A Nonuniform Sampling Lifetime Estimation Technique for Luminescent Oxygen Measurements for Biomedical Applications

This article presents a novel technique that is immune to offset, enabling precise determination of the lifetime of luminescent materials. The technique is specifically applied to measure transcutaneous oxygen, an indicator of oxygen that diffuses through the skin and reflects arterial oxygen levels...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 60; no. 8; pp. 2905 - 2919
Main Authors Costanzo, Ian, Sen, Devdip, McNeill, John, Guler, Ulkuhan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9200
1558-173X
DOI10.1109/JSSC.2024.3512472

Cover

Loading…
Abstract This article presents a novel technique that is immune to offset, enabling precise determination of the lifetime of luminescent materials. The technique is specifically applied to measure transcutaneous oxygen, an indicator of oxygen that diffuses through the skin and reflects arterial oxygen levels. Unlike intensity-based measurements, lifetime-based luminescence measurements are superior because they decouple oxygen information from confounding factors. The technique presented in this work involves measuring the time difference between fixed-voltage steps to extract the time constant of a decaying exponential, which represents the lifetime of luminescence. We propose a novel switched-capacitor circuit that enables long integration times and prevents the front-end amplifier from saturating. The analog subsystem was realized in 180-nm CMOS technology via a transimpedance amplifier (TIA) with a gain bandwidth product of 10 MHz, a comparator, and a switched capacitor circuit. The measured mean error is as accurate as 1.9% without postprocessing. During a <inline-formula> <tex-math notation="LaTeX">130~{\mu } </tex-math></inline-formula>s measurement period, the readout circuit consumes a maximum of <inline-formula> <tex-math notation="LaTeX">16~{\mu } </tex-math></inline-formula>J per calculation with a <inline-formula> <tex-math notation="LaTeX">{\text {FoM}_{W}}{=}177 </tex-math></inline-formula> nJ/conv. Preliminary human subject tests have demonstrated that the sensor can effectively detect changes in transcutaneous oxygen levels resulting from arterial occlusion.
AbstractList This article presents a novel technique that is immune to offset, enabling precise determination of the lifetime of luminescent materials. The technique is specifically applied to measure transcutaneous oxygen, an indicator of oxygen that diffuses through the skin and reflects arterial oxygen levels. Unlike intensity-based measurements, lifetime-based luminescence measurements are superior because they decouple oxygen information from confounding factors. The technique presented in this work involves measuring the time difference between fixed-voltage steps to extract the time constant of a decaying exponential, which represents the lifetime of luminescence. We propose a novel switched-capacitor circuit that enables long integration times and prevents the front-end amplifier from saturating. The analog subsystem was realized in 180-nm CMOS technology via a transimpedance amplifier (TIA) with a gain bandwidth product of 10 MHz, a comparator, and a switched capacitor circuit. The measured mean error is as accurate as 1.9% without postprocessing. During a 130 s measurement period, the readout circuit consumes a maximum of 16 J per calculation with a . Preliminary human subject tests have demonstrated that the sensor can effectively detect changes in transcutaneous oxygen levels resulting from arterial occlusion.
This article presents a novel technique that is immune to offset, enabling precise determination of the lifetime of luminescent materials. The technique is specifically applied to measure transcutaneous oxygen, an indicator of oxygen that diffuses through the skin and reflects arterial oxygen levels. Unlike intensity-based measurements, lifetime-based luminescence measurements are superior because they decouple oxygen information from confounding factors. The technique presented in this work involves measuring the time difference between fixed-voltage steps to extract the time constant of a decaying exponential, which represents the lifetime of luminescence. We propose a novel switched-capacitor circuit that enables long integration times and prevents the front-end amplifier from saturating. The analog subsystem was realized in 180-nm CMOS technology via a transimpedance amplifier (TIA) with a gain bandwidth product of 10 MHz, a comparator, and a switched capacitor circuit. The measured mean error is as accurate as 1.9% without postprocessing. During a 130 μs measurement period, the readout circuit consumes a maximum of 16 μJ per calculation with a FoM W = 177 nJ / conv . Preliminary human subject tests have demonstrated that the sensor can effectively detect changes in transcutaneous oxygen levels resulting from arterial occlusion.This article presents a novel technique that is immune to offset, enabling precise determination of the lifetime of luminescent materials. The technique is specifically applied to measure transcutaneous oxygen, an indicator of oxygen that diffuses through the skin and reflects arterial oxygen levels. Unlike intensity-based measurements, lifetime-based luminescence measurements are superior because they decouple oxygen information from confounding factors. The technique presented in this work involves measuring the time difference between fixed-voltage steps to extract the time constant of a decaying exponential, which represents the lifetime of luminescence. We propose a novel switched-capacitor circuit that enables long integration times and prevents the front-end amplifier from saturating. The analog subsystem was realized in 180-nm CMOS technology via a transimpedance amplifier (TIA) with a gain bandwidth product of 10 MHz, a comparator, and a switched capacitor circuit. The measured mean error is as accurate as 1.9% without postprocessing. During a 130 μs measurement period, the readout circuit consumes a maximum of 16 μJ per calculation with a FoM W = 177 nJ / conv . Preliminary human subject tests have demonstrated that the sensor can effectively detect changes in transcutaneous oxygen levels resulting from arterial occlusion.
This article presents a novel technique that is immune to offset, enabling precise determination of the lifetime of luminescent materials. The technique is specifically applied to measure transcutaneous oxygen, an indicator of oxygen that diffuses through the skin and reflects arterial oxygen levels. Unlike intensity-based measurements, lifetime-based luminescence measurements are superior because they decouple oxygen information from confounding factors. The technique presented in this work involves measuring the time difference between fixed-voltage steps to extract the time constant of a decaying exponential, which represents the lifetime of luminescence. We propose a novel switched-capacitor circuit that enables long integration times and prevents the front-end amplifier from saturating. The analog subsystem was realized in 180-nm CMOS technology via a transimpedance amplifier (TIA) with a gain bandwidth product of 10 MHz, a comparator, and a switched capacitor circuit. The measured mean error is as accurate as 1.9% without postprocessing. During a [Formula Omitted]s measurement period, the readout circuit consumes a maximum of [Formula Omitted]J per calculation with a [Formula Omitted] nJ/conv. Preliminary human subject tests have demonstrated that the sensor can effectively detect changes in transcutaneous oxygen levels resulting from arterial occlusion.
This article presents a novel technique that is immune to offset, enabling precise determination of the lifetime of luminescent materials. The technique is specifically applied to measure transcutaneous oxygen, an indicator of oxygen that diffuses through the skin and reflects arterial oxygen levels. Unlike intensity-based measurements, lifetime-based luminescence measurements are superior because they decouple oxygen information from confounding factors. The technique presented in this work involves measuring the time difference between fixed-voltage steps to extract the time constant of a decaying exponential, which represents the lifetime of luminescence. We propose a novel switched-capacitor circuit that enables long integration times and prevents the front-end amplifier from saturating. The analog subsystem was realized in 180-nm CMOS technology via a transimpedance amplifier (TIA) with a gain bandwidth product of 10 MHz, a comparator, and a switched capacitor circuit. The measured mean error is as accurate as 1.9% without postprocessing. During a 130 μ s measurement period, the readout circuit consumes a maximum of 16 μ J per calculation with a FoM W = 177 nJ / conv . Preliminary human subject tests have demonstrated that the sensor can effectively detect changes in transcutaneous oxygen levels resulting from arterial occlusion.
This article presents a novel technique that is immune to offset, enabling precise determination of the lifetime of luminescent materials. The technique is specifically applied to measure transcutaneous oxygen, an indicator of oxygen that diffuses through the skin and reflects arterial oxygen levels. Unlike intensity-based measurements, lifetime-based luminescence measurements are superior because they decouple oxygen information from confounding factors. The technique presented in this work involves measuring the time difference between fixed-voltage steps to extract the time constant of a decaying exponential, which represents the lifetime of luminescence. We propose a novel switched-capacitor circuit that enables long integration times and prevents the front-end amplifier from saturating. The analog subsystem was realized in 180-nm CMOS technology via a transimpedance amplifier (TIA) with a gain bandwidth product of 10 MHz, a comparator, and a switched capacitor circuit. The measured mean error is as accurate as 1.9% without postprocessing. During a <inline-formula> <tex-math notation="LaTeX">130~{\mu } </tex-math></inline-formula>s measurement period, the readout circuit consumes a maximum of <inline-formula> <tex-math notation="LaTeX">16~{\mu } </tex-math></inline-formula>J per calculation with a <inline-formula> <tex-math notation="LaTeX">{\text {FoM}_{W}}{=}177 </tex-math></inline-formula> nJ/conv. Preliminary human subject tests have demonstrated that the sensor can effectively detect changes in transcutaneous oxygen levels resulting from arterial occlusion.
Author Guler, Ulkuhan
Costanzo, Ian
McNeill, John
Sen, Devdip
Author_xml – sequence: 1
  givenname: Ian
  orcidid: 0000-0002-1648-9205
  surname: Costanzo
  fullname: Costanzo, Ian
  email: imcostanzo@wpi.edu
  organization: Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
– sequence: 2
  givenname: Devdip
  orcidid: 0000-0003-3201-424X
  surname: Sen
  fullname: Sen, Devdip
  organization: Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
– sequence: 3
  givenname: John
  orcidid: 0000-0002-6731-9484
  surname: McNeill
  fullname: McNeill, John
  organization: Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
– sequence: 4
  givenname: Ulkuhan
  orcidid: 0000-0002-4723-4424
  surname: Guler
  fullname: Guler, Ulkuhan
  email: uguler@wpi.edu
  organization: Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40756063$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtvEzEUhS1URNPCD0BCyBIbNhN8_ZjxrFCIykuBLlIkdpbjuZO6mrHTcQbRf4-nCVVhdWXf7x6do3NGTkIMSMhLYHMAVr_7ul4v55xxORcKuKz4EzIDpXQBlfh5QmaMgS5qztgpOUvpJj-l1PCMnEpWqZKVYkbSgn6PYQy-jUNP17bfdT5s6cq3uPc90ouUh937GOgVuuvgb0ekmaWrsfcBk8Owp5e_77YY6De0aRywz1_pnvngY4-Nd7aji10WdvdC6Tl52tou4YvjPCc_Pl5cLT8Xq8tPX5aLVeEkg30hmG42ytqylKpt7UY3pWgtr7VDWSmJ2kmluFTQtlyC2mjXVLapbYNVDY4xcU7eH3R34yb7mKwOtjO7ISca7ky03vy7Cf7abOMvA1yAEExmhbdHhSHm4Glvep8jd50NGMdkBBcl51DzCX3zH3oTxyHkfJmSpa7LWk7U68eWHrz8LSQDcADcEFMasH1AgJmpdDOVbqbSzbH0fPPqcOMR8RGvAXRVij_Gwqo3
CODEN IJSCBC
Cites_doi 10.4103/lungindia.lungindia_106_17
10.1109/ISSCC42615.2023.10067723
10.1109/MSSC.2020.3021839
10.1109/9780470544259
10.1109/TBCAS.2023.3277398
10.1136/thx.36.6.473
10.1109/TBCAS.2019.2945114
10.1152/jappl.1958.13.3.515
10.1002/9780470891179
10.1021/ac00272a043
10.1038/s41587-021-00866-y
10.1097/00000542-200207000-00031
10.1021/cr900343z
10.1109/TBCAS.2021.3094931
10.1109/TBCAS.2023.3251321
10.1177/0885066616652597
10.1109/iscas45731.2020.9180902
10.1109/RBME.2020.3036330
10.1007/978-0-387-46312-4
10.1364/BOE.408850
10.1109/TCSII.2017.2725988
10.1109/JSSC.2022.3211619
10.1109/CICC48029.2020.9075881
10.1109/isscc19947.2020.9062946
10.1007/s12566-012-0032-y
10.1109/ESSCIRC55480.2022.9911496
10.1109/63.554168
10.1164/ajrccm.157.4.nhlb1-9
10.1109/BioCAS58349.2023.10388659
10.1007/s11517-019-02067-x
10.1016/B978-0-12-822548-6.00104-7
10.1021/acsami.8b13276
10.1021/acssensors.2c01775
10.1186/2046-7648-2-29
10.1016/S0925-4005(00)00721-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
8FD
L7M
7X8
5PM
DOI 10.1109/JSSC.2024.3512472
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 2919
ExternalDocumentID PMC12313304
40756063
10_1109_JSSC_2024_3512472
10811876
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Institute of Health (NIH)
  grantid: R01HL172293
  funderid: 10.13039/501100015672
– fundername: National Science Foundation (NSF)
  grantid: OAC-2203827; ECCS-2143898
  funderid: 10.13039/100000001
– fundername: NIBIB NIH HHS
  grantid: R21 EB036329
– fundername: NHLBI NIH HHS
  grantid: R01 HL172293
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
RIG
NPM
7SP
8FD
L7M
7X8
5PM
ID FETCH-LOGICAL-c401t-308db5aa6645ffab8d63fa298ce4754e8c4552451ff2415b8cd7ad9ade791c003
IEDL.DBID RIE
ISSN 0018-9200
IngestDate Thu Aug 21 18:32:17 EDT 2025
Fri Sep 05 15:27:26 EDT 2025
Sat Sep 06 14:25:47 EDT 2025
Sat Sep 06 06:30:23 EDT 2025
Thu Jul 31 00:51:04 EDT 2025
Wed Aug 27 02:13:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords luminescent measurements
nonuniform sampling (NUS)
Analog-to-digital converter (ADC)
light-to-digital converter (LTC)
transcutaneous sensing
oxygen sensor
blood gases
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-308db5aa6645ffab8d63fa298ce4754e8c4552451ff2415b8cd7ad9ade791c003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6731-9484
0000-0003-3201-424X
0000-0002-4723-4424
0000-0002-1648-9205
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/12313304
PMID 40756063
PQID 3246896944
PQPubID 85482
PageCount 15
ParticipantIDs ieee_primary_10811876
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12313304
pubmed_primary_40756063
proquest_miscellaneous_3236221924
proquest_journals_3246896944
crossref_primary_10_1109_JSSC_2024_3512472
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationTitleAlternate IEEE J Solid-State Circuits
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref15
ref14
(ref49) 2018
ref53
Rhein (ref4) 2016
ref52
ref11
ref10
ref54
(ref29) 2017
ref17
(ref45) 2002
ref16
ref19
ref18
ref51
ref50
(ref42) 2020
ref48
Magnet (ref12) 2018
(ref30) 2018
ref8
ref9
ref3
ref6
ref5
Stata (ref44) 1967
(ref37) 2011
ref34
ref33
ref2
(ref41) 2021
ref1
ref39
Clark (ref7) 1956
Seber (ref47) 2003
(ref40) 2006
(ref55) 2024
Baker (ref31) 2010
ref24
Johnson (ref32) 1993
ref23
ref26
ref25
ref20
ref22
ref21
(ref38) 2012
(ref35) 2014
ref28
ref27
(ref46) 2022
(ref36) 1999
(ref43) 2021
References_xml – ident: ref2
  doi: 10.4103/lungindia.lungindia_106_17
– ident: ref52
  doi: 10.1109/ISSCC42615.2023.10067723
– start-page: 399
  volume-title: Calculation of Rise Time
  year: 1993
  ident: ref32
– ident: ref10
  doi: 10.1109/MSSC.2020.3021839
– ident: ref24
  doi: 10.1109/9780470544259
– volume-title: DS4303 Electronically Programmable Voltage Reference
  year: 2006
  ident: ref40
– year: 2018
  ident: ref12
  article-title: Continuous, noninvasive tcPCO2 monitoring of patients with chronic respiratory failure using the SenTec digital monitoring system
– volume-title: CSD85301Q2 20 V Dual N-Channel NexFET Power MOSFETs
  year: 2014
  ident: ref35
– volume-title: Cutaneous Carbon Dioxide (PcCO2) and Oxygen (PcO2) Monitors—Guidance
  year: 2018
  ident: ref49
– ident: ref19
  doi: 10.1109/TBCAS.2023.3277398
– ident: ref3
  doi: 10.1136/thx.36.6.473
– volume-title: Electrochemical device for chemical analysis
  year: 1956
  ident: ref7
– ident: ref22
  doi: 10.1109/TBCAS.2019.2945114
– ident: ref8
  doi: 10.1152/jappl.1958.13.3.515
– volume-title: CMOS Circuit Design, Layout, and Simulation
  year: 2010
  ident: ref31
  doi: 10.1002/9780470891179
– ident: ref25
  doi: 10.1021/ac00272a043
– ident: ref50
  doi: 10.1038/s41587-021-00866-y
– ident: ref11
  doi: 10.1097/00000542-200207000-00031
– ident: ref20
  doi: 10.1021/cr900343z
– ident: ref27
  doi: 10.1109/TBCAS.2021.3094931
– volume-title: 40 V, 2 A NPN Low VCEsat (BISS) Transistor
  year: 2012
  ident: ref38
– ident: ref53
  doi: 10.1109/TBCAS.2023.3251321
– ident: ref1
  doi: 10.1177/0885066616652597
– volume-title: Mercury 2 FPGA Development Board
  ident: ref39
– ident: ref18
  doi: 10.1109/iscas45731.2020.9180902
– ident: ref14
  doi: 10.1109/RBME.2020.3036330
– volume-title: Radiometer America
  year: 2024
  ident: ref55
– volume-title: MATLAB
  year: 2022
  ident: ref46
– ident: ref48
  doi: 10.1007/978-0-387-46312-4
– ident: ref33
  doi: 10.1364/BOE.408850
– volume-title: High Speed Single/Dual N-Channel MOSFET Drivers
  year: 1999
  ident: ref36
– ident: ref23
  doi: 10.1109/TCSII.2017.2725988
– ident: ref54
  doi: 10.1109/JSSC.2022.3211619
– ident: ref16
  doi: 10.1109/CICC48029.2020.9075881
– ident: ref15
  doi: 10.1109/isscc19947.2020.9062946
– volume-title: Cutaneous Carbon Dioxide (PcCO2) and Oxygen (PcO2) Monitors—Class II Special Controls Guidance Document for Industry and FDA
  year: 2002
  ident: ref45
– ident: ref26
  doi: 10.1007/s12566-012-0032-y
– volume-title: Surface Mount Type, High-Speed Si Photodiode
  year: 2018
  ident: ref30
– ident: ref21
  doi: 10.1109/ESSCIRC55480.2022.9911496
– ident: ref34
  doi: 10.1109/63.554168
– volume-title: Luxeon Z Rule Blue 450 Nm LED
  year: 2017
  ident: ref29
– ident: ref9
  doi: 10.1164/ajrccm.157.4.nhlb1-9
– volume-title: Adjustable 3A Single Resistor Low Dropout Regulator
  year: 2020
  ident: ref42
– volume-title: Operational Integrators
  year: 1967
  ident: ref44
– volume-title: CMOS Rail-to-Rail General-Purpose Amplifiers
  year: 2011
  ident: ref37
– ident: ref56
  doi: 10.1109/BioCAS58349.2023.10388659
– ident: ref6
  doi: 10.1007/s11517-019-02067-x
– volume-title: Blood Gas and Pulmonary Function Monitoring
  year: 2016
  ident: ref4
– volume-title: Nonlinear Regression
  year: 2003
  ident: ref47
– volume-title: LTC6228 0.88 nV/√Hz 730 MHz, 500V/μs, Low Distortion Rail-to-Rail Output Op Amps With Shutdown
  year: 2021
  ident: ref41
– volume-title: 20V, 200 mA, Ultralow Noise, Ultrahigh PSRR RF Linear Regulator
  year: 2021
  ident: ref43
– ident: ref5
  doi: 10.1016/B978-0-12-822548-6.00104-7
– ident: ref17
  doi: 10.1021/acsami.8b13276
– ident: ref51
  doi: 10.1021/acssensors.2c01775
– ident: ref13
  doi: 10.1186/2046-7648-2-29
– ident: ref28
  doi: 10.1016/S0925-4005(00)00721-8
SSID ssj0014481
Score 2.483069
Snippet This article presents a novel technique that is immune to offset, enabling precise determination of the lifetime of luminescent materials. The technique is...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2905
SubjectTerms Amplifiers
Analog-to-digital converter (ADC)
Biomedical materials
Biomedical optical imaging
Blood
blood gases
Capacitors
Estimation
light-to-digital converter (LTC)
Luminescence
luminescent measurements
Noise
nonuniform sampling (NUS)
Occlusion
Optical amplifiers
Optical sensors
Optical variables measurement
Oxygen
oxygen sensor
Signal processing algorithms
Subsystems
Time constant
Time measurement
transcutaneous sensing
Title A Nonuniform Sampling Lifetime Estimation Technique for Luminescent Oxygen Measurements for Biomedical Applications
URI https://ieeexplore.ieee.org/document/10811876
https://www.ncbi.nlm.nih.gov/pubmed/40756063
https://www.proquest.com/docview/3246896944
https://www.proquest.com/docview/3236221924
https://pubmed.ncbi.nlm.nih.gov/PMC12313304
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6anNpDn2nrNgkq9FTw1g9Zlo7bkBBCsj1sArkZPdsQ4i3dNST99Z2RvZvd0EJuBg1G0ow032heAJ-9kqYUpUkrFUyK-talWmeU-qR8jfA65JqeBs4m4viCn1xWl0OyesyF8d7H4DM_os_oy3cz29FTGZ5wSd2xxRZsoeXWJ2utXAZoZ_Tt8XI8wcj7wYWZZ-rryXR6gKZgwUcl6jdeFxtKKHZV-RfAfBgnuaZ4jl7AZDnlPt7ketQtzMj-eVDN8dFregnPBwjKxr3MvIInvn0Nz9YKE76B-ZhNZm3XUtrWDZtqCjtvf7DTq-CpGT07xIuhz3lk58sisAxp2Wl3Q3H0tBT2_fYOpZOd3b9CziPNt5jxT8LBxmvu8x24ODo8PzhOh_YMqUWjbJGWmXSm0loIXoWgjXSiDLpQ0npeV9xLy6uq4FUeAsEEI62rtVPaoRDkFm-Tt7Ddzlr_HliwHgdKVWpruAvOZGhXeefyOq88IsQEviz51fzqq3A00XrJVEPMbYi5zcDcBHZom9cI-x1OYHfJ4mY4qPMG8aSQSijOE_i0GsYjRn4T3fpZRzSo5QuyVBN410vE6udoDyNmFGUCckNWVgRUvntzpL36Gct4I2bI6TXpw3_m-xGeFtRsOEYb7sL24nfn9xABLcx-lPy_fagF9A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeIA98DlGYICReEJKlw_biR_LtKmMtjy0k_YW2bENE1qKaCMBfz13TlraCSTeIvkUxb673O98XwBvnSpNLnMTC-VNjPbWxlonVPqkXIHw2qeargYmUzm64OeX4rIvVg-1MM65kHzmBvQYYvl2Ubd0VYYaXtJ0bHkb7qDh56or19oEDdDT6AbkpajDyP0-iJkm6vh8NjtBZzDjgxwtHC-yHTMU5qr8DWLezJTcMj1nD2C6_ugu4-TroF2ZQf3rRj_H_97VQ7jfg1A27KTmEdxyzWPY32pN-ASWQzZdNG1DhVvXbKYp8bz5zMZX3tE4enaKv4au6pHN121gGdKycXtNmfS0Ffbpx0-UTzb5cw-5DDTvQ80_iQcbbgXQD-Di7HR-Mor7AQ1xjW7ZKs6T0hqhtZRceK9NaWXudabK2vFCcFfWXIiMi9R7AgqmrG2hrdIWxSCt8X_yFPaaReOeAfO1w4Vc5bo23HprEvSsnLVpkQqHGDGCd2t-Vd-6PhxV8F8SVRFzK2Ju1TM3ggM65i3C7oQjOFqzuOpVdVkhopSlkorzCN5sllHJKHKiG7doiQbtfEa-agSHnURsXo4eMaJGmUdQ7sjKhoAaeO-uNFdfQiNvRA0p3Sc9_8f3voa7o_lkXI0_TD--gHsZjR4OuYdHsLf63rqXiIdW5lXQgt9WnAlE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nonuniform+Sampling+Lifetime+Estimation+Technique+for+Luminescent+Oxygen+Measurements+for+Biomedical+Applications&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Costanzo%2C+Ian&rft.au=Sen%2C+Devdip&rft.au=McNeill%2C+John&rft.au=Guler%2C+Ulkuhan&rft.date=2025-08-01&rft.issn=0018-9200&rft.volume=60&rft.issue=8&rft.spage=2905&rft_id=info:doi/10.1109%2Fjssc.2024.3512472&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon