Entangled-photons generation with quantum dots

Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 27; no. 2; pp. 140 - 153
Main Author 李远;丁飞;Oliver G Schmidt
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.02.2018
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/27/2/020307

Cover

Loading…
Abstract Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing to their deterministic emission properties, potential for electrical injections, and direct compatibility with semiconductor manufacturing techniques. Despite the great promises, QD-based sources at'e far from being ideal. In particular, such sources present several critical issues, which require the overcoming of challenges pertaining to spectral tunability, entanglement fidelity, photon indistinguishability and brightness. In this article, we will discuss the potential solutions to these problems and review the recent progress in the field.
AbstractList Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing to their deterministic emission properties, potential for electrical injections, and direct compatibility with semiconductor manufacturing techniques. Despite the great promises, QD-based sources are far from being ideal. In particular, such sources present several critical issues, which require the overcoming of challenges pertaining to spectral tunability, entanglement fidelity, photon indistinguishability and brightness. In this article, we will discuss the potential solutions to these problems and review the recent progress in the field.
Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing to their deterministic emission properties, potential for electrical injections, and direct compatibility with semiconductor manufacturing techniques. Despite the great promises, QD-based sources at'e far from being ideal. In particular, such sources present several critical issues, which require the overcoming of challenges pertaining to spectral tunability, entanglement fidelity, photon indistinguishability and brightness. In this article, we will discuss the potential solutions to these problems and review the recent progress in the field.
Author 李远;丁飞;Oliver G Schmidt
AuthorAffiliation Institute for lntegrative Nanosciences, IFW Dresden, HelmholtzstraBe 20. 01069 Dresden. Germany;Institule for Solid State Physics. Leibniz University of Hunnover. AppelstBe 2.30 167 Hannovel; Germany
Author_xml – sequence: 1
  fullname: 李远;丁飞;Oliver G Schmidt
BookMark eNqFj0tLw0AURgepYFv9CUJw4yrNPDKP4kpKfUDBja6HeSVNaWfSyRTx35vaUkSEru7mnMt3RmDgg3cA3CI4QVCIAjFe5ghSVmBe4AJiSCC_AEMMqciJIOUADE_MFRh13QpChiAmQzCZ-6R8vXY2b5chBd9ltfMuqtQEn302aZltd8qn3SazIXXX4LJS687dHO8YfDzN32cv-eLt-XX2uMhNCVHKMSHaCKOVMXaKKStRqanVDGltHcHKIqw4hVPDBWKE6Ypxa9yUlq6qtHaCjMHD4a-Joeuiq6Rp0s-mFFWzlgjKfbrcZ8l9lsRcYnlI7236x25js1Hx66x3f_Ca0MpV2EXfN0rT6t-UbG3Vk-gf8tz3u-OqZfD1tvH1aVbPc4YpheQblhiGKQ
CitedBy_id crossref_primary_10_1515_nanoph_2022_0120
crossref_primary_10_1103_PhysRevB_107_205417
crossref_primary_10_1063_5_0147281
crossref_primary_10_3103_S1068335623602066
crossref_primary_10_1007_s10948_019_05175_9
crossref_primary_10_1007_s11082_024_07412_5
crossref_primary_10_1007_s11128_019_2542_9
Cites_doi 10.1038/nphoton.2016.203
10.1038/ncomms10387
10.1103/PhysRevLett.104.196803
10.1038/ncomms8662
10.1103/PhysRevLett.104.067405
10.1016/j.scib.2017.10.023
10.1038/nphoton.2010.2
10.1038/nature11573
10.1038/ncomms15506
10.1063/1.2761522
10.1103/PhysRevB.70.193303
10.1103/PhysRevLett.112.170501
10.1126/science.1211914
10.1103/PhysRevB.89.115309
10.1007/978-3-540-87446-1
10.1103/PhysRevLett.81.3563
10.1126/science.282.5389.706
10.1103/PhysRevLett.49.91
10.1103/PhysRevLett.95.060502
10.1103/PhysRevA.77.043834
10.1063/1.2981517
10.1038/ncomms15501
10.1063/1.2204843
10.1063/1.4948762
10.1021/nl500968k
10.1038/nphoton.2013.128
10.1103/PhysRevLett.115.067401
10.1088/1361-6633/aa6955
10.1143/JJAP.46.7175
10.1063/1.2713745
10.1103/PhysRevB.67.161306
10.1038/463441a
10.1021/acs.nanolett.7b00777
10.1103/PhysRevLett.28.938
10.1103/PhysRevLett.92.166104
10.1103/PhysRevB.87.075311
10.1103/RevModPhys.74.145
10.1103/PhysRevB.88.041306
10.1002/adma.201200537
10.1103/PhysRevB.65.195315
10.1021/nl503581d
10.1103/PhysRevLett.106.227401
10.1103/PhysRevLett.118.220501
10.1103/PhysRevLett.47.460
10.1063/1.4802088
10.1103/PhysRevLett.103.217402
10.1038/nature12012
10.1038/nphoton.2012.138
10.1002/pssb.201100775
10.1088/1367-2630/17/3/033033
10.1103/PhysRevB.93.045316
10.1103/PhysRevLett.67.661
10.1038/ncomms10375
10.1103/PhysRevLett.95.257402
10.1063/1.4907650
10.1021/acsphotonics.7b00253
10.1364/OL.36.003545
10.1038/ncomms1657
10.1103/PhysRevLett.103.013601
10.1007/978-3-319-56378-7
10.1038/nature14246
10.1063/1.2424446
10.1103/PhysRevLett.86.4435
10.1103/PhysRevLett.119.010402
10.1103/PhysRev.47.777
10.1038/nature07125
10.1063/1.3133338
10.1021/nl503081n
10.1038/nphoton.2013.377
10.1103/PhysRevA.64.052312
10.1103/PhysRevB.80.161307
10.1103/PhysRevLett.111.130406
10.1103/PhysRevA.68.022312
10.1038/nature04446
10.1038/nature09078
10.1063/1.2430489
10.1103/PhysRevLett.118.060401
10.1103/PhysRevB.90.081301
10.1038/nature09148
10.1103/RevModPhys.87.347
10.1038/ncomms10067
10.1103/PhysRevLett.88.037901
10.1103/PhysRevA.45.8185
10.1021/acsphotonics.6b00935
10.1103/PhysRevB.71.045318
10.1038/nature01623
10.1016/S1049-250X(05)52003-2
10.1063/1.4979481
10.1103/PhysRevB.69.161301
10.1103/PhysRevLett.23.880
10.1038/35000514
10.1038/ncomms6298
10.1038/nphys1780
10.1103/RevModPhys.84.777
10.1103/PhysRevLett.114.150502
10.1103/PhysRevLett.109.147401
10.1103/PhysRevLett.103.063601
10.1103/PhysRevLett.84.2513
10.1103/PhysRevB.72.245318
10.1038/nmat3652
10.1063/1.2431758
10.1103/PhysRevLett.80.3891
10.1103/PhysRevB.83.121302
10.1103/PhysRevA.84.032307
10.1103/PhysRevLett.82.2594
10.1103/PhysRevLett.101.170501
10.1038/37539
10.1103/PhysRevB.95.161302
10.1103/PhysRevApplied.1.024002
ContentType Journal Article
Copyright 2018 Chinese Physical Society and IOP Publishing Ltd
Copyright_xml – notice: 2018 Chinese Physical Society and IOP Publishing Ltd
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/1674-1056/27/2/020307
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Entangled-photons generation with quantum dots
EISSN 2058-3834
EndPage 153
ExternalDocumentID 10_1088_1674_1056_27_2_020307
cpb_27_2_020307
674762550
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAXDM
AOAED
CAJEA
Q--
U1G
U5K
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
ARNYC
CITATION
ID FETCH-LOGICAL-c401t-233bc8cbaccd9256414b5db61bbde32ad12a7509c781636bf67dce954effbbe83
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Tue Jul 01 02:55:24 EDT 2025
Thu Apr 24 23:00:28 EDT 2025
Wed Aug 21 03:40:43 EDT 2024
Thu Jan 07 13:50:38 EST 2021
Wed Feb 14 09:56:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-233bc8cbaccd9256414b5db61bbde32ad12a7509c781636bf67dce954effbbe83
Notes Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing to their deterministic emission properties, potential for electrical injections, and direct compatibility with semiconductor manufacturing techniques. Despite the great promises, QD-based sources at'e far from being ideal. In particular, such sources present several critical issues, which require the overcoming of challenges pertaining to spectral tunability, entanglement fidelity, photon indistinguishability and brightness. In this article, we will discuss the potential solutions to these problems and review the recent progress in the field.
quantum information, entangled-photon source, quantum dots
Yuan Li, Fei Ding and Oliver G Schmidt( 1 Institute for Integrative Nanosciences, IFW Dresden, Helmholtz,straBe 20, 01069 Dresden. Germany ; Institute tor Solid State Physics. Leibntz University ol Hannover; AppelstratBe 2, 30167 Hannovet; Germany)
11-5639/O4
OpenAccessLink https://www.repo.uni-hannover.de/handle/123456789/5521
PageCount 14
ParticipantIDs crossref_citationtrail_10_1088_1674_1056_27_2_020307
crossref_primary_10_1088_1674_1056_27_2_020307
chongqing_primary_674762550
iop_journals_10_1088_1674_1056_27_2_020307
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2018
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References 88
89
Fox M (16) 2006
Edamatsu K (27) 2007; 46
110
90
91
92
93
94
95
96
97
10
98
11
99
12
13
14
15
17
18
19
1
2
3
4
5
Mirhosseini M (20) 2015; 17
6
7
8
9
21
22
23
25
26
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Orieux A (24) 2017; 80
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
107
81
108
82
109
83
84
85
86
87
References_xml – ident: 98
  doi: 10.1038/nphoton.2016.203
– ident: 83
  doi: 10.1038/ncomms10387
– ident: 46
  doi: 10.1103/PhysRevLett.104.196803
– ident: 103
  doi: 10.1038/ncomms8662
– ident: 71
  doi: 10.1103/PhysRevLett.104.067405
– ident: 110
  doi: 10.1016/j.scib.2017.10.023
– ident: 52
  doi: 10.1038/nphoton.2010.2
– ident: 14
  doi: 10.1038/nature11573
– ident: 61
  doi: 10.1038/ncomms15506
– ident: 66
  doi: 10.1063/1.2761522
– ident: 87
  doi: 10.1103/PhysRevB.70.193303
– ident: 10
  doi: 10.1103/PhysRevLett.112.170501
– ident: 13
  doi: 10.1126/science.1211914
– ident: 77
  doi: 10.1103/PhysRevB.89.115309
– ident: 29
  doi: 10.1007/978-3-540-87446-1
– ident: 37
  doi: 10.1103/PhysRevLett.81.3563
– ident: 7
  doi: 10.1126/science.282.5389.706
– ident: 26
  doi: 10.1103/PhysRevLett.49.91
– ident: 9
  doi: 10.1103/PhysRevLett.95.060502
– ident: 28
  doi: 10.1103/PhysRevA.77.043834
– ident: 58
  doi: 10.1063/1.2981517
– ident: 62
  doi: 10.1038/ncomms15501
– ident: 92
  doi: 10.1063/1.2204843
– ident: 96
  doi: 10.1063/1.4948762
– ident: 78
  doi: 10.1021/nl500968k
– ident: 53
  doi: 10.1038/nphoton.2013.128
– ident: 81
  doi: 10.1103/PhysRevLett.115.067401
– volume: 80
  issn: 0034-4885
  year: 2017
  ident: 24
  publication-title: Reports on Progress in Physics. Physical Society
  doi: 10.1088/1361-6633/aa6955
– volume: 46
  start-page: 7175
  issn: 1347-4065
  year: 2007
  ident: 27
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.46.7175
– ident: 57
  doi: 10.1063/1.2713745
– ident: 43
  doi: 10.1103/PhysRevB.67.161306
– ident: 3
  doi: 10.1038/463441a
– ident: 101
  doi: 10.1021/acs.nanolett.7b00777
– ident: 36
  doi: 10.1103/PhysRevLett.28.938
– ident: 49
  doi: 10.1103/PhysRevLett.92.166104
– ident: 76
  doi: 10.1103/PhysRevB.87.075311
– ident: 4
  doi: 10.1103/RevModPhys.74.145
– ident: 54
  doi: 10.1103/PhysRevB.88.041306
– ident: 74
  doi: 10.1002/adma.201200537
– ident: 70
  doi: 10.1103/PhysRevB.65.195315
– ident: 95
  doi: 10.1021/nl503581d
– ident: 47
  doi: 10.1103/PhysRevLett.106.227401
– start-page: 268
  year: 2006
  ident: 16
  publication-title: Quantum Optics: An Introduction
– ident: 109
  doi: 10.1103/PhysRevLett.118.220501
– ident: 25
  doi: 10.1103/PhysRevLett.47.460
– ident: 60
  doi: 10.1063/1.4802088
– ident: 90
  doi: 10.1103/PhysRevLett.103.217402
– ident: 34
  doi: 10.1038/nature12012
– ident: 18
  doi: 10.1038/nphoton.2012.138
– ident: 73
  doi: 10.1002/pssb.201100775
– volume: 17
  issn: 1367-2630
  year: 2015
  ident: 20
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/3/033033
– ident: 65
  doi: 10.1103/PhysRevB.93.045316
– ident: 5
  doi: 10.1103/PhysRevLett.67.661
– ident: 80
  doi: 10.1038/ncomms10375
– ident: 48
  doi: 10.1103/PhysRevLett.95.257402
– ident: 69
  doi: 10.1063/1.4907650
– ident: 104
  doi: 10.1021/acsphotonics.7b00253
– ident: 105
  doi: 10.1364/OL.36.003545
– ident: 63
  doi: 10.1038/ncomms1657
– ident: 21
  doi: 10.1103/PhysRevLett.103.013601
– ident: 17
  doi: 10.1007/978-3-319-56378-7
– ident: 22
  doi: 10.1038/nature14246
– ident: 89
  doi: 10.1063/1.2424446
– ident: 15
  doi: 10.1103/PhysRevLett.86.4435
– ident: 31
  doi: 10.1103/PhysRevLett.119.010402
– ident: 1
  doi: 10.1103/PhysRev.47.777
– ident: 8
  doi: 10.1038/nature07125
– ident: 59
  doi: 10.1063/1.3133338
– ident: 102
  doi: 10.1021/nl503081n
– ident: 99
  doi: 10.1038/nphoton.2013.377
– ident: 38
  doi: 10.1103/PhysRevA.64.052312
– ident: 50
  doi: 10.1103/PhysRevB.80.161307
– ident: 33
  doi: 10.1103/PhysRevLett.111.130406
– ident: 2
  doi: 10.1103/PhysRevA.68.022312
– ident: 68
  doi: 10.1038/nature04446
– ident: 97
  doi: 10.1038/nature09078
– ident: 88
  doi: 10.1063/1.2430489
– ident: 32
  doi: 10.1103/PhysRevLett.118.060401
– ident: 56
  doi: 10.1103/PhysRevB.90.081301
– ident: 93
  doi: 10.1038/nature09148
– ident: 41
  doi: 10.1103/RevModPhys.87.347
– ident: 79
  doi: 10.1038/ncomms10067
– ident: 11
  doi: 10.1103/PhysRevLett.88.037901
– ident: 19
  doi: 10.1103/PhysRevA.45.8185
– ident: 85
  doi: 10.1021/acsphotonics.6b00935
– ident: 44
  doi: 10.1103/PhysRevB.71.045318
– ident: 108
  doi: 10.1038/nature01623
– ident: 40
  doi: 10.1016/S1049-250X(05)52003-2
– ident: 84
  doi: 10.1063/1.4979481
– ident: 86
  doi: 10.1103/PhysRevB.69.161301
– ident: 39
  doi: 10.1103/PhysRevLett.23.880
– ident: 35
  doi: 10.1038/35000514
– ident: 94
  doi: 10.1038/ncomms6298
– ident: 67
  doi: 10.1038/nphys1780
– ident: 106
  doi: 10.1103/RevModPhys.84.777
– ident: 82
  doi: 10.1103/PhysRevLett.114.150502
– ident: 75
  doi: 10.1103/PhysRevLett.109.147401
– ident: 51
  doi: 10.1103/PhysRevLett.103.063601
– ident: 30
  doi: 10.1103/PhysRevLett.84.2513
– ident: 45
  doi: 10.1103/PhysRevB.72.245318
– ident: 55
  doi: 10.1038/nmat3652
– ident: 64
  doi: 10.1063/1.2431758
– ident: 107
  doi: 10.1103/PhysRevLett.80.3891
– ident: 72
  doi: 10.1103/PhysRevB.83.121302
– ident: 12
  doi: 10.1103/PhysRevA.84.032307
– ident: 23
  doi: 10.1103/PhysRevLett.82.2594
– ident: 42
  doi: 10.1103/PhysRevLett.101.170501
– ident: 6
  doi: 10.1038/37539
– ident: 100
  doi: 10.1103/PhysRevB.95.161302
– ident: 91
  doi: 10.1103/PhysRevApplied.1.024002
SSID ssj0061023
Score 2.1334178
SecondaryResourceType review_article
Snippet Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons...
SourceID crossref
iop
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 140
SubjectTerms entangled-photon source
quantum dots
quantum information
纠缠光子;量点;关键资源;信息处理;通讯协议;生产技术;半导体;相容性
Title Entangled-photons generation with quantum dots
URI http://lib.cqvip.com/qk/85823A/201802/674762550.html
https://iopscience.iop.org/article/10.1088/1674-1056/27/2/020307
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-ELz4FtcXPXgS0nWTtJs9iigq-DgoeAvNJFnFtVvd3Yu_3pk-ZBVExFuhmSGZSSffNPNg7ACCEk4Kz6XsCK6C0zyTIXCVQu8Igg2yTI--uk7P79XlQ_IwlcX_NCxq0x_jY1UouBJhHRCn2xQ3z6lhfBvddtGmqzRKJ5-n7pW0xy9ubhtbnFJhAnK5GpImh-cnNlRh4XGY91_x3PhyUs3ibKYOnrNlljVTruJNnuPJ2Mbw_q2a43_WtMKWalQaHVfjV9mMz9fYQhkdCqN1Fp_miCH7A-948ThEtDiK-mW5atJqRL9yo9cJqmjyEqGTO9pg92endyfnvG60wAHdqzEXUlrQYDMA10MMpDrKJs6mHWudlyJzHZERsoCuRviW2pB2HfheonwI1notN9lcPsz9Fos0wqOeTWxyZEFBFwko2BP14ICsR9JiO58CNkVVUMPg4tEmo6_UYqoRuYG6Rjm1yhiY8q5ca0OCMiQoI7pGmEpQLRZ_kjU8fyE4RE2Y-nMd_TY4-jIYCjv92hQubP-F3w5bRNSlq9DvXTY3fpv4PUQ2Y7tfbt4PxhHm_w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BEYjLPoAVpbtLDpyQnLa2k7jH1ULFY5flABI3qx7brQSbBtpe-PWM86hgpRVC3CLFYznfJONv4vFngAP0klvBHROiz5n0VrGR8J7JFAc99MaLcnv074v05Fqe3SQ3K3C03AszLerQH9NlJRRcQVgXxKluqJtn4cD4LqXtvBuW0npZt7B-FdYSisehsOv0z2UTj9MgThDSrsas2cfzv66CysJkmo_vae54MVut0oieTT7Dj-CaYVc1J7fxYm5ifPxH0fG9z_UJPtTsNPpR2XyGFZdvwXpZJYqzbYiPc-KS4ztnWTGZEmucReNStjp4Nwq_dKP7Bblq8TeiZHe2A9fD46ufJ6w-cIEhpVlzxoUwqNCMEO2AuJDsS5NYk_aNsU7wke3zUWAYmCmicanxaWbRDRLpvDfGKfEFWvk0d7sQKaJJA5OYpGdQYkYGoeiTfGExRJGkDZ0lyLqohDU0AUCxmXKmNsgGdo21Vnk4MuNOl2vmSukAlg5gaZ5priuw2hAvzZo-XzE4JG_o-rOdvdY4etEYC_P8tiZP7b2lv33YuDwa6l-nF-cd2CQipqpq8K_Qmj8s3DciO3PzvXyXnwCMJOxj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entangled-photons+generation+with+quantum+dots&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Yuan&rft.au=Ding%2C+Fei&rft.au=Schmidt%2C+Oliver+G&rft.date=2018-02-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1088%2F1674-1056%2F27%2F2%2F020307&rft.externalDocID=cpb_27_2_020307
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg