Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration

We report the relationship between the flow behavior induced by ultrasonic vibration and the consequent heat transfer enhancement in natural convection and pool boiling regimes. A thin platinum wire works as both a heat source and a temperature sensor. A high speed video imaging system is employed t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 47; no. 12; pp. 2831 - 2840
Main Authors Kim, Ho-Young, Kim, Yi Gu, Kang, Byung Ha
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2004
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report the relationship between the flow behavior induced by ultrasonic vibration and the consequent heat transfer enhancement in natural convection and pool boiling regimes. A thin platinum wire works as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. Experimental results show that the effects of ultrasonic vibration on flow behavior are vastly different depending on the heat transfer regime and the amount of dissolved gas. In the natural convection and subcooled boiling regimes, behavior of cavitation bubbles strongly affects the degree of heat transfer enhancement. In saturated boiling, no cavitation occurs thus the reduced thermal bubble size at departure and acoustic streaming are major factors enhancing heat transfer rate. The highest enhancement ratio is obtained in natural convection regime where the effect of ultrasonic vibration is manifested through violent motion of cavitation bubbles.
AbstractList We report the relationship between the flow behavior induced by ultrasonic vibration and the consequent heat transfer enhancement in natural convection and pool boiling regimes. A thin platinum wire works as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. Experimental results show that the effects of ultrasonic vibration on flow behavior are vastly different depending on the heat transfer regime and the amount of dissolved gas. In the natural convection and subcooled boiling regimes, behavior of cavitation bubbles strongly affects the degree of heat transfer enhancement. In saturated boiling, no cavitation occurs thus the reduced thermal bubble size at departure and acoustic streaming are major factors enhancing heat transfer rate. The highest enhancement ratio is obtained in natural convection regime where the effect of ultrasonic vibration is manifested through violent motion of cavitation bubbles.
Author Kim, Ho-Young
Kang, Byung Ha
Kim, Yi Gu
Author_xml – sequence: 1
  givenname: Ho-Young
  surname: Kim
  fullname: Kim, Ho-Young
  email: hoyoung@kist.re.kr
  organization: Thermal/Flow Control Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Sungbuk-Gu, Seoul 136-791, South Korea
– sequence: 2
  givenname: Yi Gu
  surname: Kim
  fullname: Kim, Yi Gu
  organization: Thermal/Flow Control Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Sungbuk-Gu, Seoul 136-791, South Korea
– sequence: 3
  givenname: Byung Ha
  surname: Kang
  fullname: Kang, Byung Ha
  organization: School of Mechanical and Automotive Engineering, Kookmin University, Seoul 136-702, South Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15592916$$DView record in Pascal Francis
BookMark eNqNkMFq3DAURUVJoZO0_6BNQjZ237Nsy94lhCRtCXTTLroSsvTUaPBIU8kz0L-vzCR00U1X4sJ596Jzzs5CDMTYNUKNgP3Hbe23z6SXnc55STpkR6luAESNWIMQb9gGBzlWDQ7jGdsAoKxGgfCOnee8XSO0_Yb9uA_POhjaUVh4dDzo5ZD0zE0MRzKLj4HrYPk-xplP0c8-_OTrLH_d5Eev-WEuMcfgTYlT0uvde_bW6TnTh5f3gn1_uP9296l6-vr4-e72qTIt4FLhMA0OzEQjoHVDJwVYcC0Z6ybohOzINdK2ZFGOotUEwunG9NhLbbt2kOKCXZ169yn-OlBe1M5nQ_OsA8VDVs3QyK6QBbw5gSbFnBM5tU9-p9NvhaBWp2qr_nWqVqcKURWnpeLyZUtno2dXGOPz356uG5sR-8J9OXFUPn70pSUbT0Wz9alYVTb6_x_9A21RnWI
CODEN IJHMAK
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_046
crossref_primary_10_1016_j_expthermflusci_2010_11_002
crossref_primary_10_1016_j_cep_2012_05_001
crossref_primary_10_1016_j_ces_2006_08_038
crossref_primary_10_1016_j_ces_2019_03_009
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119291
crossref_primary_10_1016_j_ijthermalsci_2021_107235
crossref_primary_10_1063_1_4721669
crossref_primary_10_1016_j_expthermflusci_2018_05_010
crossref_primary_10_1063_2_1403205
crossref_primary_10_1115_1_4055154
crossref_primary_10_1007_s00231_014_1346_9
crossref_primary_10_1016_j_ifset_2007_07_004
crossref_primary_10_1080_10407782_2014_955371
crossref_primary_10_1016_j_ijheatmasstransfer_2007_01_002
crossref_primary_10_1016_j_expthermflusci_2011_07_012
crossref_primary_10_1155_2011_670108
crossref_primary_10_1080_01457632_2019_1649917
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124366
crossref_primary_10_1007_s11434_014_0205_x
crossref_primary_10_1016_j_oceaneng_2023_114261
crossref_primary_10_1117_1_2172992
crossref_primary_10_1016_j_applthermaleng_2012_09_031
crossref_primary_10_1088_1757_899X_639_1_012028
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122928
crossref_primary_10_1063_1_4939757
crossref_primary_10_1016_j_applthermaleng_2008_09_015
crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_050
crossref_primary_10_1088_0960_1317_20_9_095012
crossref_primary_10_1177_0954406220950357
crossref_primary_10_1016_j_icheatmasstransfer_2010_06_031
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118476
crossref_primary_10_1002_cben_202000020
crossref_primary_10_1007_s11431_015_5869_1
crossref_primary_10_1016_j_ijmultiphaseflow_2015_11_005
crossref_primary_10_1016_j_enconman_2018_01_028
crossref_primary_10_1016_j_ijrefrig_2014_08_008
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124649
crossref_primary_10_1016_j_fm_2015_09_014
crossref_primary_10_1016_j_ijmultiphaseflow_2014_05_016
crossref_primary_10_1007_s00231_017_2190_5
crossref_primary_10_1016_j_ijrefrig_2022_10_025
crossref_primary_10_1016_j_ces_2020_115751
crossref_primary_10_1016_j_ijheatmasstransfer_2012_12_066
crossref_primary_10_1007_s00231_014_1435_9
crossref_primary_10_1088_1755_1315_301_1_012040
crossref_primary_10_1016_j_tsep_2022_101374
crossref_primary_10_1177_1045389X20935632
crossref_primary_10_1007_s10973_023_12625_z
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_071
crossref_primary_10_1016_j_jfoodeng_2012_10_029
crossref_primary_10_1080_07373930802715666
crossref_primary_10_1016_j_icheatmasstransfer_2012_03_013
crossref_primary_10_1016_j_applthermaleng_2011_12_051
crossref_primary_10_1016_j_applthermaleng_2015_09_069
crossref_primary_10_1063_1_5116783
crossref_primary_10_1016_j_ijhydene_2017_10_149
crossref_primary_10_1016_j_ijthermalsci_2023_108582
crossref_primary_10_3390_pr12071333
crossref_primary_10_1016_j_applthermaleng_2024_123713
crossref_primary_10_1016_j_enconman_2018_11_013
crossref_primary_10_1016_j_lwt_2018_01_073
crossref_primary_10_1016_j_ijheatmasstransfer_2013_01_083
crossref_primary_10_1016_j_ijheatmasstransfer_2015_11_009
crossref_primary_10_1016_j_tsep_2023_101661
crossref_primary_10_1080_08916152_2013_797940
crossref_primary_10_1016_j_rser_2022_112912
crossref_primary_10_1115_1_4030884
crossref_primary_10_1016_j_ultsonch_2018_07_019
crossref_primary_10_1016_j_ijheatmasstransfer_2015_07_129
crossref_primary_10_1016_j_icheatmasstransfer_2020_104511
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120288
crossref_primary_10_1080_08916152_2024_2334060
crossref_primary_10_1016_j_applthermaleng_2012_02_009
crossref_primary_10_1016_j_ultsonch_2015_02_015
crossref_primary_10_1080_01457632_2014_935214
crossref_primary_10_1080_08916152_2012_719061
crossref_primary_10_1016_j_icheatmasstransfer_2019_03_002
crossref_primary_10_1016_j_ultsonch_2024_106938
crossref_primary_10_1088_1757_899X_72_1_012002
crossref_primary_10_1016_j_applthermaleng_2022_118273
crossref_primary_10_1016_j_ijheatmasstransfer_2010_05_004
crossref_primary_10_1007_s00348_005_0073_x
crossref_primary_10_1016_j_seppur_2007_01_023
crossref_primary_10_1115_1_4023884
crossref_primary_10_1088_1742_6596_1224_1_012035
crossref_primary_10_1115_1_4003510
crossref_primary_10_1016_j_addma_2019_04_024
crossref_primary_10_1007_s10973_022_11272_0
crossref_primary_10_1016_j_ijheatmasstransfer_2014_06_062
crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_069
crossref_primary_10_4028_www_scientific_net_AMM_464_163
crossref_primary_10_1016_j_ultsonch_2017_07_044
crossref_primary_10_1115_1_2349505
crossref_primary_10_1016_j_applthermaleng_2018_07_133
crossref_primary_10_1080_10407782_2012_712432
crossref_primary_10_1016_j_ultras_2018_08_012
crossref_primary_10_1016_j_expthermflusci_2017_04_025
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119369
crossref_primary_10_4028_www_scientific_net_AMM_556_562_1968
crossref_primary_10_1016_j_ultsonch_2012_04_009
crossref_primary_10_1063_5_0082461
crossref_primary_10_1016_j_fbp_2013_10_004
crossref_primary_10_1205_fbp05011
crossref_primary_10_1080_01457632_2010_509757
crossref_primary_10_1080_08916152_2022_2096152
crossref_primary_10_1016_j_ultsonch_2020_105342
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123264
crossref_primary_10_1016_j_expthermflusci_2014_10_023
crossref_primary_10_1016_j_applthermaleng_2016_06_019
crossref_primary_10_1016_j_ijmultiphaseflow_2018_06_024
crossref_primary_10_1088_0960_1317_21_10_105015
crossref_primary_10_3390_app11198846
crossref_primary_10_3390_mi15020281
crossref_primary_10_2139_ssrn_4137986
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_101
crossref_primary_10_1016_j_enconman_2013_02_013
crossref_primary_10_1016_j_ijrefrig_2020_06_002
crossref_primary_10_2139_ssrn_4051440
crossref_primary_10_1016_j_applthermaleng_2013_05_001
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123851
crossref_primary_10_1007_s11814_021_0895_0
crossref_primary_10_1016_j_ijheatmasstransfer_2016_11_071
crossref_primary_10_1016_j_mfglet_2014_06_001
crossref_primary_10_1007_s11708_009_0064_3
crossref_primary_10_1007_s12217_019_09712_y
crossref_primary_10_1016_j_expthermflusci_2018_10_019
crossref_primary_10_1016_j_cep_2015_11_001
crossref_primary_10_1016_j_ultsonch_2023_106365
crossref_primary_10_1016_j_ijheatmasstransfer_2012_03_004
crossref_primary_10_1016_j_ijthermalsci_2022_107964
crossref_primary_10_1016_j_lwt_2016_04_016
Cites_doi 10.1016/0894-1777(92)90059-E
10.1016/0017-9310(88)90049-X
10.1115/1.3689095
10.1016/S0140-7007(97)00024-8
10.1115/1.2830055
10.1002/aic.690150229
10.1088/0022-3735/17/6/002
10.1115/1.3614383
ContentType Journal Article
Copyright 2004 Elsevier Science Ltd
2004 INIST-CNRS
Copyright_xml – notice: 2004 Elsevier Science Ltd
– notice: 2004 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.ijheatmasstransfer.2003.11.033
DatabaseName Pascal-Francis
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Applied Sciences
EISSN 1879-2189
EndPage 2840
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2003_11_033
15592916
S0017931004000183
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
08R
AAPBV
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c401t-18b8f0cbe901df85730d0f4ecdfb05375ef27d4ed17934ae03fa2c6167ad54873
IEDL.DBID AIKHN
ISSN 0017-9310
IngestDate Fri Aug 16 03:46:54 EDT 2024
Thu Sep 26 16:38:05 EDT 2024
Sun Oct 22 16:05:53 EDT 2023
Fri Feb 23 02:24:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Volume boiling
Ultrasonic effects
Instrumentation
Natural convection
Experimental study
Pool boiling
Heat transfer
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-18b8f0cbe901df85730d0f4ecdfb05375ef27d4ed17934ae03fa2c6167ad54873
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28275548
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_28275548
crossref_primary_10_1016_j_ijheatmasstransfer_2003_11_033
pascalfrancis_primary_15592916
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2003_11_033
PublicationCentury 2000
PublicationDate 2004-06-01
PublicationDateYYYYMMDD 2004-06-01
PublicationDate_xml – month: 06
  year: 2004
  text: 2004-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2004
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wong, Chon (BIB3) 1969; 15
Bonekamp, Bier (BIB6) 1997; 20
Fand (BIB1) 1965; 87
Carey (BIB9) 1992
Yamashiro, Kakamatsu, Honda (BIB7) 1998; 120
Iida, Tsutsui (BIB4) 1992; 5
Park, Bergles (BIB5) 1988; 31
Li, Parker (BIB2) 1967; 89
Bently (BIB8) 1984; 17
Carey (10.1016/j.ijheatmasstransfer.2003.11.033_BIB9) 1992
Park (10.1016/j.ijheatmasstransfer.2003.11.033_BIB5) 1988; 31
Bently (10.1016/j.ijheatmasstransfer.2003.11.033_BIB8) 1984; 17
Fand (10.1016/j.ijheatmasstransfer.2003.11.033_BIB1) 1965; 87
Bonekamp (10.1016/j.ijheatmasstransfer.2003.11.033_BIB6) 1997; 20
Iida (10.1016/j.ijheatmasstransfer.2003.11.033_BIB4) 1992; 5
Li (10.1016/j.ijheatmasstransfer.2003.11.033_BIB2) 1967; 89
Yamashiro (10.1016/j.ijheatmasstransfer.2003.11.033_BIB7) 1998; 120
Wong (10.1016/j.ijheatmasstransfer.2003.11.033_BIB3) 1969; 15
References_xml – volume: 31
  start-page: 664
  year: 1988
  end-page: 667
  ident: BIB5
  article-title: Ultrasonic enhancement of saturated and subcooled pool boiling
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Bergles
– volume: 20
  start-page: 606
  year: 1997
  end-page: 615
  ident: BIB6
  article-title: Influence of ultrasound on pool boiling heat transfer to mixtures of the refrigerants R23 and R134A
  publication-title: Int. J. Refrig.
  contributor:
    fullname: Bier
– volume: 89
  start-page: 277
  year: 1967
  end-page: 278
  ident: BIB2
  article-title: Acoustical effects on free convective heat transfer from a horizontal wire
  publication-title: J. Heat Transfer
  contributor:
    fullname: Parker
– volume: 5
  start-page: 108
  year: 1992
  end-page: 115
  ident: BIB4
  article-title: Effects of ultrasonic waves on natural convection, nucleate boiling and film boiling heat transfer from a wire to a saturated liquid
  publication-title: Exp. Thermal Fluid Sci.
  contributor:
    fullname: Tsutsui
– volume: 120
  start-page: 282
  year: 1998
  end-page: 286
  ident: BIB7
  article-title: Effect of ultrasonic vibration on transient boiling heat transfer during rapid quenching of a thin wire in water
  publication-title: J. Heat Transfer
  contributor:
    fullname: Honda
– volume: 87
  start-page: 309
  year: 1965
  end-page: 310
  ident: BIB1
  article-title: The influence of acoustic vibrations on heat transfer by natural convection from a horizontal cylinder to water
  publication-title: J. Heat Transfer
  contributor:
    fullname: Fand
– volume: 15
  start-page: 281
  year: 1969
  end-page: 288
  ident: BIB3
  article-title: Effects of ultrasonic vibration on heat transfer to liquids by natural convection and by boiling
  publication-title: AlChE J.
  contributor:
    fullname: Chon
– volume: 17
  start-page: 430
  year: 1984
  end-page: 439
  ident: BIB8
  article-title: Temperature sensor characteristics and measurement system design
  publication-title: J. Phys. E––Sci. Instrum.
  contributor:
    fullname: Bently
– year: 1992
  ident: BIB9
  article-title: Liquid–Vapor Phase-Change Phenomena
  contributor:
    fullname: Carey
– volume: 5
  start-page: 108
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2003.11.033_BIB4
  article-title: Effects of ultrasonic waves on natural convection, nucleate boiling and film boiling heat transfer from a wire to a saturated liquid
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/0894-1777(92)90059-E
  contributor:
    fullname: Iida
– volume: 31
  start-page: 664
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2003.11.033_BIB5
  article-title: Ultrasonic enhancement of saturated and subcooled pool boiling
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(88)90049-X
  contributor:
    fullname: Park
– year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2003.11.033_BIB9
  contributor:
    fullname: Carey
– volume: 87
  start-page: 309
  year: 1965
  ident: 10.1016/j.ijheatmasstransfer.2003.11.033_BIB1
  article-title: The influence of acoustic vibrations on heat transfer by natural convection from a horizontal cylinder to water
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3689095
  contributor:
    fullname: Fand
– volume: 20
  start-page: 606
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2003.11.033_BIB6
  article-title: Influence of ultrasound on pool boiling heat transfer to mixtures of the refrigerants R23 and R134A
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(97)00024-8
  contributor:
    fullname: Bonekamp
– volume: 120
  start-page: 282
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2003.11.033_BIB7
  article-title: Effect of ultrasonic vibration on transient boiling heat transfer during rapid quenching of a thin wire in water
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2830055
  contributor:
    fullname: Yamashiro
– volume: 15
  start-page: 281
  year: 1969
  ident: 10.1016/j.ijheatmasstransfer.2003.11.033_BIB3
  article-title: Effects of ultrasonic vibration on heat transfer to liquids by natural convection and by boiling
  publication-title: AlChE J.
  doi: 10.1002/aic.690150229
  contributor:
    fullname: Wong
– volume: 17
  start-page: 430
  year: 1984
  ident: 10.1016/j.ijheatmasstransfer.2003.11.033_BIB8
  article-title: Temperature sensor characteristics and measurement system design
  publication-title: J. Phys. E––Sci. Instrum.
  doi: 10.1088/0022-3735/17/6/002
  contributor:
    fullname: Bently
– volume: 89
  start-page: 277
  year: 1967
  ident: 10.1016/j.ijheatmasstransfer.2003.11.033_BIB2
  article-title: Acoustical effects on free convective heat transfer from a horizontal wire
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3614383
  contributor:
    fullname: Li
SSID ssj0017046
Score 2.2371964
Snippet We report the relationship between the flow behavior induced by ultrasonic vibration and the consequent heat transfer enhancement in natural convection and...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 2831
SubjectTerms Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat transfer
Theoretical studies. Data and constants. Metering
Title Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.11.033
https://search.proquest.com/docview/28275548
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5qiyKI-MT6qHvw4CVtHpsmPZbSUi32IBbrKWyyu5iiabGtR3-7M3lYSvEgeAobNmGYmZ39ZnceADdKi5bGjcuIuO8a3EM_xfdsaWhPeW6kEaDYlI38MGz2R_x-7I5L0ClyYSisMrf9mU1PrXX-ppFzszGLY8rxJeWyUjU0UTO3oILbEedlqLTvBv3hz2WCZ2b5OmSQ6YMduF2FecUTMnrviFQXKVJUWZHQOpX2dJzfdqu9mZgjD3XW_GLDjqebU-8A9nNUydoZ4YdQUskRbKfRndH8GF66yStJl04C2VSztJonzk9DztPEBiYSyajdFgunMWWoM6KXFcSyz1iw5RsO51RKF4dhpjknMOp1nzp9I--pgMIwrYVh-aGvzShUiAOk9l1c4NLUXEVSh1TaxVXa9iRXknjLhTIdLeyoaTU9Icm5cU6hnEwTdQasZUZN4Srf0qHGmU4YUfF9wU2pdMvWogqtgnfBLCudERQxZZNgk-_UEdNBjyRAvlehUzA7WFOHAC39H_5SW5PTigz0o2wExlW4LgQX4LKiuxKRqOlyHqAn6iHS8s__hZAL2M0ifuj05hLKi4-lukIwswhrsFX_smq5ytJz8Pg8-AYfI_wM
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB584ANEfGJ9dQ8evKTNs0mOUiz11VMLelo22V1M0bTY1KO_3ZlNYhHxIHhMWMIwMzv7zeabGYALpUWs8eCyUj8KLD_EPCUKXWnpUIVBqhGguFSN_DDo9Ef-7WPwuATduhaGaJVV7C9juonW1Zt2pc32NMuoxpecyzFuaKNnLsMqoQHidbU-vngeTmiX1ToUjmn5OlwuSF7ZmELeK-LUwuBEVbYIbVFjT8_77azamooZalCXoy9-RHFzNPV2YLvClOyqFHsXllS-B2uG25nO9uHpOn8m29I9IJtoZnp54npDODdlDUzkktGwLZZMMqpPZyQvq4Vl75lg8xd8nFEjXXxMSr85gFHvetjtW9VEBTSF7RSWEyWRttNEIQqQOgpwe0tb-yqVOqHGLoHSbih9JUmzvlC2p4WbdpxOKCSlNt4hrOSTXB0Bi-20IwIVOTrRuNJLUmq9L3xbKh27WjQgrnXHp2XjDF4zysb8p95pHqaH-QhHvTegWyubf3MGjnH-D185_2anhRiYRbkIixvQrA3HcVPRnxKRq8l8xjEPDRFnRcf_IkgTNvrDh3t-fzO4O4HNkvtD9zinsFK8zdUZwpoiOTdu-wmMkvs-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+natural+convection+and+pool+boiling+heat+transfer+via+ultrasonic+vibration&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Kim%2C+Ho-Young&rft.au=Kim%2C+Yi+Gu&rft.au=Kang%2C+Byung+Ha&rft.date=2004-06-01&rft.issn=0017-9310&rft.volume=47&rft.issue=12-13&rft.spage=2831&rft.epage=2840&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2003.11.033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2003_11_033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon