Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective
The fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient e...
Saved in:
Published in | Biochar (Online) Vol. 4; no. 1; pp. 1 - 24 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2022
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient elimination of contaminants from aqueous solutions, photocatalytic degradation of organic pollutants or the in-situ solidification/immobilization of heavy metal ions in solid phases are the most suitable strategies to decontaminate the pollution. Biochar and biochar-based composites have attracted multidisciplinary interests especially in environmental pollution management because of their porous structures, large amounts of functional groups, high adsorption capacities and photocatalysis performance. In this review, the application of biochar and biochar-based composites as adsorbents and/or catalysts for the adsorption of different contaminants, adsorption-photodegradation of organic pollutants, and adsorption-(photo)reduction of metal ions are summarized, and the mechanism was discussed from advanced spectroscopy analysis and DFT calculation in detail. The doping of metal or metal oxides is the main strategy to narrow the band gap, to increase the generation and separation of photogenerated e
−
-h
+
pairs, to produce more superoxide radicals (·O
2
−
) and hydroxyl radicals (·OH), to enhance the visible light absorption and to increase photocatalysis performance, which dominate the photocatalytic degradation of organic pollutants and (photo)reduction of high valent metals to low valent metals. The biochar-based composites are environmentally friendly materials, which are promising candidates in environmental pollution cleanup. The challenge and perspective for biochar-based catalysts are provided in the end.
Graphical Abstract
Highlights
Adsorption-photocatalytic degradation of organic pollutants by biochar-based catalysts is summarized.
Adsorption-(photo)catalytic reduction-solidification of heavy metal ions is discussed.
Mechanism and active free radicals on the degradation/reduction of contaminants are compared and described.
The methods to improve the photocatalysis performance of biochar-based catalysts are introduced.
The challenges for the real application of biochar-based materials are provided. |
---|---|
AbstractList | The fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient elimination of contaminants from aqueous solutions, photocatalytic degradation of organic pollutants or the in-situ solidification/immobilization of heavy metal ions in solid phases are the most suitable strategies to decontaminate the pollution. Biochar and biochar-based composites have attracted multidisciplinary interests especially in environmental pollution management because of their porous structures, large amounts of functional groups, high adsorption capacities and photocatalysis performance. In this review, the application of biochar and biochar-based composites as adsorbents and/or catalysts for the adsorption of different contaminants, adsorption-photodegradation of organic pollutants, and adsorption-(photo)reduction of metal ions are summarized, and the mechanism was discussed from advanced spectroscopy analysis and DFT calculation in detail. The doping of metal or metal oxides is the main strategy to narrow the band gap, to increase the generation and separation of photogenerated e
−
-h
+
pairs, to produce more superoxide radicals (·O
2
−
) and hydroxyl radicals (·OH), to enhance the visible light absorption and to increase photocatalysis performance, which dominate the photocatalytic degradation of organic pollutants and (photo)reduction of high valent metals to low valent metals. The biochar-based composites are environmentally friendly materials, which are promising candidates in environmental pollution cleanup. The challenge and perspective for biochar-based catalysts are provided in the end.
Graphical Abstract Highlights 1. Adsorption-photocatalytic degradation of organic pollutants by biochar-based catalysts is summarized. 2. Adsorption-(photo)catalytic reduction-solidification of heavy metal ions is discussed. 3. Mechanism and active free radicals on the degradation/reduction of contaminants are compared and described. 4. The methods to improve the photocatalysis performance of biochar-based catalysts are introduced. 5. The challenges for the real application of biochar-based materials are provided. The fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient elimination of contaminants from aqueous solutions, photocatalytic degradation of organic pollutants or the in-situ solidification/immobilization of heavy metal ions in solid phases are the most suitable strategies to decontaminate the pollution. Biochar and biochar-based composites have attracted multidisciplinary interests especially in environmental pollution management because of their porous structures, large amounts of functional groups, high adsorption capacities and photocatalysis performance. In this review, the application of biochar and biochar-based composites as adsorbents and/or catalysts for the adsorption of different contaminants, adsorption-photodegradation of organic pollutants, and adsorption-(photo)reduction of metal ions are summarized, and the mechanism was discussed from advanced spectroscopy analysis and DFT calculation in detail. The doping of metal or metal oxides is the main strategy to narrow the band gap, to increase the generation and separation of photogenerated e − -h + pairs, to produce more superoxide radicals (·O 2 − ) and hydroxyl radicals (·OH), to enhance the visible light absorption and to increase photocatalysis performance, which dominate the photocatalytic degradation of organic pollutants and (photo)reduction of high valent metals to low valent metals. The biochar-based composites are environmentally friendly materials, which are promising candidates in environmental pollution cleanup. The challenge and perspective for biochar-based catalysts are provided in the end. Graphical Abstract Highlights Adsorption-photocatalytic degradation of organic pollutants by biochar-based catalysts is summarized. Adsorption-(photo)catalytic reduction-solidification of heavy metal ions is discussed. Mechanism and active free radicals on the degradation/reduction of contaminants are compared and described. The methods to improve the photocatalysis performance of biochar-based catalysts are introduced. The challenges for the real application of biochar-based materials are provided. |
ArticleNumber | 45 |
Author | Wang, Xiangke Zhang, Sai Hu, Baowei Wang, Suhua Chen, Jianrong Cai, Yawen Lu, Yin Zhuang, Li |
Author_xml | – sequence: 1 givenname: Yin surname: Lu fullname: Lu, Yin email: luyin@zjsru.edu.cn organization: Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University – sequence: 2 givenname: Yawen surname: Cai fullname: Cai, Yawen organization: School of Life Science, Shaoxing University – sequence: 3 givenname: Sai surname: Zhang fullname: Zhang, Sai organization: College of Environmental Science and Technology, North China Electric Power University – sequence: 4 givenname: Li surname: Zhuang fullname: Zhuang, Li organization: School of Life Science, Shaoxing University – sequence: 5 givenname: Baowei surname: Hu fullname: Hu, Baowei organization: School of Life Science, Shaoxing University – sequence: 6 givenname: Suhua surname: Wang fullname: Wang, Suhua organization: School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology – sequence: 7 givenname: Jianrong surname: Chen fullname: Chen, Jianrong organization: College of Geography and Environmental Science, Zhejiang Normal University – sequence: 8 givenname: Xiangke surname: Wang fullname: Wang, Xiangke email: xkwang@ncepu.edu.cn organization: School of Life Science, Shaoxing University, College of Environmental Science and Technology, North China Electric Power University |
BookMark | eNp9kc9q3DAQxkVIIWmaF8hJxxbqRJItS9tbCP0TCOTSnsVIGm-02JKRnMC-Sx-2ijd76SEHMcPMfL8R830kpzFFJOSKs2vOmLopnVCqbZgQDWO8ZvsTci6k6Bqle3V6zDdKnJHLUnaMMSE579vNOfl7O89jcLCEFGkaqA3JPUFuLBT0dH5KS6pNGPdlKXRImYIvKc-v483ntf3F4zaDXwk3Gf2zO7IwvoSc4oSxAqhLNUwhQlzKNzphXRNDmb7Smowjxi0WCrHuxFxmrJAX_EQ-DDAWvHyLF-TPj--_7341D48_7-9uHxrXMb40Leu08z04rtH3vZdglefWOgWqV1L0XljQ1vpWbVqNrleWSSm4wkFIr3V7Qe4PXJ9gZ-YcJsh7kyCYtZDy1kBeghvRoNDCyQEtCNbVp5UVG828ZNghU7ay9IHlciol42BcWNbjLBnCaDgzr6aZg2mmmmZW08y-SsV_0uNX3hW1B1Gpw_WI2ezSc471XO-p_gFBsLHt |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2024_142632 crossref_primary_10_1016_j_jclepro_2024_141539 crossref_primary_10_3390_pr13020589 crossref_primary_10_1016_j_matchemphys_2023_127430 crossref_primary_10_1016_j_rser_2023_113238 crossref_primary_10_1016_j_jssc_2023_124100 crossref_primary_10_1016_j_partic_2022_11_017 crossref_primary_10_1038_s41598_024_57553_6 crossref_primary_10_1016_j_surfin_2024_104614 crossref_primary_10_1016_j_jwpe_2024_105369 crossref_primary_10_1039_D3CC03248E crossref_primary_10_2174_0115734110286724240318051113 crossref_primary_10_1039_D2NR03924A crossref_primary_10_1016_j_jece_2022_108994 crossref_primary_10_1016_j_jclepro_2022_135405 crossref_primary_10_1007_s11356_024_34140_w crossref_primary_10_1007_s42773_023_00231_z crossref_primary_10_1007_s13201_025_02415_3 crossref_primary_10_1007_s13369_024_09554_w crossref_primary_10_1016_j_surfin_2024_104861 crossref_primary_10_1016_j_saa_2023_123310 crossref_primary_10_1007_s41204_023_00349_2 crossref_primary_10_1080_09593330_2023_2250546 crossref_primary_10_1016_j_scitotenv_2024_174962 crossref_primary_10_1007_s11144_024_02665_3 crossref_primary_10_1016_j_surfin_2022_102324 crossref_primary_10_1007_s42773_024_00387_2 crossref_primary_10_1016_j_envres_2025_121413 crossref_primary_10_1021_acs_jpcc_3c02278 crossref_primary_10_1016_j_jwpe_2022_103478 crossref_primary_10_1016_j_jconhyd_2022_104108 crossref_primary_10_3233_MGC_230060 crossref_primary_10_1016_j_enmm_2023_100819 crossref_primary_10_1016_j_psep_2023_11_016 crossref_primary_10_1016_j_cej_2024_156556 crossref_primary_10_1016_j_jhazmat_2022_130054 crossref_primary_10_1016_j_envint_2025_109350 crossref_primary_10_3390_inorganics12060156 crossref_primary_10_1007_s42773_022_00191_w crossref_primary_10_1016_j_sajce_2023_04_006 crossref_primary_10_3390_pr12122673 crossref_primary_10_1007_s42773_023_00285_z crossref_primary_10_1016_j_seppur_2022_122862 crossref_primary_10_3390_catal14010043 crossref_primary_10_1016_j_mseb_2022_116191 crossref_primary_10_1021_acsomega_3c06243 crossref_primary_10_1016_j_surfin_2023_103828 crossref_primary_10_3390_nano14171458 crossref_primary_10_1016_j_envpol_2022_120665 crossref_primary_10_1016_j_ccr_2022_214825 crossref_primary_10_1002_gch2_202200154 crossref_primary_10_1016_j_chemosphere_2023_138553 crossref_primary_10_1016_j_efmat_2023_03_001 crossref_primary_10_1007_s42773_023_00237_7 crossref_primary_10_1016_j_jece_2023_109827 crossref_primary_10_1016_j_jece_2022_108977 crossref_primary_10_3390_catal13091247 crossref_primary_10_1016_j_jenvman_2024_121160 crossref_primary_10_1016_j_seppur_2022_122610 crossref_primary_10_1142_S1793292023500212 crossref_primary_10_1016_j_dwt_2025_101004 crossref_primary_10_1016_j_seppur_2022_122453 crossref_primary_10_1016_j_carbon_2023_118168 crossref_primary_10_1016_j_jpcs_2024_112385 crossref_primary_10_1051_epjap_2023220318 crossref_primary_10_3390_nano15020102 crossref_primary_10_1038_s41598_024_75614_8 crossref_primary_10_1016_j_cej_2024_155441 crossref_primary_10_1021_acsanm_2c03511 crossref_primary_10_1007_s11270_024_07077_6 crossref_primary_10_1016_j_jclepro_2023_135857 crossref_primary_10_1016_j_jece_2025_115350 crossref_primary_10_1016_j_mtchem_2022_101344 crossref_primary_10_1016_j_jiec_2023_07_029 crossref_primary_10_1016_j_seppur_2024_128519 crossref_primary_10_1016_j_jwpe_2024_105908 crossref_primary_10_1002_sd_3069 crossref_primary_10_15541_jim20220432 crossref_primary_10_1016_j_jclepro_2024_143239 crossref_primary_10_1016_j_seppur_2023_123615 crossref_primary_10_1016_j_enmm_2022_100741 crossref_primary_10_1016_j_seppur_2022_122362 crossref_primary_10_1016_j_jclepro_2022_134918 crossref_primary_10_1039_D2EN00832G crossref_primary_10_32604_jrm_2024_056970 crossref_primary_10_1021_acsanm_2c03168 crossref_primary_10_1021_acs_langmuir_3c02169 crossref_primary_10_1039_D2DT02480B crossref_primary_10_1007_s13201_023_02035_9 crossref_primary_10_1016_j_envres_2022_114914 crossref_primary_10_1038_s41598_023_50930_7 crossref_primary_10_1016_j_molstruc_2024_137515 crossref_primary_10_1002_slct_202203151 crossref_primary_10_1016_j_dwt_2024_100798 crossref_primary_10_1016_j_molliq_2022_120291 crossref_primary_10_1016_j_enmm_2022_100754 crossref_primary_10_1016_j_mssp_2024_108366 crossref_primary_10_1016_j_jece_2023_111579 crossref_primary_10_1007_s44246_023_00041_9 crossref_primary_10_1007_s44246_023_00045_5 crossref_primary_10_1007_s41365_022_01154_3 crossref_primary_10_1007_s13399_025_06541_5 crossref_primary_10_1016_j_cej_2024_152310 crossref_primary_10_1016_j_indcrop_2022_115966 crossref_primary_10_1016_j_ceramint_2022_10_164 crossref_primary_10_1016_j_clay_2022_106802 crossref_primary_10_1016_j_psep_2024_05_118 crossref_primary_10_1016_j_seppur_2024_131341 crossref_primary_10_1016_j_cjche_2022_12_014 crossref_primary_10_1016_j_jhazmat_2022_130257 crossref_primary_10_1016_j_desal_2022_116121 crossref_primary_10_3390_app13074288 crossref_primary_10_1007_s11356_023_30328_8 crossref_primary_10_1016_j_cherd_2024_04_055 crossref_primary_10_1016_j_mtchem_2023_101620 crossref_primary_10_1016_j_apsadv_2025_100721 crossref_primary_10_1016_j_envpol_2023_123140 crossref_primary_10_3390_molecules29092090 crossref_primary_10_1016_j_surfin_2024_104399 crossref_primary_10_1016_j_seppur_2022_122542 crossref_primary_10_1080_10934529_2023_2243193 crossref_primary_10_3390_ijms25094743 crossref_primary_10_1016_j_jphotochem_2022_114435 crossref_primary_10_2166_wst_2023_305 crossref_primary_10_1016_j_jece_2024_113360 crossref_primary_10_1016_j_cej_2022_139486 crossref_primary_10_1016_j_eurpolymj_2022_111632 crossref_primary_10_1016_j_optmat_2024_115054 crossref_primary_10_3390_molecules30030538 crossref_primary_10_1016_j_mtcomm_2024_110522 crossref_primary_10_1016_j_heliyon_2023_e22909 crossref_primary_10_1016_j_ceramint_2024_01_351 crossref_primary_10_1016_j_desal_2023_116893 crossref_primary_10_1016_j_molstruc_2023_135861 crossref_primary_10_1016_j_cej_2023_146530 crossref_primary_10_1016_j_seppur_2023_124963 crossref_primary_10_1039_D2DT03305D crossref_primary_10_1016_j_jwpe_2024_106246 crossref_primary_10_1016_j_watres_2023_120994 crossref_primary_10_1016_j_cclet_2024_110470 crossref_primary_10_1021_acssuschemeng_2c04621 crossref_primary_10_1021_acsomega_2c05352 crossref_primary_10_1016_j_cscee_2024_101090 crossref_primary_10_1016_j_jafr_2023_100498 crossref_primary_10_1016_j_jwpe_2025_107111 crossref_primary_10_1016_j_mtsust_2022_100258 crossref_primary_10_1016_j_cplett_2023_140894 crossref_primary_10_1039_D3RA06910A crossref_primary_10_1016_j_chemosphere_2023_140264 crossref_primary_10_1016_j_scitotenv_2023_161767 crossref_primary_10_3390_app14051793 crossref_primary_10_1016_j_matchemphys_2022_127206 crossref_primary_10_1016_j_aej_2024_03_002 crossref_primary_10_1016_j_envpol_2022_120512 crossref_primary_10_1039_D4NJ00373J crossref_primary_10_1038_s41598_025_87777_z crossref_primary_10_1007_s10653_024_02221_x crossref_primary_10_1007_s42773_024_00316_3 crossref_primary_10_1016_j_scitotenv_2022_159312 crossref_primary_10_1002_slct_202300270 crossref_primary_10_1039_D3NA01087B crossref_primary_10_1016_j_microc_2022_108019 crossref_primary_10_1039_D3NJ00771E crossref_primary_10_1016_j_seppur_2022_122416 crossref_primary_10_1002_slct_202203048 crossref_primary_10_1016_j_inoche_2024_113538 crossref_primary_10_1016_j_jece_2022_109219 |
Cites_doi | 10.1016/j.jhazmat.2019.121070 10.1021/acs.langmuir.1c01468 10.1002/adma.202106621 10.1016/j.scitotenv.2019.134847 10.1016/j.chemosphere.2020.126291 10.1002/jctb.6279 10.1016/j.jece.2021.106753 10.1021/acs.est.8b01715 10.1016/j.apcatb.2019.02.008 10.1021/sc500619r 10.1016/j.jnucmat.2008.08.036 10.1016/j.jes.2021.07.015 10.1007/s42773-019-00006-5 10.1016/j.chemosphere.2019.01.132 10.1016/j.scitotenv.2020.143333 10.1007/s42773-021-00098-y 10.5004/dwt.2021.26580 10.1016/j.jhazmat.2019.121623 10.1016/j.apsusc.2016.03.109 10.1016/j.scitotenv.2019.133886 10.1016/j.cej.2020.124856 10.1016/j.envpol.2021.118076 10.1016/j.jenvman.2016.05.016 10.1016/j.chemosphere.2018.05.175 10.1016/j.jwpe.2021.102470 10.31635/ccschem.022.202201897 10.1007/s11426-021-9987-1 10.1016/j.apcatb.2017.05.036 10.1007/s10904-019-01322-w 10.1016/j.scitotenv.2020.142673 10.1002/adfm.202204175 10.1016/j.envpol.2017.07.079 10.1016/j.scitotenv.2021.152280 10.1007/s42773-020-00044-4 10.1016/j.apcatb.2019.03.004 10.1016/j.apsusc.2021.149938 10.1016/j.matlet.2021.130455 10.1080/10643389.2020.1734433 10.1016/j.jclepro.2017.07.117 10.1007/s42773-020-00070-2 10.1016/j.apsusc.2019.04.160 10.1016/j.chemosphere.2020.128576 10.1007/s11426-019-9492-4 10.1016/j.jenvman.2016.05.034 10.1016/j.enchem.2022.100078 10.1021/acs.est.9b02745 10.1002/jrs.4392 10.1007/s42773-019-00007-4 10.1016/j.apsusc.2019.05.195 10.1016/j.scitotenv.2021.145305 10.1016/j.apcata.2022.118733 10.1016/j.wasman.2018.08.035 10.1016/j.jes.2021.10.003 10.1016/j.jhazmat.2013.12.027 10.1016/j.jes.2018.01.013 10.1016/j.apcatb.2018.10.052 10.34133/2021/9794329 10.1016/j.jhazmat.2021.125511 10.1007/s11356-021-14835-0 10.20964/2022.03.28 10.1016/j.jhazmat.2019.121827 10.1016/j.jphotochem.2020.112976 10.1016/S1872-2067(19)63330-9 10.1016/j.chemosphere.2017.07.025 10.1016/j.apcatb.2022.121343 10.1016/j.jhazmat.2020.124547 10.1016/j.cej.2019.123311 10.1039/C9TA00339H 10.1016/j.scitotenv.2021.148546 10.1039/D1RA01599K 10.1016/j.scitotenv.2017.12.195 10.1016/j.cej.2019.03.235 10.1016/j.biortech.2018.07.125 10.1016/j.biortech.2019.122466 10.1038/nenergy.2017.7 10.1016/j.ccr.2022.214615 10.3390/nano11020526 10.1016/j.molliq.2021.115315 10.1016/j.envres.2022.112841 10.1016/j.biombioe.2014.09.027 10.1016/j.scitotenv.2021.149662 10.1016/j.apsusc.2019.143846 10.1007/s42773-022-00146-1 10.1016/j.chemosphere.2017.12.128 10.1016/j.jhazmat.2020.122901 10.3390/catal12020210 10.1016/j.jhazmat.2020.123025 10.1016/j.chemosphere.2020.127988 10.1016/j.cej.2019.02.098 10.1016/j.scib.2022.02.012 10.1016/j.indcrop.2021.114066 10.1016/j.molliq.2020.114807 10.1016/j.scitotenv.2020.141381 10.1016/j.biortech.2018.03.116 10.1007/s42773-021-00101-6 10.1016/j.jcis.2019.08.065 10.15541/jim20200661 10.1016/j.jtice.2017.05.010 10.1016/j.materresbull.2021.111530 10.1007/s11356-019-05497-0 10.1016/j.apsusc.2015.08.176 10.1016/j.jhazmat.2020.124376 10.1007/s42773-020-00041-7 10.1016/j.jes.2020.10.006 10.1016/j.cej.2018.11.110 10.1016/j.jece.2021.106942 10.1016/j.jenvrad.2021.106798 10.1007/s42773-020-00060-4 10.3390/toxics9110313 10.1016/j.colsurfa.2022.128606 10.1016/j.biortech.2018.01.145 10.1002/advs.202201735 10.1002/jctb.5428 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 |
Copyright_xml | – notice: The Author(s) 2022 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s42773-022-00173-y |
DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2524-7867 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_e282c5feba204a2087b2980d50e4e07b 10_1007_s42773_022_00173_y |
GrantInformation_xml | – fundername: National Key Research and Development of Chian grantid: 2017YFA0207002 – fundername: Key Research and Development Plan of Zhejiang Province grantid: 2021C03176 – fundername: National Natural Science Foundation of China grantid: U2067215 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ AAHBH AAHNG AAJSJ AAKKN AAYZJ ABDBF ABECU ABEEZ ABFTV ABKCH ABMQK ABTEG ABTMW ACACY ACOKC ACULB ACZOJ ADKNI ADURQ ADYFF AFGXO AFQWF AGDGC AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AXYYD C24 C6C EBLON EBS EJD FNLPD GROUPED_DOAJ H13 M~E NQJWS OK1 RSV SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AASML AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
ID | FETCH-LOGICAL-c401t-3048cd6ac18ed66d5ab7d1bbc7a767526d2ba8bbd37938ec67b055217ef25d883 |
IEDL.DBID | C24 |
ISSN | 2524-7972 |
IngestDate | Wed Aug 27 01:28:50 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Tue Jul 01 03:16:37 EDT 2025 Fri Feb 21 02:44:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Photocatalytic degradation Environmental pollutants Adsorption Photocatalytic reduction Biochar-based composites |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-3048cd6ac18ed66d5ab7d1bbc7a767526d2ba8bbd37938ec67b055217ef25d883 |
OpenAccessLink | https://link.springer.com/10.1007/s42773-022-00173-y |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e282c5feba204a2087b2980d50e4e07b crossref_citationtrail_10_1007_s42773_022_00173_y crossref_primary_10_1007_s42773_022_00173_y springer_journals_10_1007_s42773_022_00173_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Biochar (Online) |
PublicationTitleAbbrev | Biochar |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore Springer |
Publisher_xml | – name: Springer Nature Singapore – name: Springer |
References | Qiu, Hu, Chen, Yang, Zhuang, Wang (CR69) 2021; 3 Li, Huang, Zhu, Luo, Yan, Dai, Guo, Yang (CR44) 2019; 243 Zheng, Yang, Zou, Luo, Dong, Gao (CR115) 2019; 1 Fan, Chen, Xu, Xu, Zhao, Qiu, Cao (CR18) 2020; 398 Liang, Shi, Zhang, Qiu, Yu, Li, Gan, Yu, Xiao, Liu, Hu, Hou, Yang (CR49) 2019; 695 Yang, Zhu, Yao, Lu, Yang, Dang (CR94) 2021; 410 Hao, Chen, Yang, Waterhouse, Ma, Wang (CR29) 2022; 67 Hao, Qiu, Yang, Hu, Wang (CR28) 2021; 760 Yang, Zhu, Dong, Fan, Wang (CR93) 2021; 37 Qiu, Liu, Ling, Cai, Yu, Wang, Fu, Hu, Wang (CR70) 2022; 4 Zhang, Lv, Qin, Xu, Jia, Chen (CR105) 2018; 256 Minh, Song, Deb, Cha, Srivastava, Sillanpaa (CR61) 2020; 394 Goncalves, Veiga, Fornari, Peralta-Zamora, Mangrich, Silvestri (CR26) 2020; 748 Silvestri, Stefanello, Sulkovski, Foletto (CR73) 2020; 95 Ndoun, Elliott, Preisendanz, Williams, Knopf, Watson (CR63) 2021; 3 Geng, Xu, Gan, Mei, Wang, Fang, Li, Pan, Han, Cui (CR24) 2020; 250 Xiao, Lyu, Tang, Wang, Sun (CR89) 2020; 384 Chen, Shen, Qiu (CR12) 2021; 210 Feng, Yuan, Wang, Chen, Zhou, Chen (CR22) 2021; 765 Zhao, Wang, Theng, Wu, Liu, Wang, Lee, Chen, Li, Zhang (CR114) 2021; 767 Zhang, Wang, Zhang, Ma, Huang, Yu, Chen, Song, Qiu, Wang (CR109) 2021; 291 Yu, Tang, Zhang, Wang, Qiu, Song, Fu, Hu, Wang (CR101) 2022; 811 Chen, He, Li, Yang, Liu, Wa, Liu, Hu, Wang (CR13) 2022; 122 Fang, Liu, Wang, Dionysiou, Zhou (CR19) 2017; 214 Hu (CR31) 2022; 17 Xia, Tan, Zhang, Jing, Chen, Li, Zheng, Li, Wang (CR87) 2016; 377 Hao, Liu, Liu, Zhang, Yang, Waterhouse, Wang, Ma (CR30) 2022; 4 Chandra, Jagdale, Medha, Tiwari, Bartoli, Nino, Olivito (CR8) 2021; 9 Stefaniak, Alsecz, Sajó, Worobiec, Máthé, Török, Grieken (CR74) 2008; 381 Liu, Pang, Liu, Li, Zhang, Mao, Qiu, Hu, Yang, Wang (CR52) 2021; 2 Liu, Wang, Han, Hu, Qiu (CR54) 2021; 28 Huang, Song, Chen, Hu, Chen, Wang (CR34) 2019; 1 Yan, Kong, Qu, Li, Shen (CR91) 2015; 3 Tho, Van, Nguyen, Hoang, Tran, Nguyen, Nguyen, Nguyen, Sy, Thai, Tran, Sadeghzaden, Asadpour, Thang (CR79) 2021; 11 Khataee, Kalderis, Gholami, Fazli, Moschogiannaki, Binas, Lykaki, Konsolskis (CR39) 2019; 498 Cai, Li, Liu, Yan, Tan, Liu, Zeng, Gu, Hu, Jiang (CR4) 2018; 93 Hu, Ai, Jin, Hayat, Alsaedi, Zhuang, Wang (CR33) 2020; 2 Zhang, Fu, Yin, Chen, Qiu, Simonnot, Wang (CR104) 2018; 268 Yu, An, Jin, Luo, Li, Jiang (CR98) 2020; 297 Chen, Dai, Guo, Yang, Liu, Zhai (CR10) 2019; 493 Mao, Zhang, Liu, Wang, Bai, Guan (CR60) 2021; 263 Pi, Jiang, Zhou, Zhu, Xiao, Wang, Mao (CR67) 2015; 358 Wang, Liu, Men, Ma, Liu, Ma, Liu, Wei, Li, Yan (CR81) 2019; 40 Pang, Diao, Wang, Ma, Yu, Zhu, Chen, Hu, Chen, Wang (CR65) 2019; 366 Kumari, Chhabra, Kumar, Krishnan (CR42) 2021; 302 Zhang, Liu, Gu, Ma, Wen, Zhao, Li, Ai, Hu, Wang (CR106) 2019; 248 Rajapaksha, Alam, Chen, Alessi, Igalavithana, Tsang, Ok (CR71) 2018; 625 Talukdar, Jun, Yoon, Fayyza, Park (CR77) 2020; 398 Lu, Shan, Shi, Wang, Yuan (CR57) 2019; 222 Baig, Zhu, Muhammad, Sheng, Xu (CR3) 2014; 71 Wang, Liu, Mao, Bai, Chiang, Shah, Pza-Ferreiro (CR82) 2020; 389 Karpuraranjith, Chen, Ramadoss, Wang, Yang, Rajaboopathi, Yang (CR38) 2021; 326 Sun, Zhao, Liu, Zhen, Ma (CR75) 2019; 53 Fazal, Razzaq, Javed, Hafeez, Rashid, Amjad, Rehman, Faisal, Rehman (CR21) 2020; 390 Li, Chen, Wang, Yang, Wen, Wang, Hu, Wang (CR47) 2021; 792 Liu, Xie, Hao, Chen, Yang, Waterhouse, Ma, Wang (CR56) 2022; 9 Yang, Liu, Hao, Xie, Wang, Tian, Waterhouse, Kruge, Telfer, Ma (CR92) 2021; 33 Huang, Tang, Zhang, Luo, Zhang (CR35) 2022; 45 Li, Zhang, Gao, Li (CR43) 2018; 79 Li, Qian, An, Huang (CR45) 2019; 487 Hu, Zhu, Hu, Lu, Sheng (CR32) 2018; 70 Li, Hu, Shen, Cai, Ji, Tan, Liu, Zhao, Hu, Wang (CR48) 2021; 64 Gasim, Choong, Koo, Low, Abdurahman, Ho, Mohamad, Suryawan, Lim, Oh (CR23) 2022; 12 Kim, Kan (CR40) 2016; 180 Wei, Yu, Ji, Cai, Zou, Zheng, Huang, Zhang, Yang, Naushad, Gao, Dong (CR85) 2021; 9 Cai, Zhang, Lv, Zhang, Gao, Fang, Kong, Liu, Tan, Hu, Wang (CR6) 2022; 310 Zhang, Min, Tang, Rafiq, Sun (CR108) 2020; 2 Zhang, Liu, Ma, Jia, Wen, Ai, Zhao, Fang, Hu, Wang (CR112) 2022; 32 Cai, Liang, Yi, Chen, Yang, Hu, Liang, Wang (CR5) 2022; 643 Wang, Chen, Wang, Fan, Pan, Li, Chi, Yu, Xie, Xiao, Luo, Wang, Wang, Chen, Wu, Shi, Wang, Wang (CR80) 2019; 62 Zheng, Yang, Si, Zhu, Yang, Zhao, Shi (CR116) 2021; 407 Lu, Yu, Wang, Zhang, Zhu, Zhang, Wu, Ullah, Xiao, Chen (CR58) 2020; 2 Tan, Mao, Wang, Junaid, Xu (CR78) 2019; 26 Xiao, Wang, Li, Park, Meng, Zhou, Pensky, Zhang (CR88) 2018; 208 Liu, Hsu, Xie, Zhao, Wu, Wang, Liu, Zhang, Chu, Cui (CR51) 2017; 2 Zhang, Wang, Li, Zhang, Guo, Ding, Li (CR110) 2021; 11 Cheng, Zhang, Zhao, Chai, Hu, Han, Ai, Wang (CR15) 2021; 66 Gholami, Khataee, Soltani, Dinpazhoh, Bhatnagar (CR25) 2020; 382 Yu, Tian, Zou, Ye, Peng, Huang, Zheng, Zhang, Yang, Wei, Gao (CR100) 2021; 415 Fang, Tan, Liu, Hu, Wang (CR20) 2021; 2021 Peng, Li, Wen, Zheng (CR66) 2021; 172 Mandal, Sarkar, Bolan, Ok, Naidu (CR59) 2017; 186 Ye, Yan, Tan, Liang, Zeng, Wu, Song, Zhou, Yang, Wang (CR96) 2019; 250 Zhao, Yin, Liu, Zhang, Lv, Hao, Pan, Zhang (CR113) 2018; 260 Cao, Cui, Zhang, Cui (CR7) 2021; 559 Chen, Lu, Han, Zhong, Xu, Wang, Chen (CR9) 2019; 359 Yu, Jiang, Guan, Ning, Gu, Chen, Zhang, Miao (CR97) 2018; 195 Alam, Gorman-Lewis, Chen, Safari, Baek, Konhauser, Alessi (CR1) 2018; 52 Kumar, Kumar, Sharma, Naushad, Stadler, Ghfar, Dhiman, Saini (CR41) 2017; 165 Jeon, Lee, Baek (CR36) 2017; 77 Guo, Liu, Xie, Liu, Wang, Wang (CR27) 2022; 642 Kang, Shi, Li, Eqi, Liu, Zheng, Huang (CR37) 2022; 10 Zou, Hu, Shen, Yao, Tang, Zhang, Wang, Hu, Zhao, Wang (CR117) 2022; 115 Welter, Leichtweis, Silvestri, Sanchez, Mejia, Carissimi (CR86) 2022; 901 Chen, Yu, Dong, Yuan, Gong, Lian, Cao, Li, Zhou, Hu, He, Zhu, Wang (CR14) 2022; 467 Azalok, Oladipo, Gazi (CR2) 2021; 405 Ouyang, Chen, Yan, Qian, Han, Chen (CR64) 2019; 370 Zhang, Song, Gu, Ma, Wei, Zhao, Wen, Jehan, Hu, Wang (CR107) 2019; 7 Wang, Lu, Wei, Fang, Wang (CR83) 2021; 36 Liu, Verma, Chen, Hu, Huang, Yang, Ma, Wang (CR55) 2022; 3 Li, Wang, Zhang, Liu, B, Chen G (CR46) 2020; 711 Cho, Yoon, Kwon, Biswas, Song (CR16) 2017; 229 Pointurier, Marie (CR68) 2013; 44 Wang, Shi, Yu, Pang, Qiu, Song, Fu, Hu, Wang (CR84) 2022; 242 Xiao, Lyu, Yang, Zhao, Wang, Tang (CR90) 2021; 103 Siara, Elvis, Harishkumar, Chellam (CR72) 2022; 145 Zhai, Dai, Guo, Zhou, Chen, Yang, Peng (CR102) 2020; 560 Zhang, Liu, Gao, Tan, Cai, Hu, Huang, Fang, Wang (CR111) 2022; 4 Navarathna, Dewage, Karunanayake, Farmer, Perez, Hassan, Mlsna, Pittman (CR62) 2020; 30 Dong, Ma, Gress, Harris, Li (CR17) 2014; 267 Liang, Xi, Tan, Meng, Hu, Wang (CR50) 2021; 3 Yao, Yang, Chen, Qiu, Hu, Wang (CR95) 2021; 273 Zhang, Wang, Li, Guo, Li, Zhu, Xie (CR103) 2017; 185 Liu, Ma, Zhuang, Hu, Chen, Liu, Wang (CR53) 2021; 51 Sutar, Patil, Jadhav (CR76) 2022; 209 Yu, Pang, Huang, Tang, Wang, Qiu, Chen, Yang, Song, Fu, Hu, Wang (CR99) 2021; 800 Chen, Wang, Han, Yang, Hu, Qiu, Zhong (CR11) 2021; 327 S Zhang (173_CR106) 2019; 248 Y Zhai (173_CR102) 2020; 560 C Liu (173_CR51) 2017; 2 X Liu (173_CR56) 2022; 9 C Zhao (173_CR114) 2021; 767 L Pi (173_CR67) 2015; 358 A Khataee (173_CR39) 2019; 498 T Wang (173_CR82) 2020; 389 X Zhang (173_CR104) 2018; 268 X Wei (173_CR85) 2021; 9 S Ye (173_CR96) 2019; 250 X Li (173_CR45) 2019; 487 M Hao (173_CR29) 2022; 67 HW Pang (173_CR65) 2019; 366 S Liang (173_CR49) 2019; 695 MF Gasim (173_CR23) 2022; 12 N Welter (173_CR86) 2022; 901 N Kumari (173_CR42) 2021; 302 CX Yang (173_CR93) 2021; 37 X Wang (173_CR80) 2019; 62 R Xiao (173_CR88) 2018; 208 Z Feng (173_CR22) 2021; 765 T Fazal (173_CR21) 2020; 390 EA Stefaniak (173_CR74) 2008; 381 G Tan (173_CR78) 2019; 26 Q Li (173_CR47) 2021; 792 X Li (173_CR46) 2020; 711 JR Kim (173_CR40) 2016; 180 Y Xiao (173_CR90) 2021; 103 P Jeon (173_CR36) 2017; 77 AU Rajapaksha (173_CR71) 2018; 625 DW Cho (173_CR16) 2017; 229 C Zheng (173_CR116) 2021; 407 TT Cao (173_CR7) 2021; 559 A Kumar (173_CR41) 2017; 165 HS Hu (173_CR31) 2022; 17 M Fang (173_CR20) 2021; 2021 S Siara (173_CR72) 2022; 145 J Yu (173_CR97) 2018; 195 M Chen (173_CR10) 2019; 493 K Talukdar (173_CR77) 2020; 398 Y Cai (173_CR6) 2022; 310 X Liu (173_CR53) 2021; 51 W Huang (173_CR35) 2022; 45 D Xia (173_CR87) 2016; 377 M Qiu (173_CR69) 2021; 3 K Li (173_CR44) 2019; 243 S Yu (173_CR101) 2022; 811 Y Zhang (173_CR111) 2022; 4 L Lu (173_CR57) 2019; 222 M Karpuraranjith (173_CR38) 2021; 326 S Mandal (173_CR59) 2017; 186 Y Xiao (173_CR89) 2020; 384 S Silvestri (173_CR73) 2020; 95 G Cheng (173_CR15) 2021; 66 L Liang (173_CR50) 2021; 3 N Zhao (173_CR113) 2018; 260 L Wang (173_CR83) 2021; 36 MC Ndoun (173_CR63) 2021; 3 F Pointurier (173_CR68) 2013; 44 F Yu (173_CR100) 2021; 415 X Zhang (173_CR105) 2018; 256 D Ouyang (173_CR64) 2019; 370 S Yu (173_CR99) 2021; 800 T Chen (173_CR14) 2022; 467 S Li (173_CR48) 2021; 64 P Zhang (173_CR108) 2020; 2 XL Dong (173_CR17) 2014; 267 XL Liu (173_CR55) 2022; 3 S Wang (173_CR84) 2022; 242 H Peng (173_CR66) 2021; 172 S Zhang (173_CR109) 2021; 291 S Chen (173_CR9) 2019; 359 RR Liu (173_CR54) 2021; 28 H Yang (173_CR92) 2021; 33 F Kang (173_CR37) 2022; 10 G Fang (173_CR19) 2017; 214 T Wang (173_CR81) 2019; 40 SA Baig (173_CR3) 2014; 71 Q Hu (173_CR32) 2018; 70 X Cai (173_CR4) 2018; 93 CM Navarathna (173_CR62) 2020; 30 L Yao (173_CR95) 2021; 273 J Fan (173_CR18) 2020; 398 P Gholami (173_CR25) 2020; 382 Z Sun (173_CR75) 2019; 53 M Qiu (173_CR70) 2022; 4 M Hao (173_CR28) 2021; 760 Z Chen (173_CR13) 2022; 122 L Lu (173_CR58) 2020; 2 C Chen (173_CR12) 2021; 210 LL Yan (173_CR91) 2015; 3 X Liu (173_CR52) 2021; 2 H Zhang (173_CR103) 2017; 185 Z Zhang (173_CR110) 2021; 11 J Yang (173_CR94) 2021; 410 PT Tho (173_CR79) 2021; 11 G Chen (173_CR11) 2021; 327 A Geng (173_CR24) 2020; 250 KA Azalok (173_CR2) 2021; 405 C Li (173_CR43) 2018; 79 S Sutar (173_CR76) 2022; 209 S Chandra (173_CR8) 2021; 9 M Hao (173_CR30) 2022; 4 Y Guo (173_CR27) 2022; 642 W Mao (173_CR60) 2021; 263 B Hu (173_CR33) 2020; 2 Y Yu (173_CR98) 2020; 297 Q Huang (173_CR34) 2019; 1 MG Goncalves (173_CR26) 2020; 748 TD Minh (173_CR61) 2020; 394 S Zhang (173_CR107) 2019; 7 S Zhang (173_CR112) 2022; 32 Y Cai (173_CR5) 2022; 643 Y Zou (173_CR117) 2022; 115 Y Zheng (173_CR115) 2019; 1 MS Alam (173_CR1) 2018; 52 |
References_xml | – volume: 4 start-page: 2294 year: 2022 end-page: 2307 ident: CR30 article-title: Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater publication-title: CCS Chem – volume: 760 year: 2021 ident: CR28 article-title: Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis publication-title: Sci Total Environ – volume: 172 year: 2021 ident: CR66 article-title: Synthesis of ZnFe O /B, N-codoped biochar via microwave-assisted pyrolysis for enhancing adsorption-photocatalytic elimination of tetracycline hydrochloride publication-title: Ind Crop Prod – volume: 248 start-page: 1 year: 2019 end-page: 10 ident: CR106 article-title: Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C N : mechanism exploration from both experimental and DFT studies publication-title: Appl Catal B Environ – volume: 358 start-page: 231 year: 2015 end-page: 239 ident: CR67 article-title: g-C N Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants publication-title: Appl Surf Sci – volume: 62 start-page: 933 year: 2019 end-page: 967 ident: CR80 article-title: Synthesis of novel nanomaterials and their application in efficient removal of radionuclides publication-title: Sci China Chem – volume: 3 start-page: 89 year: 2021 end-page: 104 ident: CR63 article-title: Adsorption of pharmaceuticals from aqueous solutions using biochar derived from cotton gin waste and guayule bagasse publication-title: Biochar – volume: 52 start-page: 13057 year: 2018 end-page: 13067 ident: CR1 article-title: Mechanisms of the removal of U(VI) from aqueous solution using biochar: a combined spectroscopic and modeling approach publication-title: Environ Sci Technol – volume: 222 start-page: 391 year: 2019 end-page: 398 ident: CR57 article-title: A novel TiO /biochar composite catalysts for photocatalytic degradation of methyl orange publication-title: Chemosphere – volume: 12 start-page: 210 year: 2022 ident: CR23 article-title: Application of biochar as functional material for remediation of organic pollutants in water: an overview publication-title: Catalysts – volume: 165 start-page: 431 year: 2017 end-page: 451 ident: CR41 article-title: Sustainable nano-hybrids of magnetic biochar supported g-C N /FeVO for solar powered degradation of noxious pollutants-Synergism of adsorption, photocatalysis & photo-ozonation publication-title: J Clean Prod – volume: 67 start-page: 924 year: 2022 end-page: 932 ident: CR29 article-title: Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous TcO publication-title: Sci Bull – volume: 302 year: 2021 ident: CR42 article-title: Bioderived carbon supported bismuth molybdate nanocomposites as bifunctional catalysts for removal of organic pollutants: adsorption and photocatalytic studies publication-title: Mater Lett – volume: 9 start-page: 2201735 year: 2022 ident: CR56 article-title: Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime−functionalized In−N−C catalyst publication-title: Adv Sci – volume: 4 year: 2022 ident: CR111 article-title: Application of MOFs and COFs for photocatalysis in CO reduction, H generation, and environmental treatment publication-title: EnergyChem – volume: 493 start-page: 1361 year: 2019 end-page: 1367 ident: CR10 article-title: Solvothermal synthesis of biochar@ZnFe O /BiOBr Z-scheme heterojunction for efficient photocatalytic ciprofloxacin degradation under visible light publication-title: Appl Surf Sci – volume: 415 year: 2021 ident: CR100 article-title: ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue publication-title: J Hazard Mater – volume: 642 year: 2022 ident: CR27 article-title: 3D ZnO modified biochar-based hydrogels for removing U(VI) in aqueous solution publication-title: Colloid Surf A – volume: 180 start-page: 94 year: 2016 end-page: 101 ident: CR40 article-title: Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO photocatalyst publication-title: J Environ Manag – volume: 765 year: 2021 ident: CR22 article-title: Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: a review publication-title: Sci Total Environ – volume: 214 start-page: 34 year: 2017 end-page: 45 ident: CR19 article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation publication-title: Appl Catal B Environ – volume: 77 start-page: 244 year: 2017 end-page: 249 ident: CR36 article-title: Adsorption and photocatalytic activity of biochar with graphitic carbon nitride (g-C N ) publication-title: J Taiwan Inst Chem Eng – volume: 26 start-page: 21609 year: 2019 end-page: 21618 ident: CR78 article-title: Comparison of biochar- and activated carbon-supported zerovalent iron for the removal of As(IV) and Se(VI): influence of pH, ionic strength and natural organic matter publication-title: Environ Sci Poll Res – volume: 625 start-page: 1567 year: 2018 end-page: 1573 ident: CR71 article-title: Removal of hexavalent chromium in aqueous solutions using biochar: chemical and spectroscopic investigations publication-title: Sci Total Environ – volume: 390 year: 2020 ident: CR21 article-title: Integrating adsorption and photocatalysis: a cost effective strategy for textile wastewater treatment using hybrid biochar-TiO composite publication-title: J Hazard Mater – volume: 2021 start-page: 9794329 year: 2021 ident: CR20 article-title: Recent progress on metal-enhanced photocatalysis: a review on the mechanism publication-title: Research – volume: 243 start-page: 386 year: 2019 end-page: 396 ident: CR44 article-title: Removal of Cr(VI) from water by a biochar-coupled g-C N nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems publication-title: Appl Catal B Environ – volume: 711 year: 2020 ident: CR46 article-title: Preparation and application of magnetic biochar in water treatment: a critical review publication-title: Sci Total Environ – volume: 498 year: 2019 ident: CR39 article-title: Cu O-CuO@biochar composite: synthesis, characterization and its efficient photocatalytic performance publication-title: Appl Surf Sci – volume: 115 start-page: 190 year: 2022 end-page: 214 ident: CR117 article-title: Application of aluminosilicate clay mineral-based composites in photocatalysis publication-title: J Environ Sci – volume: 36 start-page: 871 year: 2021 end-page: 876 ident: CR83 article-title: Application of improved grey model in photocatalytic data prediction publication-title: J Inorg Mater – volume: 103 start-page: 93 year: 2021 end-page: 107 ident: CR90 article-title: Graphitic carbon nitride/biochar composite synthesized by a facile ball-milling method for the adsorption and photocatalytic degradation of enrofloxacin publication-title: J Environ Sci – volume: 95 start-page: 2723 year: 2020 end-page: 2729 ident: CR73 article-title: Preparation of TiO supported on MDF biochar for simultaneous removal of methylene blue by adsorption and photocatalysis publication-title: J Chem Technol Biotechnol – volume: 1 start-page: 45 year: 2019 end-page: 73 ident: CR34 article-title: Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review publication-title: Biochar – volume: 748 start-page: 141381 year: 2020 ident: CR26 article-title: Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange publication-title: Sci Total Environ – volume: 792 year: 2021 ident: CR47 article-title: Removal of organic compounds by nanoscale zero-valent iron and its composites publication-title: Sci Total Environ – volume: 28 start-page: 55176 year: 2021 end-page: 55185 ident: CR54 article-title: Reductive and adsorptive elimination of U(VI) ions in aqueous solution by SFeS@biochar composites publication-title: Environ Sci Poll Res – volume: 260 start-page: 294 year: 2018 end-page: 301 ident: CR113 article-title: Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars publication-title: Biores Technol – volume: 297 year: 2020 ident: CR98 article-title: Unraveling sorption of Cr (VI) from aqueous solution by FeCl3 and ZnCl2- modified corn stalks biochar: implicit mechanism and application publication-title: Biores Technol – volume: 122 start-page: 1 year: 2022 end-page: 13 ident: CR13 article-title: Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction publication-title: J Environ Sci – volume: 1 start-page: 89 year: 2019 end-page: 96 ident: CR115 article-title: Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation publication-title: Biochar – volume: 45 year: 2022 ident: CR35 article-title: nZVI-biochar derived from Fe O -loaded rabbit manure for activation of peroxymonosulfate to degrade sulfamethoxazole publication-title: J Water Proc Eng – volume: 487 start-page: 1262 year: 2019 end-page: 1270 ident: CR45 article-title: Preparation of a novel composite comprising biochar skeleton and “chrysanthemum” g-C N for enhanced visible light photocatalytic degradation of formaldehyde publication-title: Appl Surf Sci – volume: 195 start-page: 632 year: 2018 end-page: 640 ident: CR97 article-title: Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth publication-title: Chemosphere – volume: 93 start-page: 783 year: 2018 end-page: 791 ident: CR4 article-title: Titanium dioxide-coated biochar composites as adsorptive and photocatalytic degradation materials for the removal of aqueous organic pollutants publication-title: J Chem Technol Biotechnol – volume: 185 start-page: 351 year: 2017 end-page: 360 ident: CR103 article-title: TiO supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices publication-title: Chemosphere – volume: 767 year: 2021 ident: CR114 article-title: Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: a review publication-title: Sci Total Environ – volume: 559 year: 2021 ident: CR7 article-title: Facile synthesis of Co(II)-BiOCl@biochar nanosheets for photocatalytic degradation of p-nitrophenol under vacuum ultraviolet (VUV) irradiation publication-title: Appl Surf Sci – volume: 2 start-page: 17007 year: 2017 ident: CR51 article-title: A half-wave rectified alternating current electrochemical method for uranium extraction from seawater publication-title: Nat Energy – volume: 310 year: 2022 ident: CR6 article-title: Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process publication-title: Appl Catal B: Environ – volume: 359 start-page: 119 year: 2019 end-page: 129 ident: CR9 article-title: Robust three-dimensional g-C N @cellulose aerogel enhanced by cross-linked polyester fibers for simultaneous removal of hexavalent chromium and antibiotics publication-title: Chem Eng J – volume: 394 year: 2020 ident: CR61 article-title: Biochar based catalysts for the abatement of emerging pollutants: a review publication-title: Chem Eng J – volume: 811 year: 2022 ident: CR101 article-title: MXenes as emerging nanomaterials in water purification and environmental remediation publication-title: Sci Total Environ – volume: 405 year: 2021 ident: CR2 article-title: UV-light-induced photocatalytic performance of reusable MnFe-LDO–biochar for tetracycline removal in water publication-title: J Photochem Photobiol a: Chem – volume: 410 year: 2021 ident: CR94 article-title: Photochemical reactivity of nitrogen-doped biochars under simulated sunlight irradiation: generation of singlet oxygen publication-title: J Hazard Mater – volume: 79 start-page: 625 year: 2018 end-page: 637 ident: CR43 article-title: Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb(II), Cu(II) and Cr(VI) removal publication-title: Waste Manage – volume: 2 start-page: 329 year: 2020 end-page: 341 ident: CR108 article-title: Sorption and degradation of imidacloprid and clothianidin in Chinese paddy soil and red soil amended with biochars publication-title: Biochar – volume: 384 year: 2020 ident: CR89 article-title: Effects of ball milling on the photochemistry of biochar: enrofloxacin degradation and possible mechanisms publication-title: Chem Eng J – volume: 326 year: 2021 ident: CR38 article-title: Magnetically recyclable magnetic biochar graphitic carbon nitride nanoarchitectures for highly efficient charge separation and stable photocatalytic activity under visible-light irradiation publication-title: J Molecule Liquid – volume: 3 start-page: 117 year: 2021 end-page: 123 ident: CR69 article-title: Challenges of organic pollutant photocatalysis by biochar-based catalysts publication-title: Biochar – volume: 398 year: 2020 ident: CR77 article-title: Novel Z-scheme Ag PO /Fe O -activated biochar photocatalyst with enhanced visible-light catalytic performance toward degradation of bisphenol A publication-title: J Hazard Mater – volume: 382 year: 2020 ident: CR25 article-title: Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@ biochar nanocomposite publication-title: J Hazard Mater – volume: 250 start-page: 78 year: 2019 end-page: 88 ident: CR96 article-title: Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light publication-title: Appl Catal B Environ – volume: 9 start-page: 313 year: 2021 ident: CR8 article-title: Biochar-supported TiO -based nanocomposites for the photocatalytic degradation of sulfamethoxazole in water-a review publication-title: Toxic – volume: 381 start-page: 278 year: 2008 end-page: 283 ident: CR74 article-title: Recognition of uranium oxides in soil particulate matter by means of μ-Raman spectrometry publication-title: J Nucl Mater – volume: 70 start-page: 217 year: 2018 end-page: 225 ident: CR32 article-title: Mechanistic insights into sequestration of U(VI) toward magnetic biochar: batch, XPS and EXAFS techniques publication-title: J Environ Sci – volume: 643 year: 2022 ident: CR5 article-title: Application of covalent organic frameworks in environmental pollution management publication-title: Appl Catal A General – volume: 32 start-page: 2204175 year: 2022 ident: CR112 article-title: Molybdenum (VI)-oxo clusters incorporation activates g-C N with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance publication-title: Adv Funct Mater – volume: 901 year: 2022 ident: CR86 article-title: Preparation of a new green composite based on chitin biochar and ZnFe O for photo-Fenton degradation of Rhodamine B publication-title: J Hazard Mater – volume: 10 year: 2022 ident: CR37 article-title: Honeycomb like CdS/sulphur-modified biochar composites with enhanced adsorption-photocatalytic capacity for effective removal of rhodamine B publication-title: J Environ Chem Eng – volume: 229 start-page: 942 year: 2017 end-page: 949 ident: CR16 article-title: Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl -pretreated spent coffee ground publication-title: Environ Poll – volume: 2 start-page: 47 year: 2020 end-page: 64 ident: CR33 article-title: Efficient elimination of organic and inorganic pollutants by biochar-based nanomaterials publication-title: Biochar – volume: 273 year: 2021 ident: CR95 article-title: Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater publication-title: Chemosphere – volume: 7 start-page: 5552 year: 2019 end-page: 5560 ident: CR107 article-title: Visible-light-driven activation of persulfate over cyano and hydroxyl group co-modified mesoporous g-C N for boosting bisphenol A degradation publication-title: J Mater Chem A – volume: 407 year: 2021 ident: CR116 article-title: Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species publication-title: J Hazard Mater – volume: 44 start-page: 1753 year: 2013 end-page: 1759 ident: CR68 article-title: Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uraniu compounds in micrometer-size particles publication-title: J Raman Spectrosc – volume: 53 start-page: 10342 year: 2019 end-page: 10351 ident: CR75 article-title: Catalytic ozonation of ketoprofen with in situ N-doped carbon: a novel synergetic mechanism of hydroxyl radical oxidation and an intra-electron-transfer nonradical reaction publication-title: Environ Sci Technol – volume: 560 start-page: 111 year: 2020 end-page: 121 ident: CR102 article-title: Novel biochar@CoFe O /Ag PO photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation publication-title: J Colloid Interface Sci – volume: 208 start-page: 408 year: 2018 end-page: 416 ident: CR88 article-title: Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite publication-title: Chemosphere – volume: 40 start-page: 886 year: 2019 end-page: 894 ident: CR81 article-title: Surface plasmon resonance effect of Ag nanoparticles for improving the photocatalytic performance of biochar quantum-dot/Bi Ti O nanosheets publication-title: Chinese J Catalysis – volume: 11 start-page: 18881 year: 2021 end-page: 188897 ident: CR79 article-title: Enhanced simultaneous adsorption of As(III), Cd(II), Pb(II)and Cr(VI) ions from aqueous solution using cassava root husk-derived biochar loaded with ZnO nanoparticles publication-title: RSC Adv – volume: 64 start-page: 1323 year: 2021 end-page: 1331 ident: CR48 article-title: Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst publication-title: Sci China Chem – volume: 33 start-page: 2106621 year: 2021 ident: CR92 article-title: Functionalized iron−nitrogen−carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater publication-title: Adv Mater – volume: 66 start-page: 1996 year: 2021 end-page: 2001 ident: CR15 article-title: Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity publication-title: Sci Bull – volume: 366 start-page: 368 year: 2019 end-page: 377 ident: CR65 article-title: Adsorptive and reductive removal of U(VI) by dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater publication-title: Chem Eng J – volume: 17 year: 2022 ident: CR31 article-title: Preparation of N-doped TiO /biochar composite catalysts and its application for photoelectrochemical degradation of cephalosporin antibiotics publication-title: Int J Electrochem Sci – volume: 250 year: 2020 ident: CR24 article-title: Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal publication-title: Chemosphere – volume: 256 start-page: 1 year: 2018 end-page: 10 ident: CR105 article-title: Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood publication-title: Biores Technol – volume: 291 year: 2021 ident: CR109 article-title: Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review publication-title: Environ Poll – volume: 209 year: 2022 ident: CR76 article-title: Recent advances in biochar technology for textile dyes wastewater remediation: a review publication-title: Environ Res – volume: 467 year: 2022 ident: CR14 article-title: Advanced photocatalysts for uranium extraction: elaborate design and future perspectives publication-title: Coord Chem Rev – volume: 695 year: 2019 ident: CR49 article-title: One-pot solvothermal synthesis of magnetic biochar from waste biomass: formation mechanism and efficient adsorption of Cr(VI) in an aqueous solution publication-title: Sci Total Environ – volume: 30 start-page: 214 year: 2020 end-page: 229 ident: CR62 article-title: Rhodamine B adsorptive removal and photocatalytic degradation on MIL-53-Fe MOF/magnetic magnetite/biochar composites publication-title: J Inorg Organometal Mater – volume: 267 start-page: 62 year: 2014 end-page: 70 ident: CR17 article-title: Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar publication-title: J Hazard Mater – volume: 9 year: 2021 ident: CR85 article-title: Porous biochar supported Ag PO photocatalyst for “two-in-one” synergistic adsorptive-photocatalytic removal of methylene blue under visible light irradiation publication-title: J Environ Chem Eng – volume: 800 year: 2021 ident: CR99 article-title: Recent advances in metal-organic frameworks membranes for water treatment: a review publication-title: Sci Total Environ – volume: 51 start-page: 751 year: 2021 end-page: 790 ident: CR53 article-title: Recent developments of doped g-C N photocatalysts for the degradation of organic pollutants publication-title: Critical Rev Environ Sci Technol – volume: 210 start-page: 393 year: 2021 end-page: 401 ident: CR12 article-title: Enhanced U(VI) elimination from aqueous solution by FeS@biochar composites publication-title: Desalination Water Treat – volume: 186 start-page: 277 year: 2017 end-page: 284 ident: CR59 article-title: Enhancement of chromate reduction in soils by surface modified biochar publication-title: J Environ Manag – volume: 370 start-page: 614 year: 2019 end-page: 624 ident: CR64 article-title: Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: Important role of biochar defect structures publication-title: Chem Eng J – volume: 11 start-page: 526 year: 2021 ident: CR110 article-title: Photocatalytic activity of magnetic nano-β-FeOOH/Fe O /biochar composites for the enhanced degradation of methyl orange under visible light publication-title: Nanomaterials – volume: 3 year: 2022 ident: CR55 article-title: Metal-organic framework nanocrystals derived hollow porous materials: synthetic strategies and emerging applications publication-title: Innovation – volume: 2 start-page: 1 year: 2020 end-page: 31 ident: CR58 article-title: Application of biochar-based materials in environmental remediation: from multi-level structures to specific devices publication-title: Biochar – volume: 37 start-page: 9253 year: 2021 end-page: 9263 ident: CR93 article-title: Preparation and characterization of phosphoric acid-modified biochar nanomaterials with highly efficient adsorption and photodegradation ability publication-title: Langmuir – volume: 327 year: 2021 ident: CR11 article-title: Highly efficient removal of U(VI) by a novel biochar supported with FeS nanoparticles and chitosan composites publication-title: J Mol Liq – volume: 398 year: 2020 ident: CR18 article-title: One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: arsenic immobilization associated with iron transformation publication-title: J Hazard Mater – volume: 145 year: 2022 ident: CR72 article-title: ZnAl O supported on lychee-biochar applied to ibuprofen photodegradation publication-title: Mater Res Bull – volume: 71 start-page: 299 year: 2014 end-page: 310 ident: CR3 article-title: Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions publication-title: Biomass Bioenergy – volume: 268 start-page: 149 year: 2018 end-page: 157 ident: CR104 article-title: Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: batch experiment, kinetic and mechanism studies publication-title: Biores Technol – volume: 2 year: 2021 ident: CR52 article-title: Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions publication-title: Innovation – volume: 242 year: 2022 ident: CR84 article-title: Effect of shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite publication-title: J Environ Radioact – volume: 3 start-page: 125 year: 2015 end-page: 132 ident: CR91 article-title: Magnetic biochar decorated with ZnS nanocrytals for Pb(II) removal publication-title: ACS Sustain Chem Eng – volume: 263 year: 2021 ident: CR60 article-title: Facile assembled N, S-codoped corn straw biochar loaded Bi WO with the enhanced electron-rich feature for the efficient photocatalytic removal of ciprofloxacin and Cr(VI) publication-title: Chemosphere – volume: 4 start-page: 19 year: 2022 ident: CR70 article-title: Biochar for the removal of contaminants from soil and water: a review publication-title: Biochar – volume: 389 year: 2020 ident: CR82 article-title: Novel Bi WO loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(VI) publication-title: J Hazard Mater – volume: 3 start-page: 255 year: 2021 end-page: 281 ident: CR50 article-title: Review of organic pollutants and heavy metals removal by biochar and biochar-based composites publication-title: Biochar – volume: 377 start-page: 361 year: 2016 end-page: 369 ident: CR87 article-title: ZnCl2-activated biochar from biogas residue facilitates aqueous As(III) removal publication-title: Appl Surf Sci – volume: 382 year: 2020 ident: 173_CR25 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121070 – volume: 37 start-page: 9253 year: 2021 ident: 173_CR93 publication-title: Langmuir doi: 10.1021/acs.langmuir.1c01468 – volume: 33 start-page: 2106621 year: 2021 ident: 173_CR92 publication-title: Adv Mater doi: 10.1002/adma.202106621 – volume: 711 year: 2020 ident: 173_CR46 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.134847 – volume: 250 year: 2020 ident: 173_CR24 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126291 – volume: 95 start-page: 2723 year: 2020 ident: 173_CR73 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.6279 – volume: 9 year: 2021 ident: 173_CR85 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2021.106753 – volume: 52 start-page: 13057 year: 2018 ident: 173_CR1 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b01715 – volume: 248 start-page: 1 year: 2019 ident: 173_CR106 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.02.008 – volume: 901 year: 2022 ident: 173_CR86 publication-title: J Hazard Mater – volume: 3 year: 2022 ident: 173_CR55 publication-title: Innovation – volume: 3 start-page: 125 year: 2015 ident: 173_CR91 publication-title: ACS Sustain Chem Eng doi: 10.1021/sc500619r – volume: 381 start-page: 278 year: 2008 ident: 173_CR74 publication-title: J Nucl Mater doi: 10.1016/j.jnucmat.2008.08.036 – volume: 115 start-page: 190 year: 2022 ident: 173_CR117 publication-title: J Environ Sci doi: 10.1016/j.jes.2021.07.015 – volume: 1 start-page: 45 year: 2019 ident: 173_CR34 publication-title: Biochar doi: 10.1007/s42773-019-00006-5 – volume: 222 start-page: 391 year: 2019 ident: 173_CR57 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.132 – volume: 760 year: 2021 ident: 173_CR28 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143333 – volume: 3 start-page: 117 year: 2021 ident: 173_CR69 publication-title: Biochar doi: 10.1007/s42773-021-00098-y – volume: 210 start-page: 393 year: 2021 ident: 173_CR12 publication-title: Desalination Water Treat doi: 10.5004/dwt.2021.26580 – volume: 390 year: 2020 ident: 173_CR21 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121623 – volume: 377 start-page: 361 year: 2016 ident: 173_CR87 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.03.109 – volume: 695 year: 2019 ident: 173_CR49 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.133886 – volume: 394 year: 2020 ident: 173_CR61 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124856 – volume: 2 year: 2021 ident: 173_CR52 publication-title: Innovation – volume: 291 year: 2021 ident: 173_CR109 publication-title: Environ Poll doi: 10.1016/j.envpol.2021.118076 – volume: 180 start-page: 94 year: 2016 ident: 173_CR40 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2016.05.016 – volume: 208 start-page: 408 year: 2018 ident: 173_CR88 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.05.175 – volume: 45 year: 2022 ident: 173_CR35 publication-title: J Water Proc Eng doi: 10.1016/j.jwpe.2021.102470 – volume: 4 start-page: 2294 year: 2022 ident: 173_CR30 publication-title: CCS Chem doi: 10.31635/ccschem.022.202201897 – volume: 64 start-page: 1323 year: 2021 ident: 173_CR48 publication-title: Sci China Chem doi: 10.1007/s11426-021-9987-1 – volume: 214 start-page: 34 year: 2017 ident: 173_CR19 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2017.05.036 – volume: 30 start-page: 214 year: 2020 ident: 173_CR62 publication-title: J Inorg Organometal Mater doi: 10.1007/s10904-019-01322-w – volume: 765 year: 2021 ident: 173_CR22 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.142673 – volume: 32 start-page: 2204175 year: 2022 ident: 173_CR112 publication-title: Adv Funct Mater doi: 10.1002/adfm.202204175 – volume: 229 start-page: 942 year: 2017 ident: 173_CR16 publication-title: Environ Poll doi: 10.1016/j.envpol.2017.07.079 – volume: 811 year: 2022 ident: 173_CR101 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.152280 – volume: 2 start-page: 47 year: 2020 ident: 173_CR33 publication-title: Biochar doi: 10.1007/s42773-020-00044-4 – volume: 250 start-page: 78 year: 2019 ident: 173_CR96 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.03.004 – volume: 559 year: 2021 ident: 173_CR7 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.149938 – volume: 302 year: 2021 ident: 173_CR42 publication-title: Mater Lett doi: 10.1016/j.matlet.2021.130455 – volume: 51 start-page: 751 year: 2021 ident: 173_CR53 publication-title: Critical Rev Environ Sci Technol doi: 10.1080/10643389.2020.1734433 – volume: 165 start-page: 431 year: 2017 ident: 173_CR41 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.07.117 – volume: 3 start-page: 89 year: 2021 ident: 173_CR63 publication-title: Biochar doi: 10.1007/s42773-020-00070-2 – volume: 493 start-page: 1361 year: 2019 ident: 173_CR10 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.04.160 – volume: 273 year: 2021 ident: 173_CR95 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128576 – volume: 62 start-page: 933 year: 2019 ident: 173_CR80 publication-title: Sci China Chem doi: 10.1007/s11426-019-9492-4 – volume: 186 start-page: 277 year: 2017 ident: 173_CR59 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2016.05.034 – volume: 4 year: 2022 ident: 173_CR111 publication-title: EnergyChem doi: 10.1016/j.enchem.2022.100078 – volume: 53 start-page: 10342 year: 2019 ident: 173_CR75 publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b02745 – volume: 44 start-page: 1753 year: 2013 ident: 173_CR68 publication-title: J Raman Spectrosc doi: 10.1002/jrs.4392 – volume: 1 start-page: 89 year: 2019 ident: 173_CR115 publication-title: Biochar doi: 10.1007/s42773-019-00007-4 – volume: 487 start-page: 1262 year: 2019 ident: 173_CR45 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.05.195 – volume: 767 year: 2021 ident: 173_CR114 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145305 – volume: 643 year: 2022 ident: 173_CR5 publication-title: Appl Catal A General doi: 10.1016/j.apcata.2022.118733 – volume: 79 start-page: 625 year: 2018 ident: 173_CR43 publication-title: Waste Manage doi: 10.1016/j.wasman.2018.08.035 – volume: 122 start-page: 1 year: 2022 ident: 173_CR13 publication-title: J Environ Sci doi: 10.1016/j.jes.2021.10.003 – volume: 267 start-page: 62 year: 2014 ident: 173_CR17 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2013.12.027 – volume: 70 start-page: 217 year: 2018 ident: 173_CR32 publication-title: J Environ Sci doi: 10.1016/j.jes.2018.01.013 – volume: 243 start-page: 386 year: 2019 ident: 173_CR44 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2018.10.052 – volume: 2021 start-page: 9794329 year: 2021 ident: 173_CR20 publication-title: Research doi: 10.34133/2021/9794329 – volume: 415 year: 2021 ident: 173_CR100 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125511 – volume: 28 start-page: 55176 year: 2021 ident: 173_CR54 publication-title: Environ Sci Poll Res doi: 10.1007/s11356-021-14835-0 – volume: 17 year: 2022 ident: 173_CR31 publication-title: Int J Electrochem Sci doi: 10.20964/2022.03.28 – volume: 389 year: 2020 ident: 173_CR82 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121827 – volume: 405 year: 2021 ident: 173_CR2 publication-title: J Photochem Photobiol a: Chem doi: 10.1016/j.jphotochem.2020.112976 – volume: 40 start-page: 886 year: 2019 ident: 173_CR81 publication-title: Chinese J Catalysis doi: 10.1016/S1872-2067(19)63330-9 – volume: 185 start-page: 351 year: 2017 ident: 173_CR103 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.025 – volume: 310 year: 2022 ident: 173_CR6 publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2022.121343 – volume: 410 year: 2021 ident: 173_CR94 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124547 – volume: 384 year: 2020 ident: 173_CR89 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.123311 – volume: 7 start-page: 5552 year: 2019 ident: 173_CR107 publication-title: J Mater Chem A doi: 10.1039/C9TA00339H – volume: 792 year: 2021 ident: 173_CR47 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.148546 – volume: 11 start-page: 18881 year: 2021 ident: 173_CR79 publication-title: RSC Adv doi: 10.1039/D1RA01599K – volume: 625 start-page: 1567 year: 2018 ident: 173_CR71 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.12.195 – volume: 370 start-page: 614 year: 2019 ident: 173_CR64 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.03.235 – volume: 268 start-page: 149 year: 2018 ident: 173_CR104 publication-title: Biores Technol doi: 10.1016/j.biortech.2018.07.125 – volume: 297 year: 2020 ident: 173_CR98 publication-title: Biores Technol doi: 10.1016/j.biortech.2019.122466 – volume: 2 start-page: 17007 year: 2017 ident: 173_CR51 publication-title: Nat Energy doi: 10.1038/nenergy.2017.7 – volume: 467 year: 2022 ident: 173_CR14 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2022.214615 – volume: 11 start-page: 526 year: 2021 ident: 173_CR110 publication-title: Nanomaterials doi: 10.3390/nano11020526 – volume: 326 year: 2021 ident: 173_CR38 publication-title: J Molecule Liquid doi: 10.1016/j.molliq.2021.115315 – volume: 209 year: 2022 ident: 173_CR76 publication-title: Environ Res doi: 10.1016/j.envres.2022.112841 – volume: 71 start-page: 299 year: 2014 ident: 173_CR3 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.09.027 – volume: 800 year: 2021 ident: 173_CR99 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.149662 – volume: 498 year: 2019 ident: 173_CR39 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.143846 – volume: 4 start-page: 19 year: 2022 ident: 173_CR70 publication-title: Biochar doi: 10.1007/s42773-022-00146-1 – volume: 195 start-page: 632 year: 2018 ident: 173_CR97 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.128 – volume: 398 year: 2020 ident: 173_CR18 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.122901 – volume: 12 start-page: 210 year: 2022 ident: 173_CR23 publication-title: Catalysts doi: 10.3390/catal12020210 – volume: 398 year: 2020 ident: 173_CR77 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123025 – volume: 263 year: 2021 ident: 173_CR60 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127988 – volume: 366 start-page: 368 year: 2019 ident: 173_CR65 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.02.098 – volume: 67 start-page: 924 year: 2022 ident: 173_CR29 publication-title: Sci Bull doi: 10.1016/j.scib.2022.02.012 – volume: 172 year: 2021 ident: 173_CR66 publication-title: Ind Crop Prod doi: 10.1016/j.indcrop.2021.114066 – volume: 327 year: 2021 ident: 173_CR11 publication-title: J Mol Liq doi: 10.1016/j.molliq.2020.114807 – volume: 748 start-page: 141381 year: 2020 ident: 173_CR26 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141381 – volume: 260 start-page: 294 year: 2018 ident: 173_CR113 publication-title: Biores Technol doi: 10.1016/j.biortech.2018.03.116 – volume: 3 start-page: 255 year: 2021 ident: 173_CR50 publication-title: Biochar doi: 10.1007/s42773-021-00101-6 – volume: 560 start-page: 111 year: 2020 ident: 173_CR102 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.08.065 – volume: 36 start-page: 871 year: 2021 ident: 173_CR83 publication-title: J Inorg Mater doi: 10.15541/jim20200661 – volume: 77 start-page: 244 year: 2017 ident: 173_CR36 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2017.05.010 – volume: 145 year: 2022 ident: 173_CR72 publication-title: Mater Res Bull doi: 10.1016/j.materresbull.2021.111530 – volume: 26 start-page: 21609 year: 2019 ident: 173_CR78 publication-title: Environ Sci Poll Res doi: 10.1007/s11356-019-05497-0 – volume: 358 start-page: 231 year: 2015 ident: 173_CR67 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.08.176 – volume: 407 year: 2021 ident: 173_CR116 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124376 – volume: 66 start-page: 1996 year: 2021 ident: 173_CR15 publication-title: Sci Bull – volume: 2 start-page: 1 year: 2020 ident: 173_CR58 publication-title: Biochar doi: 10.1007/s42773-020-00041-7 – volume: 103 start-page: 93 year: 2021 ident: 173_CR90 publication-title: J Environ Sci doi: 10.1016/j.jes.2020.10.006 – volume: 359 start-page: 119 year: 2019 ident: 173_CR9 publication-title: Chem Eng J doi: 10.1016/j.cej.2018.11.110 – volume: 10 year: 2022 ident: 173_CR37 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2021.106942 – volume: 242 year: 2022 ident: 173_CR84 publication-title: J Environ Radioact doi: 10.1016/j.jenvrad.2021.106798 – volume: 2 start-page: 329 year: 2020 ident: 173_CR108 publication-title: Biochar doi: 10.1007/s42773-020-00060-4 – volume: 9 start-page: 313 year: 2021 ident: 173_CR8 publication-title: Toxic doi: 10.3390/toxics9110313 – volume: 642 year: 2022 ident: 173_CR27 publication-title: Colloid Surf A doi: 10.1016/j.colsurfa.2022.128606 – volume: 256 start-page: 1 year: 2018 ident: 173_CR105 publication-title: Biores Technol doi: 10.1016/j.biortech.2018.01.145 – volume: 9 start-page: 2201735 year: 2022 ident: 173_CR56 publication-title: Adv Sci doi: 10.1002/advs.202201735 – volume: 93 start-page: 783 year: 2018 ident: 173_CR4 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.5428 |
SSID | ssj0002511639 ssib053820432 ssib046561560 |
Score | 2.5883024 |
SecondaryResourceType | review_article |
Snippet | The fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic... Highlights 1. Adsorption-photocatalytic degradation of organic pollutants by biochar-based catalysts is summarized. 2. Adsorption-(photo)catalytic... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adsorption Agriculture Biochar-based composites Ceramics Composites Earth and Environmental Science Environment Environmental Engineering/Biotechnology Environmental pollutants Fossil Fuels (incl. Carbon Capture) Glass Natural Materials Photocatalytic degradation Photocatalytic reduction Renewable and Green Energy Review Soil Science & Conservation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJy4IBIjxUg4cQCxalzZNym0gpgkJTkzarUqaVExi67SWw_4LPxY77R4IaVyQ2kub1m3sxHZifybkOkwETyIhWORCyyIVOAZSEjGZ6BiOUOQhJie_vMaDYfQ8EqONUl8YE1bDA9cd13HgE2BElNE8iOBU0vBEBVYELnKBNDj7gs7bcKZAkhAErLth-MOoxhxQvlp9QcM69mXGuOD4ZZI3GTU-ry7iUuL2Jmc4i4ds8UNreXD_XzunXiH1D8h-Y0nSXv0Hh2THTY_IV2-9IU2LnJpxgXlVDJWVpbP3oir8gs2irEoK9irVtizmftpgN_72rUX4iLrSUmeOwK7Ld23kxAFdjHHXTRzNPZ04zCAel5M2zZblWUqqp0Bznc15TIb9p7fHAWsKMLAM3K6KhTC8MxvrrKucjWMrtJG2a0wmNWLA8Nhyo5UxNoRRrlwWS-hqsAeky7mwSoUnZHdaTN0poTk4clwiFDZiDJrcSA2mihYycblQOW-R7rKD06xBJ8ciGR_pClfZMyUFpqSeKemiRe5Wz8xqbI6trR-Qb6uWiKvtL4C0pY20pX9JW4u0l1xPm8FebqF59h80z8keR1H0MTQXZLeaf7pLsIQqc-WF_htVcQFf priority: 102 providerName: Directory of Open Access Journals |
Title | Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective |
URI | https://link.springer.com/article/10.1007/s42773-022-00173-y https://doaj.org/article/e282c5feba204a2087b2980d50e4e07b |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoXOgBAaXq8pIPHFoVi10nfoTbsgIhJHoqErfIjh2KVDYoCYe98Ev4scx4nSwIhISU5JA4sZWZscf2fN8QcpBkgmepECz1iWOpHnoGWpIylRkJRyLKBMHJl3_k-VV6cS2uIyis6aLduy3J0FP3YLeUK4V7jpxh15qw2ReyImDujno9WXCOIwHY6IXTDxaN-E_er7ygUy1DijEuOLZK8Yimeb-aVyNWIPZ_s2saBqOzdbIWvUg6not9gyz56Sb5Or6pI5OG_0aexoutaVqV1N5WiLBiOGw5ev-vaquwdDNr2oaC50qNa6o6dCDsZ3j8yyGRxDzn0lGNFK_dt16g46AVGO1uYkTNMb3ziCW-be4OadElammomUKdC1znFrk6O_07OWcxFQMrYALWsgQMvXDSFCPtnZROGKvcyNpCGWSD4dJxa7S1LgF7176QCn48eAbKl1w4rZPvZHlaTf0PQkuY0nGFpNjINmhLqww4LUaozJdCl3xARt3vzovIU47pMv7nPcNyEFEOIsqDiPLZgPzu37mfs3R8WPoEpdiXRIbtcKOqb_JosLmHuShG4lkD2gOnVpZneujE0Kd-qOyAHHY6kEezbz6oc_tzxXfIKkcVDHEzu2S5rR_8Hng_rd0Pyo5XOdkPKwhwvXw8fQaEWf2r |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagHAoHBBREyssHDlTUauJdP5ZbiIhCX6dWys2y194SiWSj7PaQ_8KPZcbxpqWgSki7l13v2vLM2DOemW8I-ZgVghe5ECwPmWe57gcGXJIzVVgJVyaqDJOTz87l5DI_noppgsnBXJg7_vujJudKoaeRM1xQM7Z-SB7lYClj-N5IjjreQdivwS1VH-QYsz759rwFVWkZC4txwXEsiqccmn9388c-FeH8__KVxi1o_Iw8TbojHW6I_Zw8CIsX5MnwapXwM8Ie-TW8cUjTuqJuVmNeFcPNytPlj7qt44HNumkbCvoqtb6pV3HZYJ_i6wOP8BGbSktHKwR27f51KycORoEx7jbF0Xyh84AZxLNmfkjLrjxLQ-0C-rzJ5nxJLsffLkYTlgowsBLMrpZlIN6ll7Yc6OCl9MI65QfOlcoiBgyXnjurnfMZSLkOpVQw8aAPqFBx4bXOXpGdRb0IrwmtwJDjCqGwEWPQVU5ZUFWsUEWohK54jwy66TZlQifHIhk_zRZXOZLIAIlMJJFZ98jn7TfLDTbHva2_IhW3LRFXOz4AdjNJTE0ACxTj75wF7oFbK8cL3feiH_LQV65HDjseMEnYm3v63P-_5h_I7uTi7NScfj8_eUMec2THGDnzluy0q-vwDvSf1r2PjP8bnID5uQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyE4IMpDbCnUBw4gau2uEz_S27J01fKoOFCpN8uOnVKJJqskPex_4ccy403SRaBKSMklcWLLHtsznvm-IeRNkgmepUKwNCSepXoSGEhJylRmJVyJKBIEJ389kyfn6acLcbGB4o_R7r1Lco1pQJamsh0vfTEegG8pVwr9j5zhMpuw1T2yA5ZKdNTO5byXKCQDm24YADC7EQvKh1MYVLBlTDfGBccWKt4ha_5dzR-7VyT5_8uDGjemxWPyqNMo6WwtArtkK5RPyMPZZd2xaoSn5Nfs1k1Nq4K6qwrRVgy3ME-XP6q2isc4q6ZtKGix1PqmquNiwt7G1-88kkqs8y-Na6R77f-1gZSDVmA32i665oheB8QVXzXXhzTvk7Y01JZQ5y3G8xk5Xxx_n5-wLi0Dy8EYa1kCkz730uZTHbyUXlin_NS5XFlkhuHSc2e1cz6Bua9DLhV0PGgJKhRceK2T52S7rMrwgtACzDuukCAbmQdd4ZQFBcYKlYVC6IKPyLTvbpN3nOWYOuOnGdiW4xAZGCITh8isRuT98M1yzdhxZ-kPOIpDSWTbjg-q-tJ0k9cEsEsxKs9ZkB64tXI80xMvJiENE-VG5LCXAdMtAc0dde79X_EDcv_bx4X5cnr2-SV5wFEaYzjNPtlu65vwCpSi1r2Ocv8biWQCDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+biochar-based+photocatalysts+for+adsorption-%28photo%29degradation%2Freduction+of+environmental+contaminants%3A+mechanism%2C+challenges+and+perspective&rft.jtitle=Biochar+%28Online%29&rft.au=Lu%2C+Yin&rft.au=Cai%2C+Yawen&rft.au=Zhang%2C+Sai&rft.au=Zhuang%2C+Li&rft.date=2022-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2524-7972&rft.eissn=2524-7867&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-022-00173-y&rft.externalDocID=10_1007_s42773_022_00173_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7972&client=summon |