Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective

The fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient e...

Full description

Saved in:
Bibliographic Details
Published inBiochar (Online) Vol. 4; no. 1; pp. 1 - 24
Main Authors Lu, Yin, Cai, Yawen, Zhang, Sai, Zhuang, Li, Hu, Baowei, Wang, Suhua, Chen, Jianrong, Wang, Xiangke
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2022
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient elimination of contaminants from aqueous solutions, photocatalytic degradation of organic pollutants or the in-situ solidification/immobilization of heavy metal ions in solid phases are the most suitable strategies to decontaminate the pollution. Biochar and biochar-based composites have attracted multidisciplinary interests especially in environmental pollution management because of their porous structures, large amounts of functional groups, high adsorption capacities and photocatalysis performance. In this review, the application of biochar and biochar-based composites as adsorbents and/or catalysts for the adsorption of different contaminants, adsorption-photodegradation of organic pollutants, and adsorption-(photo)reduction of metal ions are summarized, and the mechanism was discussed from advanced spectroscopy analysis and DFT calculation in detail. The doping of metal or metal oxides is the main strategy to narrow the band gap, to increase the generation and separation of photogenerated e − -h + pairs, to produce more superoxide radicals (·O 2 − ) and hydroxyl radicals (·OH), to enhance the visible light absorption and to increase photocatalysis performance, which dominate the photocatalytic degradation of organic pollutants and (photo)reduction of high valent metals to low valent metals. The biochar-based composites are environmentally friendly materials, which are promising candidates in environmental pollution cleanup. The challenge and perspective for biochar-based catalysts are provided in the end. Graphical Abstract Highlights Adsorption-photocatalytic degradation of organic pollutants by biochar-based catalysts is summarized. Adsorption-(photo)catalytic reduction-solidification of heavy metal ions is discussed. Mechanism and active free radicals on the degradation/reduction of contaminants are compared and described. The methods to improve the photocatalysis performance of biochar-based catalysts are introduced. The challenges for the real application of biochar-based materials are provided.
AbstractList The fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient elimination of contaminants from aqueous solutions, photocatalytic degradation of organic pollutants or the in-situ solidification/immobilization of heavy metal ions in solid phases are the most suitable strategies to decontaminate the pollution. Biochar and biochar-based composites have attracted multidisciplinary interests especially in environmental pollution management because of their porous structures, large amounts of functional groups, high adsorption capacities and photocatalysis performance. In this review, the application of biochar and biochar-based composites as adsorbents and/or catalysts for the adsorption of different contaminants, adsorption-photodegradation of organic pollutants, and adsorption-(photo)reduction of metal ions are summarized, and the mechanism was discussed from advanced spectroscopy analysis and DFT calculation in detail. The doping of metal or metal oxides is the main strategy to narrow the band gap, to increase the generation and separation of photogenerated e − -h + pairs, to produce more superoxide radicals (·O 2 − ) and hydroxyl radicals (·OH), to enhance the visible light absorption and to increase photocatalysis performance, which dominate the photocatalytic degradation of organic pollutants and (photo)reduction of high valent metals to low valent metals. The biochar-based composites are environmentally friendly materials, which are promising candidates in environmental pollution cleanup. The challenge and perspective for biochar-based catalysts are provided in the end. Graphical Abstract
Highlights 1. Adsorption-photocatalytic degradation of organic pollutants by biochar-based catalysts is summarized. 2. Adsorption-(photo)catalytic reduction-solidification of heavy metal ions is discussed. 3. Mechanism and active free radicals on the degradation/reduction of contaminants are compared and described. 4. The methods to improve the photocatalysis performance of biochar-based catalysts are introduced. 5. The challenges for the real application of biochar-based materials are provided.
The fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient elimination of contaminants from aqueous solutions, photocatalytic degradation of organic pollutants or the in-situ solidification/immobilization of heavy metal ions in solid phases are the most suitable strategies to decontaminate the pollution. Biochar and biochar-based composites have attracted multidisciplinary interests especially in environmental pollution management because of their porous structures, large amounts of functional groups, high adsorption capacities and photocatalysis performance. In this review, the application of biochar and biochar-based composites as adsorbents and/or catalysts for the adsorption of different contaminants, adsorption-photodegradation of organic pollutants, and adsorption-(photo)reduction of metal ions are summarized, and the mechanism was discussed from advanced spectroscopy analysis and DFT calculation in detail. The doping of metal or metal oxides is the main strategy to narrow the band gap, to increase the generation and separation of photogenerated e − -h + pairs, to produce more superoxide radicals (·O 2 − ) and hydroxyl radicals (·OH), to enhance the visible light absorption and to increase photocatalysis performance, which dominate the photocatalytic degradation of organic pollutants and (photo)reduction of high valent metals to low valent metals. The biochar-based composites are environmentally friendly materials, which are promising candidates in environmental pollution cleanup. The challenge and perspective for biochar-based catalysts are provided in the end. Graphical Abstract Highlights Adsorption-photocatalytic degradation of organic pollutants by biochar-based catalysts is summarized. Adsorption-(photo)catalytic reduction-solidification of heavy metal ions is discussed. Mechanism and active free radicals on the degradation/reduction of contaminants are compared and described. The methods to improve the photocatalysis performance of biochar-based catalysts are introduced. The challenges for the real application of biochar-based materials are provided.
ArticleNumber 45
Author Wang, Xiangke
Zhang, Sai
Hu, Baowei
Wang, Suhua
Chen, Jianrong
Cai, Yawen
Lu, Yin
Zhuang, Li
Author_xml – sequence: 1
  givenname: Yin
  surname: Lu
  fullname: Lu, Yin
  email: luyin@zjsru.edu.cn
  organization: Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University
– sequence: 2
  givenname: Yawen
  surname: Cai
  fullname: Cai, Yawen
  organization: School of Life Science, Shaoxing University
– sequence: 3
  givenname: Sai
  surname: Zhang
  fullname: Zhang, Sai
  organization: College of Environmental Science and Technology, North China Electric Power University
– sequence: 4
  givenname: Li
  surname: Zhuang
  fullname: Zhuang, Li
  organization: School of Life Science, Shaoxing University
– sequence: 5
  givenname: Baowei
  surname: Hu
  fullname: Hu, Baowei
  organization: School of Life Science, Shaoxing University
– sequence: 6
  givenname: Suhua
  surname: Wang
  fullname: Wang, Suhua
  organization: School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology
– sequence: 7
  givenname: Jianrong
  surname: Chen
  fullname: Chen, Jianrong
  organization: College of Geography and Environmental Science, Zhejiang Normal University
– sequence: 8
  givenname: Xiangke
  surname: Wang
  fullname: Wang, Xiangke
  email: xkwang@ncepu.edu.cn
  organization: School of Life Science, Shaoxing University, College of Environmental Science and Technology, North China Electric Power University
BookMark eNp9kc9q3DAQxkVIIWmaF8hJxxbqRJItS9tbCP0TCOTSnsVIGm-02JKRnMC-Sx-2ijd76SEHMcPMfL8R830kpzFFJOSKs2vOmLopnVCqbZgQDWO8ZvsTci6k6Bqle3V6zDdKnJHLUnaMMSE579vNOfl7O89jcLCEFGkaqA3JPUFuLBT0dH5KS6pNGPdlKXRImYIvKc-v483ntf3F4zaDXwk3Gf2zO7IwvoSc4oSxAqhLNUwhQlzKNzphXRNDmb7Smowjxi0WCrHuxFxmrJAX_EQ-DDAWvHyLF-TPj--_7341D48_7-9uHxrXMb40Leu08z04rtH3vZdglefWOgWqV1L0XljQ1vpWbVqNrleWSSm4wkFIr3V7Qe4PXJ9gZ-YcJsh7kyCYtZDy1kBeghvRoNDCyQEtCNbVp5UVG828ZNghU7ay9IHlciol42BcWNbjLBnCaDgzr6aZg2mmmmZW08y-SsV_0uNX3hW1B1Gpw_WI2ezSc471XO-p_gFBsLHt
CitedBy_id crossref_primary_10_1016_j_chemosphere_2024_142632
crossref_primary_10_1016_j_jclepro_2024_141539
crossref_primary_10_3390_pr13020589
crossref_primary_10_1016_j_matchemphys_2023_127430
crossref_primary_10_1016_j_rser_2023_113238
crossref_primary_10_1016_j_jssc_2023_124100
crossref_primary_10_1016_j_partic_2022_11_017
crossref_primary_10_1038_s41598_024_57553_6
crossref_primary_10_1016_j_surfin_2024_104614
crossref_primary_10_1016_j_jwpe_2024_105369
crossref_primary_10_1039_D3CC03248E
crossref_primary_10_2174_0115734110286724240318051113
crossref_primary_10_1039_D2NR03924A
crossref_primary_10_1016_j_jece_2022_108994
crossref_primary_10_1016_j_jclepro_2022_135405
crossref_primary_10_1007_s11356_024_34140_w
crossref_primary_10_1007_s42773_023_00231_z
crossref_primary_10_1007_s13201_025_02415_3
crossref_primary_10_1007_s13369_024_09554_w
crossref_primary_10_1016_j_surfin_2024_104861
crossref_primary_10_1016_j_saa_2023_123310
crossref_primary_10_1007_s41204_023_00349_2
crossref_primary_10_1080_09593330_2023_2250546
crossref_primary_10_1016_j_scitotenv_2024_174962
crossref_primary_10_1007_s11144_024_02665_3
crossref_primary_10_1016_j_surfin_2022_102324
crossref_primary_10_1007_s42773_024_00387_2
crossref_primary_10_1016_j_envres_2025_121413
crossref_primary_10_1021_acs_jpcc_3c02278
crossref_primary_10_1016_j_jwpe_2022_103478
crossref_primary_10_1016_j_jconhyd_2022_104108
crossref_primary_10_3233_MGC_230060
crossref_primary_10_1016_j_enmm_2023_100819
crossref_primary_10_1016_j_psep_2023_11_016
crossref_primary_10_1016_j_cej_2024_156556
crossref_primary_10_1016_j_jhazmat_2022_130054
crossref_primary_10_1016_j_envint_2025_109350
crossref_primary_10_3390_inorganics12060156
crossref_primary_10_1007_s42773_022_00191_w
crossref_primary_10_1016_j_sajce_2023_04_006
crossref_primary_10_3390_pr12122673
crossref_primary_10_1007_s42773_023_00285_z
crossref_primary_10_1016_j_seppur_2022_122862
crossref_primary_10_3390_catal14010043
crossref_primary_10_1016_j_mseb_2022_116191
crossref_primary_10_1021_acsomega_3c06243
crossref_primary_10_1016_j_surfin_2023_103828
crossref_primary_10_3390_nano14171458
crossref_primary_10_1016_j_envpol_2022_120665
crossref_primary_10_1016_j_ccr_2022_214825
crossref_primary_10_1002_gch2_202200154
crossref_primary_10_1016_j_chemosphere_2023_138553
crossref_primary_10_1016_j_efmat_2023_03_001
crossref_primary_10_1007_s42773_023_00237_7
crossref_primary_10_1016_j_jece_2023_109827
crossref_primary_10_1016_j_jece_2022_108977
crossref_primary_10_3390_catal13091247
crossref_primary_10_1016_j_jenvman_2024_121160
crossref_primary_10_1016_j_seppur_2022_122610
crossref_primary_10_1142_S1793292023500212
crossref_primary_10_1016_j_dwt_2025_101004
crossref_primary_10_1016_j_seppur_2022_122453
crossref_primary_10_1016_j_carbon_2023_118168
crossref_primary_10_1016_j_jpcs_2024_112385
crossref_primary_10_1051_epjap_2023220318
crossref_primary_10_3390_nano15020102
crossref_primary_10_1038_s41598_024_75614_8
crossref_primary_10_1016_j_cej_2024_155441
crossref_primary_10_1021_acsanm_2c03511
crossref_primary_10_1007_s11270_024_07077_6
crossref_primary_10_1016_j_jclepro_2023_135857
crossref_primary_10_1016_j_jece_2025_115350
crossref_primary_10_1016_j_mtchem_2022_101344
crossref_primary_10_1016_j_jiec_2023_07_029
crossref_primary_10_1016_j_seppur_2024_128519
crossref_primary_10_1016_j_jwpe_2024_105908
crossref_primary_10_1002_sd_3069
crossref_primary_10_15541_jim20220432
crossref_primary_10_1016_j_jclepro_2024_143239
crossref_primary_10_1016_j_seppur_2023_123615
crossref_primary_10_1016_j_enmm_2022_100741
crossref_primary_10_1016_j_seppur_2022_122362
crossref_primary_10_1016_j_jclepro_2022_134918
crossref_primary_10_1039_D2EN00832G
crossref_primary_10_32604_jrm_2024_056970
crossref_primary_10_1021_acsanm_2c03168
crossref_primary_10_1021_acs_langmuir_3c02169
crossref_primary_10_1039_D2DT02480B
crossref_primary_10_1007_s13201_023_02035_9
crossref_primary_10_1016_j_envres_2022_114914
crossref_primary_10_1038_s41598_023_50930_7
crossref_primary_10_1016_j_molstruc_2024_137515
crossref_primary_10_1002_slct_202203151
crossref_primary_10_1016_j_dwt_2024_100798
crossref_primary_10_1016_j_molliq_2022_120291
crossref_primary_10_1016_j_enmm_2022_100754
crossref_primary_10_1016_j_mssp_2024_108366
crossref_primary_10_1016_j_jece_2023_111579
crossref_primary_10_1007_s44246_023_00041_9
crossref_primary_10_1007_s44246_023_00045_5
crossref_primary_10_1007_s41365_022_01154_3
crossref_primary_10_1007_s13399_025_06541_5
crossref_primary_10_1016_j_cej_2024_152310
crossref_primary_10_1016_j_indcrop_2022_115966
crossref_primary_10_1016_j_ceramint_2022_10_164
crossref_primary_10_1016_j_clay_2022_106802
crossref_primary_10_1016_j_psep_2024_05_118
crossref_primary_10_1016_j_seppur_2024_131341
crossref_primary_10_1016_j_cjche_2022_12_014
crossref_primary_10_1016_j_jhazmat_2022_130257
crossref_primary_10_1016_j_desal_2022_116121
crossref_primary_10_3390_app13074288
crossref_primary_10_1007_s11356_023_30328_8
crossref_primary_10_1016_j_cherd_2024_04_055
crossref_primary_10_1016_j_mtchem_2023_101620
crossref_primary_10_1016_j_apsadv_2025_100721
crossref_primary_10_1016_j_envpol_2023_123140
crossref_primary_10_3390_molecules29092090
crossref_primary_10_1016_j_surfin_2024_104399
crossref_primary_10_1016_j_seppur_2022_122542
crossref_primary_10_1080_10934529_2023_2243193
crossref_primary_10_3390_ijms25094743
crossref_primary_10_1016_j_jphotochem_2022_114435
crossref_primary_10_2166_wst_2023_305
crossref_primary_10_1016_j_jece_2024_113360
crossref_primary_10_1016_j_cej_2022_139486
crossref_primary_10_1016_j_eurpolymj_2022_111632
crossref_primary_10_1016_j_optmat_2024_115054
crossref_primary_10_3390_molecules30030538
crossref_primary_10_1016_j_mtcomm_2024_110522
crossref_primary_10_1016_j_heliyon_2023_e22909
crossref_primary_10_1016_j_ceramint_2024_01_351
crossref_primary_10_1016_j_desal_2023_116893
crossref_primary_10_1016_j_molstruc_2023_135861
crossref_primary_10_1016_j_cej_2023_146530
crossref_primary_10_1016_j_seppur_2023_124963
crossref_primary_10_1039_D2DT03305D
crossref_primary_10_1016_j_jwpe_2024_106246
crossref_primary_10_1016_j_watres_2023_120994
crossref_primary_10_1016_j_cclet_2024_110470
crossref_primary_10_1021_acssuschemeng_2c04621
crossref_primary_10_1021_acsomega_2c05352
crossref_primary_10_1016_j_cscee_2024_101090
crossref_primary_10_1016_j_jafr_2023_100498
crossref_primary_10_1016_j_jwpe_2025_107111
crossref_primary_10_1016_j_mtsust_2022_100258
crossref_primary_10_1016_j_cplett_2023_140894
crossref_primary_10_1039_D3RA06910A
crossref_primary_10_1016_j_chemosphere_2023_140264
crossref_primary_10_1016_j_scitotenv_2023_161767
crossref_primary_10_3390_app14051793
crossref_primary_10_1016_j_matchemphys_2022_127206
crossref_primary_10_1016_j_aej_2024_03_002
crossref_primary_10_1016_j_envpol_2022_120512
crossref_primary_10_1039_D4NJ00373J
crossref_primary_10_1038_s41598_025_87777_z
crossref_primary_10_1007_s10653_024_02221_x
crossref_primary_10_1007_s42773_024_00316_3
crossref_primary_10_1016_j_scitotenv_2022_159312
crossref_primary_10_1002_slct_202300270
crossref_primary_10_1039_D3NA01087B
crossref_primary_10_1016_j_microc_2022_108019
crossref_primary_10_1039_D3NJ00771E
crossref_primary_10_1016_j_seppur_2022_122416
crossref_primary_10_1002_slct_202203048
crossref_primary_10_1016_j_inoche_2024_113538
crossref_primary_10_1016_j_jece_2022_109219
Cites_doi 10.1016/j.jhazmat.2019.121070
10.1021/acs.langmuir.1c01468
10.1002/adma.202106621
10.1016/j.scitotenv.2019.134847
10.1016/j.chemosphere.2020.126291
10.1002/jctb.6279
10.1016/j.jece.2021.106753
10.1021/acs.est.8b01715
10.1016/j.apcatb.2019.02.008
10.1021/sc500619r
10.1016/j.jnucmat.2008.08.036
10.1016/j.jes.2021.07.015
10.1007/s42773-019-00006-5
10.1016/j.chemosphere.2019.01.132
10.1016/j.scitotenv.2020.143333
10.1007/s42773-021-00098-y
10.5004/dwt.2021.26580
10.1016/j.jhazmat.2019.121623
10.1016/j.apsusc.2016.03.109
10.1016/j.scitotenv.2019.133886
10.1016/j.cej.2020.124856
10.1016/j.envpol.2021.118076
10.1016/j.jenvman.2016.05.016
10.1016/j.chemosphere.2018.05.175
10.1016/j.jwpe.2021.102470
10.31635/ccschem.022.202201897
10.1007/s11426-021-9987-1
10.1016/j.apcatb.2017.05.036
10.1007/s10904-019-01322-w
10.1016/j.scitotenv.2020.142673
10.1002/adfm.202204175
10.1016/j.envpol.2017.07.079
10.1016/j.scitotenv.2021.152280
10.1007/s42773-020-00044-4
10.1016/j.apcatb.2019.03.004
10.1016/j.apsusc.2021.149938
10.1016/j.matlet.2021.130455
10.1080/10643389.2020.1734433
10.1016/j.jclepro.2017.07.117
10.1007/s42773-020-00070-2
10.1016/j.apsusc.2019.04.160
10.1016/j.chemosphere.2020.128576
10.1007/s11426-019-9492-4
10.1016/j.jenvman.2016.05.034
10.1016/j.enchem.2022.100078
10.1021/acs.est.9b02745
10.1002/jrs.4392
10.1007/s42773-019-00007-4
10.1016/j.apsusc.2019.05.195
10.1016/j.scitotenv.2021.145305
10.1016/j.apcata.2022.118733
10.1016/j.wasman.2018.08.035
10.1016/j.jes.2021.10.003
10.1016/j.jhazmat.2013.12.027
10.1016/j.jes.2018.01.013
10.1016/j.apcatb.2018.10.052
10.34133/2021/9794329
10.1016/j.jhazmat.2021.125511
10.1007/s11356-021-14835-0
10.20964/2022.03.28
10.1016/j.jhazmat.2019.121827
10.1016/j.jphotochem.2020.112976
10.1016/S1872-2067(19)63330-9
10.1016/j.chemosphere.2017.07.025
10.1016/j.apcatb.2022.121343
10.1016/j.jhazmat.2020.124547
10.1016/j.cej.2019.123311
10.1039/C9TA00339H
10.1016/j.scitotenv.2021.148546
10.1039/D1RA01599K
10.1016/j.scitotenv.2017.12.195
10.1016/j.cej.2019.03.235
10.1016/j.biortech.2018.07.125
10.1016/j.biortech.2019.122466
10.1038/nenergy.2017.7
10.1016/j.ccr.2022.214615
10.3390/nano11020526
10.1016/j.molliq.2021.115315
10.1016/j.envres.2022.112841
10.1016/j.biombioe.2014.09.027
10.1016/j.scitotenv.2021.149662
10.1016/j.apsusc.2019.143846
10.1007/s42773-022-00146-1
10.1016/j.chemosphere.2017.12.128
10.1016/j.jhazmat.2020.122901
10.3390/catal12020210
10.1016/j.jhazmat.2020.123025
10.1016/j.chemosphere.2020.127988
10.1016/j.cej.2019.02.098
10.1016/j.scib.2022.02.012
10.1016/j.indcrop.2021.114066
10.1016/j.molliq.2020.114807
10.1016/j.scitotenv.2020.141381
10.1016/j.biortech.2018.03.116
10.1007/s42773-021-00101-6
10.1016/j.jcis.2019.08.065
10.15541/jim20200661
10.1016/j.jtice.2017.05.010
10.1016/j.materresbull.2021.111530
10.1007/s11356-019-05497-0
10.1016/j.apsusc.2015.08.176
10.1016/j.jhazmat.2020.124376
10.1007/s42773-020-00041-7
10.1016/j.jes.2020.10.006
10.1016/j.cej.2018.11.110
10.1016/j.jece.2021.106942
10.1016/j.jenvrad.2021.106798
10.1007/s42773-020-00060-4
10.3390/toxics9110313
10.1016/j.colsurfa.2022.128606
10.1016/j.biortech.2018.01.145
10.1002/advs.202201735
10.1002/jctb.5428
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s42773-022-00173-y
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2524-7867
EndPage 24
ExternalDocumentID oai_doaj_org_article_e282c5feba204a2087b2980d50e4e07b
10_1007_s42773_022_00173_y
GrantInformation_xml – fundername: National Key Research and Development of Chian
  grantid: 2017YFA0207002
– fundername: Key Research and Development Plan of Zhejiang Province
  grantid: 2021C03176
– fundername: National Natural Science Foundation of China
  grantid: U2067215
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
AAHBH
AAHNG
AAJSJ
AAKKN
AAYZJ
ABDBF
ABECU
ABEEZ
ABFTV
ABKCH
ABMQK
ABTEG
ABTMW
ACACY
ACOKC
ACULB
ACZOJ
ADKNI
ADURQ
ADYFF
AFGXO
AFQWF
AGDGC
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AXYYD
C24
C6C
EBLON
EBS
EJD
FNLPD
GROUPED_DOAJ
H13
M~E
NQJWS
OK1
RSV
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AASML
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ID FETCH-LOGICAL-c401t-3048cd6ac18ed66d5ab7d1bbc7a767526d2ba8bbd37938ec67b055217ef25d883
IEDL.DBID C24
ISSN 2524-7972
IngestDate Wed Aug 27 01:28:50 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Tue Jul 01 03:16:37 EDT 2025
Fri Feb 21 02:44:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Photocatalytic degradation
Environmental pollutants
Adsorption
Photocatalytic reduction
Biochar-based composites
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-3048cd6ac18ed66d5ab7d1bbc7a767526d2ba8bbd37938ec67b055217ef25d883
OpenAccessLink https://link.springer.com/10.1007/s42773-022-00173-y
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_e282c5feba204a2087b2980d50e4e07b
crossref_citationtrail_10_1007_s42773_022_00173_y
crossref_primary_10_1007_s42773_022_00173_y
springer_journals_10_1007_s42773_022_00173_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Biochar (Online)
PublicationTitleAbbrev Biochar
PublicationYear 2022
Publisher Springer Nature Singapore
Springer
Publisher_xml – name: Springer Nature Singapore
– name: Springer
References Qiu, Hu, Chen, Yang, Zhuang, Wang (CR69) 2021; 3
Li, Huang, Zhu, Luo, Yan, Dai, Guo, Yang (CR44) 2019; 243
Zheng, Yang, Zou, Luo, Dong, Gao (CR115) 2019; 1
Fan, Chen, Xu, Xu, Zhao, Qiu, Cao (CR18) 2020; 398
Liang, Shi, Zhang, Qiu, Yu, Li, Gan, Yu, Xiao, Liu, Hu, Hou, Yang (CR49) 2019; 695
Yang, Zhu, Yao, Lu, Yang, Dang (CR94) 2021; 410
Hao, Chen, Yang, Waterhouse, Ma, Wang (CR29) 2022; 67
Hao, Qiu, Yang, Hu, Wang (CR28) 2021; 760
Yang, Zhu, Dong, Fan, Wang (CR93) 2021; 37
Qiu, Liu, Ling, Cai, Yu, Wang, Fu, Hu, Wang (CR70) 2022; 4
Zhang, Lv, Qin, Xu, Jia, Chen (CR105) 2018; 256
Minh, Song, Deb, Cha, Srivastava, Sillanpaa (CR61) 2020; 394
Goncalves, Veiga, Fornari, Peralta-Zamora, Mangrich, Silvestri (CR26) 2020; 748
Silvestri, Stefanello, Sulkovski, Foletto (CR73) 2020; 95
Ndoun, Elliott, Preisendanz, Williams, Knopf, Watson (CR63) 2021; 3
Geng, Xu, Gan, Mei, Wang, Fang, Li, Pan, Han, Cui (CR24) 2020; 250
Xiao, Lyu, Tang, Wang, Sun (CR89) 2020; 384
Chen, Shen, Qiu (CR12) 2021; 210
Feng, Yuan, Wang, Chen, Zhou, Chen (CR22) 2021; 765
Zhao, Wang, Theng, Wu, Liu, Wang, Lee, Chen, Li, Zhang (CR114) 2021; 767
Zhang, Wang, Zhang, Ma, Huang, Yu, Chen, Song, Qiu, Wang (CR109) 2021; 291
Yu, Tang, Zhang, Wang, Qiu, Song, Fu, Hu, Wang (CR101) 2022; 811
Chen, He, Li, Yang, Liu, Wa, Liu, Hu, Wang (CR13) 2022; 122
Fang, Liu, Wang, Dionysiou, Zhou (CR19) 2017; 214
Hu (CR31) 2022; 17
Xia, Tan, Zhang, Jing, Chen, Li, Zheng, Li, Wang (CR87) 2016; 377
Hao, Liu, Liu, Zhang, Yang, Waterhouse, Wang, Ma (CR30) 2022; 4
Chandra, Jagdale, Medha, Tiwari, Bartoli, Nino, Olivito (CR8) 2021; 9
Stefaniak, Alsecz, Sajó, Worobiec, Máthé, Török, Grieken (CR74) 2008; 381
Liu, Pang, Liu, Li, Zhang, Mao, Qiu, Hu, Yang, Wang (CR52) 2021; 2
Liu, Wang, Han, Hu, Qiu (CR54) 2021; 28
Huang, Song, Chen, Hu, Chen, Wang (CR34) 2019; 1
Yan, Kong, Qu, Li, Shen (CR91) 2015; 3
Tho, Van, Nguyen, Hoang, Tran, Nguyen, Nguyen, Nguyen, Sy, Thai, Tran, Sadeghzaden, Asadpour, Thang (CR79) 2021; 11
Khataee, Kalderis, Gholami, Fazli, Moschogiannaki, Binas, Lykaki, Konsolskis (CR39) 2019; 498
Cai, Li, Liu, Yan, Tan, Liu, Zeng, Gu, Hu, Jiang (CR4) 2018; 93
Hu, Ai, Jin, Hayat, Alsaedi, Zhuang, Wang (CR33) 2020; 2
Zhang, Fu, Yin, Chen, Qiu, Simonnot, Wang (CR104) 2018; 268
Yu, An, Jin, Luo, Li, Jiang (CR98) 2020; 297
Chen, Dai, Guo, Yang, Liu, Zhai (CR10) 2019; 493
Mao, Zhang, Liu, Wang, Bai, Guan (CR60) 2021; 263
Pi, Jiang, Zhou, Zhu, Xiao, Wang, Mao (CR67) 2015; 358
Wang, Liu, Men, Ma, Liu, Ma, Liu, Wei, Li, Yan (CR81) 2019; 40
Pang, Diao, Wang, Ma, Yu, Zhu, Chen, Hu, Chen, Wang (CR65) 2019; 366
Kumari, Chhabra, Kumar, Krishnan (CR42) 2021; 302
Zhang, Liu, Gu, Ma, Wen, Zhao, Li, Ai, Hu, Wang (CR106) 2019; 248
Rajapaksha, Alam, Chen, Alessi, Igalavithana, Tsang, Ok (CR71) 2018; 625
Talukdar, Jun, Yoon, Fayyza, Park (CR77) 2020; 398
Lu, Shan, Shi, Wang, Yuan (CR57) 2019; 222
Baig, Zhu, Muhammad, Sheng, Xu (CR3) 2014; 71
Wang, Liu, Mao, Bai, Chiang, Shah, Pza-Ferreiro (CR82) 2020; 389
Karpuraranjith, Chen, Ramadoss, Wang, Yang, Rajaboopathi, Yang (CR38) 2021; 326
Sun, Zhao, Liu, Zhen, Ma (CR75) 2019; 53
Fazal, Razzaq, Javed, Hafeez, Rashid, Amjad, Rehman, Faisal, Rehman (CR21) 2020; 390
Li, Chen, Wang, Yang, Wen, Wang, Hu, Wang (CR47) 2021; 792
Liu, Xie, Hao, Chen, Yang, Waterhouse, Ma, Wang (CR56) 2022; 9
Yang, Liu, Hao, Xie, Wang, Tian, Waterhouse, Kruge, Telfer, Ma (CR92) 2021; 33
Huang, Tang, Zhang, Luo, Zhang (CR35) 2022; 45
Li, Zhang, Gao, Li (CR43) 2018; 79
Li, Qian, An, Huang (CR45) 2019; 487
Hu, Zhu, Hu, Lu, Sheng (CR32) 2018; 70
Li, Hu, Shen, Cai, Ji, Tan, Liu, Zhao, Hu, Wang (CR48) 2021; 64
Gasim, Choong, Koo, Low, Abdurahman, Ho, Mohamad, Suryawan, Lim, Oh (CR23) 2022; 12
Kim, Kan (CR40) 2016; 180
Wei, Yu, Ji, Cai, Zou, Zheng, Huang, Zhang, Yang, Naushad, Gao, Dong (CR85) 2021; 9
Cai, Zhang, Lv, Zhang, Gao, Fang, Kong, Liu, Tan, Hu, Wang (CR6) 2022; 310
Zhang, Min, Tang, Rafiq, Sun (CR108) 2020; 2
Zhang, Liu, Ma, Jia, Wen, Ai, Zhao, Fang, Hu, Wang (CR112) 2022; 32
Cai, Liang, Yi, Chen, Yang, Hu, Liang, Wang (CR5) 2022; 643
Wang, Chen, Wang, Fan, Pan, Li, Chi, Yu, Xie, Xiao, Luo, Wang, Wang, Chen, Wu, Shi, Wang, Wang (CR80) 2019; 62
Zheng, Yang, Si, Zhu, Yang, Zhao, Shi (CR116) 2021; 407
Lu, Yu, Wang, Zhang, Zhu, Zhang, Wu, Ullah, Xiao, Chen (CR58) 2020; 2
Tan, Mao, Wang, Junaid, Xu (CR78) 2019; 26
Xiao, Wang, Li, Park, Meng, Zhou, Pensky, Zhang (CR88) 2018; 208
Liu, Hsu, Xie, Zhao, Wu, Wang, Liu, Zhang, Chu, Cui (CR51) 2017; 2
Zhang, Wang, Li, Zhang, Guo, Ding, Li (CR110) 2021; 11
Cheng, Zhang, Zhao, Chai, Hu, Han, Ai, Wang (CR15) 2021; 66
Gholami, Khataee, Soltani, Dinpazhoh, Bhatnagar (CR25) 2020; 382
Yu, Tian, Zou, Ye, Peng, Huang, Zheng, Zhang, Yang, Wei, Gao (CR100) 2021; 415
Fang, Tan, Liu, Hu, Wang (CR20) 2021; 2021
Peng, Li, Wen, Zheng (CR66) 2021; 172
Mandal, Sarkar, Bolan, Ok, Naidu (CR59) 2017; 186
Ye, Yan, Tan, Liang, Zeng, Wu, Song, Zhou, Yang, Wang (CR96) 2019; 250
Zhao, Yin, Liu, Zhang, Lv, Hao, Pan, Zhang (CR113) 2018; 260
Cao, Cui, Zhang, Cui (CR7) 2021; 559
Chen, Lu, Han, Zhong, Xu, Wang, Chen (CR9) 2019; 359
Yu, Jiang, Guan, Ning, Gu, Chen, Zhang, Miao (CR97) 2018; 195
Alam, Gorman-Lewis, Chen, Safari, Baek, Konhauser, Alessi (CR1) 2018; 52
Kumar, Kumar, Sharma, Naushad, Stadler, Ghfar, Dhiman, Saini (CR41) 2017; 165
Jeon, Lee, Baek (CR36) 2017; 77
Guo, Liu, Xie, Liu, Wang, Wang (CR27) 2022; 642
Kang, Shi, Li, Eqi, Liu, Zheng, Huang (CR37) 2022; 10
Zou, Hu, Shen, Yao, Tang, Zhang, Wang, Hu, Zhao, Wang (CR117) 2022; 115
Welter, Leichtweis, Silvestri, Sanchez, Mejia, Carissimi (CR86) 2022; 901
Chen, Yu, Dong, Yuan, Gong, Lian, Cao, Li, Zhou, Hu, He, Zhu, Wang (CR14) 2022; 467
Azalok, Oladipo, Gazi (CR2) 2021; 405
Ouyang, Chen, Yan, Qian, Han, Chen (CR64) 2019; 370
Zhang, Song, Gu, Ma, Wei, Zhao, Wen, Jehan, Hu, Wang (CR107) 2019; 7
Wang, Lu, Wei, Fang, Wang (CR83) 2021; 36
Liu, Verma, Chen, Hu, Huang, Yang, Ma, Wang (CR55) 2022; 3
Li, Wang, Zhang, Liu, B, Chen G (CR46) 2020; 711
Cho, Yoon, Kwon, Biswas, Song (CR16) 2017; 229
Pointurier, Marie (CR68) 2013; 44
Wang, Shi, Yu, Pang, Qiu, Song, Fu, Hu, Wang (CR84) 2022; 242
Xiao, Lyu, Yang, Zhao, Wang, Tang (CR90) 2021; 103
Siara, Elvis, Harishkumar, Chellam (CR72) 2022; 145
Zhai, Dai, Guo, Zhou, Chen, Yang, Peng (CR102) 2020; 560
Zhang, Liu, Gao, Tan, Cai, Hu, Huang, Fang, Wang (CR111) 2022; 4
Navarathna, Dewage, Karunanayake, Farmer, Perez, Hassan, Mlsna, Pittman (CR62) 2020; 30
Dong, Ma, Gress, Harris, Li (CR17) 2014; 267
Liang, Xi, Tan, Meng, Hu, Wang (CR50) 2021; 3
Yao, Yang, Chen, Qiu, Hu, Wang (CR95) 2021; 273
Zhang, Wang, Li, Guo, Li, Zhu, Xie (CR103) 2017; 185
Liu, Ma, Zhuang, Hu, Chen, Liu, Wang (CR53) 2021; 51
Sutar, Patil, Jadhav (CR76) 2022; 209
Yu, Pang, Huang, Tang, Wang, Qiu, Chen, Yang, Song, Fu, Hu, Wang (CR99) 2021; 800
Chen, Wang, Han, Yang, Hu, Qiu, Zhong (CR11) 2021; 327
S Zhang (173_CR106) 2019; 248
Y Zhai (173_CR102) 2020; 560
C Liu (173_CR51) 2017; 2
X Liu (173_CR56) 2022; 9
C Zhao (173_CR114) 2021; 767
L Pi (173_CR67) 2015; 358
A Khataee (173_CR39) 2019; 498
T Wang (173_CR82) 2020; 389
X Zhang (173_CR104) 2018; 268
X Wei (173_CR85) 2021; 9
S Ye (173_CR96) 2019; 250
X Li (173_CR45) 2019; 487
M Hao (173_CR29) 2022; 67
HW Pang (173_CR65) 2019; 366
S Liang (173_CR49) 2019; 695
MF Gasim (173_CR23) 2022; 12
N Welter (173_CR86) 2022; 901
N Kumari (173_CR42) 2021; 302
CX Yang (173_CR93) 2021; 37
X Wang (173_CR80) 2019; 62
R Xiao (173_CR88) 2018; 208
Z Feng (173_CR22) 2021; 765
T Fazal (173_CR21) 2020; 390
EA Stefaniak (173_CR74) 2008; 381
G Tan (173_CR78) 2019; 26
Q Li (173_CR47) 2021; 792
X Li (173_CR46) 2020; 711
JR Kim (173_CR40) 2016; 180
Y Xiao (173_CR90) 2021; 103
P Jeon (173_CR36) 2017; 77
AU Rajapaksha (173_CR71) 2018; 625
DW Cho (173_CR16) 2017; 229
C Zheng (173_CR116) 2021; 407
TT Cao (173_CR7) 2021; 559
A Kumar (173_CR41) 2017; 165
HS Hu (173_CR31) 2022; 17
M Fang (173_CR20) 2021; 2021
S Siara (173_CR72) 2022; 145
J Yu (173_CR97) 2018; 195
M Chen (173_CR10) 2019; 493
K Talukdar (173_CR77) 2020; 398
Y Cai (173_CR6) 2022; 310
X Liu (173_CR53) 2021; 51
W Huang (173_CR35) 2022; 45
D Xia (173_CR87) 2016; 377
M Qiu (173_CR69) 2021; 3
K Li (173_CR44) 2019; 243
S Yu (173_CR101) 2022; 811
Y Zhang (173_CR111) 2022; 4
L Lu (173_CR57) 2019; 222
M Karpuraranjith (173_CR38) 2021; 326
S Mandal (173_CR59) 2017; 186
Y Xiao (173_CR89) 2020; 384
S Silvestri (173_CR73) 2020; 95
G Cheng (173_CR15) 2021; 66
L Liang (173_CR50) 2021; 3
N Zhao (173_CR113) 2018; 260
L Wang (173_CR83) 2021; 36
MC Ndoun (173_CR63) 2021; 3
F Pointurier (173_CR68) 2013; 44
F Yu (173_CR100) 2021; 415
X Zhang (173_CR105) 2018; 256
D Ouyang (173_CR64) 2019; 370
S Yu (173_CR99) 2021; 800
T Chen (173_CR14) 2022; 467
S Li (173_CR48) 2021; 64
P Zhang (173_CR108) 2020; 2
XL Dong (173_CR17) 2014; 267
XL Liu (173_CR55) 2022; 3
S Wang (173_CR84) 2022; 242
H Peng (173_CR66) 2021; 172
S Zhang (173_CR109) 2021; 291
S Chen (173_CR9) 2019; 359
RR Liu (173_CR54) 2021; 28
H Yang (173_CR92) 2021; 33
F Kang (173_CR37) 2022; 10
G Fang (173_CR19) 2017; 214
T Wang (173_CR81) 2019; 40
SA Baig (173_CR3) 2014; 71
Q Hu (173_CR32) 2018; 70
X Cai (173_CR4) 2018; 93
CM Navarathna (173_CR62) 2020; 30
L Yao (173_CR95) 2021; 273
J Fan (173_CR18) 2020; 398
P Gholami (173_CR25) 2020; 382
Z Sun (173_CR75) 2019; 53
M Qiu (173_CR70) 2022; 4
M Hao (173_CR28) 2021; 760
Z Chen (173_CR13) 2022; 122
L Lu (173_CR58) 2020; 2
C Chen (173_CR12) 2021; 210
LL Yan (173_CR91) 2015; 3
X Liu (173_CR52) 2021; 2
H Zhang (173_CR103) 2017; 185
Z Zhang (173_CR110) 2021; 11
J Yang (173_CR94) 2021; 410
PT Tho (173_CR79) 2021; 11
G Chen (173_CR11) 2021; 327
A Geng (173_CR24) 2020; 250
KA Azalok (173_CR2) 2021; 405
C Li (173_CR43) 2018; 79
S Sutar (173_CR76) 2022; 209
S Chandra (173_CR8) 2021; 9
M Hao (173_CR30) 2022; 4
Y Guo (173_CR27) 2022; 642
W Mao (173_CR60) 2021; 263
B Hu (173_CR33) 2020; 2
Y Yu (173_CR98) 2020; 297
Q Huang (173_CR34) 2019; 1
MG Goncalves (173_CR26) 2020; 748
TD Minh (173_CR61) 2020; 394
S Zhang (173_CR107) 2019; 7
S Zhang (173_CR112) 2022; 32
Y Cai (173_CR5) 2022; 643
Y Zou (173_CR117) 2022; 115
Y Zheng (173_CR115) 2019; 1
MS Alam (173_CR1) 2018; 52
References_xml – volume: 4
  start-page: 2294
  year: 2022
  end-page: 2307
  ident: CR30
  article-title: Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater
  publication-title: CCS Chem
– volume: 760
  year: 2021
  ident: CR28
  article-title: Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis
  publication-title: Sci Total Environ
– volume: 172
  year: 2021
  ident: CR66
  article-title: Synthesis of ZnFe O /B, N-codoped biochar via microwave-assisted pyrolysis for enhancing adsorption-photocatalytic elimination of tetracycline hydrochloride
  publication-title: Ind Crop Prod
– volume: 248
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR106
  article-title: Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C N : mechanism exploration from both experimental and DFT studies
  publication-title: Appl Catal B Environ
– volume: 358
  start-page: 231
  year: 2015
  end-page: 239
  ident: CR67
  article-title: g-C N Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants
  publication-title: Appl Surf Sci
– volume: 62
  start-page: 933
  year: 2019
  end-page: 967
  ident: CR80
  article-title: Synthesis of novel nanomaterials and their application in efficient removal of radionuclides
  publication-title: Sci China Chem
– volume: 3
  start-page: 89
  year: 2021
  end-page: 104
  ident: CR63
  article-title: Adsorption of pharmaceuticals from aqueous solutions using biochar derived from cotton gin waste and guayule bagasse
  publication-title: Biochar
– volume: 52
  start-page: 13057
  year: 2018
  end-page: 13067
  ident: CR1
  article-title: Mechanisms of the removal of U(VI) from aqueous solution using biochar: a combined spectroscopic and modeling approach
  publication-title: Environ Sci Technol
– volume: 222
  start-page: 391
  year: 2019
  end-page: 398
  ident: CR57
  article-title: A novel TiO /biochar composite catalysts for photocatalytic degradation of methyl orange
  publication-title: Chemosphere
– volume: 12
  start-page: 210
  year: 2022
  ident: CR23
  article-title: Application of biochar as functional material for remediation of organic pollutants in water: an overview
  publication-title: Catalysts
– volume: 165
  start-page: 431
  year: 2017
  end-page: 451
  ident: CR41
  article-title: Sustainable nano-hybrids of magnetic biochar supported g-C N /FeVO for solar powered degradation of noxious pollutants-Synergism of adsorption, photocatalysis & photo-ozonation
  publication-title: J Clean Prod
– volume: 67
  start-page: 924
  year: 2022
  end-page: 932
  ident: CR29
  article-title: Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous TcO
  publication-title: Sci Bull
– volume: 302
  year: 2021
  ident: CR42
  article-title: Bioderived carbon supported bismuth molybdate nanocomposites as bifunctional catalysts for removal of organic pollutants: adsorption and photocatalytic studies
  publication-title: Mater Lett
– volume: 9
  start-page: 2201735
  year: 2022
  ident: CR56
  article-title: Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime−functionalized In−N−C catalyst
  publication-title: Adv Sci
– volume: 4
  year: 2022
  ident: CR111
  article-title: Application of MOFs and COFs for photocatalysis in CO reduction, H generation, and environmental treatment
  publication-title: EnergyChem
– volume: 493
  start-page: 1361
  year: 2019
  end-page: 1367
  ident: CR10
  article-title: Solvothermal synthesis of biochar@ZnFe O /BiOBr Z-scheme heterojunction for efficient photocatalytic ciprofloxacin degradation under visible light
  publication-title: Appl Surf Sci
– volume: 415
  year: 2021
  ident: CR100
  article-title: ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue
  publication-title: J Hazard Mater
– volume: 642
  year: 2022
  ident: CR27
  article-title: 3D ZnO modified biochar-based hydrogels for removing U(VI) in aqueous solution
  publication-title: Colloid Surf A
– volume: 180
  start-page: 94
  year: 2016
  end-page: 101
  ident: CR40
  article-title: Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO photocatalyst
  publication-title: J Environ Manag
– volume: 765
  year: 2021
  ident: CR22
  article-title: Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: a review
  publication-title: Sci Total Environ
– volume: 214
  start-page: 34
  year: 2017
  end-page: 45
  ident: CR19
  article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation
  publication-title: Appl Catal B Environ
– volume: 77
  start-page: 244
  year: 2017
  end-page: 249
  ident: CR36
  article-title: Adsorption and photocatalytic activity of biochar with graphitic carbon nitride (g-C N )
  publication-title: J Taiwan Inst Chem Eng
– volume: 26
  start-page: 21609
  year: 2019
  end-page: 21618
  ident: CR78
  article-title: Comparison of biochar- and activated carbon-supported zerovalent iron for the removal of As(IV) and Se(VI): influence of pH, ionic strength and natural organic matter
  publication-title: Environ Sci Poll Res
– volume: 625
  start-page: 1567
  year: 2018
  end-page: 1573
  ident: CR71
  article-title: Removal of hexavalent chromium in aqueous solutions using biochar: chemical and spectroscopic investigations
  publication-title: Sci Total Environ
– volume: 390
  year: 2020
  ident: CR21
  article-title: Integrating adsorption and photocatalysis: a cost effective strategy for textile wastewater treatment using hybrid biochar-TiO composite
  publication-title: J Hazard Mater
– volume: 2021
  start-page: 9794329
  year: 2021
  ident: CR20
  article-title: Recent progress on metal-enhanced photocatalysis: a review on the mechanism
  publication-title: Research
– volume: 243
  start-page: 386
  year: 2019
  end-page: 396
  ident: CR44
  article-title: Removal of Cr(VI) from water by a biochar-coupled g-C N nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems
  publication-title: Appl Catal B Environ
– volume: 711
  year: 2020
  ident: CR46
  article-title: Preparation and application of magnetic biochar in water treatment: a critical review
  publication-title: Sci Total Environ
– volume: 498
  year: 2019
  ident: CR39
  article-title: Cu O-CuO@biochar composite: synthesis, characterization and its efficient photocatalytic performance
  publication-title: Appl Surf Sci
– volume: 115
  start-page: 190
  year: 2022
  end-page: 214
  ident: CR117
  article-title: Application of aluminosilicate clay mineral-based composites in photocatalysis
  publication-title: J Environ Sci
– volume: 36
  start-page: 871
  year: 2021
  end-page: 876
  ident: CR83
  article-title: Application of improved grey model in photocatalytic data prediction
  publication-title: J Inorg Mater
– volume: 103
  start-page: 93
  year: 2021
  end-page: 107
  ident: CR90
  article-title: Graphitic carbon nitride/biochar composite synthesized by a facile ball-milling method for the adsorption and photocatalytic degradation of enrofloxacin
  publication-title: J Environ Sci
– volume: 95
  start-page: 2723
  year: 2020
  end-page: 2729
  ident: CR73
  article-title: Preparation of TiO supported on MDF biochar for simultaneous removal of methylene blue by adsorption and photocatalysis
  publication-title: J Chem Technol Biotechnol
– volume: 1
  start-page: 45
  year: 2019
  end-page: 73
  ident: CR34
  article-title: Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review
  publication-title: Biochar
– volume: 748
  start-page: 141381
  year: 2020
  ident: CR26
  article-title: Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange
  publication-title: Sci Total Environ
– volume: 792
  year: 2021
  ident: CR47
  article-title: Removal of organic compounds by nanoscale zero-valent iron and its composites
  publication-title: Sci Total Environ
– volume: 28
  start-page: 55176
  year: 2021
  end-page: 55185
  ident: CR54
  article-title: Reductive and adsorptive elimination of U(VI) ions in aqueous solution by SFeS@biochar composites
  publication-title: Environ Sci Poll Res
– volume: 260
  start-page: 294
  year: 2018
  end-page: 301
  ident: CR113
  article-title: Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars
  publication-title: Biores Technol
– volume: 297
  year: 2020
  ident: CR98
  article-title: Unraveling sorption of Cr (VI) from aqueous solution by FeCl3 and ZnCl2- modified corn stalks biochar: implicit mechanism and application
  publication-title: Biores Technol
– volume: 122
  start-page: 1
  year: 2022
  end-page: 13
  ident: CR13
  article-title: Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction
  publication-title: J Environ Sci
– volume: 1
  start-page: 89
  year: 2019
  end-page: 96
  ident: CR115
  article-title: Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation
  publication-title: Biochar
– volume: 45
  year: 2022
  ident: CR35
  article-title: nZVI-biochar derived from Fe O -loaded rabbit manure for activation of peroxymonosulfate to degrade sulfamethoxazole
  publication-title: J Water Proc Eng
– volume: 487
  start-page: 1262
  year: 2019
  end-page: 1270
  ident: CR45
  article-title: Preparation of a novel composite comprising biochar skeleton and “chrysanthemum” g-C N for enhanced visible light photocatalytic degradation of formaldehyde
  publication-title: Appl Surf Sci
– volume: 195
  start-page: 632
  year: 2018
  end-page: 640
  ident: CR97
  article-title: Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth
  publication-title: Chemosphere
– volume: 93
  start-page: 783
  year: 2018
  end-page: 791
  ident: CR4
  article-title: Titanium dioxide-coated biochar composites as adsorptive and photocatalytic degradation materials for the removal of aqueous organic pollutants
  publication-title: J Chem Technol Biotechnol
– volume: 185
  start-page: 351
  year: 2017
  end-page: 360
  ident: CR103
  article-title: TiO supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices
  publication-title: Chemosphere
– volume: 767
  year: 2021
  ident: CR114
  article-title: Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: a review
  publication-title: Sci Total Environ
– volume: 559
  year: 2021
  ident: CR7
  article-title: Facile synthesis of Co(II)-BiOCl@biochar nanosheets for photocatalytic degradation of p-nitrophenol under vacuum ultraviolet (VUV) irradiation
  publication-title: Appl Surf Sci
– volume: 2
  start-page: 17007
  year: 2017
  ident: CR51
  article-title: A half-wave rectified alternating current electrochemical method for uranium extraction from seawater
  publication-title: Nat Energy
– volume: 310
  year: 2022
  ident: CR6
  article-title: Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process
  publication-title: Appl Catal B: Environ
– volume: 359
  start-page: 119
  year: 2019
  end-page: 129
  ident: CR9
  article-title: Robust three-dimensional g-C N @cellulose aerogel enhanced by cross-linked polyester fibers for simultaneous removal of hexavalent chromium and antibiotics
  publication-title: Chem Eng J
– volume: 394
  year: 2020
  ident: CR61
  article-title: Biochar based catalysts for the abatement of emerging pollutants: a review
  publication-title: Chem Eng J
– volume: 811
  year: 2022
  ident: CR101
  article-title: MXenes as emerging nanomaterials in water purification and environmental remediation
  publication-title: Sci Total Environ
– volume: 405
  year: 2021
  ident: CR2
  article-title: UV-light-induced photocatalytic performance of reusable MnFe-LDO–biochar for tetracycline removal in water
  publication-title: J Photochem Photobiol a: Chem
– volume: 410
  year: 2021
  ident: CR94
  article-title: Photochemical reactivity of nitrogen-doped biochars under simulated sunlight irradiation: generation of singlet oxygen
  publication-title: J Hazard Mater
– volume: 79
  start-page: 625
  year: 2018
  end-page: 637
  ident: CR43
  article-title: Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb(II), Cu(II) and Cr(VI) removal
  publication-title: Waste Manage
– volume: 2
  start-page: 329
  year: 2020
  end-page: 341
  ident: CR108
  article-title: Sorption and degradation of imidacloprid and clothianidin in Chinese paddy soil and red soil amended with biochars
  publication-title: Biochar
– volume: 384
  year: 2020
  ident: CR89
  article-title: Effects of ball milling on the photochemistry of biochar: enrofloxacin degradation and possible mechanisms
  publication-title: Chem Eng J
– volume: 326
  year: 2021
  ident: CR38
  article-title: Magnetically recyclable magnetic biochar graphitic carbon nitride nanoarchitectures for highly efficient charge separation and stable photocatalytic activity under visible-light irradiation
  publication-title: J Molecule Liquid
– volume: 3
  start-page: 117
  year: 2021
  end-page: 123
  ident: CR69
  article-title: Challenges of organic pollutant photocatalysis by biochar-based catalysts
  publication-title: Biochar
– volume: 398
  year: 2020
  ident: CR77
  article-title: Novel Z-scheme Ag PO /Fe O -activated biochar photocatalyst with enhanced visible-light catalytic performance toward degradation of bisphenol A
  publication-title: J Hazard Mater
– volume: 382
  year: 2020
  ident: CR25
  article-title: Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@ biochar nanocomposite
  publication-title: J Hazard Mater
– volume: 250
  start-page: 78
  year: 2019
  end-page: 88
  ident: CR96
  article-title: Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light
  publication-title: Appl Catal B Environ
– volume: 9
  start-page: 313
  year: 2021
  ident: CR8
  article-title: Biochar-supported TiO -based nanocomposites for the photocatalytic degradation of sulfamethoxazole in water-a review
  publication-title: Toxic
– volume: 381
  start-page: 278
  year: 2008
  end-page: 283
  ident: CR74
  article-title: Recognition of uranium oxides in soil particulate matter by means of μ-Raman spectrometry
  publication-title: J Nucl Mater
– volume: 70
  start-page: 217
  year: 2018
  end-page: 225
  ident: CR32
  article-title: Mechanistic insights into sequestration of U(VI) toward magnetic biochar: batch, XPS and EXAFS techniques
  publication-title: J Environ Sci
– volume: 643
  year: 2022
  ident: CR5
  article-title: Application of covalent organic frameworks in environmental pollution management
  publication-title: Appl Catal A General
– volume: 32
  start-page: 2204175
  year: 2022
  ident: CR112
  article-title: Molybdenum (VI)-oxo clusters incorporation activates g-C N with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance
  publication-title: Adv Funct Mater
– volume: 901
  year: 2022
  ident: CR86
  article-title: Preparation of a new green composite based on chitin biochar and ZnFe O for photo-Fenton degradation of Rhodamine B
  publication-title: J Hazard Mater
– volume: 10
  year: 2022
  ident: CR37
  article-title: Honeycomb like CdS/sulphur-modified biochar composites with enhanced adsorption-photocatalytic capacity for effective removal of rhodamine B
  publication-title: J Environ Chem Eng
– volume: 229
  start-page: 942
  year: 2017
  end-page: 949
  ident: CR16
  article-title: Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl -pretreated spent coffee ground
  publication-title: Environ Poll
– volume: 2
  start-page: 47
  year: 2020
  end-page: 64
  ident: CR33
  article-title: Efficient elimination of organic and inorganic pollutants by biochar-based nanomaterials
  publication-title: Biochar
– volume: 273
  year: 2021
  ident: CR95
  article-title: Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater
  publication-title: Chemosphere
– volume: 7
  start-page: 5552
  year: 2019
  end-page: 5560
  ident: CR107
  article-title: Visible-light-driven activation of persulfate over cyano and hydroxyl group co-modified mesoporous g-C N for boosting bisphenol A degradation
  publication-title: J Mater Chem A
– volume: 407
  year: 2021
  ident: CR116
  article-title: Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species
  publication-title: J Hazard Mater
– volume: 44
  start-page: 1753
  year: 2013
  end-page: 1759
  ident: CR68
  article-title: Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uraniu compounds in micrometer-size particles
  publication-title: J Raman Spectrosc
– volume: 53
  start-page: 10342
  year: 2019
  end-page: 10351
  ident: CR75
  article-title: Catalytic ozonation of ketoprofen with in situ N-doped carbon: a novel synergetic mechanism of hydroxyl radical oxidation and an intra-electron-transfer nonradical reaction
  publication-title: Environ Sci Technol
– volume: 560
  start-page: 111
  year: 2020
  end-page: 121
  ident: CR102
  article-title: Novel biochar@CoFe O /Ag PO photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation
  publication-title: J Colloid Interface Sci
– volume: 208
  start-page: 408
  year: 2018
  end-page: 416
  ident: CR88
  article-title: Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite
  publication-title: Chemosphere
– volume: 40
  start-page: 886
  year: 2019
  end-page: 894
  ident: CR81
  article-title: Surface plasmon resonance effect of Ag nanoparticles for improving the photocatalytic performance of biochar quantum-dot/Bi Ti O nanosheets
  publication-title: Chinese J Catalysis
– volume: 11
  start-page: 18881
  year: 2021
  end-page: 188897
  ident: CR79
  article-title: Enhanced simultaneous adsorption of As(III), Cd(II), Pb(II)and Cr(VI) ions from aqueous solution using cassava root husk-derived biochar loaded with ZnO nanoparticles
  publication-title: RSC Adv
– volume: 64
  start-page: 1323
  year: 2021
  end-page: 1331
  ident: CR48
  article-title: Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst
  publication-title: Sci China Chem
– volume: 33
  start-page: 2106621
  year: 2021
  ident: CR92
  article-title: Functionalized iron−nitrogen−carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater
  publication-title: Adv Mater
– volume: 66
  start-page: 1996
  year: 2021
  end-page: 2001
  ident: CR15
  article-title: Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity
  publication-title: Sci Bull
– volume: 366
  start-page: 368
  year: 2019
  end-page: 377
  ident: CR65
  article-title: Adsorptive and reductive removal of U(VI) by dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater
  publication-title: Chem Eng J
– volume: 17
  year: 2022
  ident: CR31
  article-title: Preparation of N-doped TiO /biochar composite catalysts and its application for photoelectrochemical degradation of cephalosporin antibiotics
  publication-title: Int J Electrochem Sci
– volume: 250
  year: 2020
  ident: CR24
  article-title: Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal
  publication-title: Chemosphere
– volume: 256
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR105
  article-title: Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood
  publication-title: Biores Technol
– volume: 291
  year: 2021
  ident: CR109
  article-title: Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review
  publication-title: Environ Poll
– volume: 209
  year: 2022
  ident: CR76
  article-title: Recent advances in biochar technology for textile dyes wastewater remediation: a review
  publication-title: Environ Res
– volume: 467
  year: 2022
  ident: CR14
  article-title: Advanced photocatalysts for uranium extraction: elaborate design and future perspectives
  publication-title: Coord Chem Rev
– volume: 695
  year: 2019
  ident: CR49
  article-title: One-pot solvothermal synthesis of magnetic biochar from waste biomass: formation mechanism and efficient adsorption of Cr(VI) in an aqueous solution
  publication-title: Sci Total Environ
– volume: 30
  start-page: 214
  year: 2020
  end-page: 229
  ident: CR62
  article-title: Rhodamine B adsorptive removal and photocatalytic degradation on MIL-53-Fe MOF/magnetic magnetite/biochar composites
  publication-title: J Inorg Organometal Mater
– volume: 267
  start-page: 62
  year: 2014
  end-page: 70
  ident: CR17
  article-title: Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar
  publication-title: J Hazard Mater
– volume: 9
  year: 2021
  ident: CR85
  article-title: Porous biochar supported Ag PO photocatalyst for “two-in-one” synergistic adsorptive-photocatalytic removal of methylene blue under visible light irradiation
  publication-title: J Environ Chem Eng
– volume: 800
  year: 2021
  ident: CR99
  article-title: Recent advances in metal-organic frameworks membranes for water treatment: a review
  publication-title: Sci Total Environ
– volume: 51
  start-page: 751
  year: 2021
  end-page: 790
  ident: CR53
  article-title: Recent developments of doped g-C N photocatalysts for the degradation of organic pollutants
  publication-title: Critical Rev Environ Sci Technol
– volume: 210
  start-page: 393
  year: 2021
  end-page: 401
  ident: CR12
  article-title: Enhanced U(VI) elimination from aqueous solution by FeS@biochar composites
  publication-title: Desalination Water Treat
– volume: 186
  start-page: 277
  year: 2017
  end-page: 284
  ident: CR59
  article-title: Enhancement of chromate reduction in soils by surface modified biochar
  publication-title: J Environ Manag
– volume: 370
  start-page: 614
  year: 2019
  end-page: 624
  ident: CR64
  article-title: Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: Important role of biochar defect structures
  publication-title: Chem Eng J
– volume: 11
  start-page: 526
  year: 2021
  ident: CR110
  article-title: Photocatalytic activity of magnetic nano-β-FeOOH/Fe O /biochar composites for the enhanced degradation of methyl orange under visible light
  publication-title: Nanomaterials
– volume: 3
  year: 2022
  ident: CR55
  article-title: Metal-organic framework nanocrystals derived hollow porous materials: synthetic strategies and emerging applications
  publication-title: Innovation
– volume: 2
  start-page: 1
  year: 2020
  end-page: 31
  ident: CR58
  article-title: Application of biochar-based materials in environmental remediation: from multi-level structures to specific devices
  publication-title: Biochar
– volume: 37
  start-page: 9253
  year: 2021
  end-page: 9263
  ident: CR93
  article-title: Preparation and characterization of phosphoric acid-modified biochar nanomaterials with highly efficient adsorption and photodegradation ability
  publication-title: Langmuir
– volume: 327
  year: 2021
  ident: CR11
  article-title: Highly efficient removal of U(VI) by a novel biochar supported with FeS nanoparticles and chitosan composites
  publication-title: J Mol Liq
– volume: 398
  year: 2020
  ident: CR18
  article-title: One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: arsenic immobilization associated with iron transformation
  publication-title: J Hazard Mater
– volume: 145
  year: 2022
  ident: CR72
  article-title: ZnAl O supported on lychee-biochar applied to ibuprofen photodegradation
  publication-title: Mater Res Bull
– volume: 71
  start-page: 299
  year: 2014
  end-page: 310
  ident: CR3
  article-title: Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions
  publication-title: Biomass Bioenergy
– volume: 268
  start-page: 149
  year: 2018
  end-page: 157
  ident: CR104
  article-title: Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: batch experiment, kinetic and mechanism studies
  publication-title: Biores Technol
– volume: 2
  year: 2021
  ident: CR52
  article-title: Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions
  publication-title: Innovation
– volume: 242
  year: 2022
  ident: CR84
  article-title: Effect of shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite
  publication-title: J Environ Radioact
– volume: 3
  start-page: 125
  year: 2015
  end-page: 132
  ident: CR91
  article-title: Magnetic biochar decorated with ZnS nanocrytals for Pb(II) removal
  publication-title: ACS Sustain Chem Eng
– volume: 263
  year: 2021
  ident: CR60
  article-title: Facile assembled N, S-codoped corn straw biochar loaded Bi WO with the enhanced electron-rich feature for the efficient photocatalytic removal of ciprofloxacin and Cr(VI)
  publication-title: Chemosphere
– volume: 4
  start-page: 19
  year: 2022
  ident: CR70
  article-title: Biochar for the removal of contaminants from soil and water: a review
  publication-title: Biochar
– volume: 389
  year: 2020
  ident: CR82
  article-title: Novel Bi WO loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(VI)
  publication-title: J Hazard Mater
– volume: 3
  start-page: 255
  year: 2021
  end-page: 281
  ident: CR50
  article-title: Review of organic pollutants and heavy metals removal by biochar and biochar-based composites
  publication-title: Biochar
– volume: 377
  start-page: 361
  year: 2016
  end-page: 369
  ident: CR87
  article-title: ZnCl2-activated biochar from biogas residue facilitates aqueous As(III) removal
  publication-title: Appl Surf Sci
– volume: 382
  year: 2020
  ident: 173_CR25
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121070
– volume: 37
  start-page: 9253
  year: 2021
  ident: 173_CR93
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c01468
– volume: 33
  start-page: 2106621
  year: 2021
  ident: 173_CR92
  publication-title: Adv Mater
  doi: 10.1002/adma.202106621
– volume: 711
  year: 2020
  ident: 173_CR46
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.134847
– volume: 250
  year: 2020
  ident: 173_CR24
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126291
– volume: 95
  start-page: 2723
  year: 2020
  ident: 173_CR73
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.6279
– volume: 9
  year: 2021
  ident: 173_CR85
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2021.106753
– volume: 52
  start-page: 13057
  year: 2018
  ident: 173_CR1
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b01715
– volume: 248
  start-page: 1
  year: 2019
  ident: 173_CR106
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2019.02.008
– volume: 901
  year: 2022
  ident: 173_CR86
  publication-title: J Hazard Mater
– volume: 3
  year: 2022
  ident: 173_CR55
  publication-title: Innovation
– volume: 3
  start-page: 125
  year: 2015
  ident: 173_CR91
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/sc500619r
– volume: 381
  start-page: 278
  year: 2008
  ident: 173_CR74
  publication-title: J Nucl Mater
  doi: 10.1016/j.jnucmat.2008.08.036
– volume: 115
  start-page: 190
  year: 2022
  ident: 173_CR117
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2021.07.015
– volume: 1
  start-page: 45
  year: 2019
  ident: 173_CR34
  publication-title: Biochar
  doi: 10.1007/s42773-019-00006-5
– volume: 222
  start-page: 391
  year: 2019
  ident: 173_CR57
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.132
– volume: 760
  year: 2021
  ident: 173_CR28
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.143333
– volume: 3
  start-page: 117
  year: 2021
  ident: 173_CR69
  publication-title: Biochar
  doi: 10.1007/s42773-021-00098-y
– volume: 210
  start-page: 393
  year: 2021
  ident: 173_CR12
  publication-title: Desalination Water Treat
  doi: 10.5004/dwt.2021.26580
– volume: 390
  year: 2020
  ident: 173_CR21
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121623
– volume: 377
  start-page: 361
  year: 2016
  ident: 173_CR87
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.03.109
– volume: 695
  year: 2019
  ident: 173_CR49
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.133886
– volume: 394
  year: 2020
  ident: 173_CR61
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.124856
– volume: 2
  year: 2021
  ident: 173_CR52
  publication-title: Innovation
– volume: 291
  year: 2021
  ident: 173_CR109
  publication-title: Environ Poll
  doi: 10.1016/j.envpol.2021.118076
– volume: 180
  start-page: 94
  year: 2016
  ident: 173_CR40
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2016.05.016
– volume: 208
  start-page: 408
  year: 2018
  ident: 173_CR88
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.05.175
– volume: 45
  year: 2022
  ident: 173_CR35
  publication-title: J Water Proc Eng
  doi: 10.1016/j.jwpe.2021.102470
– volume: 4
  start-page: 2294
  year: 2022
  ident: 173_CR30
  publication-title: CCS Chem
  doi: 10.31635/ccschem.022.202201897
– volume: 64
  start-page: 1323
  year: 2021
  ident: 173_CR48
  publication-title: Sci China Chem
  doi: 10.1007/s11426-021-9987-1
– volume: 214
  start-page: 34
  year: 2017
  ident: 173_CR19
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2017.05.036
– volume: 30
  start-page: 214
  year: 2020
  ident: 173_CR62
  publication-title: J Inorg Organometal Mater
  doi: 10.1007/s10904-019-01322-w
– volume: 765
  year: 2021
  ident: 173_CR22
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.142673
– volume: 32
  start-page: 2204175
  year: 2022
  ident: 173_CR112
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202204175
– volume: 229
  start-page: 942
  year: 2017
  ident: 173_CR16
  publication-title: Environ Poll
  doi: 10.1016/j.envpol.2017.07.079
– volume: 811
  year: 2022
  ident: 173_CR101
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.152280
– volume: 2
  start-page: 47
  year: 2020
  ident: 173_CR33
  publication-title: Biochar
  doi: 10.1007/s42773-020-00044-4
– volume: 250
  start-page: 78
  year: 2019
  ident: 173_CR96
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2019.03.004
– volume: 559
  year: 2021
  ident: 173_CR7
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.149938
– volume: 302
  year: 2021
  ident: 173_CR42
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2021.130455
– volume: 51
  start-page: 751
  year: 2021
  ident: 173_CR53
  publication-title: Critical Rev Environ Sci Technol
  doi: 10.1080/10643389.2020.1734433
– volume: 165
  start-page: 431
  year: 2017
  ident: 173_CR41
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.07.117
– volume: 3
  start-page: 89
  year: 2021
  ident: 173_CR63
  publication-title: Biochar
  doi: 10.1007/s42773-020-00070-2
– volume: 493
  start-page: 1361
  year: 2019
  ident: 173_CR10
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.04.160
– volume: 273
  year: 2021
  ident: 173_CR95
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128576
– volume: 62
  start-page: 933
  year: 2019
  ident: 173_CR80
  publication-title: Sci China Chem
  doi: 10.1007/s11426-019-9492-4
– volume: 186
  start-page: 277
  year: 2017
  ident: 173_CR59
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2016.05.034
– volume: 4
  year: 2022
  ident: 173_CR111
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2022.100078
– volume: 53
  start-page: 10342
  year: 2019
  ident: 173_CR75
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b02745
– volume: 44
  start-page: 1753
  year: 2013
  ident: 173_CR68
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.4392
– volume: 1
  start-page: 89
  year: 2019
  ident: 173_CR115
  publication-title: Biochar
  doi: 10.1007/s42773-019-00007-4
– volume: 487
  start-page: 1262
  year: 2019
  ident: 173_CR45
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.05.195
– volume: 767
  year: 2021
  ident: 173_CR114
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145305
– volume: 643
  year: 2022
  ident: 173_CR5
  publication-title: Appl Catal A General
  doi: 10.1016/j.apcata.2022.118733
– volume: 79
  start-page: 625
  year: 2018
  ident: 173_CR43
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2018.08.035
– volume: 122
  start-page: 1
  year: 2022
  ident: 173_CR13
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2021.10.003
– volume: 267
  start-page: 62
  year: 2014
  ident: 173_CR17
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2013.12.027
– volume: 70
  start-page: 217
  year: 2018
  ident: 173_CR32
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2018.01.013
– volume: 243
  start-page: 386
  year: 2019
  ident: 173_CR44
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2018.10.052
– volume: 2021
  start-page: 9794329
  year: 2021
  ident: 173_CR20
  publication-title: Research
  doi: 10.34133/2021/9794329
– volume: 415
  year: 2021
  ident: 173_CR100
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125511
– volume: 28
  start-page: 55176
  year: 2021
  ident: 173_CR54
  publication-title: Environ Sci Poll Res
  doi: 10.1007/s11356-021-14835-0
– volume: 17
  year: 2022
  ident: 173_CR31
  publication-title: Int J Electrochem Sci
  doi: 10.20964/2022.03.28
– volume: 389
  year: 2020
  ident: 173_CR82
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121827
– volume: 405
  year: 2021
  ident: 173_CR2
  publication-title: J Photochem Photobiol a: Chem
  doi: 10.1016/j.jphotochem.2020.112976
– volume: 40
  start-page: 886
  year: 2019
  ident: 173_CR81
  publication-title: Chinese J Catalysis
  doi: 10.1016/S1872-2067(19)63330-9
– volume: 185
  start-page: 351
  year: 2017
  ident: 173_CR103
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.07.025
– volume: 310
  year: 2022
  ident: 173_CR6
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2022.121343
– volume: 410
  year: 2021
  ident: 173_CR94
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124547
– volume: 384
  year: 2020
  ident: 173_CR89
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.123311
– volume: 7
  start-page: 5552
  year: 2019
  ident: 173_CR107
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA00339H
– volume: 792
  year: 2021
  ident: 173_CR47
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.148546
– volume: 11
  start-page: 18881
  year: 2021
  ident: 173_CR79
  publication-title: RSC Adv
  doi: 10.1039/D1RA01599K
– volume: 625
  start-page: 1567
  year: 2018
  ident: 173_CR71
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.12.195
– volume: 370
  start-page: 614
  year: 2019
  ident: 173_CR64
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.03.235
– volume: 268
  start-page: 149
  year: 2018
  ident: 173_CR104
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2018.07.125
– volume: 297
  year: 2020
  ident: 173_CR98
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2019.122466
– volume: 2
  start-page: 17007
  year: 2017
  ident: 173_CR51
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2017.7
– volume: 467
  year: 2022
  ident: 173_CR14
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2022.214615
– volume: 11
  start-page: 526
  year: 2021
  ident: 173_CR110
  publication-title: Nanomaterials
  doi: 10.3390/nano11020526
– volume: 326
  year: 2021
  ident: 173_CR38
  publication-title: J Molecule Liquid
  doi: 10.1016/j.molliq.2021.115315
– volume: 209
  year: 2022
  ident: 173_CR76
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.112841
– volume: 71
  start-page: 299
  year: 2014
  ident: 173_CR3
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.09.027
– volume: 800
  year: 2021
  ident: 173_CR99
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.149662
– volume: 498
  year: 2019
  ident: 173_CR39
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.143846
– volume: 4
  start-page: 19
  year: 2022
  ident: 173_CR70
  publication-title: Biochar
  doi: 10.1007/s42773-022-00146-1
– volume: 195
  start-page: 632
  year: 2018
  ident: 173_CR97
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.128
– volume: 398
  year: 2020
  ident: 173_CR18
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.122901
– volume: 12
  start-page: 210
  year: 2022
  ident: 173_CR23
  publication-title: Catalysts
  doi: 10.3390/catal12020210
– volume: 398
  year: 2020
  ident: 173_CR77
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123025
– volume: 263
  year: 2021
  ident: 173_CR60
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127988
– volume: 366
  start-page: 368
  year: 2019
  ident: 173_CR65
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.02.098
– volume: 67
  start-page: 924
  year: 2022
  ident: 173_CR29
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2022.02.012
– volume: 172
  year: 2021
  ident: 173_CR66
  publication-title: Ind Crop Prod
  doi: 10.1016/j.indcrop.2021.114066
– volume: 327
  year: 2021
  ident: 173_CR11
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2020.114807
– volume: 748
  start-page: 141381
  year: 2020
  ident: 173_CR26
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.141381
– volume: 260
  start-page: 294
  year: 2018
  ident: 173_CR113
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2018.03.116
– volume: 3
  start-page: 255
  year: 2021
  ident: 173_CR50
  publication-title: Biochar
  doi: 10.1007/s42773-021-00101-6
– volume: 560
  start-page: 111
  year: 2020
  ident: 173_CR102
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2019.08.065
– volume: 36
  start-page: 871
  year: 2021
  ident: 173_CR83
  publication-title: J Inorg Mater
  doi: 10.15541/jim20200661
– volume: 77
  start-page: 244
  year: 2017
  ident: 173_CR36
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2017.05.010
– volume: 145
  year: 2022
  ident: 173_CR72
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2021.111530
– volume: 26
  start-page: 21609
  year: 2019
  ident: 173_CR78
  publication-title: Environ Sci Poll Res
  doi: 10.1007/s11356-019-05497-0
– volume: 358
  start-page: 231
  year: 2015
  ident: 173_CR67
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.08.176
– volume: 407
  year: 2021
  ident: 173_CR116
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124376
– volume: 66
  start-page: 1996
  year: 2021
  ident: 173_CR15
  publication-title: Sci Bull
– volume: 2
  start-page: 1
  year: 2020
  ident: 173_CR58
  publication-title: Biochar
  doi: 10.1007/s42773-020-00041-7
– volume: 103
  start-page: 93
  year: 2021
  ident: 173_CR90
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2020.10.006
– volume: 359
  start-page: 119
  year: 2019
  ident: 173_CR9
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.11.110
– volume: 10
  year: 2022
  ident: 173_CR37
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2021.106942
– volume: 242
  year: 2022
  ident: 173_CR84
  publication-title: J Environ Radioact
  doi: 10.1016/j.jenvrad.2021.106798
– volume: 2
  start-page: 329
  year: 2020
  ident: 173_CR108
  publication-title: Biochar
  doi: 10.1007/s42773-020-00060-4
– volume: 9
  start-page: 313
  year: 2021
  ident: 173_CR8
  publication-title: Toxic
  doi: 10.3390/toxics9110313
– volume: 642
  year: 2022
  ident: 173_CR27
  publication-title: Colloid Surf A
  doi: 10.1016/j.colsurfa.2022.128606
– volume: 256
  start-page: 1
  year: 2018
  ident: 173_CR105
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2018.01.145
– volume: 9
  start-page: 2201735
  year: 2022
  ident: 173_CR56
  publication-title: Adv Sci
  doi: 10.1002/advs.202201735
– volume: 93
  start-page: 783
  year: 2018
  ident: 173_CR4
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.5428
SSID ssj0002511639
ssib053820432
ssib046561560
Score 2.5883024
SecondaryResourceType review_article
Snippet The fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic...
Highlights 1. Adsorption-photocatalytic degradation of organic pollutants by biochar-based catalysts is summarized. 2. Adsorption-(photo)catalytic...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adsorption
Agriculture
Biochar-based composites
Ceramics
Composites
Earth and Environmental Science
Environment
Environmental Engineering/Biotechnology
Environmental pollutants
Fossil Fuels (incl. Carbon Capture)
Glass
Natural Materials
Photocatalytic degradation
Photocatalytic reduction
Renewable and Green Energy
Review
Soil Science & Conservation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJy4IBIjxUg4cQCxalzZNym0gpgkJTkzarUqaVExi67SWw_4LPxY77R4IaVyQ2kub1m3sxHZifybkOkwETyIhWORCyyIVOAZSEjGZ6BiOUOQhJie_vMaDYfQ8EqONUl8YE1bDA9cd13HgE2BElNE8iOBU0vBEBVYELnKBNDj7gs7bcKZAkhAErLth-MOoxhxQvlp9QcM69mXGuOD4ZZI3GTU-ry7iUuL2Jmc4i4ds8UNreXD_XzunXiH1D8h-Y0nSXv0Hh2THTY_IV2-9IU2LnJpxgXlVDJWVpbP3oir8gs2irEoK9irVtizmftpgN_72rUX4iLrSUmeOwK7Ld23kxAFdjHHXTRzNPZ04zCAel5M2zZblWUqqp0Bznc15TIb9p7fHAWsKMLAM3K6KhTC8MxvrrKucjWMrtJG2a0wmNWLA8Nhyo5UxNoRRrlwWS-hqsAeky7mwSoUnZHdaTN0poTk4clwiFDZiDJrcSA2mihYycblQOW-R7rKD06xBJ8ciGR_pClfZMyUFpqSeKemiRe5Wz8xqbI6trR-Qb6uWiKvtL4C0pY20pX9JW4u0l1xPm8FebqF59h80z8keR1H0MTQXZLeaf7pLsIQqc-WF_htVcQFf
  priority: 102
  providerName: Directory of Open Access Journals
Title Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective
URI https://link.springer.com/article/10.1007/s42773-022-00173-y
https://doaj.org/article/e282c5feba204a2087b2980d50e4e07b
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoXOgBAaXq8pIPHFoVi10nfoTbsgIhJHoqErfIjh2KVDYoCYe98Ev4scx4nSwIhISU5JA4sZWZscf2fN8QcpBkgmepECz1iWOpHnoGWpIylRkJRyLKBMHJl3_k-VV6cS2uIyis6aLduy3J0FP3YLeUK4V7jpxh15qw2ReyImDujno9WXCOIwHY6IXTDxaN-E_er7ygUy1DijEuOLZK8Yimeb-aVyNWIPZ_s2saBqOzdbIWvUg6not9gyz56Sb5Or6pI5OG_0aexoutaVqV1N5WiLBiOGw5ev-vaquwdDNr2oaC50qNa6o6dCDsZ3j8yyGRxDzn0lGNFK_dt16g46AVGO1uYkTNMb3ziCW-be4OadElammomUKdC1znFrk6O_07OWcxFQMrYALWsgQMvXDSFCPtnZROGKvcyNpCGWSD4dJxa7S1LgF7176QCn48eAbKl1w4rZPvZHlaTf0PQkuY0nGFpNjINmhLqww4LUaozJdCl3xARt3vzovIU47pMv7nPcNyEFEOIsqDiPLZgPzu37mfs3R8WPoEpdiXRIbtcKOqb_JosLmHuShG4lkD2gOnVpZneujE0Kd-qOyAHHY6kEezbz6oc_tzxXfIKkcVDHEzu2S5rR_8Hng_rd0Pyo5XOdkPKwhwvXw8fQaEWf2r
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagHAoHBBREyssHDlTUauJdP5ZbiIhCX6dWys2y194SiWSj7PaQ_8KPZcbxpqWgSki7l13v2vLM2DOemW8I-ZgVghe5ECwPmWe57gcGXJIzVVgJVyaqDJOTz87l5DI_noppgsnBXJg7_vujJudKoaeRM1xQM7Z-SB7lYClj-N5IjjreQdivwS1VH-QYsz759rwFVWkZC4txwXEsiqccmn9388c-FeH8__KVxi1o_Iw8TbojHW6I_Zw8CIsX5MnwapXwM8Ie-TW8cUjTuqJuVmNeFcPNytPlj7qt44HNumkbCvoqtb6pV3HZYJ_i6wOP8BGbSktHKwR27f51KycORoEx7jbF0Xyh84AZxLNmfkjLrjxLQ-0C-rzJ5nxJLsffLkYTlgowsBLMrpZlIN6ll7Yc6OCl9MI65QfOlcoiBgyXnjurnfMZSLkOpVQw8aAPqFBx4bXOXpGdRb0IrwmtwJDjCqGwEWPQVU5ZUFWsUEWohK54jwy66TZlQifHIhk_zRZXOZLIAIlMJJFZ98jn7TfLDTbHva2_IhW3LRFXOz4AdjNJTE0ACxTj75wF7oFbK8cL3feiH_LQV65HDjseMEnYm3v63P-_5h_I7uTi7NScfj8_eUMec2THGDnzluy0q-vwDvSf1r2PjP8bnID5uQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyE4IMpDbCnUBw4gau2uEz_S27J01fKoOFCpN8uOnVKJJqskPex_4ccy403SRaBKSMklcWLLHtsznvm-IeRNkgmepUKwNCSepXoSGEhJylRmJVyJKBIEJ389kyfn6acLcbGB4o_R7r1Lco1pQJamsh0vfTEegG8pVwr9j5zhMpuw1T2yA5ZKdNTO5byXKCQDm24YADC7EQvKh1MYVLBlTDfGBccWKt4ha_5dzR-7VyT5_8uDGjemxWPyqNMo6WwtArtkK5RPyMPZZd2xaoSn5Nfs1k1Nq4K6qwrRVgy3ME-XP6q2isc4q6ZtKGix1PqmquNiwt7G1-88kkqs8y-Na6R77f-1gZSDVmA32i665oheB8QVXzXXhzTvk7Y01JZQ5y3G8xk5Xxx_n5-wLi0Dy8EYa1kCkz730uZTHbyUXlin_NS5XFlkhuHSc2e1cz6Bua9DLhV0PGgJKhRceK2T52S7rMrwgtACzDuukCAbmQdd4ZQFBcYKlYVC6IKPyLTvbpN3nOWYOuOnGdiW4xAZGCITh8isRuT98M1yzdhxZ-kPOIpDSWTbjg-q-tJ0k9cEsEsxKs9ZkB64tXI80xMvJiENE-VG5LCXAdMtAc0dde79X_EDcv_bx4X5cnr2-SV5wFEaYzjNPtlu65vwCpSi1r2Ocv8biWQCDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+biochar-based+photocatalysts+for+adsorption-%28photo%29degradation%2Freduction+of+environmental+contaminants%3A+mechanism%2C+challenges+and+perspective&rft.jtitle=Biochar+%28Online%29&rft.au=Lu%2C+Yin&rft.au=Cai%2C+Yawen&rft.au=Zhang%2C+Sai&rft.au=Zhuang%2C+Li&rft.date=2022-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2524-7972&rft.eissn=2524-7867&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-022-00173-y&rft.externalDocID=10_1007_s42773_022_00173_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7972&client=summon