Discrete or distributed delay? Effects on stability of population growth

The growth of a population subject to maturation delay is modeled by using either a discrete delay or a delay continuously distributed over the population. The occurrence of stability switches (stable-unstable-stable) of the positive equilibrium as the delay increases is investigated in both cases....

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 13; no. 1; pp. 19 - 41
Main Authors Beretta, Edoardo, Breda, Dimitri
Format Journal Article
LanguageEnglish
Published United States AIMS Press 01.02.2016
Subjects
Online AccessGet full text
ISSN1551-0018
DOI10.3934/mbe.2016.13.19

Cover

Loading…
Abstract The growth of a population subject to maturation delay is modeled by using either a discrete delay or a delay continuously distributed over the population. The occurrence of stability switches (stable-unstable-stable) of the positive equilibrium as the delay increases is investigated in both cases. Necessary and sufficient conditions are provided by analyzing the relevant characteristic equations. It is shown that for any choice of parameter values for which the discrete delay model presents stability switches there exists a maximum delay variance beyond which no switch occurs for the continuous delay model: the delay variance has a stabilizing effect. Moreover, it is illustrated how, in the presence of switches, the unstable delay domain is as larger as lower is the ratio between the juveniles and the adults mortality rates.
AbstractList The growth of a population subject to maturation delay is modeled by using either a discrete delay or a delay continuously distributed over the population. The occurrence of stability switches (stable-unstable-stable) of the positive equilibrium as the delay increases is investigated in both cases. Necessary and sufficient conditions are provided by analyzing the relevant characteristic equations. It is shown that for any choice of parameter values for which the discrete delay model presents stability switches there exists a maximum delay variance beyond which no switch occurs for the continuous delay model: the delay variance has a stabilizing effect. Moreover, it is illustrated how, in the presence of switches, the unstable delay domain is as larger as lower is the ratio between the juveniles and the adults mortality rates.
Author Breda, Dimitri
Beretta, Edoardo
Author_xml – sequence: 1
  givenname: Edoardo
  surname: Beretta
  fullname: Beretta, Edoardo
  email: edoardo.beretta@uniurb.it
  organization: CIMAB, University of Milano, via C. Saldini 50, I20133 Milano, Italy. email:edoardo.beretta@uniurb.it
– sequence: 2
  givenname: Dimitri
  surname: Breda
  fullname: Breda, Dimitri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26776255$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtKAzEARYMo9qFbl5IfmDGvSSYrkVptoeBG10OeNWXaDEmK9O8drMpdXDiLw-XOwOUhHhwAdxjVVFL2sNeuJgjzGtMaywswxU2DK4RwOwGznHcIUUYpuwYTwoXgpGmmYPUcskmuOBgTtCGXFPSxOAut69XpES69d6ZkGA8wF6VDH8oJRg-HOBx7VcLItyl-lc8bcOVVn93tb8_Bx8vyfbGqNm-v68XTpjIM4VLRlhE3BguPGeZaEsZaobXAxkmjtTaICOYEHmcjagjxSDdGIq1agRU3dA7WZ6-NatcNKexVOnVRhe4HxLTtVCrB9K4TkkrrmSTOcqZarrkxXIuGKIqIQX503Z9dw1Hvnf23_d1DvwEYlGZr
CitedBy_id crossref_primary_10_1016_j_jmaa_2024_128663
crossref_primary_10_1073_pnas_2322424121
crossref_primary_10_1016_j_ifacol_2023_10_014
crossref_primary_10_1017_S095679252400069X
crossref_primary_10_1016_j_jde_2022_11_044
crossref_primary_10_12677_AAM_2022_115335
crossref_primary_10_1137_23M1581133
crossref_primary_10_1016_j_mbs_2024_109279
crossref_primary_10_36306_konjes_976918
crossref_primary_10_1007_s10928_017_9560_y
crossref_primary_10_1140_epjp_s13360_020_00188_z
crossref_primary_10_1109_ACCESS_2018_2851453
crossref_primary_10_1016_j_amc_2018_03_104
crossref_primary_10_1137_15M1040931
crossref_primary_10_1063_1_5024397
crossref_primary_10_3390_math9060680
crossref_primary_10_1016_j_chaos_2021_110739
crossref_primary_10_11948_2017042
crossref_primary_10_14232_ejqtde_2018_1_89
crossref_primary_10_3390_math7080737
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOA
DOI 10.3934/mbe.2016.13.19
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 41
ExternalDocumentID oai_doaj_org_article_7939df492ed64a86b6cc6b752a302c0f
26776255
Genre Journal Article
GroupedDBID ---
53G
5GY
AENEX
ALMA_UNASSIGNED_HOLDINGS
CGR
CUY
CVF
EBD
EBS
ECM
EIF
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
NPM
OK1
P2P
RAN
SV3
TUS
AMVHM
ID FETCH-LOGICAL-c401t-3842e2e217f1416b924487bb71ce9cbbbc0274e7100103c22f0b5c90ba871a6c3
IEDL.DBID DOA
IngestDate Wed Aug 27 01:19:24 EDT 2025
Thu Jan 02 22:18:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-3842e2e217f1416b924487bb71ce9cbbbc0274e7100103c22f0b5c90ba871a6c3
OpenAccessLink https://doaj.org/article/7939df492ed64a86b6cc6b752a302c0f
PMID 26776255
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_7939df492ed64a86b6cc6b752a302c0f
pubmed_primary_26776255
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationTitleAlternate Math Biosci Eng
PublicationYear 2016
Publisher AIMS Press
Publisher_xml – name: AIMS Press
SSID ssj0034334
Score 2.1524775
Snippet The growth of a population subject to maturation delay is modeled by using either a discrete delay or a delay continuously distributed over the population. The...
SourceID doaj
pubmed
SourceType Open Website
Index Database
StartPage 19
SubjectTerms Animals
Birth Rate
Computer Simulation
delta$-dirac distribution
gamma distribution
Humans
local asymptotic stability analysis
maturation delay
Models, Statistical
Mortality
Population Growth
stability switches
Survival Rate
Time Factors
Title Discrete or distributed delay? Effects on stability of population growth
URI https://www.ncbi.nlm.nih.gov/pubmed/26776255
https://doaj.org/article/7939df492ed64a86b6cc6b752a302c0f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ27a8MwEMZFKRS6lL6bvtDQ1Ymsl-2p9BVCIaFDA9mMJEtth9ohdYf8972z0lC6dKkNHjwIcyefvg-k3xFyZXIGxsewJLjCJ9LyLDHasSRXcEklTOhOvY8nejSVjzM1-9HqC_eERTxwDNwA5k9RBVlwX2lpcm21c9pmihvBuGMBqy-sed9mKtZgIYWQEdEoCiEH7xaJmKnup6KPTJ0Oz_9LSHYLynCX7KyUIL2JX7BHNny9T7Zib8jlARndv8EfDZKWNgtaId4WO1P5iiLWcXlNI3b4gzY1BYHXbXFd0ibQ-bojF30Bi92-HpLp8OH5bpSs2h4kDsxOm4hccg93moUU5JIFhwSuwtosdb5w1lqHVtIjlidlwnEemFWuYNaA-YFAiyOyWTe1P8ED2SFzQedo26Q1LhfOg6aDYqsQ-y575BYjUc4j2aJE1nT3AjJQrjJQ_pWBHjmOcVwPw3UGNVap0_8Y_oxsY-riTulzstkuPv0FCIHWXnY5h-fkafwFPRuxVQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+or+distributed+delay%3F+Effects+on+stability+of+population+growth&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Edoardo+Beretta&rft.au=Dimitri+Breda&rft.date=2016-02-01&rft.pub=AIMS+Press&rft.eissn=1551-0018&rft.volume=13&rft.issue=1&rft.spage=19&rft.epage=41&rft_id=info:doi/10.3934%2Fmbe.2016.13.19&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7939df492ed64a86b6cc6b752a302c0f