830 ident: b0165 article-title: Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering publication-title: Energy Environ. Sci. – volume: 14 start-page: 63 year: 2021 ident: b0445 article-title: THF co-solvent pretreatment prevents lignin redeposition from interfering with enzymes yielding prolonged cellulase activity publication-title: Biotechnol. Biofuels – reference: Thilo, Z. 2018. New” oil plants and their potential as feedstock for biokerosene production. In: Kaltschmitt M, Neuling U, eds. Biokerosene: Status and Prospects. Springer Nature; , Status and Prospects. Berlin, Heidelberg: Biokerosene. – volume: 340 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0270 article-title: Effects of severe pretreatment conditions and lignocellulose-derived furan byproducts on anaerobic digestion of dairy manure publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125632 – volume: 203 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0070 article-title: Decoupling thermal and non-thermal effects of the microwaves for lignocellulosic biomass pretreatment publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.112220 – ident: 10.1016/j.biortech.2021.126195_b0175 doi: 10.3389/fbioe.2020.00252 – volume: 328 start-page: 246 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0110 article-title: Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.020 – volume: 4 start-page: 3196 issue: 6 year: 2016 ident: 10.1016/j.biortech.2021.126195_b0075 article-title: The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b00243 – volume: 10 start-page: 623 issue: 6 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0370 article-title: Cellulose Aerogels: Synthesis, Applications, and Prospects publication-title: Polymers doi: 10.3390/polym10060623 – volume: 334 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0385 article-title: Pretreatment of lignocellulosic biomass: A review on recent advances publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125235 – volume: 14 start-page: 3295 issue: 12 year: 2012 ident: 10.1016/j.biortech.2021.126195_b0480 article-title: Turning renewable resources into value-added polymer: development of lignin-based thermoplastic publication-title: Green Chem. doi: 10.1039/c2gc35933b – volume: 27 start-page: 2135 issue: 4 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0460 article-title: Probe sonication assisted ionic liquid treatment for rapid dissolution of lignocellulosic biomass publication-title: Cellulose doi: 10.1007/s10570-019-02914-y – volume: 7 start-page: 2803 issue: 9 year: 2014 ident: 10.1016/j.biortech.2021.126195_b0165 article-title: Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01067A – volume: 310 start-page: 74 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0125 article-title: Analysis of ground rice straw with a hydro-textural approach publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.12.072 – volume: 11 start-page: 2758 issue: 16 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0210 article-title: Catalytic transformation of lignocellulosic biomass into arenes, 5-hydroxymethylfurfural, and furfural publication-title: ChemSusChem doi: 10.1002/cssc.201800967 – volume: 67 start-page: 61 issue: 1 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0400 article-title: Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1869 – volume: 37 start-page: 167 issue: 2 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0605 article-title: Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.08.007 – volume: 161 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0655 article-title: Screening and evaluation of phenols and furans degrading fungi for the biological pretreatment of lignocellulosic biomass publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2021.105246 – volume: 7 issue: 630 year: 2016 ident: 10.1016/j.biortech.2021.126195_b0465 article-title: Decreased polysaccharide feruloylation compromises plant cell wall integrity and increases susceptibility to necrotrophic fungal pathogens publication-title: Front. Plant Sci. – volume: 13 start-page: 2697 issue: 5 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0580 article-title: A review on the lignin biopolymer and its integration in the elaboration of sustainable materials publication-title: Sustainability doi: 10.3390/su13052697 – volume: 333 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0630 article-title: Recent advances in green solvents for lignocellulosic biomass pretreatment: Potential of choline chloride (ChCl) based solvents publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125195 – volume: 13 start-page: 23 issue: 1 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0340 article-title: Metabolic engineering of the cellulolytic thermophilic fungus Myceliophthora thermophila to produce ethanol from cellobiose publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-020-1661-y – volume: 743 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0585 article-title: A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140630 – volume: 16 start-page: 24 issue: 1 year: 2014 ident: 10.1016/j.biortech.2021.126195_b0475 article-title: Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents publication-title: Green Chem. doi: 10.1039/C3GC41324A – volume: 6 start-page: 14252 issue: 22 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0485 article-title: Hydrolysis of Lignocellulosic Biomass in Hot-Compressed Water with Supercritical Carbon Dioxide publication-title: ACS Omega doi: 10.1021/acsomega.1c01026 – volume: 8 start-page: 76 issue: 6 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0610 article-title: Genetic engineering of energy crops to reduce recalcitrance and enhance biomass digestibility publication-title: Agriculture doi: 10.3390/agriculture8060076 – ident: 10.1016/j.biortech.2021.126195_b0240 – volume: 131 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0570 article-title: Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109965 – volume: 64 start-page: 1954 issue: 6 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0620 article-title: Hydrothermal pretreatment for deconstruction of plant cell wall: Part II. Effect on cellulose structure and bioconversion publication-title: AIChE J. doi: 10.1002/aic.16106 – volume: 9 start-page: 1144 issue: 4 year: 2016 ident: 10.1016/j.biortech.2021.126195_b0395 article-title: Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02666K – volume: 115 start-page: 11559 issue: 21 year: 2015 ident: 10.1016/j.biortech.2021.126195_b0335 article-title: Catalytic Transformation of Lignin for the Production of Chemicals and Fuels publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00155 – volume: 100 start-page: 215 issue: 3 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0345 article-title: Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco publication-title: Plant Mol. Biol. doi: 10.1007/s11103-019-00850-w – volume: 33 start-page: 76 issue: 4 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0380 article-title: High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-017-2246-1 – volume: 45 start-page: 540 year: 2015 ident: 10.1016/j.biortech.2021.126195_b0390 article-title: Review on research achievements of biogas from anaerobic digestion publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.02.032 – volume: 73 start-page: 654 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0300 article-title: Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.022 – volume: 56 start-page: 230 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0575 article-title: Lignin biosynthesis and its integration into metabolism publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2019.02.018 – volume: 45 start-page: 735 issue: 8 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0025 article-title: Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-018-2053-1 – start-page: 135 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0040 article-title: 6 - A Biorefinery approach towards development of renewable platform chemicals from sustainable biomass – volume: 100 start-page: 3477 issue: 8 year: 2016 ident: 10.1016/j.biortech.2021.126195_b0205 article-title: Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-7179-8 – volume: 100 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.biortech.2021.126195_b0230 article-title: Pretreatments to enhance the digestibility of lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.05.027 – start-page: 343 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0520 article-title: 10 - non–fossil fuel feedstocks – volume: 1 start-page: 29 issue: 1 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0490 article-title: Deep eutectic solvents for the valorisation of lignocellulosic biomasses towards fine chemicals publication-title: Biomass doi: 10.3390/biomass1010003 – volume: 100 start-page: 9451 issue: 22 year: 2016 ident: 10.1016/j.biortech.2021.126195_b0100 article-title: Green methods of lignocellulose pretreatment for biorefinery development publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7884-y – start-page: 1 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0640 article-title: Chapter 1 - Fundamentals of lignocellulosic biomass – volume: 7 start-page: 21 issue: 1 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0020 article-title: Interaction of enzymes with lignocellulosic materials: causes, mechanism and influencing factors publication-title: Bioresources and Bioprocessing doi: 10.1186/s40643-020-00310-0 – volume: 30 start-page: 449 issue: 6 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0245 article-title: Engineered Bacillus pumilus laccase-like multi-copper oxidase for enhanced oxidation of the lignin model compound guaiacol publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzx026 – volume: 11 start-page: 7 issue: 1 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0185 article-title: Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0995-6 – volume: 297 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0470 article-title: Recent nanobiotechnological advancements in lignocellulosic biomass valorization: A review publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.113422 – volume: 36 start-page: 364 issue: 3 year: 2010 ident: 10.1016/j.biortech.2021.126195_b0285 article-title: Biodiesel and renewable diesel: a comparison publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2009.11.004 – volume: 11 issue: 1387 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0140 article-title: Progress in ameliorating beneficial characteristics of microbial cellulases by genetic engineering approaches for cellulose saccharification publication-title: Front. Microbiol. – volume: 12 start-page: 90 issue: 1 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0290 article-title: Improved bioconversion of lignocellulosic biomass by Saccharomyces cerevisiae engineered for tolerance to acetic acid publication-title: GCB Bioenergy doi: 10.1111/gcbb.12656 – volume: 5 start-page: 5580 issue: 10 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0650 article-title: Comparison of Deep Eutectic Solvents on Pretreatment of Raw Ramie Fibers for Cellulose Nanofibril Production publication-title: ACS Omega doi: 10.1021/acsomega.0c00506 – start-page: 1 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0045 article-title: Chemical and biological deconstruction in the conversion process of sorghum biomass for bioethanol publication-title: J. Nat. Fibers – volume: 11 start-page: 107 issue: 1 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0145 article-title: Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives publication-title: GCB Bioenergy doi: 10.1111/gcbb.12586 – volume: 163 start-page: 732 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0510 article-title: Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues publication-title: Renewable Energy doi: 10.1016/j.renene.2020.08.135 – volume: 10 start-page: 69 issue: 1 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0550 article-title: Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0751-y – volume: 7 start-page: 230 issue: 4 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0105 article-title: Modular engineering of biomass degradation pathways publication-title: Processes doi: 10.3390/pr7040230 – volume: 292 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0130 article-title: Evaluation of combined semi-humid chemo-mechanical pretreatment of lignocellulosic biomass in energy efficiency and waste generation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121966 – volume: 64 start-page: 606 issue: 5 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0645 article-title: Enhancing microbial production of biofuels by expanding microbial metabolic pathways publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1529 – volume: 6 start-page: 4497 issue: 25 year: 2015 ident: 10.1016/j.biortech.2021.126195_b0250 article-title: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers publication-title: Polym. Chem. doi: 10.1039/C5PY00263J – volume: 331 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0435 article-title: Techno-economic evaluation and sensitivity analysis of a conceptual design for supercritical water gasification of soybean straw to produce hydrogen publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125005 – volume: 59 start-page: 2558 issue: 7 year: 2013 ident: 10.1016/j.biortech.2021.126195_b0590 article-title: High yield production and purification of 5-hydroxymethylfurfural publication-title: AIChE J. doi: 10.1002/aic.14019 – volume: 11 start-page: 2 issue: 1 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0015 article-title: Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-1007-6 – volume: 93 start-page: 121 issue: 1–2 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0200 article-title: The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties publication-title: Plant Mol Biol doi: 10.1007/s11103-016-0551-y – volume: 136 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0600 article-title: Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110442 – volume: 162 start-page: 53 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0190 article-title: Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.12.054 – volume: 7 issue: 874 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0675 article-title: Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis publication-title: Front. Chem. – volume: 21 start-page: 3499 issue: 13 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0365 article-title: Cascade utilization of lignocellulosic biomass to high-value products publication-title: Green Chem. doi: 10.1039/C9GC00473D – volume: 45 start-page: 14145 issue: 10 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0430 article-title: Next-generation biofuels and platform biochemicals from lignocellulosic biomass publication-title: Int. J. Energy Res. doi: 10.1002/er.6697 – volume: 25 start-page: 2815 issue: 12 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0295 article-title: Development of ‘lignin-first’ approaches for the valorization of lignocellulosic biomass publication-title: Molecules doi: 10.3390/molecules25122815 – volume: 15 start-page: 3140 issue: 11 year: 2013 ident: 10.1016/j.biortech.2021.126195_b0095 article-title: THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass publication-title: Green Chem. doi: 10.1039/c3gc41214h – volume: 15 start-page: 37 issue: 1 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0425 article-title: High pressure systems as sustainable extraction and pre-treatment technologies for a holistic corn stover biorefinery publication-title: BMC Chemistry doi: 10.1186/s13065-021-00762-1 – volume: 299 start-page: 122633 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0310 article-title: A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122633 – volume: 199 start-page: 49 year: 2016 ident: 10.1016/j.biortech.2021.126195_b0540 article-title: The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.061 – volume: 130 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0500 article-title: Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109944 – volume: 141 start-page: 890 issue: 2 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0220 article-title: Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09917 – volume: 323 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0135 article-title: Evaluation of rice straw biopowder from alkaline-mechanical pretreatment by hydro-textural approach publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124619 – volume: 14 start-page: 101 issue: 1 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0280 article-title: Further engineering of R. toruloides for the production of terpenes from lignocellulosic biomass publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-021-01950-w – ident: 10.1016/j.biortech.2021.126195_b0410 doi: 10.1016/B978-0-12-802323-5.00025-6 – volume: 8 start-page: 147 issue: 1 year: 2015 ident: 10.1016/j.biortech.2021.126195_b0235 article-title: Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-015-0332-x – volume: 199 start-page: 42 year: 2016 ident: 10.1016/j.biortech.2021.126195_b0275 article-title: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.085 – volume: 9 start-page: 4422 issue: 12 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0150 article-title: Deconstruction of woody biomass via protic and aprotic ionic liquid pretreatment for ethanol production publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c07925 – volume: 324 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0505 article-title: Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124631 – volume: 11 issue: 282 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0080 article-title: Engineering of bioenergy crops: dominant genetic approaches to improve polysaccharide properties and composition in biomass publication-title: Front. Plant Sci. – start-page: 143 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0260 article-title: Chapter 6 - physical and chemical pretreatment of lignocellulosic biomass – ident: 10.1016/j.biortech.2021.126195_b0545 – volume: 323 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0055 article-title: Production of oligosaccharides and biofuels from Miscanthus using combinatorial steam explosion and ionic liquid pretreatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124625 – volume: 14 start-page: 173 issue: 1 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0085 article-title: Rational engineering of Saccharomyces cerevisiae towards improved tolerance to multiple inhibitors in lignocellulose fermentations publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-021-02021-w – ident: 10.1016/j.biortech.2021.126195_b0595 doi: 10.1016/j.biortech.2019.02.096 – volume: 14 start-page: 1600 issue: 6 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0065 article-title: An industrial scale, mechanical process for improving pellet quality and biogas production from hazelnut and olive pruning publication-title: Energies doi: 10.3390/en14061600 – volume: 8 start-page: 4997 issue: 13 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0160 article-title: Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c01109 – volume: 102 start-page: 9577 issue: 22 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0665 article-title: Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9362-1 – volume: 8 issue: 208 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0450 article-title: Processing, carbonization, and characterization of lignin based electrospun carbon fibers: a review publication-title: Front. Energy Res. – volume: 38 start-page: 115 year: 2016 ident: 10.1016/j.biortech.2021.126195_b0325 article-title: Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose publication-title: Metab. Eng. doi: 10.1016/j.ymben.2016.07.001 – year: 2021 ident: 10.1016/j.biortech.2021.126195_b0415 – volume: 300 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0060 article-title: Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122724 – volume: 269 start-page: 443 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0305 article-title: Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.08.042 – volume: 298 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0255 article-title: Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122558 – volume: 33 start-page: 1493 issue: 7 year: 2015 ident: 10.1016/j.biortech.2021.126195_b0265 article-title: Current status and prospects of industrial bio-production of n-butanol in China publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2014.10.007 – start-page: 197 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0560 article-title: Chapter 7 - Biological pretreatment of lignocellulosic biomass—current trends and future perspectives – volume: 148 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0565 article-title: Lignocellulosic biorefineries: the current state of challenges and strategies for efficient commercialization publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111258 – volume: 7 start-page: 39984 issue: 1 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0495 article-title: Modification of monolignol biosynthetic pathway in jute: different gene publication-title: Different Consequence. Scientific Reports doi: 10.1038/srep39984 – volume: 46 start-page: 565 issue: 4 year: 2010 ident: 10.1016/j.biortech.2021.126195_b0405 article-title: Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion publication-title: Environ Manage doi: 10.1007/s00267-010-9494-2 – volume: 6 start-page: 6434 issue: 5 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0115 article-title: Skipping oxidative thermal stabilization for lignin-based carbon nanofibers publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b00209 – volume: 12 start-page: 670 issue: 9 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0635 article-title: High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica publication-title: GCB Bioenergy doi: 10.1111/gcbb.12699 – year: 2020 ident: 10.1016/j.biortech.2021.126195_b0195 – volume: 167 start-page: 198 year: 2014 ident: 10.1016/j.biortech.2021.126195_b0050 article-title: Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.06.020 – volume: 299 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0555 article-title: Biorefineries in circular bioeconomy: A comprehensive review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122585 – volume: 9 start-page: 2739 issue: 14 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0350 article-title: Comprehensive Understanding of the Role of Brønsted and Lewis Acid Sites in Glucose Conversion into 5-Hydromethylfurfural publication-title: ChemCatChem doi: 10.1002/cctc.201601203 – volume: 11 start-page: 751 issue: 5 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0615 article-title: Applications of lignocellulosic fibers and lignin in bioplastics: a review publication-title: Polymers doi: 10.3390/polym11050751 – volume: 53 start-page: 321 issue: 3 year: 2001 ident: 10.1016/j.biortech.2021.126195_b0455 article-title: Environment-sensitive hydrogels for drug delivery publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(01)00203-4 – volume: 1 start-page: 70 year: 2003 ident: 10.1016/j.biortech.2021.126195_b0005 article-title: Novel solvent properties of choline chloride/urea mixtures publication-title: Chemical Communications doi: 10.1039/b210714g – ident: 10.1016/j.biortech.2021.126195_b0535 doi: 10.1016/j.biortech.2016.05.106 – volume: 16 start-page: 3846 issue: 8 year: 2014 ident: 10.1016/j.biortech.2021.126195_b0170 article-title: High-yield production of levulinic acid from cellulose and its upgrading to γ-valerolactone publication-title: Green Chem. doi: 10.1039/C4GC00737A – volume: 304 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0375 article-title: Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.122848 – volume: 117 start-page: 3799 issue: 12 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0530 article-title: Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27529 – volume: 6 start-page: 613 issue: 4 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0320 article-title: Making Levulinic Acid and Ethyl Levulinate Economically Viable: A Worldwide Technoeconomic and Environmental Assessment of Possible Routes publication-title: Energy Technology doi: 10.1002/ente.201700594 – volume: 38 start-page: 449 issue: 4 year: 2012 ident: 10.1016/j.biortech.2021.126195_b0355 article-title: Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2012.03.002 – year: 2021 ident: 10.1016/j.biortech.2021.126195_b0515 article-title: Role of organosolv pretreatment on enzymatic hydrolysis of mustard biomass for increased saccharification publication-title: Biomass Convers. Biorefin. – ident: 10.1016/j.biortech.2021.126195_b0155 doi: 10.1016/B978-0-444-63453-5.00001-X – volume: 28 start-page: 6305 issue: 10 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0030 article-title: Cost reduction approaches for fermentable sugar production from sugarcane bagasse and its impact on techno-economics and the environment publication-title: Cellulose doi: 10.1007/s10570-021-03940-5 – volume: 6 issue: 141 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0035 article-title: Recent trends in the pretreatment of lignocellulosic biomass for value-added products publication-title: Front. Energy Res. – volume: 10 start-page: 263 issue: 1 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0660 article-title: Visualizing chemical functionality in plant cell walls publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0953-3 – start-page: 1 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0225 article-title: The future of the arctic populations publication-title: Polar Geogr. – ident: 10.1016/j.biortech.2021.126195_b0625 doi: 10.3390/ma13225062 – volume: 165 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0360 article-title: Preparation and characterization of xylan by an efficient approach with mechanical pretreatments publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2021.113420 – volume: 151 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0180 article-title: Techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111516 – volume: 155 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0315 article-title: Process simulation and techno-economic analysis for production of industrial sugars from lignocellulosic biomass publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2020.112783 – volume: 14 start-page: 63 issue: 1 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0445 article-title: THF co-solvent pretreatment prevents lignin redeposition from interfering with enzymes yielding prolonged cellulase activity publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-021-01904-2 – volume: 18 start-page: 1597 issue: 6 year: 2016 ident: 10.1016/j.biortech.2021.126195_b0215 article-title: Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C–O–Mg catalyst publication-title: Green Chem. doi: 10.1039/C5GC02114F – volume: 6 start-page: 465 issue: 4 year: 2012 ident: 10.1016/j.biortech.2021.126195_b0670 article-title: Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose publication-title: Biofuels, Bioprod. Biorefin. doi: 10.1002/bbb.1331 – volume: 279 start-page: 385 year: 2019 ident: 10.1016/j.biortech.2021.126195_b0440 article-title: Thermostable cellulases: current status and perspectives publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.01.049 – volume: 22 start-page: 478 issue: 2 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0090 article-title: Synthetic fungal multifunctional cellulases for enhanced biomass conversion publication-title: Green Chem. doi: 10.1039/C9GC03062J – volume: 293 start-page: 1191 issue: 5 year: 2018 ident: 10.1016/j.biortech.2021.126195_b0420 article-title: Ectopic expression of GhCOBL9A, a cotton glycosyl-phosphatidyl inositol-anchored protein encoding gene, promotes cell elongation, thickening and increased plant biomass in transgenic Arabidopsis publication-title: Mol. Genet. Genomics doi: 10.1007/s00438-018-1452-3 – volume: 103 start-page: 21 year: 2017 ident: 10.1016/j.biortech.2021.126195_b0330 article-title: E-beam irradiation & steam explosion as biomass pretreatment, and the complex role of lignin in substrate recalcitrance publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.05.008 – volume: 278 start-page: 249 year: 2015 ident: 10.1016/j.biortech.2021.126195_b0525 article-title: Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.09.106 – volume: 14 start-page: 136 issue: 1 year: 2021 ident: 10.1016/j.biortech.2021.126195_b0120 article-title: Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-021-01988-w – volume: 301 year: 2020 ident: 10.1016/j.biortech.2021.126195_b0010 article-title: Pretreatment strategies for enhanced biogas production from lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122725 |
SSID | ssj0003172 |
Score | 2.7169108 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Advanced pretreatment techniques focused on destruction of lignocellulosic biomass.•Recent genetic engineering approach in lignocellulose to... Lignocellulosic biomass is a highly renewable, economical, and carbon-neutral feedstock containing sugar-rich moieties that can be processed to produce... Lignocellulosic biomass is a highly renewable, economical, and carbon–neutral feedstock containing sugar-rich moieties that can be processed to produce... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 126195 |
SubjectTerms | Biofuels Biomass Biorefineries biorefining economic feasibility feedstocks Fermentation Genetic engineering hydrolysis Lignin - metabolism lignocellulose Lignocellulosic biomass Pretreatment techniques saccharification Techno-economic Assessment value added |
Title | Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review |
URI | https://dx.doi.org/10.1016/j.biortech.2021.126195 https://www.ncbi.nlm.nih.gov/pubmed/34710596 https://www.proquest.com/docview/2590130907 https://www.proquest.com/docview/2636677832 |
Volume | 344 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED4E6ZB0CNo8GvcRsEBX2npRpEbDaOC2aJY0QDaCpEhDgSEbsb3mt_dOotJ0SDNUkyCSwIEfdfeRvAfAF-lK4xJhuSpEzknhcWWk5UF5lya2qFXnPP7zqpzfFN9vxe0ezIZYGHKrjLq_1-mdto5fJnE2J-ummVwT-VaCrjTRpOF_QhHshaRVPn744-aB9rG7ScDOnHo_iRK-G9uGPFq7S4ksHae0mxDPGajnCGhniC7fwFFkkGzaC_kW9nx7DK-ni_uYRcMfw8FsKOOGLU8yDp7AAmkimhkWr_43rGnZslm0KzrA3y1XiBmjiHyk1AzpLL2HHUrHTFszSgzuOamqmhrWfbLYDeNsylwsmcD6WJhTuLn8-ms257HWAne4w9ryPKROVEpZGRJnvTF5KGuX1LmtfCERMiVE5mUwxlgriZSZqlQy4GNDQM5wBvvtqvXnwCqBlFL6gFtFU9SyUNbXSmbB2ySkVV2NQAwTrF1MRE71MJZ68Di70wMwmoDRPTAjmDyOW_epOF4cUQ346b8WlUZ78eLYzwPgGhEjFEzrV7uNzihcN0-qRP6jT5mXlJovz0bwrl8tjzLnRTd_5fv_kO4DHGYUh9GdBX2E_e39zn9CdrS1F93yv4BX028_5le_AZdjEIM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9i5cB2QMC-yhjzpF1N8-XYOVbVUBnQy0DiZtmJXQVVaUXb_3_vJU7FDozDcoriPMnyz37vZ78PA_yQZW7KSFiuMpFyUnhcGWm5V66MI5tVqg0ev53l0_vs14N42INJnwtDYZVB93c6vdXW4csojOZoVdej30S-lSCXJpo0XCdvYJ-qU4kB7I-vrqeznUJGE9k6E_B_TgLPEoUfL2xNQa2tXyKJL2LaUIiXbNRLHLS1RZdHcBhIJBt3_TyGPdecwLvx_CkU0nAncDDpb3LDlmdFB9_DHJkiWhoWvP9rVjdsUc-bJZ3hbxdLhI1RUj6yaoaMlt79FnvHTFMxqg3uOGmrihpWXb3YNeNszMpwawLr0mE-wP3lz7vJlIfrFniJm6wNT31cikIpK31UWmdM6vOqjKrUFi6TiJoSInHSG2OslcTLTJEr6fGx3iNt-AiDZtm4z8AKgaxSOo-7RZNVMlPWVUom3tnIx0VVDEH0A6zLUIucrsRY6D7o7FH3wGgCRnfADGG0k1t11ThelSh6_PRf80qjyXhV9nsPuEbECAXTuOV2rRPK2E2jIpL_-CdPc6rOlyZD-NTNll2f06wdv_z0P3r3DQ6md7c3-uZqdv0F3iaUltEeDZ3BYPO0dV-RLG3seVgMfwDcxhM0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+lignocellulosic+biomass+for+biofuels+and+value-added+bioproducts+-+A+critical+review&rft.jtitle=Bioresource+technology&rft.au=Ashokkumar%2C+Veeramuthu&rft.au=Venkatkarthick%2C+Radhakrishnan&rft.au=Jayashree%2C+Shanmugam&rft.au=Chuetor%2C+Santi&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=344&rft_id=info:doi/10.1016%2Fj.biortech.2021.126195&rft.externalDocID=S0960852421015376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |