Towards a Mathematical Theory of Super-resolution
This paper develops a mathematical theory of super‐resolution. Broadly speaking, super‐resolution is the problem of recovering the fine details of an object—the high end of its spectrum—from coarse scale information only—from samples at the low end of the spectrum. Suppose we have many point sources...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 67; no. 6; pp. 906 - 956 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Blackwell Publishing Ltd
01.06.2014
John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper develops a mathematical theory of super‐resolution. Broadly speaking, super‐resolution is the problem of recovering the fine details of an object—the high end of its spectrum—from coarse scale information only—from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0,1] and with unknown complex‐valued amplitudes. We only observe Fourier samples of this object up to a frequency cutoff fc. We show that one can super‐resolve these point sources with infinite precision—i.e., recover the exact locations and amplitudes—by solving a simple convex optimization problem, which can essentially be reformulated as a semidefinite program. This holds provided that the distance between sources is at least 2/fc. This result extends to higher dimensions and other models. In one dimension, for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with infinite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super‐resolved signal is expected to degrade when both the noise level and the super‐resolution factor vary. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | This paper develops a mathematical theory of super‐resolution. Broadly speaking, super‐resolution is the problem of recovering the fine details of an object—the high end of its spectrum—from coarse scale information only—from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0,1] and with unknown complex‐valued amplitudes. We only observe Fourier samples of this object up to a frequency cutoff fc. We show that one can super‐resolve these point sources with infinite precision—i.e., recover the exact locations and amplitudes—by solving a simple convex optimization problem, which can essentially be reformulated as a semidefinite program. This holds provided that the distance between sources is at least 2/fc. This result extends to higher dimensions and other models. In one dimension, for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with infinite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super‐resolved signal is expected to degrade when both the noise level and the super‐resolution factor vary. © 2014 Wiley Periodicals, Inc. This paper develops a mathematical theory of super-resolution. Broadly speaking, super-resolution is the problem of recovering the fine details of an object -- the high end of its spectrum -- from coarse scale information only -- from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0,1] and with unknown complex-valued amplitudes. We only observe Fourier samples of this object up to a frequency cutoff fc. We show that one can super-resolve these point sources with infinite precision -- i.e., recover the exact locations and amplitudes -- by solving a simple convex optimization problem, which can essentially be reformulated as a semidefinite program. This holds provided that the distance between sources is at least 2/fc. This result extends to higher dimensions and other models. In one dimension, for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with infinite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super-resolved signal is expected to degrade when both the noise level and the super-resolution factor vary. [PUBLICATION ABSTRACT] This paper develops a mathematical theory of super‐resolution. Broadly speaking, super‐resolution is the problem of recovering the fine details of an object—the high end of its spectrum—from coarse scale information only—from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0,1] and with unknown complex‐valued amplitudes. We only observe Fourier samples of this object up to a frequency cutoff f c . We show that one can super‐resolve these point sources with infinite precision—i.e., recover the exact locations and amplitudes—by solving a simple convex optimization problem, which can essentially be reformulated as a semidefinite program. This holds provided that the distance between sources is at least 2/f c . This result extends to higher dimensions and other models. In one dimension, for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with infinite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super‐resolved signal is expected to degrade when both the noise level and the super‐resolution factor vary. © 2014 Wiley Periodicals, Inc. |
Author | Candès, Emmanuel J. Fernandez-Granda, Carlos |
Author_xml | – sequence: 1 givenname: Emmanuel J. surname: Candès fullname: Candès, Emmanuel J. email: candes@stanford.edu organization: Department of Mathematics, Stanford University, 450 Serra Mall, Bldg. 380, 94305, Stanford, CA, USA – sequence: 2 givenname: Carlos surname: Fernandez-Granda fullname: Fernandez-Granda, Carlos email: cfgranda@stanford.edu organization: Department of Mathematics, Stanford University, 450 Serra Mall, Bldg. 380, CA, 94305, Stanford, USA |
BookMark | eNp1kEFPwjAYhhujiYAe_AdLPHkY9FvXjh2RKBqHEsVwbEr3LQzHiu0W5N87BD0YvbRp8zzv9-Vtk-PSlEjIBdAuUBr09Fp1Awg5PyItoHHkUwbBMWlRCtRnIqSnpO3csnlC2GctAlOzUTZ1nvLGqlrgSlW5VoU3XaCxW89k3ku9RutbdKaoq9yUZ-QkU4XD88PdIa-3N9PhnZ88je6Hg8TXIQXuz8O-CDXo3SFUKgTHKGYizQCbv0DFGFPUGmPOEHk_FkzNMeMpb4B5IBTrkMt97tqa9xpdJZemtmUzUgIHwQF4xBuqt6e0Nc5ZzKTOK7Xbs7IqLyRQuetFNr3Ir14a4-qXsbb5Stntn-whfZMXuP0flMPJ4Nvw90buKvz4MZR9kyJiEZezx5Ecx7PryUOSyGf2CUstglc |
CODEN | CPMAMV |
CitedBy_id | crossref_primary_10_1364_OE_25_018296 crossref_primary_10_1007_s10208_023_09634_7 crossref_primary_10_1103_PhysRevE_104_034211 crossref_primary_10_1016_j_sigpro_2016_10_010 crossref_primary_10_1109_TMM_2019_2946094 crossref_primary_10_1109_TVT_2023_3269199 crossref_primary_10_1016_j_ins_2016_02_015 crossref_primary_10_1214_21_AOS2054 crossref_primary_10_1016_j_sigpro_2021_108187 crossref_primary_10_5802_jep_11 crossref_primary_10_1109_TSP_2014_2358961 crossref_primary_10_1007_s10915_020_01227_8 crossref_primary_10_3390_rs15041164 crossref_primary_10_1016_j_sigpro_2016_09_018 crossref_primary_10_1016_j_acha_2022_07_003 crossref_primary_10_1002_qua_25144 crossref_primary_10_1109_TSP_2022_3198188 crossref_primary_10_1016_j_acha_2016_02_002 crossref_primary_10_1109_TAES_2023_3317370 crossref_primary_10_1016_j_acha_2016_02_003 crossref_primary_10_1121_1_4996460 crossref_primary_10_1002_pamm_201510322 crossref_primary_10_1137_24M1636265 crossref_primary_10_1109_TWC_2017_2776108 crossref_primary_10_1109_TIT_2014_2368122 crossref_primary_10_1007_s10107_022_01923_3 crossref_primary_10_1016_j_sigpro_2017_12_005 crossref_primary_10_1007_s10208_018_9384_1 crossref_primary_10_1016_j_sigpro_2020_107958 crossref_primary_10_1109_OJSP_2022_3157082 crossref_primary_10_1016_j_acha_2020_12_002 crossref_primary_10_1109_LSP_2020_2986133 crossref_primary_10_3390_rs16142516 crossref_primary_10_3390_rs16142517 crossref_primary_10_1049_iet_rsn_2018_5648 crossref_primary_10_1137_21M1420277 crossref_primary_10_1007_s10915_021_01443_w crossref_primary_10_1051_cocv_2018009 crossref_primary_10_1109_TSP_2017_2669900 crossref_primary_10_1137_20M1329615 crossref_primary_10_1109_JSEN_2023_3338575 crossref_primary_10_22331_q_2023_10_11_1136 crossref_primary_10_1137_20M1383276 crossref_primary_10_1007_s10851_015_0575_y crossref_primary_10_1109_TSP_2017_2656841 crossref_primary_10_1109_JSTSP_2016_2543462 crossref_primary_10_1016_j_laa_2015_10_023 crossref_primary_10_1088_1361_6420_ab2a29 crossref_primary_10_1109_TIT_2017_2757003 crossref_primary_10_1214_24_AOS2384 crossref_primary_10_1080_01630563_2022_2052319 crossref_primary_10_1109_LAWP_2020_3032894 crossref_primary_10_1088_1361_6420_aa5bf2 crossref_primary_10_1137_23M1568569 crossref_primary_10_1109_TSP_2021_3062556 crossref_primary_10_1109_TSP_2024_3470071 crossref_primary_10_1109_TSP_2019_2914885 crossref_primary_10_1109_LGRS_2016_2615564 crossref_primary_10_1016_j_tcs_2017_03_026 crossref_primary_10_1186_s13634_023_01060_9 crossref_primary_10_1109_MSP_2019_2962209 crossref_primary_10_1155_2019_6797168 crossref_primary_10_1109_TSP_2024_3486533 crossref_primary_10_1137_22M1503221 crossref_primary_10_1007_s11045_017_0499_3 crossref_primary_10_1142_S2591728523400017 crossref_primary_10_1109_TSP_2017_2666779 crossref_primary_10_1016_j_automatica_2021_109948 crossref_primary_10_1109_TSP_2022_3209006 crossref_primary_10_1109_TSP_2023_3330670 crossref_primary_10_1109_TSP_2018_2795560 crossref_primary_10_1088_1361_6420_ac70da crossref_primary_10_4236_apm_2018_82008 crossref_primary_10_1109_TIT_2020_2993327 crossref_primary_10_1007_s10208_020_09471_y crossref_primary_10_1109_JOE_2022_3151949 crossref_primary_10_1016_j_dsp_2022_103388 crossref_primary_10_1007_s43670_021_00014_2 crossref_primary_10_1007_s10915_016_0169_x crossref_primary_10_1016_j_acha_2023_03_003 crossref_primary_10_1103_PhysRevA_97_023830 crossref_primary_10_1016_j_acha_2023_03_002 crossref_primary_10_1051_m2an_2020056 crossref_primary_10_1109_LSP_2014_2314175 crossref_primary_10_1016_j_ymssp_2019_02_011 crossref_primary_10_1109_TCOMM_2018_2864737 crossref_primary_10_1121_10_0016876 crossref_primary_10_1109_TIT_2024_3488573 crossref_primary_10_1209_0295_5075_113_43001 crossref_primary_10_1021_acs_analchem_4c07047 crossref_primary_10_1049_iet_spr_2020_0201 crossref_primary_10_1016_j_dsp_2016_09_003 crossref_primary_10_1088_1361_6420_ad0dbb crossref_primary_10_1214_15_AOS1412 crossref_primary_10_1109_LSP_2015_2494604 crossref_primary_10_1049_rsn2_12491 crossref_primary_10_1088_1742_6596_904_1_012015 crossref_primary_10_1007_s00041_021_09888_1 crossref_primary_10_1103_PhysRevFluids_2_124402 crossref_primary_10_1109_TSP_2014_2332974 crossref_primary_10_1007_BF03549574 crossref_primary_10_1016_j_acha_2016_09_004 crossref_primary_10_1007_s00041_020_09725_x crossref_primary_10_1016_j_acha_2020_02_001 crossref_primary_10_1109_TCI_2023_3325752 crossref_primary_10_1007_s10208_020_09472_x crossref_primary_10_34248_bsengineering_1597236 crossref_primary_10_1088_1361_6420_aaf9c6 crossref_primary_10_1007_s10208_022_09561_z crossref_primary_10_1016_j_acha_2015_08_012 crossref_primary_10_1016_j_sigpro_2019_06_023 crossref_primary_10_1109_TSP_2020_3010749 crossref_primary_10_1109_TSP_2015_2452223 crossref_primary_10_1137_22M1494373 crossref_primary_10_3390_math11122674 crossref_primary_10_1109_TGRS_2017_2743263 crossref_primary_10_1109_TSP_2017_2788431 crossref_primary_10_1109_TSP_2020_2982834 crossref_primary_10_1137_19M124071X crossref_primary_10_1103_PhysRevResearch_1_033006 crossref_primary_10_3390_electronics8050557 crossref_primary_10_1109_TRS_2024_3461208 crossref_primary_10_1214_20_AOS2037 crossref_primary_10_1007_s11760_024_03689_x crossref_primary_10_1109_JSTSP_2017_2785783 crossref_primary_10_1109_TSP_2019_2916744 crossref_primary_10_1016_j_acha_2014_12_003 crossref_primary_10_1016_j_sigpro_2017_02_011 crossref_primary_10_1137_16M1085322 crossref_primary_10_1007_s00220_015_2301_4 crossref_primary_10_1109_TSP_2022_3170688 crossref_primary_10_1007_s10208_015_9276_6 crossref_primary_10_1109_TSP_2021_3113468 crossref_primary_10_1109_TSP_2019_2961301 crossref_primary_10_1007_s11760_017_1062_2 crossref_primary_10_2478_jee_2018_0047 crossref_primary_10_1007_s00365_022_09574_5 crossref_primary_10_1109_TCI_2024_3369412 crossref_primary_10_1109_TGRS_2024_3395510 crossref_primary_10_1121_1_4916269 crossref_primary_10_1137_22M1508571 crossref_primary_10_3390_e25020250 crossref_primary_10_1016_j_sigpro_2019_107406 crossref_primary_10_1007_s10208_021_09545_5 crossref_primary_10_1364_JOSAA_402396 crossref_primary_10_1051_cocv_2021042 crossref_primary_10_1109_TCSII_2020_3045226 crossref_primary_10_1007_s00041_017_9571_5 crossref_primary_10_1109_TSP_2022_3150964 crossref_primary_10_1049_iet_rsn_2019_0329 crossref_primary_10_1109_ACCESS_2021_3054660 crossref_primary_10_2139_ssrn_4106833 crossref_primary_10_1007_s00365_022_09563_8 crossref_primary_10_1109_LSP_2022_3161865 crossref_primary_10_1109_TSP_2018_2862399 crossref_primary_10_1109_TSP_2017_2695566 crossref_primary_10_1007_s00034_016_0462_9 crossref_primary_10_1007_s00041_020_09809_8 crossref_primary_10_1109_TIT_2019_2950715 crossref_primary_10_1109_LSP_2014_2316004 crossref_primary_10_2139_ssrn_4068590 crossref_primary_10_1109_TGRS_2020_2978496 crossref_primary_10_1007_s10851_022_01115_w crossref_primary_10_1088_1361_6420_aaedde crossref_primary_10_1364_AO_486527 crossref_primary_10_1007_s00158_022_03436_1 crossref_primary_10_1016_j_acha_2021_07_002 crossref_primary_10_1016_j_acha_2021_07_003 crossref_primary_10_1049_iet_rsn_2015_0094 crossref_primary_10_1049_iet_spr_2019_0306 crossref_primary_10_1214_20_AOS2022 crossref_primary_10_2139_ssrn_4788142 crossref_primary_10_1371_journal_pcbi_1005913 crossref_primary_10_1016_j_ymssp_2022_109544 crossref_primary_10_1002_pamm_201410452 crossref_primary_10_1109_LSP_2022_3226111 crossref_primary_10_1007_s10959_022_01201_0 crossref_primary_10_3390_en13143609 crossref_primary_10_1088_1361_6420_ab5a21 crossref_primary_10_1109_MSP_2019_2950432 crossref_primary_10_1109_TIT_2016_2553041 crossref_primary_10_1109_LSP_2023_3289769 crossref_primary_10_1007_s00214_016_1954_1 crossref_primary_10_1109_JSEN_2016_2577881 crossref_primary_10_3390_en13215775 crossref_primary_10_3390_rs15225281 crossref_primary_10_1016_j_dsp_2021_103314 crossref_primary_10_1137_18M1183388 crossref_primary_10_1109_TMI_2019_2942765 crossref_primary_10_1109_TSP_2025_3529657 crossref_primary_10_1137_15M1016552 crossref_primary_10_1109_TIT_2022_3191339 crossref_primary_10_1088_1361_6420_ad33e4 crossref_primary_10_3390_rs17040696 crossref_primary_10_1088_1361_6420_ad2cf8 crossref_primary_10_1109_LSP_2020_3039428 crossref_primary_10_1049_iet_rsn_2019_0350 crossref_primary_10_1109_ACCESS_2017_2717963 crossref_primary_10_1109_LSP_2017_2700442 crossref_primary_10_1109_LSP_2020_3003241 crossref_primary_10_1017_S0962492918000016 crossref_primary_10_1109_JSAIT_2023_3317094 crossref_primary_10_1038_s41467_024_52629_3 crossref_primary_10_1103_PhysRevApplied_14_034066 crossref_primary_10_1016_j_acha_2023_01_008 crossref_primary_10_1016_j_acha_2023_01_005 crossref_primary_10_1016_j_ymssp_2019_106425 crossref_primary_10_1109_ACCESS_2019_2950016 crossref_primary_10_1088_1361_6420_aad1c3 crossref_primary_10_1088_1361_6420_ac9998 crossref_primary_10_1093_imaiai_iaaa005 crossref_primary_10_1109_TSP_2016_2580523 crossref_primary_10_1109_TSP_2014_2386283 crossref_primary_10_1109_TSP_2014_2354316 crossref_primary_10_1109_TSP_2019_2949502 crossref_primary_10_1109_TSP_2016_2625274 crossref_primary_10_1109_JSAIT_2023_3262689 crossref_primary_10_1109_JSAIT_2023_3287823 crossref_primary_10_1109_TSP_2014_2385035 crossref_primary_10_1109_TIT_2017_2745623 crossref_primary_10_1109_LSP_2023_3324553 crossref_primary_10_1016_j_jmaa_2015_05_034 crossref_primary_10_1016_j_sigpro_2024_109656 crossref_primary_10_1109_TVT_2021_3103153 crossref_primary_10_1364_OE_24_030038 crossref_primary_10_1007_s10208_023_09618_7 crossref_primary_10_1137_18M1200750 crossref_primary_10_1109_ACCESS_2019_2903391 crossref_primary_10_1364_AO_444610 crossref_primary_10_3150_24_BEJ1724 crossref_primary_10_1109_TWC_2019_2929772 crossref_primary_10_1137_18M1174775 crossref_primary_10_1088_1361_6420_aa5e12 crossref_primary_10_1121_10_0010383 crossref_primary_10_1007_s00041_016_9502_x crossref_primary_10_1137_18M118116X crossref_primary_10_1155_2020_3012952 crossref_primary_10_1007_s10444_019_09672_2 crossref_primary_10_1007_s41664_018_0076_2 crossref_primary_10_1109_TIT_2014_2343623 crossref_primary_10_1038_srep25718 crossref_primary_10_7717_peerj_cs_621 crossref_primary_10_1109_ACCESS_2020_2972366 crossref_primary_10_1109_TSP_2016_2616336 crossref_primary_10_1109_TSP_2020_2970343 crossref_primary_10_1109_TSP_2020_3037373 crossref_primary_10_1049_iet_com_2019_0430 crossref_primary_10_1109_TCOMM_2021_3067383 crossref_primary_10_1137_18M123147X crossref_primary_10_1088_1742_6596_657_1_012013 crossref_primary_10_1109_TSP_2015_2493987 crossref_primary_10_1016_j_acha_2021_09_002 crossref_primary_10_1109_TSP_2018_2868314 crossref_primary_10_1109_TIT_2019_2954452 crossref_primary_10_1016_j_acha_2015_04_005 crossref_primary_10_1109_TSP_2017_2659644 crossref_primary_10_1093_imaiai_iaw024 crossref_primary_10_2140_apde_2018_11_1901 crossref_primary_10_1109_TSP_2019_2951220 crossref_primary_10_1109_TCOMM_2019_2956928 crossref_primary_10_1109_TSP_2017_2659650 crossref_primary_10_1016_j_ymssp_2023_110323 crossref_primary_10_1016_j_sigpro_2019_04_024 crossref_primary_10_1088_1361_6420_ac87cb crossref_primary_10_1155_2014_974509 crossref_primary_10_1137_16M1108807 crossref_primary_10_1109_LSP_2020_3045343 crossref_primary_10_1109_TAES_2020_2965754 crossref_primary_10_1190_geo2019_0423_1 crossref_primary_10_1109_TBME_2018_2885523 crossref_primary_10_1109_LSP_2012_2224518 crossref_primary_10_3233_XST_160553 crossref_primary_10_1007_s11045_019_00696_x crossref_primary_10_1109_JSTSP_2018_2827299 crossref_primary_10_1093_imaiai_iax006 crossref_primary_10_1137_23M1587737 crossref_primary_10_1016_j_sigpro_2017_07_003 crossref_primary_10_1109_TVT_2023_3328800 crossref_primary_10_1093_imaiai_iax005 crossref_primary_10_1109_TIT_2020_2974174 crossref_primary_10_1109_TSP_2022_3198863 crossref_primary_10_1016_j_sigpro_2016_06_029 crossref_primary_10_1016_j_sigpro_2019_04_016 crossref_primary_10_1109_TGRS_2022_3223524 crossref_primary_10_1109_LSP_2023_3262378 crossref_primary_10_3390_en14010228 crossref_primary_10_1007_s11760_016_0889_2 crossref_primary_10_1038_s41377_020_00403_7 crossref_primary_10_1109_TIT_2022_3199405 crossref_primary_10_1117_1_JEI_25_5_053016 crossref_primary_10_1016_j_acha_2024_101716 crossref_primary_10_1093_imaiai_iaaa024 crossref_primary_10_1093_imaiai_iaw001 crossref_primary_10_1016_j_sigpro_2024_109579 crossref_primary_10_1088_2515_7647_ab72de crossref_primary_10_1587_transfun_E100_A_2493 crossref_primary_10_1016_j_sigpro_2023_109253 crossref_primary_10_1093_imaiai_iaw005 crossref_primary_10_1109_LSP_2022_3224682 crossref_primary_10_1109_TIT_2018_2881113 crossref_primary_10_1016_j_acha_2018_09_005 crossref_primary_10_2139_ssrn_4095423 crossref_primary_10_1121_10_0006389 crossref_primary_10_1109_TSP_2019_2954508 crossref_primary_10_1007_s10208_014_9228_6 crossref_primary_10_1038_srep04677 crossref_primary_10_1016_j_dsp_2021_103028 crossref_primary_10_1137_16M1084754 crossref_primary_10_1109_TSP_2016_2572041 crossref_primary_10_1093_imaiai_iaab003 crossref_primary_10_1007_s11785_018_0829_y crossref_primary_10_1109_TSP_2023_3254140 crossref_primary_10_1121_1_5042242 crossref_primary_10_1137_17M1147822 crossref_primary_10_1049_iet_spr_2017_0366 crossref_primary_10_1093_imaiai_iaaa029 crossref_primary_10_1109_LSP_2021_3060593 crossref_primary_10_1109_TSP_2014_2339792 crossref_primary_10_1109_COMST_2023_3243918 crossref_primary_10_1016_j_cam_2021_114044 crossref_primary_10_1093_mnras_stw2261 crossref_primary_10_5802_ojmo_20 crossref_primary_10_1109_JIOT_2021_3064376 crossref_primary_10_1364_PRJ_420326 crossref_primary_10_1016_j_acha_2023_101577 crossref_primary_10_1016_j_amc_2017_11_007 crossref_primary_10_1007_s10915_021_01526_8 crossref_primary_10_1016_j_acha_2021_08_001 crossref_primary_10_1121_10_0021889 crossref_primary_10_1109_TSP_2016_2600507 crossref_primary_10_1109_LSP_2018_2881927 crossref_primary_10_1109_LSP_2021_3058007 crossref_primary_10_3150_21_BEJ1414 crossref_primary_10_1109_TII_2020_3015730 crossref_primary_10_1214_20_AOS1945 crossref_primary_10_1088_1361_6420_abbd7e crossref_primary_10_1016_j_sigpro_2018_08_013 crossref_primary_10_1109_LSP_2022_3213140 crossref_primary_10_1121_10_0011617 crossref_primary_10_1137_17M1130666 crossref_primary_10_1109_TSP_2016_2576422 crossref_primary_10_1109_TCYB_2022_3179378 crossref_primary_10_1109_TGRS_2016_2621123 crossref_primary_10_1109_TIT_2020_2985015 crossref_primary_10_1587_transfun_E100_A_1236 crossref_primary_10_1049_iet_its_2014_0287 crossref_primary_10_1109_TIT_2016_2586083 crossref_primary_10_1137_140978569 crossref_primary_10_1007_s10107_021_01636_z crossref_primary_10_1093_imaiai_iay016 crossref_primary_10_1016_j_laa_2018_09_014 crossref_primary_10_1137_17M113825X crossref_primary_10_1016_j_acha_2022_11_003 crossref_primary_10_1109_TGRS_2025_3531359 crossref_primary_10_1098_rspa_2014_0946 crossref_primary_10_1016_j_acha_2024_101631 crossref_primary_10_1109_ACCESS_2019_2949756 crossref_primary_10_1049_mia2_12209 crossref_primary_10_1002_pamm_202300054 crossref_primary_10_1109_TIT_2016_2629078 crossref_primary_10_1109_TAP_2019_2957088 crossref_primary_10_1109_TSP_2015_2420541 crossref_primary_10_1016_j_acha_2018_08_003 crossref_primary_10_1137_22M1521353 crossref_primary_10_1016_j_ymssp_2020_107410 crossref_primary_10_1016_j_cam_2022_114937 crossref_primary_10_1109_JSTARS_2023_3294828 crossref_primary_10_1137_151005245 crossref_primary_10_5802_ojmo_39 crossref_primary_10_1109_TSP_2017_2770104 crossref_primary_10_1109_TSP_2023_3290355 crossref_primary_10_1364_JOSAA_33_000519 crossref_primary_10_1109_TIT_2021_3067276 crossref_primary_10_1002_cpa_21805 crossref_primary_10_3390_app9020328 crossref_primary_10_1016_j_acha_2018_10_001 crossref_primary_10_1093_imaiai_iaac015 crossref_primary_10_1109_LGRS_2018_2841189 crossref_primary_10_1007_s10589_020_00205_y crossref_primary_10_1109_LSP_2014_2349904 crossref_primary_10_1016_j_sigpro_2017_07_024 crossref_primary_10_1109_LCOMM_2022_3199460 crossref_primary_10_1177_14613484221104622 crossref_primary_10_1016_j_sigpro_2017_07_028 crossref_primary_10_1088_1361_6420_ad75b1 crossref_primary_10_1109_TIT_2019_2902926 crossref_primary_10_1190_geo2020_0727_1 crossref_primary_10_1016_j_sigpro_2024_109484 crossref_primary_10_3390_drones7040251 crossref_primary_10_1364_OE_23_000401 crossref_primary_10_1016_j_acha_2024_101653 crossref_primary_10_1121_1_4985612 crossref_primary_10_1007_s00041_017_9534_x crossref_primary_10_1109_TSP_2015_2463255 crossref_primary_10_1016_j_acha_2024_101650 crossref_primary_10_1016_j_automatica_2019_108510 crossref_primary_10_3390_electronics13050846 crossref_primary_10_1093_imaiai_iaad037 crossref_primary_10_1016_j_acha_2024_101658 crossref_primary_10_1038_s41598_019_47845_7 crossref_primary_10_1016_j_ymssp_2021_108642 crossref_primary_10_1093_imaiai_iaad033 crossref_primary_10_1016_j_sigpro_2024_109398 crossref_primary_10_1109_MSP_2021_3092574 crossref_primary_10_1109_LSP_2022_3195429 crossref_primary_10_1038_nphoton_2015_279 crossref_primary_10_1088_1361_6420_aa7fce crossref_primary_10_1109_TSP_2017_2755602 crossref_primary_10_1137_15M1035793 crossref_primary_10_1088_1361_6420_abd29c crossref_primary_10_1109_OJSP_2024_3425284 crossref_primary_10_1093_imaiai_iaad048 crossref_primary_10_1016_j_ymssp_2021_107686 crossref_primary_10_1007_s43670_021_00016_0 crossref_primary_10_1109_TCSVT_2015_2475895 crossref_primary_10_1137_19M1298524 crossref_primary_10_1364_OPTICA_5_001382 crossref_primary_10_1016_j_sigpro_2024_109389 crossref_primary_10_1109_TSP_2018_2873514 crossref_primary_10_1080_17415977_2016_1273918 crossref_primary_10_1109_TIT_2021_3075149 crossref_primary_10_1103_PRXQuantum_3_020357 crossref_primary_10_1109_TSP_2021_3056591 crossref_primary_10_1109_OJSP_2024_3496815 crossref_primary_10_1109_TBME_2017_2694339 crossref_primary_10_1016_j_acha_2023_04_002 crossref_primary_10_1016_j_acha_2024_101673 crossref_primary_10_1109_TSP_2019_2943224 crossref_primary_10_1121_10_0006790 crossref_primary_10_1118_1_4935149 crossref_primary_10_1137_16M1071730 crossref_primary_10_1109_TSP_2018_2890064 crossref_primary_10_1111_1365_2478_12533 crossref_primary_10_1007_s11425_021_2151_0 crossref_primary_10_1007_s00041_019_09693_x crossref_primary_10_1007_s11045_016_0451_y crossref_primary_10_1016_j_sigpro_2021_108249 crossref_primary_10_1049_ell2_12803 crossref_primary_10_1109_TIT_2018_2829161 crossref_primary_10_1007_s13137_015_0079_3 crossref_primary_10_1088_1367_2630_aa60ee crossref_primary_10_1109_MSP_2014_2354094 crossref_primary_10_1007_s10444_016_9456_1 crossref_primary_10_1088_1361_6420_abb5df crossref_primary_10_1088_1361_6420_ac245b crossref_primary_10_1103_PhysRevA_108_012618 crossref_primary_10_1016_j_sigpro_2021_108016 crossref_primary_10_1093_imaiai_iaad024 crossref_primary_10_1073_pnas_1913995117 crossref_primary_10_1109_TSP_2018_2860549 crossref_primary_10_1109_TAP_2024_3492503 crossref_primary_10_1109_TSP_2015_2496294 crossref_primary_10_1016_j_acha_2018_07_001 crossref_primary_10_1109_TSP_2024_3386018 crossref_primary_10_1109_TSP_2015_2478751 crossref_primary_10_1017_fms_2024_72 crossref_primary_10_1016_j_phycom_2023_101999 crossref_primary_10_1109_LSP_2017_2708750 crossref_primary_10_1016_j_acha_2017_03_003 crossref_primary_10_1109_TSP_2015_2399861 crossref_primary_10_1214_24_EJS2267 crossref_primary_10_1109_TSP_2018_2872886 crossref_primary_10_1109_LSP_2020_3029000 crossref_primary_10_1016_j_acha_2014_07_004 crossref_primary_10_1109_TSP_2018_2869122 crossref_primary_10_1103_PhysRevA_108_012602 crossref_primary_10_1109_TSP_2022_3141009 crossref_primary_10_1137_18M1212197 crossref_primary_10_1109_TSP_2021_3080426 crossref_primary_10_1109_TSP_2016_2552500 crossref_primary_10_1109_TSP_2017_2655489 crossref_primary_10_1007_s00041_016_9498_2 crossref_primary_10_1109_JSTARS_2014_2351803 crossref_primary_10_1109_TSP_2019_2929460 crossref_primary_10_1109_TWC_2016_2625319 crossref_primary_10_1002_mrm_27852 crossref_primary_10_1007_s10444_021_09908_0 crossref_primary_10_1109_TSP_2024_3439315 crossref_primary_10_1109_TSP_2017_2750111 crossref_primary_10_1016_j_acha_2018_05_002 crossref_primary_10_1007_s10107_020_01530_0 crossref_primary_10_1109_LGRS_2020_3000339 crossref_primary_10_1109_JSTSP_2019_2937632 crossref_primary_10_1109_TIT_2016_2619368 crossref_primary_10_3390_telecom6010020 crossref_primary_10_1016_j_image_2020_115854 crossref_primary_10_1109_JOE_2021_3109432 crossref_primary_10_1109_TSP_2023_3254919 crossref_primary_10_1088_1361_6420_ab5aa3 crossref_primary_10_1109_TCI_2017_2699425 crossref_primary_10_1109_LSP_2015_2478854 crossref_primary_10_1109_TSP_2021_3094718 crossref_primary_10_1155_2020_1310805 crossref_primary_10_1016_j_sigpro_2022_108897 crossref_primary_10_1121_1_5094345 crossref_primary_10_1137_23M1551730 crossref_primary_10_1002_cpa_22089 crossref_primary_10_1007_s00365_024_09686_0 crossref_primary_10_1364_OE_22_009774 crossref_primary_10_1016_j_jat_2020_105456 crossref_primary_10_1007_s10208_019_09443_x crossref_primary_10_1109_TSP_2024_3403494 crossref_primary_10_1016_j_cviu_2022_103359 crossref_primary_10_1016_j_jmaa_2016_04_077 crossref_primary_10_1109_MSP_2014_2358263 crossref_primary_10_1109_TSP_2019_2944754 crossref_primary_10_1007_s10851_023_01163_w crossref_primary_10_1016_j_acha_2019_08_004 crossref_primary_10_1190_tle38100791_1 crossref_primary_10_1007_s00034_017_0633_3 crossref_primary_10_1109_TSP_2022_3201336 crossref_primary_10_1109_TSP_2018_2791945 crossref_primary_10_1364_OPTICA_6_001515 crossref_primary_10_1016_j_dsp_2023_104107 crossref_primary_10_1137_20M1336837 crossref_primary_10_1109_MSP_2016_2637700 crossref_primary_10_1109_TSP_2017_2764865 crossref_primary_10_1007_s00365_014_9263_1 crossref_primary_10_1109_OJSP_2021_3116482 crossref_primary_10_1109_TSP_2023_3244091 crossref_primary_10_1109_TSP_2020_2976577 crossref_primary_10_1109_TSP_2018_2881663 crossref_primary_10_1109_TSP_2023_3260564 crossref_primary_10_1016_j_jat_2014_03_001 crossref_primary_10_1007_s00041_013_9292_3 crossref_primary_10_1007_s11045_021_00784_x crossref_primary_10_1364_OPTICA_397214 crossref_primary_10_3390_app13053067 crossref_primary_10_1007_s11036_016_0748_y crossref_primary_10_1109_LSP_2022_3165759 crossref_primary_10_1137_15M1042280 crossref_primary_10_1016_j_matpur_2022_05_008 crossref_primary_10_1007_s10208_022_09580_w crossref_primary_10_1007_s11760_019_01427_2 crossref_primary_10_1109_TSP_2019_2953582 crossref_primary_10_1109_TSP_2021_3068353 crossref_primary_10_1109_LSP_2015_2485281 crossref_primary_10_1016_j_sigpro_2021_108450 crossref_primary_10_1109_ACCESS_2019_2960826 crossref_primary_10_1109_TSP_2025_3536846 crossref_primary_10_1109_TVT_2020_3016671 crossref_primary_10_1088_1361_6420_ac64fb crossref_primary_10_17341_gazimmfd_416379 |
Cites_doi | 10.1007/b105056 10.1023/A:1023289301743 10.1090/S0025-5718-1995-1265014-7 10.1093/comjnl/bxm075 10.1137/0149053 10.1002/j.1538-7305.1978.tb02104.x 10.1016/j.jmaa.2012.05.011 10.1073/pnas.0502269102 10.1109/TSP.2008.928510 10.1190/1.1836821 10.1109/MSP.2003.1203207 10.1109/TIT.2005.858979 10.1080/10556789908805762 10.1109/TSP.2006.890907 10.1364/JOSA.57.001190 10.1090/S0025-5718-2011-02539-1 10.1366/0003702944027589 10.1017/CBO9780511804441 10.1137/110838509 10.1016/j.acha.2012.08.003 10.1137/0523074 10.1109/8.320744 10.1051/0004-6361:20042320 10.1109/TMI.2005.861705 10.1109/ICASSP.2005.1416407 10.1109/TIT.2005.864420 10.1190/1.1441261 10.1190/1.1440378 10.1016/j.laa.2009.11.022 10.1051/cocv/2011205 10.1137/0907087 10.1109/TIT.2005.862083 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Jun 2014 |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Jun 2014 |
DBID | BSCLL AAYXX CITATION JQ2 |
DOI | 10.1002/cpa.21455 |
DatabaseName | Istex CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 956 |
ExternalDocumentID | 3276395111 10_1002_cpa_21455 CPA21455 ark_67375_WNG_M9WBPKLL_R |
Genre | article Feature |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO ADXHL AEFGJ AETEA AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AMVHM AAYXX CITATION JQ2 |
ID | FETCH-LOGICAL-c4015-b4864c1c64c16ad665e7936df1ec642a9e90ecce953ee58963abef5d5f1eb26a3 |
IEDL.DBID | DR2 |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 19:20:38 EDT 2025 Tue Jul 01 02:50:29 EDT 2025 Thu Apr 24 23:12:31 EDT 2025 Wed Aug 20 01:20:54 EDT 2025 Wed Oct 30 09:55:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4015-b4864c1c64c16ad665e7936df1ec642a9e90ecce953ee58963abef5d5f1eb26a3 |
Notes | istex:9B4AFE759331A2BCD5EB671057A192B760591727 ArticleID:CPA21455 ark:/67375/WNG-M9WBPKLL-R SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1516511575 |
PQPubID | 48818 |
PageCount | 51 |
ParticipantIDs | proquest_journals_1516511575 crossref_citationtrail_10_1002_cpa_21455 crossref_primary_10_1002_cpa_21455 wiley_primary_10_1002_cpa_21455_CPA21455 istex_primary_ark_67375_WNG_M9WBPKLL_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2014 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationTitleAlternate | Comm. Pure Appl. Math |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons, Limited |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons, Limited |
References | Candès, E. J.; Tao, T. Decoding by linear programming. IEEE Trans. Inform. Theory 51 (2005), no. 12, 4203-4215. Batenkov, D.; Yomdin, Y. Algebraic Fourier reconstruction of piecewise smooth functions. Math. Comp. 81 (2012), no. 277, 277-318. McCutchen, C. W. Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am. 57 (1967), no. 10, 1190-1190. doi: 10.1364/JOSA.57.001190 Odendaal, J.; Barnard, E.; Pistorius, C. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Transactions on Antennas and Propagation 42 (1994), no. 10, 1386-1391. Claerbout, J. F.; Muir, F. Robust modeling with erratic data. Geophysics 38 (1973), no. 5, 826-844. doi: 10.1190/1.1440378 Bredies, K.; Pikkarainen, H. K. Inverse problems in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations 19 (2013), 190-218. doi: 10.1051/cocv/2011205 Rudin, W. Real and complex analysis. Third edition. McGraw-Hill, New York, 1987. Candès, E. J.; Romberg, J.; Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52 (2006), no. 2, 489-509. de Castro, Y.; Gamboa, F. Exact reconstruction using Beurling minimal extrapolation. J. Math. Anal. Appl. 395 (2012), no. 1, 336-354. Tropp, J. A. Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52 (2006), no. 3, 1030-1051. Fannjiang, A.; Liao, W. Coherence-pattern guided compressive sensing with unresolved grids. SIAM J. Imaging Sci. 5 (2012), no. 1, 179-202. Harris, T. D.; Grober, R. D.; Trautman, J. K.; Betzig, E. Super-resolution imaging spectroscopy. Appl. Spectrosc. 48 (1994), no. 1, 14A-21A. Duarte, M. F.; Baraniuk, R. G. Spectral compressive sensing. Appl. Comput. Harmon. Anal., in press. doi: 10.1016/j.acha.2012.08.003 Santosa, F.; Symes, W. W. Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Statist. Comput. 7 (1986), no. 4, 1307-1330. Donoho, D. L.; Stark, P. B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49 (1989), no. 3, 906-931. Khaidukov, V.; Landa, E.; Moser, T. J. Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution. Geophysics 69 (2004), no. 6, 1478-1490. doi: 10.1190/1.1836821 Donoho, D. L.; Tanner, J. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. 102 (2005), no. 27, 9446-9451. Donoho, D. L. Superresolution via sparsity constraints. SIAM J. Math. Anal. 23 (1992), no. 5, 1309-1331. Banerjee, N. S.; Geer, J. F. Exponentially accurate approximations to periodic Lipschitz functions based on Fourier series partial sums. J. Sci. Comput. 13 (1998), no. 4, 419-460. Slepian, D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V - The discrete case. Bell System Technical Journal 57 (1978), 1371-1430. Dragotti, P. L.; Vetterli, M.; Blu, T. Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix. IEEE Trans. Signal Process. 55 (2007), no. 5, part 1, 1741-1757. Puschmann, K. G.; Kneer, F. On super-resolution in astronomical imaging. Astronomy and Astrophysics 436 (2005), no. 1, 373-378. doi: 10.1051/0004-6361:20042320 Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical recipes in C: the art of scientific computing. Second edition. Cambridge University Press, Cambridge, 1992. Zhang, F. The Schur Complement and Its Applications. Springer Science, New York, 2005. Bhaskar, B. N.; Tang, G.; Recht, B. Atomic norm denoising with applications to line spectral estimation. Preprint, 2012. arxiv1204.0562 [cs.IT] Eckhoff, K. S. Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comp. 64 (1995), no. 210, 671-690. Park, S. C.; Park, M. K.; Kang, M. G. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine 20 (2003), no. 3, 21-36. Boyd, S.; Vandenberghe, L. Convex optimization. Cambridge University Press, Cambridge, 2004. Dossal, C.; Peyré, G.; Fadili, J. A numerical exploration of compressed sampling recovery. Linear Algebra Appl. 432 (2010), no. 7, 1663-1679. Levy, S.; Fullagar, P. K. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics 46 (1981), no. 9, 1235-1243. doi: 10.1190/1.1441261 Toh, K. C.; Todd, M. J.; Tütüncü, R. H. SDPT3-a Matlab software package for semidefinite programming, Version 1.3. Optim. Methods Softw. 11/12 (1999), no. 1-4, 545-581. Greenspan, H. Super-resolution in medical imaging. Comput. J. 52 (2009), no. 1, 43-63. doi: 10.1093/comjnl/bxm075 Kennedy, J. A.; Israel, O.; Frenkel, A.; Bar-Shalom, R.; Azhari, H. Super-resolution in PET imaging. IEEE Transactions on Medical Imaging 25 (2006), no. 2, 137-147. Tan, V. Y. F.; Goyal, V. K. Estimating signals with finite rate of innovation from noisy samples: A stochastic algorithm. IEEE Trans. Signal Process. 56 (2008), no. 10, part 2, 5135-5146. 2012; 81 2006; 52 2012 2004; 69 1973; 38 2005; 436 2008 1981; 46 2007 1974 2008; 56 2005 2004 1994; 48 1992 1978; 57 1989; 49 2007; 55 1994; 42 2013; 19 1995; 64 2012; 395 2009; 52 1986; 7 2005; 102 2006; 25 2010; 432 2005; 51 1987 1967; 57 5 1999; 11/12 1992; 23 2012; 5 2003; 20 1998; 13 Bhaskar B. N. (e_1_2_1_4_1) 2012 Rockafellar R. (e_1_2_1_35_1) 1974 e_1_2_1_42_1 e_1_2_1_20_1 Rudin W. (e_1_2_1_36_1) 1987 e_1_2_1_41_1 e_1_2_1_40_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_29_1 Dossal C. (e_1_2_1_15_1) 2005 Press W. H. (e_1_2_1_33_1) 1992 Grant M. (e_1_2_1_23_1) 2008 e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 Dumitrescu B. (e_1_2_1_19_1) 2007 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 Kahane J. P. (e_1_2_1_26_1) 2012 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_9_1 e_1_2_1_18_1 |
References_xml | – reference: Dossal, C.; Peyré, G.; Fadili, J. A numerical exploration of compressed sampling recovery. Linear Algebra Appl. 432 (2010), no. 7, 1663-1679. – reference: Kennedy, J. A.; Israel, O.; Frenkel, A.; Bar-Shalom, R.; Azhari, H. Super-resolution in PET imaging. IEEE Transactions on Medical Imaging 25 (2006), no. 2, 137-147. – reference: Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical recipes in C: the art of scientific computing. Second edition. Cambridge University Press, Cambridge, 1992. – reference: Eckhoff, K. S. Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comp. 64 (1995), no. 210, 671-690. – reference: Claerbout, J. F.; Muir, F. Robust modeling with erratic data. Geophysics 38 (1973), no. 5, 826-844. doi: 10.1190/1.1440378 – reference: Tan, V. Y. F.; Goyal, V. K. Estimating signals with finite rate of innovation from noisy samples: A stochastic algorithm. IEEE Trans. Signal Process. 56 (2008), no. 10, part 2, 5135-5146. – reference: Tropp, J. A. Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52 (2006), no. 3, 1030-1051. – reference: Levy, S.; Fullagar, P. K. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics 46 (1981), no. 9, 1235-1243. doi: 10.1190/1.1441261 – reference: Candès, E. J.; Romberg, J.; Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52 (2006), no. 2, 489-509. – reference: Zhang, F. The Schur Complement and Its Applications. Springer Science, New York, 2005. – reference: Puschmann, K. G.; Kneer, F. On super-resolution in astronomical imaging. Astronomy and Astrophysics 436 (2005), no. 1, 373-378. doi: 10.1051/0004-6361:20042320 – reference: Candès, E. J.; Tao, T. Decoding by linear programming. IEEE Trans. Inform. Theory 51 (2005), no. 12, 4203-4215. – reference: Bredies, K.; Pikkarainen, H. K. Inverse problems in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations 19 (2013), 190-218. doi: 10.1051/cocv/2011205 – reference: Banerjee, N. S.; Geer, J. F. Exponentially accurate approximations to periodic Lipschitz functions based on Fourier series partial sums. J. Sci. Comput. 13 (1998), no. 4, 419-460. – reference: Donoho, D. L.; Tanner, J. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. 102 (2005), no. 27, 9446-9451. – reference: Harris, T. D.; Grober, R. D.; Trautman, J. K.; Betzig, E. Super-resolution imaging spectroscopy. Appl. Spectrosc. 48 (1994), no. 1, 14A-21A. – reference: Odendaal, J.; Barnard, E.; Pistorius, C. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Transactions on Antennas and Propagation 42 (1994), no. 10, 1386-1391. – reference: Park, S. C.; Park, M. K.; Kang, M. G. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine 20 (2003), no. 3, 21-36. – reference: Greenspan, H. Super-resolution in medical imaging. Comput. J. 52 (2009), no. 1, 43-63. doi: 10.1093/comjnl/bxm075 – reference: Santosa, F.; Symes, W. W. Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Statist. Comput. 7 (1986), no. 4, 1307-1330. – reference: Rudin, W. Real and complex analysis. Third edition. McGraw-Hill, New York, 1987. – reference: Donoho, D. L. Superresolution via sparsity constraints. SIAM J. Math. Anal. 23 (1992), no. 5, 1309-1331. – reference: Duarte, M. F.; Baraniuk, R. G. Spectral compressive sensing. Appl. Comput. Harmon. Anal., in press. doi: 10.1016/j.acha.2012.08.003 – reference: Slepian, D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V - The discrete case. Bell System Technical Journal 57 (1978), 1371-1430. – reference: Donoho, D. L.; Stark, P. B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49 (1989), no. 3, 906-931. – reference: Fannjiang, A.; Liao, W. Coherence-pattern guided compressive sensing with unresolved grids. SIAM J. Imaging Sci. 5 (2012), no. 1, 179-202. – reference: Toh, K. C.; Todd, M. J.; Tütüncü, R. H. SDPT3-a Matlab software package for semidefinite programming, Version 1.3. Optim. Methods Softw. 11/12 (1999), no. 1-4, 545-581. – reference: Boyd, S.; Vandenberghe, L. Convex optimization. Cambridge University Press, Cambridge, 2004. – reference: McCutchen, C. W. Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am. 57 (1967), no. 10, 1190-1190. doi: 10.1364/JOSA.57.001190 – reference: Batenkov, D.; Yomdin, Y. Algebraic Fourier reconstruction of piecewise smooth functions. Math. Comp. 81 (2012), no. 277, 277-318. – reference: Bhaskar, B. N.; Tang, G.; Recht, B. Atomic norm denoising with applications to line spectral estimation. Preprint, 2012. arxiv1204.0562 [cs.IT] – reference: de Castro, Y.; Gamboa, F. Exact reconstruction using Beurling minimal extrapolation. J. Math. Anal. Appl. 395 (2012), no. 1, 336-354. – reference: Dragotti, P. L.; Vetterli, M.; Blu, T. Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix. IEEE Trans. Signal Process. 55 (2007), no. 5, part 1, 1741-1757. – reference: Khaidukov, V.; Landa, E.; Moser, T. J. Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution. Geophysics 69 (2004), no. 6, 1478-1490. doi: 10.1190/1.1836821 – volume: 57 start-page: 1190 issue: 10 year: 1967 end-page: 1190 article-title: Superresolution in microscopy and the Abbe resolution limit publication-title: J. Opt. Soc. Am. – article-title: Spectral compressive sensing publication-title: Appl. Comput. Harmon. Anal. – year: 2005 – volume: 49 start-page: 906 issue: 3 year: 1989 end-page: 931 article-title: Uncertainty principles and signal recovery publication-title: SIAM J. Appl. Math. – year: 2007 – year: 1987 – volume: 64 start-page: 671 issue: 210 year: 1995 end-page: 690 article-title: Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions publication-title: Math. Comp. – start-page: 95 year: 2008 end-page: 110 – volume: 69 start-page: 1478 issue: 6 year: 2004 end-page: 1490 article-title: Diffraction imaging by focusing‐defocusing: An outlook on seismic superresolution publication-title: Geophysics – volume: 52 start-page: 43 issue: 1 year: 2009 end-page: 63 article-title: Super‐resolution in medical imaging publication-title: Comput. J. – start-page: 17 year: 2012 end-page: 54 – volume: 25 start-page: 137 issue: 2 year: 2006 end-page: 147 article-title: Super‐resolution in PET imaging publication-title: IEEE Transactions on Medical Imaging – volume: 23 start-page: 1309 issue: 5 year: 1992 end-page: 1331 article-title: Superresolution via sparsity constraints publication-title: SIAM J. Math. Anal. – volume: 436 start-page: 373 issue: 1 year: 2005 end-page: 378 article-title: On super‐resolution in astronomical imaging publication-title: Astronomy and Astrophysics – volume: 20 start-page: 21 issue: 3 year: 2003 end-page: 36 article-title: Super‐resolution image reconstruction: a technical overview publication-title: IEEE Signal Processing Magazine – year: 1992 – volume: 81 start-page: 277 issue: 277 year: 2012 end-page: 318 article-title: Algebraic Fourier reconstruction of piecewise smooth functions publication-title: Math. Comp. – year: 2012 – volume: 52 start-page: 1030 issue: 3 year: 2006 end-page: 1051 article-title: Just relax: convex programming methods for identifying sparse signals in noise publication-title: IEEE Trans. Inform. Theory – volume: 55 start-page: 1741 issue: 5 year: 2007 end-page: 1757 article-title: Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang‐Fix publication-title: IEEE Trans. Signal Process. – volume: 7 start-page: 1307 issue: 4 year: 1986 end-page: 1330 article-title: Linear inversion of band‐limited reflection seismograms publication-title: SIAM J. Sci. Statist. Comput. – volume: 5 start-page: 179 issue: 1 year: 2012 end-page: 202 article-title: Coherence‐pattern guided compressive sensing with unresolved grids publication-title: SIAM J. Imaging Sci. – volume: 5 start-page: 729 end-page: 732 – volume: 56 start-page: 5135 issue: 10 year: 2008 end-page: 5146 article-title: Estimating signals with finite rate of innovation from noisy samples: A stochastic algorithm publication-title: IEEE Trans. Signal Process. – volume: 19 start-page: 190 year: 2013 end-page: 218 article-title: Inverse problems in spaces of measures publication-title: ESAIM: Control, Optimisation and Calculus of Variations – volume: 38 start-page: 826 issue: 5 year: 1973 end-page: 844 article-title: Robust modeling with erratic data publication-title: Geophysics – volume: 57 start-page: 1371 year: 1978 end-page: 1430 article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V ‐ The discrete case publication-title: Bell System Technical Journal – volume: 13 start-page: 419 issue: 4 year: 1998 end-page: 460 article-title: Exponentially accurate approximations to periodic Lipschitz functions based on Fourier series partial sums publication-title: J. Sci. Comput. – year: 2004 – volume: 102 start-page: 9446 issue: 27 year: 2005 end-page: 9451 article-title: Sparse nonnegative solutions of underdetermined linear equations by linear programming publication-title: Proc. Natl. Acad. Sci. – volume: 432 start-page: 1663 issue: 7 year: 2010 end-page: 1679 article-title: A numerical exploration of compressed sampling recovery publication-title: Linear Algebra Appl. – volume: 48 start-page: 14A issue: 1 year: 1994 end-page: 21A article-title: Super‐resolution imaging spectroscopy publication-title: Appl. Spectrosc. – year: 1974 – volume: 52 start-page: 489 issue: 2 year: 2006 end-page: 509 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inform. Theory – volume: 51 start-page: 4203 issue: 12 year: 2005 end-page: 4215 article-title: Decoding by linear programming publication-title: IEEE Trans. Inform. Theory – volume: 46 start-page: 1235 issue: 9 year: 1981 end-page: 1243 article-title: Reconstruction of a sparse spike train from a portion of its spectrum and application to high‐resolution deconvolution publication-title: Geophysics – volume: 42 start-page: 1386 issue: 10 year: 1994 end-page: 1391 article-title: Two‐dimensional superresolution radar imaging using the MUSIC algorithm publication-title: IEEE Transactions on Antennas and Propagation – volume: 395 start-page: 336 issue: 1 year: 2012 end-page: 354 article-title: Exact reconstruction using Beurling minimal extrapolation publication-title: J. Math. Anal. Appl. – volume: 11/12 start-page: 545 issue: 1‐4 year: 1999 end-page: 581 article-title: SDPT3—a Matlab software package for semidefinite programming, Version 1.3 publication-title: Optim. Methods Softw. – ident: e_1_2_1_42_1 doi: 10.1007/b105056 – ident: e_1_2_1_2_1 doi: 10.1023/A:1023289301743 – volume-title: Atomic norm denoising with applications to line spectral estimation year: 2012 ident: e_1_2_1_4_1 – ident: e_1_2_1_20_1 doi: 10.1090/S0025-5718-1995-1265014-7 – ident: e_1_2_1_24_1 doi: 10.1093/comjnl/bxm075 – ident: e_1_2_1_13_1 doi: 10.1137/0149053 – ident: e_1_2_1_38_1 doi: 10.1002/j.1538-7305.1978.tb02104.x – ident: e_1_2_1_11_1 doi: 10.1016/j.jmaa.2012.05.011 – volume-title: Numerical recipes in C: the art of scientific computing year: 1992 ident: e_1_2_1_33_1 – volume-title: Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, 16 year: 1974 ident: e_1_2_1_35_1 – ident: e_1_2_1_14_1 doi: 10.1073/pnas.0502269102 – ident: e_1_2_1_39_1 doi: 10.1109/TSP.2008.928510 – volume-title: Real and complex analysis year: 1987 ident: e_1_2_1_36_1 – ident: e_1_2_1_28_1 doi: 10.1190/1.1836821 – ident: e_1_2_1_32_1 doi: 10.1109/MSP.2003.1203207 – ident: e_1_2_1_8_1 doi: 10.1109/TIT.2005.858979 – ident: e_1_2_1_40_1 doi: 10.1080/10556789908805762 – ident: e_1_2_1_17_1 doi: 10.1109/TSP.2006.890907 – ident: e_1_2_1_30_1 doi: 10.1364/JOSA.57.001190 – ident: e_1_2_1_3_1 doi: 10.1090/S0025-5718-2011-02539-1 – ident: e_1_2_1_25_1 doi: 10.1366/0003702944027589 – volume-title: Thesis, École Polytechnique year: 2005 ident: e_1_2_1_15_1 – ident: e_1_2_1_5_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_1_21_1 doi: 10.1137/110838509 – ident: e_1_2_1_18_1 doi: 10.1016/j.acha.2012.08.003 – ident: e_1_2_1_12_1 doi: 10.1137/0523074 – ident: e_1_2_1_31_1 doi: 10.1109/8.320744 – ident: e_1_2_1_34_1 doi: 10.1051/0004-6361:20042320 – ident: e_1_2_1_27_1 doi: 10.1109/TMI.2005.861705 – ident: e_1_2_1_22_1 doi: 10.1109/ICASSP.2005.1416407 – start-page: 17 volume-title: Editions de l'École polytechnique year: 2012 ident: e_1_2_1_26_1 – ident: e_1_2_1_41_1 doi: 10.1109/TIT.2005.864420 – ident: e_1_2_1_29_1 doi: 10.1190/1.1441261 – ident: e_1_2_1_9_1 doi: 10.1190/1.1440378 – start-page: 95 volume-title: Lecture Notes in Control and Information Sciences year: 2008 ident: e_1_2_1_23_1 – ident: e_1_2_1_16_1 doi: 10.1016/j.laa.2009.11.022 – ident: e_1_2_1_6_1 doi: 10.1051/cocv/2011205 – ident: e_1_2_1_37_1 doi: 10.1137/0907087 – ident: e_1_2_1_10_1 – ident: e_1_2_1_7_1 doi: 10.1109/TIT.2005.862083 – volume-title: Signals and Communication Technology year: 2007 ident: e_1_2_1_19_1 |
SSID | ssj0011483 |
Score | 2.6133773 |
Snippet | This paper develops a mathematical theory of super‐resolution. Broadly speaking, super‐resolution is the problem of recovering the fine details of an... This paper develops a mathematical theory of super-resolution. Broadly speaking, super-resolution is the problem of recovering the fine details of an object --... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 906 |
SubjectTerms | Mathematical problems Optimization Theory |
Title | Towards a Mathematical Theory of Super-resolution |
URI | https://api.istex.fr/ark:/67375/WNG-M9WBPKLL-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21455 https://www.proquest.com/docview/1516511575 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5FL3pwF-vGICJepo4zSdrgSYtVtBVxQQ9CyDaXSls6LYgnf4K_0V_iSzIzLiiIl2EIL7O8Jfky894XhLalTkgCAR0ymC5DXKcybMhUhzrVLGGGaIxtoXDngp7e4rN7cl9BB0UtjOeHKD-42chw47UNcCGzvQ_SUDUQNUezDeOvzdWygOiqpI6yMN__XbbjDMVRwSoUxXtlzy9z0aRV69MXoPkZrrr5pjWLHoon9Wkm3dp4JGvq-RuJ4z9fZQ7N5Dg0OPSOM48qpreApjsliWu2iJIbl1KbBSL4aIc-vpw_6KfB9Xhghm8vr7Bkzz14Cd22jm-ap2G-x0KoYGVFQokbFKt9ZQ9UaEqJgYilOt030BYLZlgEVjYMLGpIA8JVSJMSTUBAxlQky2ii1--ZFRRgk6YsZZQBiMOGEKkViTSpJ1REKiH1KtottM1VTkBu98F45J46OeagB-70UEVbpejAs278JLTjTFZKiGHXpqnVCb-7OOEddnd0ed5u86sqWi9syvMIzTggHUos0xBcZ9cZ5_c78ebloTtZ_bvoGpoCbIV9Vtk6mhgNx2YD8MtIbjpHfQcISety |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH7U9qAe3MVq1UFEvEyddpK0AS_uVdsiWtGLhMkkc1Fq6QLiyZ_gb_SX-JJZXFAQL8MQXpjkLcmXzMsXgE2pfOpjQLscp0uX1Jh06zJSrooU97mmihBzULjVZo1rcnZLb3Owm56Fifkhsg03Exl2vDYBbjakdz5YQ8NeULY822NQMDd6G-b8w8uMPMoA_fj_shlpGPFSXiGvupNV_TIbFYxin75Azc-A1c44x9Nwl7Y1TjS5L4-Gshw-f6Nx_G9nZmAqgaLOXuw7s5DT3TmYbGU8roN58Ds2q3bgBM5HOdaJT_Q7j5FzNerp_tvLK67aEydegOvjo85Bw02uWXBDXFxRV5I6I2ElNA8WKMaoxqBlKqpoLKsGXHMPDa05GlXTOkZsIHVEFUUBWWWBvwj57mNXL4FDdBTxiDOOOI5oSqUKqadozWeBF_q0VoTtVN0iTDjIzVUYDyJmT64K1IOweijCRibai4k3fhLasjbLJIL-vclUq1Fx0z4RLX6zf3HebIrLIpRSo4okSAcCwQ66TQUBK7bLWuf3L4mDiz37svx30XUYb3RaTdE8bZ-vwARCLRInmZUgP-yP9CrCmaFcs177DsI3744 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB48QPTBW6znIiK-bF27Sdrgk1e92lI8sA9C2GySF6WWHiA--RP8jf4SJ9nDAwXxZVnCZI-ZTPJld-YbgE2pQhqiQ_scl0uflJn0K9IoXxnFQ66pIsQmCtcb7PSGnLdoawj2slyYhB8i_-BmPcPN19bBO8rsfJCGxp2o6Gi2h2GUsIDbug1Hlzl3lMX5ye9lO9EwEmS0QkFpJ-_6ZTEatXp9-oI0P-NVt-BUp-Aue9QkzuS-OOjLYvz8jcXxn-8yDZMpEPX2k5EzA0O6PQsT9ZzFtTcH4bWLqe15kffRjn2SfH7v0XhXg47uvr284p49HcLzcFM9vj489dMiC36MWyvqS1JhJN6N7YFFijGq0WWZMrsa20oR1zxAM2uOJtW0gv4aSW2ooiggSywKF2Ck_djWi-ARbQw3nHFEcURTKlVMA0XLIYuCOKTlAmxn2hZxykBuC2E8iIQ7uSRQD8LpoQAbuWgnod34SWjLmSyXiLr3Nk6tTMVt40TU-e1B86JWE5cFWMlsKlIX7QmEOoxaqiG8zrYzzu93EofNfXey9HfRdRhrHlVF7axxsQzjiLNIEmG2AiP97kCvIpbpyzU3Zt8BBkvuPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+Mathematical+Theory+of+Super-resolution&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Cand%C3%A8s%2C+Emmanuel+J&rft.au=Fernandez-Granda%2C+Carlos&rft.date=2014-06-01&rft.pub=John+Wiley+and+Sons%2C+Limited&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=67&rft.issue=6&rft.spage=906&rft_id=info:doi/10.1002%2Fcpa.21455&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3276395111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |