Entangled-photons generation with quantum dots
Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing...
Saved in:
Published in | Chinese physics B Vol. 27; no. 2; pp. 140 - 153 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/27/2/020307 |
Cover
Loading…
Abstract | Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing to their deterministic emission properties, potential for electrical injections, and direct compatibility with semiconductor manufacturing techniques. Despite the great promises, QD-based sources at'e far from being ideal. In particular, such sources present several critical issues, which require the overcoming of challenges pertaining to spectral tunability, entanglement fidelity, photon indistinguishability and brightness. In this article, we will discuss the potential solutions to these problems and review the recent progress in the field. |
---|---|
AbstractList | Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing to their deterministic emission properties, potential for electrical injections, and direct compatibility with semiconductor manufacturing techniques. Despite the great promises, QD-based sources are far from being ideal. In particular, such sources present several critical issues, which require the overcoming of challenges pertaining to spectral tunability, entanglement fidelity, photon indistinguishability and brightness. In this article, we will discuss the potential solutions to these problems and review the recent progress in the field. Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing to their deterministic emission properties, potential for electrical injections, and direct compatibility with semiconductor manufacturing techniques. Despite the great promises, QD-based sources at'e far from being ideal. In particular, such sources present several critical issues, which require the overcoming of challenges pertaining to spectral tunability, entanglement fidelity, photon indistinguishability and brightness. In this article, we will discuss the potential solutions to these problems and review the recent progress in the field. |
Author | 李远;丁飞;Oliver G Schmidt |
AuthorAffiliation | Institute for lntegrative Nanosciences, IFW Dresden, HelmholtzstraBe 20. 01069 Dresden. Germany;Institule for Solid State Physics. Leibniz University of Hunnover. AppelstBe 2.30 167 Hannovel; Germany |
Author_xml | – sequence: 1 fullname: 李远;丁飞;Oliver G Schmidt |
BookMark | eNqFj0tLw0AURgepYFv9CUJw4yrNPDKP4kpKfUDBja6HeSVNaWfSyRTx35vaUkSEru7mnMt3RmDgg3cA3CI4QVCIAjFe5ghSVmBe4AJiSCC_AEMMqciJIOUADE_MFRh13QpChiAmQzCZ-6R8vXY2b5chBd9ltfMuqtQEn302aZltd8qn3SazIXXX4LJS687dHO8YfDzN32cv-eLt-XX2uMhNCVHKMSHaCKOVMXaKKStRqanVDGltHcHKIqw4hVPDBWKE6Ypxa9yUlq6qtHaCjMHD4a-Joeuiq6Rp0s-mFFWzlgjKfbrcZ8l9lsRcYnlI7236x25js1Hx66x3f_Ca0MpV2EXfN0rT6t-UbG3Vk-gf8tz3u-OqZfD1tvH1aVbPc4YpheQblhiGKQ |
CitedBy_id | crossref_primary_10_1515_nanoph_2022_0120 crossref_primary_10_1103_PhysRevB_107_205417 crossref_primary_10_1063_5_0147281 crossref_primary_10_3103_S1068335623602066 crossref_primary_10_1007_s10948_019_05175_9 crossref_primary_10_1007_s11082_024_07412_5 crossref_primary_10_1007_s11128_019_2542_9 |
Cites_doi | 10.1038/nphoton.2016.203 10.1038/ncomms10387 10.1103/PhysRevLett.104.196803 10.1038/ncomms8662 10.1103/PhysRevLett.104.067405 10.1016/j.scib.2017.10.023 10.1038/nphoton.2010.2 10.1038/nature11573 10.1038/ncomms15506 10.1063/1.2761522 10.1103/PhysRevB.70.193303 10.1103/PhysRevLett.112.170501 10.1126/science.1211914 10.1103/PhysRevB.89.115309 10.1007/978-3-540-87446-1 10.1103/PhysRevLett.81.3563 10.1126/science.282.5389.706 10.1103/PhysRevLett.49.91 10.1103/PhysRevLett.95.060502 10.1103/PhysRevA.77.043834 10.1063/1.2981517 10.1038/ncomms15501 10.1063/1.2204843 10.1063/1.4948762 10.1021/nl500968k 10.1038/nphoton.2013.128 10.1103/PhysRevLett.115.067401 10.1088/1361-6633/aa6955 10.1143/JJAP.46.7175 10.1063/1.2713745 10.1103/PhysRevB.67.161306 10.1038/463441a 10.1021/acs.nanolett.7b00777 10.1103/PhysRevLett.28.938 10.1103/PhysRevLett.92.166104 10.1103/PhysRevB.87.075311 10.1103/RevModPhys.74.145 10.1103/PhysRevB.88.041306 10.1002/adma.201200537 10.1103/PhysRevB.65.195315 10.1021/nl503581d 10.1103/PhysRevLett.106.227401 10.1103/PhysRevLett.118.220501 10.1103/PhysRevLett.47.460 10.1063/1.4802088 10.1103/PhysRevLett.103.217402 10.1038/nature12012 10.1038/nphoton.2012.138 10.1002/pssb.201100775 10.1088/1367-2630/17/3/033033 10.1103/PhysRevB.93.045316 10.1103/PhysRevLett.67.661 10.1038/ncomms10375 10.1103/PhysRevLett.95.257402 10.1063/1.4907650 10.1021/acsphotonics.7b00253 10.1364/OL.36.003545 10.1038/ncomms1657 10.1103/PhysRevLett.103.013601 10.1007/978-3-319-56378-7 10.1038/nature14246 10.1063/1.2424446 10.1103/PhysRevLett.86.4435 10.1103/PhysRevLett.119.010402 10.1103/PhysRev.47.777 10.1038/nature07125 10.1063/1.3133338 10.1021/nl503081n 10.1038/nphoton.2013.377 10.1103/PhysRevA.64.052312 10.1103/PhysRevB.80.161307 10.1103/PhysRevLett.111.130406 10.1103/PhysRevA.68.022312 10.1038/nature04446 10.1038/nature09078 10.1063/1.2430489 10.1103/PhysRevLett.118.060401 10.1103/PhysRevB.90.081301 10.1038/nature09148 10.1103/RevModPhys.87.347 10.1038/ncomms10067 10.1103/PhysRevLett.88.037901 10.1103/PhysRevA.45.8185 10.1021/acsphotonics.6b00935 10.1103/PhysRevB.71.045318 10.1038/nature01623 10.1016/S1049-250X(05)52003-2 10.1063/1.4979481 10.1103/PhysRevB.69.161301 10.1103/PhysRevLett.23.880 10.1038/35000514 10.1038/ncomms6298 10.1038/nphys1780 10.1103/RevModPhys.84.777 10.1103/PhysRevLett.114.150502 10.1103/PhysRevLett.109.147401 10.1103/PhysRevLett.103.063601 10.1103/PhysRevLett.84.2513 10.1103/PhysRevB.72.245318 10.1038/nmat3652 10.1063/1.2431758 10.1103/PhysRevLett.80.3891 10.1103/PhysRevB.83.121302 10.1103/PhysRevA.84.032307 10.1103/PhysRevLett.82.2594 10.1103/PhysRevLett.101.170501 10.1038/37539 10.1103/PhysRevB.95.161302 10.1103/PhysRevApplied.1.024002 |
ContentType | Journal Article |
Copyright | 2018 Chinese Physical Society and IOP Publishing Ltd |
Copyright_xml | – notice: 2018 Chinese Physical Society and IOP Publishing Ltd |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/1674-1056/27/2/020307 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Entangled-photons generation with quantum dots |
EISSN | 2058-3834 |
EndPage | 153 |
ExternalDocumentID | 10_1088_1674_1056_27_2_020307 cpb_27_2_020307 674762550 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAXDM AOAED CAJEA Q-- U1G U5K AAYXX ACARI ADEQX AERVB AGQPQ ARNYC CITATION |
ID | FETCH-LOGICAL-c401t-233bc8cbaccd9256414b5db61bbde32ad12a7509c781636bf67dce954effbbe83 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Tue Jul 01 02:55:24 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Wed Aug 21 03:40:43 EDT 2024 Thu Jan 07 13:50:38 EST 2021 Wed Feb 14 09:56:09 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-233bc8cbaccd9256414b5db61bbde32ad12a7509c781636bf67dce954effbbe83 |
Notes | Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons in quantum communication protocols. Among the different available sources of entangled photons, semiconductor quantum dots (QDs) excel owing to their deterministic emission properties, potential for electrical injections, and direct compatibility with semiconductor manufacturing techniques. Despite the great promises, QD-based sources at'e far from being ideal. In particular, such sources present several critical issues, which require the overcoming of challenges pertaining to spectral tunability, entanglement fidelity, photon indistinguishability and brightness. In this article, we will discuss the potential solutions to these problems and review the recent progress in the field. quantum information, entangled-photon source, quantum dots Yuan Li, Fei Ding and Oliver G Schmidt( 1 Institute for Integrative Nanosciences, IFW Dresden, Helmholtz,straBe 20, 01069 Dresden. Germany ; Institute tor Solid State Physics. Leibntz University ol Hannover; AppelstratBe 2, 30167 Hannovet; Germany) 11-5639/O4 |
OpenAccessLink | https://www.repo.uni-hannover.de/handle/123456789/5521 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1088_1674_1056_27_2_020307 crossref_primary_10_1088_1674_1056_27_2_020307 chongqing_primary_674762550 iop_journals_10_1088_1674_1056_27_2_020307 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2018 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | 88 89 Fox M (16) 2006 Edamatsu K (27) 2007; 46 110 90 91 92 93 94 95 96 97 10 98 11 99 12 13 14 15 17 18 19 1 2 3 4 5 Mirhosseini M (20) 2015; 17 6 7 8 9 21 22 23 25 26 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 Orieux A (24) 2017; 80 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 103 104 105 106 80 107 81 108 82 109 83 84 85 86 87 |
References_xml | – ident: 98 doi: 10.1038/nphoton.2016.203 – ident: 83 doi: 10.1038/ncomms10387 – ident: 46 doi: 10.1103/PhysRevLett.104.196803 – ident: 103 doi: 10.1038/ncomms8662 – ident: 71 doi: 10.1103/PhysRevLett.104.067405 – ident: 110 doi: 10.1016/j.scib.2017.10.023 – ident: 52 doi: 10.1038/nphoton.2010.2 – ident: 14 doi: 10.1038/nature11573 – ident: 61 doi: 10.1038/ncomms15506 – ident: 66 doi: 10.1063/1.2761522 – ident: 87 doi: 10.1103/PhysRevB.70.193303 – ident: 10 doi: 10.1103/PhysRevLett.112.170501 – ident: 13 doi: 10.1126/science.1211914 – ident: 77 doi: 10.1103/PhysRevB.89.115309 – ident: 29 doi: 10.1007/978-3-540-87446-1 – ident: 37 doi: 10.1103/PhysRevLett.81.3563 – ident: 7 doi: 10.1126/science.282.5389.706 – ident: 26 doi: 10.1103/PhysRevLett.49.91 – ident: 9 doi: 10.1103/PhysRevLett.95.060502 – ident: 28 doi: 10.1103/PhysRevA.77.043834 – ident: 58 doi: 10.1063/1.2981517 – ident: 62 doi: 10.1038/ncomms15501 – ident: 92 doi: 10.1063/1.2204843 – ident: 96 doi: 10.1063/1.4948762 – ident: 78 doi: 10.1021/nl500968k – ident: 53 doi: 10.1038/nphoton.2013.128 – ident: 81 doi: 10.1103/PhysRevLett.115.067401 – volume: 80 issn: 0034-4885 year: 2017 ident: 24 publication-title: Reports on Progress in Physics. Physical Society doi: 10.1088/1361-6633/aa6955 – volume: 46 start-page: 7175 issn: 1347-4065 year: 2007 ident: 27 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.46.7175 – ident: 57 doi: 10.1063/1.2713745 – ident: 43 doi: 10.1103/PhysRevB.67.161306 – ident: 3 doi: 10.1038/463441a – ident: 101 doi: 10.1021/acs.nanolett.7b00777 – ident: 36 doi: 10.1103/PhysRevLett.28.938 – ident: 49 doi: 10.1103/PhysRevLett.92.166104 – ident: 76 doi: 10.1103/PhysRevB.87.075311 – ident: 4 doi: 10.1103/RevModPhys.74.145 – ident: 54 doi: 10.1103/PhysRevB.88.041306 – ident: 74 doi: 10.1002/adma.201200537 – ident: 70 doi: 10.1103/PhysRevB.65.195315 – ident: 95 doi: 10.1021/nl503581d – ident: 47 doi: 10.1103/PhysRevLett.106.227401 – start-page: 268 year: 2006 ident: 16 publication-title: Quantum Optics: An Introduction – ident: 109 doi: 10.1103/PhysRevLett.118.220501 – ident: 25 doi: 10.1103/PhysRevLett.47.460 – ident: 60 doi: 10.1063/1.4802088 – ident: 90 doi: 10.1103/PhysRevLett.103.217402 – ident: 34 doi: 10.1038/nature12012 – ident: 18 doi: 10.1038/nphoton.2012.138 – ident: 73 doi: 10.1002/pssb.201100775 – volume: 17 issn: 1367-2630 year: 2015 ident: 20 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/3/033033 – ident: 65 doi: 10.1103/PhysRevB.93.045316 – ident: 5 doi: 10.1103/PhysRevLett.67.661 – ident: 80 doi: 10.1038/ncomms10375 – ident: 48 doi: 10.1103/PhysRevLett.95.257402 – ident: 69 doi: 10.1063/1.4907650 – ident: 104 doi: 10.1021/acsphotonics.7b00253 – ident: 105 doi: 10.1364/OL.36.003545 – ident: 63 doi: 10.1038/ncomms1657 – ident: 21 doi: 10.1103/PhysRevLett.103.013601 – ident: 17 doi: 10.1007/978-3-319-56378-7 – ident: 22 doi: 10.1038/nature14246 – ident: 89 doi: 10.1063/1.2424446 – ident: 15 doi: 10.1103/PhysRevLett.86.4435 – ident: 31 doi: 10.1103/PhysRevLett.119.010402 – ident: 1 doi: 10.1103/PhysRev.47.777 – ident: 8 doi: 10.1038/nature07125 – ident: 59 doi: 10.1063/1.3133338 – ident: 102 doi: 10.1021/nl503081n – ident: 99 doi: 10.1038/nphoton.2013.377 – ident: 38 doi: 10.1103/PhysRevA.64.052312 – ident: 50 doi: 10.1103/PhysRevB.80.161307 – ident: 33 doi: 10.1103/PhysRevLett.111.130406 – ident: 2 doi: 10.1103/PhysRevA.68.022312 – ident: 68 doi: 10.1038/nature04446 – ident: 97 doi: 10.1038/nature09078 – ident: 88 doi: 10.1063/1.2430489 – ident: 32 doi: 10.1103/PhysRevLett.118.060401 – ident: 56 doi: 10.1103/PhysRevB.90.081301 – ident: 93 doi: 10.1038/nature09148 – ident: 41 doi: 10.1103/RevModPhys.87.347 – ident: 79 doi: 10.1038/ncomms10067 – ident: 11 doi: 10.1103/PhysRevLett.88.037901 – ident: 19 doi: 10.1103/PhysRevA.45.8185 – ident: 85 doi: 10.1021/acsphotonics.6b00935 – ident: 44 doi: 10.1103/PhysRevB.71.045318 – ident: 108 doi: 10.1038/nature01623 – ident: 40 doi: 10.1016/S1049-250X(05)52003-2 – ident: 84 doi: 10.1063/1.4979481 – ident: 86 doi: 10.1103/PhysRevB.69.161301 – ident: 39 doi: 10.1103/PhysRevLett.23.880 – ident: 35 doi: 10.1038/35000514 – ident: 94 doi: 10.1038/ncomms6298 – ident: 67 doi: 10.1038/nphys1780 – ident: 106 doi: 10.1103/RevModPhys.84.777 – ident: 82 doi: 10.1103/PhysRevLett.114.150502 – ident: 75 doi: 10.1103/PhysRevLett.109.147401 – ident: 51 doi: 10.1103/PhysRevLett.103.063601 – ident: 30 doi: 10.1103/PhysRevLett.84.2513 – ident: 45 doi: 10.1103/PhysRevB.72.245318 – ident: 55 doi: 10.1038/nmat3652 – ident: 64 doi: 10.1063/1.2431758 – ident: 107 doi: 10.1103/PhysRevLett.80.3891 – ident: 72 doi: 10.1103/PhysRevB.83.121302 – ident: 12 doi: 10.1103/PhysRevA.84.032307 – ident: 23 doi: 10.1103/PhysRevLett.82.2594 – ident: 42 doi: 10.1103/PhysRevLett.101.170501 – ident: 6 doi: 10.1038/37539 – ident: 100 doi: 10.1103/PhysRevB.95.161302 – ident: 91 doi: 10.1103/PhysRevApplied.1.024002 |
SSID | ssj0061023 |
Score | 2.1334178 |
SecondaryResourceType | review_article |
Snippet | Entanglement between particles is a crucial resource in quantum information processing, an important example of which is the exploitation of entangled photons... |
SourceID | crossref iop chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 140 |
SubjectTerms | entangled-photon source quantum dots quantum information 纠缠光子;量点;关键资源;信息处理;通讯协议;生产技术;半导体;相容性 |
Title | Entangled-photons generation with quantum dots |
URI | http://lib.cqvip.com/qk/85823A/201802/674762550.html https://iopscience.iop.org/article/10.1088/1674-1056/27/2/020307 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-ELz4FtcXPXgS0nWTtJs9iigq-DgoeAvNJFnFtVvd3Yu_3pk-ZBVExFuhmSGZSSffNPNg7ACCEk4Kz6XsCK6C0zyTIXCVQu8Igg2yTI--uk7P79XlQ_IwlcX_NCxq0x_jY1UouBJhHRCn2xQ3z6lhfBvddtGmqzRKJ5-n7pW0xy9ubhtbnFJhAnK5GpImh-cnNlRh4XGY91_x3PhyUs3ibKYOnrNlljVTruJNnuPJ2Mbw_q2a43_WtMKWalQaHVfjV9mMz9fYQhkdCqN1Fp_miCH7A-948ThEtDiK-mW5atJqRL9yo9cJqmjyEqGTO9pg92endyfnvG60wAHdqzEXUlrQYDMA10MMpDrKJs6mHWudlyJzHZERsoCuRviW2pB2HfheonwI1notN9lcPsz9Fos0wqOeTWxyZEFBFwko2BP14ICsR9JiO58CNkVVUMPg4tEmo6_UYqoRuYG6Rjm1yhiY8q5ca0OCMiQoI7pGmEpQLRZ_kjU8fyE4RE2Y-nMd_TY4-jIYCjv92hQubP-F3w5bRNSlq9DvXTY3fpv4PUQ2Y7tfbt4PxhHm_w |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BEYjLPoAVpbtLDpyQnLa2k7jH1ULFY5flABI3qx7brQSbBtpe-PWM86hgpRVC3CLFYznfJONv4vFngAP0klvBHROiz5n0VrGR8J7JFAc99MaLcnv074v05Fqe3SQ3K3C03AszLerQH9NlJRRcQVgXxKluqJtn4cD4LqXtvBuW0npZt7B-FdYSisehsOv0z2UTj9MgThDSrsas2cfzv66CysJkmo_vae54MVut0oieTT7Dj-CaYVc1J7fxYm5ifPxH0fG9z_UJPtTsNPpR2XyGFZdvwXpZJYqzbYiPc-KS4ztnWTGZEmucReNStjp4Nwq_dKP7Bblq8TeiZHe2A9fD46ufJ6w-cIEhpVlzxoUwqNCMEO2AuJDsS5NYk_aNsU7wke3zUWAYmCmicanxaWbRDRLpvDfGKfEFWvk0d7sQKaJJA5OYpGdQYkYGoeiTfGExRJGkDZ0lyLqohDU0AUCxmXKmNsgGdo21Vnk4MuNOl2vmSukAlg5gaZ5priuw2hAvzZo-XzE4JG_o-rOdvdY4etEYC_P8tiZP7b2lv33YuDwa6l-nF-cd2CQipqpq8K_Qmj8s3DciO3PzvXyXnwCMJOxj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entangled-photons+generation+with+quantum+dots&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Yuan&rft.au=Ding%2C+Fei&rft.au=Schmidt%2C+Oliver+G&rft.date=2018-02-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1088%2F1674-1056%2F27%2F2%2F020307&rft.externalDocID=cpb_27_2_020307 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |