Towards a Mathematical Theory of Super-resolution

This paper develops a mathematical theory of super‐resolution. Broadly speaking, super‐resolution is the problem of recovering the fine details of an object—the high end of its spectrum—from coarse scale information only—from samples at the low end of the spectrum. Suppose we have many point sources...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 67; no. 6; pp. 906 - 956
Main Authors Candès, Emmanuel J., Fernandez-Granda, Carlos
Format Journal Article
LanguageEnglish
Published New York Blackwell Publishing Ltd 01.06.2014
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper develops a mathematical theory of super‐resolution. Broadly speaking, super‐resolution is the problem of recovering the fine details of an object—the high end of its spectrum—from coarse scale information only—from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0,1] and with unknown complex‐valued amplitudes. We only observe Fourier samples of this object up to a frequency cutoff fc. We show that one can super‐resolve these point sources with infinite precision—i.e., recover the exact locations and amplitudes—by solving a simple convex optimization problem, which can essentially be reformulated as a semidefinite program. This holds provided that the distance between sources is at least 2/fc. This result extends to higher dimensions and other models. In one dimension, for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with infinite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super‐resolved signal is expected to degrade when both the noise level and the super‐resolution factor vary. © 2014 Wiley Periodicals, Inc.
AbstractList This paper develops a mathematical theory of super‐resolution. Broadly speaking, super‐resolution is the problem of recovering the fine details of an object—the high end of its spectrum—from coarse scale information only—from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0,1] and with unknown complex‐valued amplitudes. We only observe Fourier samples of this object up to a frequency cutoff fc. We show that one can super‐resolve these point sources with infinite precision—i.e., recover the exact locations and amplitudes—by solving a simple convex optimization problem, which can essentially be reformulated as a semidefinite program. This holds provided that the distance between sources is at least 2/fc. This result extends to higher dimensions and other models. In one dimension, for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with infinite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super‐resolved signal is expected to degrade when both the noise level and the super‐resolution factor vary. © 2014 Wiley Periodicals, Inc.
This paper develops a mathematical theory of super-resolution. Broadly speaking, super-resolution is the problem of recovering the fine details of an object -- the high end of its spectrum -- from coarse scale information only -- from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0,1] and with unknown complex-valued amplitudes. We only observe Fourier samples of this object up to a frequency cutoff fc. We show that one can super-resolve these point sources with infinite precision -- i.e., recover the exact locations and amplitudes -- by solving a simple convex optimization problem, which can essentially be reformulated as a semidefinite program. This holds provided that the distance between sources is at least 2/fc. This result extends to higher dimensions and other models. In one dimension, for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with infinite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super-resolved signal is expected to degrade when both the noise level and the super-resolution factor vary. [PUBLICATION ABSTRACT]
This paper develops a mathematical theory of super‐resolution. Broadly speaking, super‐resolution is the problem of recovering the fine details of an object—the high end of its spectrum—from coarse scale information only—from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0,1] and with unknown complex‐valued amplitudes. We only observe Fourier samples of this object up to a frequency cutoff f c . We show that one can super‐resolve these point sources with infinite precision—i.e., recover the exact locations and amplitudes—by solving a simple convex optimization problem, which can essentially be reformulated as a semidefinite program. This holds provided that the distance between sources is at least 2/f c . This result extends to higher dimensions and other models. In one dimension, for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with infinite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super‐resolved signal is expected to degrade when both the noise level and the super‐resolution factor vary. © 2014 Wiley Periodicals, Inc.
Author Candès, Emmanuel J.
Fernandez-Granda, Carlos
Author_xml – sequence: 1
  givenname: Emmanuel J.
  surname: Candès
  fullname: Candès, Emmanuel J.
  email: candes@stanford.edu
  organization: Department of Mathematics, Stanford University, 450 Serra Mall, Bldg. 380, 94305, Stanford, CA, USA
– sequence: 2
  givenname: Carlos
  surname: Fernandez-Granda
  fullname: Fernandez-Granda, Carlos
  email: cfgranda@stanford.edu
  organization: Department of Mathematics, Stanford University, 450 Serra Mall, Bldg. 380, CA, 94305, Stanford, USA
BookMark eNp1kEFPwjAYhhujiYAe_AdLPHkY9FvXjh2RKBqHEsVwbEr3LQzHiu0W5N87BD0YvbRp8zzv9-Vtk-PSlEjIBdAuUBr09Fp1Awg5PyItoHHkUwbBMWlRCtRnIqSnpO3csnlC2GctAlOzUTZ1nvLGqlrgSlW5VoU3XaCxW89k3ku9RutbdKaoq9yUZ-QkU4XD88PdIa-3N9PhnZ88je6Hg8TXIQXuz8O-CDXo3SFUKgTHKGYizQCbv0DFGFPUGmPOEHk_FkzNMeMpb4B5IBTrkMt97tqa9xpdJZemtmUzUgIHwQF4xBuqt6e0Nc5ZzKTOK7Xbs7IqLyRQuetFNr3Ir14a4-qXsbb5Stntn-whfZMXuP0flMPJ4Nvw90buKvz4MZR9kyJiEZezx5Ecx7PryUOSyGf2CUstglc
CODEN CPMAMV
CitedBy_id crossref_primary_10_1364_OE_25_018296
crossref_primary_10_1007_s10208_023_09634_7
crossref_primary_10_1103_PhysRevE_104_034211
crossref_primary_10_1016_j_sigpro_2016_10_010
crossref_primary_10_1109_TMM_2019_2946094
crossref_primary_10_1109_TVT_2023_3269199
crossref_primary_10_1016_j_ins_2016_02_015
crossref_primary_10_1214_21_AOS2054
crossref_primary_10_1016_j_sigpro_2021_108187
crossref_primary_10_5802_jep_11
crossref_primary_10_1109_TSP_2014_2358961
crossref_primary_10_1007_s10915_020_01227_8
crossref_primary_10_3390_rs15041164
crossref_primary_10_1016_j_sigpro_2016_09_018
crossref_primary_10_1016_j_acha_2022_07_003
crossref_primary_10_1002_qua_25144
crossref_primary_10_1109_TSP_2022_3198188
crossref_primary_10_1016_j_acha_2016_02_002
crossref_primary_10_1109_TAES_2023_3317370
crossref_primary_10_1016_j_acha_2016_02_003
crossref_primary_10_1121_1_4996460
crossref_primary_10_1002_pamm_201510322
crossref_primary_10_1137_24M1636265
crossref_primary_10_1109_TWC_2017_2776108
crossref_primary_10_1109_TIT_2014_2368122
crossref_primary_10_1007_s10107_022_01923_3
crossref_primary_10_1016_j_sigpro_2017_12_005
crossref_primary_10_1007_s10208_018_9384_1
crossref_primary_10_1016_j_sigpro_2020_107958
crossref_primary_10_1109_OJSP_2022_3157082
crossref_primary_10_1016_j_acha_2020_12_002
crossref_primary_10_1109_LSP_2020_2986133
crossref_primary_10_3390_rs16142516
crossref_primary_10_3390_rs16142517
crossref_primary_10_1049_iet_rsn_2018_5648
crossref_primary_10_1137_21M1420277
crossref_primary_10_1007_s10915_021_01443_w
crossref_primary_10_1051_cocv_2018009
crossref_primary_10_1109_TSP_2017_2669900
crossref_primary_10_1137_20M1329615
crossref_primary_10_1109_JSEN_2023_3338575
crossref_primary_10_22331_q_2023_10_11_1136
crossref_primary_10_1137_20M1383276
crossref_primary_10_1007_s10851_015_0575_y
crossref_primary_10_1109_TSP_2017_2656841
crossref_primary_10_1109_JSTSP_2016_2543462
crossref_primary_10_1016_j_laa_2015_10_023
crossref_primary_10_1088_1361_6420_ab2a29
crossref_primary_10_1109_TIT_2017_2757003
crossref_primary_10_1214_24_AOS2384
crossref_primary_10_1080_01630563_2022_2052319
crossref_primary_10_1109_LAWP_2020_3032894
crossref_primary_10_1088_1361_6420_aa5bf2
crossref_primary_10_1137_23M1568569
crossref_primary_10_1109_TSP_2021_3062556
crossref_primary_10_1109_TSP_2024_3470071
crossref_primary_10_1109_TSP_2019_2914885
crossref_primary_10_1109_LGRS_2016_2615564
crossref_primary_10_1016_j_tcs_2017_03_026
crossref_primary_10_1186_s13634_023_01060_9
crossref_primary_10_1109_MSP_2019_2962209
crossref_primary_10_1155_2019_6797168
crossref_primary_10_1109_TSP_2024_3486533
crossref_primary_10_1137_22M1503221
crossref_primary_10_1007_s11045_017_0499_3
crossref_primary_10_1142_S2591728523400017
crossref_primary_10_1109_TSP_2017_2666779
crossref_primary_10_1016_j_automatica_2021_109948
crossref_primary_10_1109_TSP_2022_3209006
crossref_primary_10_1109_TSP_2023_3330670
crossref_primary_10_1109_TSP_2018_2795560
crossref_primary_10_1088_1361_6420_ac70da
crossref_primary_10_4236_apm_2018_82008
crossref_primary_10_1109_TIT_2020_2993327
crossref_primary_10_1007_s10208_020_09471_y
crossref_primary_10_1109_JOE_2022_3151949
crossref_primary_10_1016_j_dsp_2022_103388
crossref_primary_10_1007_s43670_021_00014_2
crossref_primary_10_1007_s10915_016_0169_x
crossref_primary_10_1016_j_acha_2023_03_003
crossref_primary_10_1103_PhysRevA_97_023830
crossref_primary_10_1016_j_acha_2023_03_002
crossref_primary_10_1051_m2an_2020056
crossref_primary_10_1109_LSP_2014_2314175
crossref_primary_10_1016_j_ymssp_2019_02_011
crossref_primary_10_1109_TCOMM_2018_2864737
crossref_primary_10_1121_10_0016876
crossref_primary_10_1109_TIT_2024_3488573
crossref_primary_10_1209_0295_5075_113_43001
crossref_primary_10_1021_acs_analchem_4c07047
crossref_primary_10_1049_iet_spr_2020_0201
crossref_primary_10_1016_j_dsp_2016_09_003
crossref_primary_10_1088_1361_6420_ad0dbb
crossref_primary_10_1214_15_AOS1412
crossref_primary_10_1109_LSP_2015_2494604
crossref_primary_10_1049_rsn2_12491
crossref_primary_10_1088_1742_6596_904_1_012015
crossref_primary_10_1007_s00041_021_09888_1
crossref_primary_10_1103_PhysRevFluids_2_124402
crossref_primary_10_1109_TSP_2014_2332974
crossref_primary_10_1007_BF03549574
crossref_primary_10_1016_j_acha_2016_09_004
crossref_primary_10_1007_s00041_020_09725_x
crossref_primary_10_1016_j_acha_2020_02_001
crossref_primary_10_1109_TCI_2023_3325752
crossref_primary_10_1007_s10208_020_09472_x
crossref_primary_10_34248_bsengineering_1597236
crossref_primary_10_1088_1361_6420_aaf9c6
crossref_primary_10_1007_s10208_022_09561_z
crossref_primary_10_1016_j_acha_2015_08_012
crossref_primary_10_1016_j_sigpro_2019_06_023
crossref_primary_10_1109_TSP_2020_3010749
crossref_primary_10_1109_TSP_2015_2452223
crossref_primary_10_1137_22M1494373
crossref_primary_10_3390_math11122674
crossref_primary_10_1109_TGRS_2017_2743263
crossref_primary_10_1109_TSP_2017_2788431
crossref_primary_10_1109_TSP_2020_2982834
crossref_primary_10_1137_19M124071X
crossref_primary_10_1103_PhysRevResearch_1_033006
crossref_primary_10_3390_electronics8050557
crossref_primary_10_1109_TRS_2024_3461208
crossref_primary_10_1214_20_AOS2037
crossref_primary_10_1007_s11760_024_03689_x
crossref_primary_10_1109_JSTSP_2017_2785783
crossref_primary_10_1109_TSP_2019_2916744
crossref_primary_10_1016_j_acha_2014_12_003
crossref_primary_10_1016_j_sigpro_2017_02_011
crossref_primary_10_1137_16M1085322
crossref_primary_10_1007_s00220_015_2301_4
crossref_primary_10_1109_TSP_2022_3170688
crossref_primary_10_1007_s10208_015_9276_6
crossref_primary_10_1109_TSP_2021_3113468
crossref_primary_10_1109_TSP_2019_2961301
crossref_primary_10_1007_s11760_017_1062_2
crossref_primary_10_2478_jee_2018_0047
crossref_primary_10_1007_s00365_022_09574_5
crossref_primary_10_1109_TCI_2024_3369412
crossref_primary_10_1109_TGRS_2024_3395510
crossref_primary_10_1121_1_4916269
crossref_primary_10_1137_22M1508571
crossref_primary_10_3390_e25020250
crossref_primary_10_1016_j_sigpro_2019_107406
crossref_primary_10_1007_s10208_021_09545_5
crossref_primary_10_1364_JOSAA_402396
crossref_primary_10_1051_cocv_2021042
crossref_primary_10_1109_TCSII_2020_3045226
crossref_primary_10_1007_s00041_017_9571_5
crossref_primary_10_1109_TSP_2022_3150964
crossref_primary_10_1049_iet_rsn_2019_0329
crossref_primary_10_1109_ACCESS_2021_3054660
crossref_primary_10_2139_ssrn_4106833
crossref_primary_10_1007_s00365_022_09563_8
crossref_primary_10_1109_LSP_2022_3161865
crossref_primary_10_1109_TSP_2018_2862399
crossref_primary_10_1109_TSP_2017_2695566
crossref_primary_10_1007_s00034_016_0462_9
crossref_primary_10_1007_s00041_020_09809_8
crossref_primary_10_1109_TIT_2019_2950715
crossref_primary_10_1109_LSP_2014_2316004
crossref_primary_10_2139_ssrn_4068590
crossref_primary_10_1109_TGRS_2020_2978496
crossref_primary_10_1007_s10851_022_01115_w
crossref_primary_10_1088_1361_6420_aaedde
crossref_primary_10_1364_AO_486527
crossref_primary_10_1007_s00158_022_03436_1
crossref_primary_10_1016_j_acha_2021_07_002
crossref_primary_10_1016_j_acha_2021_07_003
crossref_primary_10_1049_iet_rsn_2015_0094
crossref_primary_10_1049_iet_spr_2019_0306
crossref_primary_10_1214_20_AOS2022
crossref_primary_10_2139_ssrn_4788142
crossref_primary_10_1371_journal_pcbi_1005913
crossref_primary_10_1016_j_ymssp_2022_109544
crossref_primary_10_1002_pamm_201410452
crossref_primary_10_1109_LSP_2022_3226111
crossref_primary_10_1007_s10959_022_01201_0
crossref_primary_10_3390_en13143609
crossref_primary_10_1088_1361_6420_ab5a21
crossref_primary_10_1109_MSP_2019_2950432
crossref_primary_10_1109_TIT_2016_2553041
crossref_primary_10_1109_LSP_2023_3289769
crossref_primary_10_1007_s00214_016_1954_1
crossref_primary_10_1109_JSEN_2016_2577881
crossref_primary_10_3390_en13215775
crossref_primary_10_3390_rs15225281
crossref_primary_10_1016_j_dsp_2021_103314
crossref_primary_10_1137_18M1183388
crossref_primary_10_1109_TMI_2019_2942765
crossref_primary_10_1109_TSP_2025_3529657
crossref_primary_10_1137_15M1016552
crossref_primary_10_1109_TIT_2022_3191339
crossref_primary_10_1088_1361_6420_ad33e4
crossref_primary_10_3390_rs17040696
crossref_primary_10_1088_1361_6420_ad2cf8
crossref_primary_10_1109_LSP_2020_3039428
crossref_primary_10_1049_iet_rsn_2019_0350
crossref_primary_10_1109_ACCESS_2017_2717963
crossref_primary_10_1109_LSP_2017_2700442
crossref_primary_10_1109_LSP_2020_3003241
crossref_primary_10_1017_S0962492918000016
crossref_primary_10_1109_JSAIT_2023_3317094
crossref_primary_10_1038_s41467_024_52629_3
crossref_primary_10_1103_PhysRevApplied_14_034066
crossref_primary_10_1016_j_acha_2023_01_008
crossref_primary_10_1016_j_acha_2023_01_005
crossref_primary_10_1016_j_ymssp_2019_106425
crossref_primary_10_1109_ACCESS_2019_2950016
crossref_primary_10_1088_1361_6420_aad1c3
crossref_primary_10_1088_1361_6420_ac9998
crossref_primary_10_1093_imaiai_iaaa005
crossref_primary_10_1109_TSP_2016_2580523
crossref_primary_10_1109_TSP_2014_2386283
crossref_primary_10_1109_TSP_2014_2354316
crossref_primary_10_1109_TSP_2019_2949502
crossref_primary_10_1109_TSP_2016_2625274
crossref_primary_10_1109_JSAIT_2023_3262689
crossref_primary_10_1109_JSAIT_2023_3287823
crossref_primary_10_1109_TSP_2014_2385035
crossref_primary_10_1109_TIT_2017_2745623
crossref_primary_10_1109_LSP_2023_3324553
crossref_primary_10_1016_j_jmaa_2015_05_034
crossref_primary_10_1016_j_sigpro_2024_109656
crossref_primary_10_1109_TVT_2021_3103153
crossref_primary_10_1364_OE_24_030038
crossref_primary_10_1007_s10208_023_09618_7
crossref_primary_10_1137_18M1200750
crossref_primary_10_1109_ACCESS_2019_2903391
crossref_primary_10_1364_AO_444610
crossref_primary_10_3150_24_BEJ1724
crossref_primary_10_1109_TWC_2019_2929772
crossref_primary_10_1137_18M1174775
crossref_primary_10_1088_1361_6420_aa5e12
crossref_primary_10_1121_10_0010383
crossref_primary_10_1007_s00041_016_9502_x
crossref_primary_10_1137_18M118116X
crossref_primary_10_1155_2020_3012952
crossref_primary_10_1007_s10444_019_09672_2
crossref_primary_10_1007_s41664_018_0076_2
crossref_primary_10_1109_TIT_2014_2343623
crossref_primary_10_1038_srep25718
crossref_primary_10_7717_peerj_cs_621
crossref_primary_10_1109_ACCESS_2020_2972366
crossref_primary_10_1109_TSP_2016_2616336
crossref_primary_10_1109_TSP_2020_2970343
crossref_primary_10_1109_TSP_2020_3037373
crossref_primary_10_1049_iet_com_2019_0430
crossref_primary_10_1109_TCOMM_2021_3067383
crossref_primary_10_1137_18M123147X
crossref_primary_10_1088_1742_6596_657_1_012013
crossref_primary_10_1109_TSP_2015_2493987
crossref_primary_10_1016_j_acha_2021_09_002
crossref_primary_10_1109_TSP_2018_2868314
crossref_primary_10_1109_TIT_2019_2954452
crossref_primary_10_1016_j_acha_2015_04_005
crossref_primary_10_1109_TSP_2017_2659644
crossref_primary_10_1093_imaiai_iaw024
crossref_primary_10_2140_apde_2018_11_1901
crossref_primary_10_1109_TSP_2019_2951220
crossref_primary_10_1109_TCOMM_2019_2956928
crossref_primary_10_1109_TSP_2017_2659650
crossref_primary_10_1016_j_ymssp_2023_110323
crossref_primary_10_1016_j_sigpro_2019_04_024
crossref_primary_10_1088_1361_6420_ac87cb
crossref_primary_10_1155_2014_974509
crossref_primary_10_1137_16M1108807
crossref_primary_10_1109_LSP_2020_3045343
crossref_primary_10_1109_TAES_2020_2965754
crossref_primary_10_1190_geo2019_0423_1
crossref_primary_10_1109_TBME_2018_2885523
crossref_primary_10_1109_LSP_2012_2224518
crossref_primary_10_3233_XST_160553
crossref_primary_10_1007_s11045_019_00696_x
crossref_primary_10_1109_JSTSP_2018_2827299
crossref_primary_10_1093_imaiai_iax006
crossref_primary_10_1137_23M1587737
crossref_primary_10_1016_j_sigpro_2017_07_003
crossref_primary_10_1109_TVT_2023_3328800
crossref_primary_10_1093_imaiai_iax005
crossref_primary_10_1109_TIT_2020_2974174
crossref_primary_10_1109_TSP_2022_3198863
crossref_primary_10_1016_j_sigpro_2016_06_029
crossref_primary_10_1016_j_sigpro_2019_04_016
crossref_primary_10_1109_TGRS_2022_3223524
crossref_primary_10_1109_LSP_2023_3262378
crossref_primary_10_3390_en14010228
crossref_primary_10_1007_s11760_016_0889_2
crossref_primary_10_1038_s41377_020_00403_7
crossref_primary_10_1109_TIT_2022_3199405
crossref_primary_10_1117_1_JEI_25_5_053016
crossref_primary_10_1016_j_acha_2024_101716
crossref_primary_10_1093_imaiai_iaaa024
crossref_primary_10_1093_imaiai_iaw001
crossref_primary_10_1016_j_sigpro_2024_109579
crossref_primary_10_1088_2515_7647_ab72de
crossref_primary_10_1587_transfun_E100_A_2493
crossref_primary_10_1016_j_sigpro_2023_109253
crossref_primary_10_1093_imaiai_iaw005
crossref_primary_10_1109_LSP_2022_3224682
crossref_primary_10_1109_TIT_2018_2881113
crossref_primary_10_1016_j_acha_2018_09_005
crossref_primary_10_2139_ssrn_4095423
crossref_primary_10_1121_10_0006389
crossref_primary_10_1109_TSP_2019_2954508
crossref_primary_10_1007_s10208_014_9228_6
crossref_primary_10_1038_srep04677
crossref_primary_10_1016_j_dsp_2021_103028
crossref_primary_10_1137_16M1084754
crossref_primary_10_1109_TSP_2016_2572041
crossref_primary_10_1093_imaiai_iaab003
crossref_primary_10_1007_s11785_018_0829_y
crossref_primary_10_1109_TSP_2023_3254140
crossref_primary_10_1121_1_5042242
crossref_primary_10_1137_17M1147822
crossref_primary_10_1049_iet_spr_2017_0366
crossref_primary_10_1093_imaiai_iaaa029
crossref_primary_10_1109_LSP_2021_3060593
crossref_primary_10_1109_TSP_2014_2339792
crossref_primary_10_1109_COMST_2023_3243918
crossref_primary_10_1016_j_cam_2021_114044
crossref_primary_10_1093_mnras_stw2261
crossref_primary_10_5802_ojmo_20
crossref_primary_10_1109_JIOT_2021_3064376
crossref_primary_10_1364_PRJ_420326
crossref_primary_10_1016_j_acha_2023_101577
crossref_primary_10_1016_j_amc_2017_11_007
crossref_primary_10_1007_s10915_021_01526_8
crossref_primary_10_1016_j_acha_2021_08_001
crossref_primary_10_1121_10_0021889
crossref_primary_10_1109_TSP_2016_2600507
crossref_primary_10_1109_LSP_2018_2881927
crossref_primary_10_1109_LSP_2021_3058007
crossref_primary_10_3150_21_BEJ1414
crossref_primary_10_1109_TII_2020_3015730
crossref_primary_10_1214_20_AOS1945
crossref_primary_10_1088_1361_6420_abbd7e
crossref_primary_10_1016_j_sigpro_2018_08_013
crossref_primary_10_1109_LSP_2022_3213140
crossref_primary_10_1121_10_0011617
crossref_primary_10_1137_17M1130666
crossref_primary_10_1109_TSP_2016_2576422
crossref_primary_10_1109_TCYB_2022_3179378
crossref_primary_10_1109_TGRS_2016_2621123
crossref_primary_10_1109_TIT_2020_2985015
crossref_primary_10_1587_transfun_E100_A_1236
crossref_primary_10_1049_iet_its_2014_0287
crossref_primary_10_1109_TIT_2016_2586083
crossref_primary_10_1137_140978569
crossref_primary_10_1007_s10107_021_01636_z
crossref_primary_10_1093_imaiai_iay016
crossref_primary_10_1016_j_laa_2018_09_014
crossref_primary_10_1137_17M113825X
crossref_primary_10_1016_j_acha_2022_11_003
crossref_primary_10_1109_TGRS_2025_3531359
crossref_primary_10_1098_rspa_2014_0946
crossref_primary_10_1016_j_acha_2024_101631
crossref_primary_10_1109_ACCESS_2019_2949756
crossref_primary_10_1049_mia2_12209
crossref_primary_10_1002_pamm_202300054
crossref_primary_10_1109_TIT_2016_2629078
crossref_primary_10_1109_TAP_2019_2957088
crossref_primary_10_1109_TSP_2015_2420541
crossref_primary_10_1016_j_acha_2018_08_003
crossref_primary_10_1137_22M1521353
crossref_primary_10_1016_j_ymssp_2020_107410
crossref_primary_10_1016_j_cam_2022_114937
crossref_primary_10_1109_JSTARS_2023_3294828
crossref_primary_10_1137_151005245
crossref_primary_10_5802_ojmo_39
crossref_primary_10_1109_TSP_2017_2770104
crossref_primary_10_1109_TSP_2023_3290355
crossref_primary_10_1364_JOSAA_33_000519
crossref_primary_10_1109_TIT_2021_3067276
crossref_primary_10_1002_cpa_21805
crossref_primary_10_3390_app9020328
crossref_primary_10_1016_j_acha_2018_10_001
crossref_primary_10_1093_imaiai_iaac015
crossref_primary_10_1109_LGRS_2018_2841189
crossref_primary_10_1007_s10589_020_00205_y
crossref_primary_10_1109_LSP_2014_2349904
crossref_primary_10_1016_j_sigpro_2017_07_024
crossref_primary_10_1109_LCOMM_2022_3199460
crossref_primary_10_1177_14613484221104622
crossref_primary_10_1016_j_sigpro_2017_07_028
crossref_primary_10_1088_1361_6420_ad75b1
crossref_primary_10_1109_TIT_2019_2902926
crossref_primary_10_1190_geo2020_0727_1
crossref_primary_10_1016_j_sigpro_2024_109484
crossref_primary_10_3390_drones7040251
crossref_primary_10_1364_OE_23_000401
crossref_primary_10_1016_j_acha_2024_101653
crossref_primary_10_1121_1_4985612
crossref_primary_10_1007_s00041_017_9534_x
crossref_primary_10_1109_TSP_2015_2463255
crossref_primary_10_1016_j_acha_2024_101650
crossref_primary_10_1016_j_automatica_2019_108510
crossref_primary_10_3390_electronics13050846
crossref_primary_10_1093_imaiai_iaad037
crossref_primary_10_1016_j_acha_2024_101658
crossref_primary_10_1038_s41598_019_47845_7
crossref_primary_10_1016_j_ymssp_2021_108642
crossref_primary_10_1093_imaiai_iaad033
crossref_primary_10_1016_j_sigpro_2024_109398
crossref_primary_10_1109_MSP_2021_3092574
crossref_primary_10_1109_LSP_2022_3195429
crossref_primary_10_1038_nphoton_2015_279
crossref_primary_10_1088_1361_6420_aa7fce
crossref_primary_10_1109_TSP_2017_2755602
crossref_primary_10_1137_15M1035793
crossref_primary_10_1088_1361_6420_abd29c
crossref_primary_10_1109_OJSP_2024_3425284
crossref_primary_10_1093_imaiai_iaad048
crossref_primary_10_1016_j_ymssp_2021_107686
crossref_primary_10_1007_s43670_021_00016_0
crossref_primary_10_1109_TCSVT_2015_2475895
crossref_primary_10_1137_19M1298524
crossref_primary_10_1364_OPTICA_5_001382
crossref_primary_10_1016_j_sigpro_2024_109389
crossref_primary_10_1109_TSP_2018_2873514
crossref_primary_10_1080_17415977_2016_1273918
crossref_primary_10_1109_TIT_2021_3075149
crossref_primary_10_1103_PRXQuantum_3_020357
crossref_primary_10_1109_TSP_2021_3056591
crossref_primary_10_1109_OJSP_2024_3496815
crossref_primary_10_1109_TBME_2017_2694339
crossref_primary_10_1016_j_acha_2023_04_002
crossref_primary_10_1016_j_acha_2024_101673
crossref_primary_10_1109_TSP_2019_2943224
crossref_primary_10_1121_10_0006790
crossref_primary_10_1118_1_4935149
crossref_primary_10_1137_16M1071730
crossref_primary_10_1109_TSP_2018_2890064
crossref_primary_10_1111_1365_2478_12533
crossref_primary_10_1007_s11425_021_2151_0
crossref_primary_10_1007_s00041_019_09693_x
crossref_primary_10_1007_s11045_016_0451_y
crossref_primary_10_1016_j_sigpro_2021_108249
crossref_primary_10_1049_ell2_12803
crossref_primary_10_1109_TIT_2018_2829161
crossref_primary_10_1007_s13137_015_0079_3
crossref_primary_10_1088_1367_2630_aa60ee
crossref_primary_10_1109_MSP_2014_2354094
crossref_primary_10_1007_s10444_016_9456_1
crossref_primary_10_1088_1361_6420_abb5df
crossref_primary_10_1088_1361_6420_ac245b
crossref_primary_10_1103_PhysRevA_108_012618
crossref_primary_10_1016_j_sigpro_2021_108016
crossref_primary_10_1093_imaiai_iaad024
crossref_primary_10_1073_pnas_1913995117
crossref_primary_10_1109_TSP_2018_2860549
crossref_primary_10_1109_TAP_2024_3492503
crossref_primary_10_1109_TSP_2015_2496294
crossref_primary_10_1016_j_acha_2018_07_001
crossref_primary_10_1109_TSP_2024_3386018
crossref_primary_10_1109_TSP_2015_2478751
crossref_primary_10_1017_fms_2024_72
crossref_primary_10_1016_j_phycom_2023_101999
crossref_primary_10_1109_LSP_2017_2708750
crossref_primary_10_1016_j_acha_2017_03_003
crossref_primary_10_1109_TSP_2015_2399861
crossref_primary_10_1214_24_EJS2267
crossref_primary_10_1109_TSP_2018_2872886
crossref_primary_10_1109_LSP_2020_3029000
crossref_primary_10_1016_j_acha_2014_07_004
crossref_primary_10_1109_TSP_2018_2869122
crossref_primary_10_1103_PhysRevA_108_012602
crossref_primary_10_1109_TSP_2022_3141009
crossref_primary_10_1137_18M1212197
crossref_primary_10_1109_TSP_2021_3080426
crossref_primary_10_1109_TSP_2016_2552500
crossref_primary_10_1109_TSP_2017_2655489
crossref_primary_10_1007_s00041_016_9498_2
crossref_primary_10_1109_JSTARS_2014_2351803
crossref_primary_10_1109_TSP_2019_2929460
crossref_primary_10_1109_TWC_2016_2625319
crossref_primary_10_1002_mrm_27852
crossref_primary_10_1007_s10444_021_09908_0
crossref_primary_10_1109_TSP_2024_3439315
crossref_primary_10_1109_TSP_2017_2750111
crossref_primary_10_1016_j_acha_2018_05_002
crossref_primary_10_1007_s10107_020_01530_0
crossref_primary_10_1109_LGRS_2020_3000339
crossref_primary_10_1109_JSTSP_2019_2937632
crossref_primary_10_1109_TIT_2016_2619368
crossref_primary_10_3390_telecom6010020
crossref_primary_10_1016_j_image_2020_115854
crossref_primary_10_1109_JOE_2021_3109432
crossref_primary_10_1109_TSP_2023_3254919
crossref_primary_10_1088_1361_6420_ab5aa3
crossref_primary_10_1109_TCI_2017_2699425
crossref_primary_10_1109_LSP_2015_2478854
crossref_primary_10_1109_TSP_2021_3094718
crossref_primary_10_1155_2020_1310805
crossref_primary_10_1016_j_sigpro_2022_108897
crossref_primary_10_1121_1_5094345
crossref_primary_10_1137_23M1551730
crossref_primary_10_1002_cpa_22089
crossref_primary_10_1007_s00365_024_09686_0
crossref_primary_10_1364_OE_22_009774
crossref_primary_10_1016_j_jat_2020_105456
crossref_primary_10_1007_s10208_019_09443_x
crossref_primary_10_1109_TSP_2024_3403494
crossref_primary_10_1016_j_cviu_2022_103359
crossref_primary_10_1016_j_jmaa_2016_04_077
crossref_primary_10_1109_MSP_2014_2358263
crossref_primary_10_1109_TSP_2019_2944754
crossref_primary_10_1007_s10851_023_01163_w
crossref_primary_10_1016_j_acha_2019_08_004
crossref_primary_10_1190_tle38100791_1
crossref_primary_10_1007_s00034_017_0633_3
crossref_primary_10_1109_TSP_2022_3201336
crossref_primary_10_1109_TSP_2018_2791945
crossref_primary_10_1364_OPTICA_6_001515
crossref_primary_10_1016_j_dsp_2023_104107
crossref_primary_10_1137_20M1336837
crossref_primary_10_1109_MSP_2016_2637700
crossref_primary_10_1109_TSP_2017_2764865
crossref_primary_10_1007_s00365_014_9263_1
crossref_primary_10_1109_OJSP_2021_3116482
crossref_primary_10_1109_TSP_2023_3244091
crossref_primary_10_1109_TSP_2020_2976577
crossref_primary_10_1109_TSP_2018_2881663
crossref_primary_10_1109_TSP_2023_3260564
crossref_primary_10_1016_j_jat_2014_03_001
crossref_primary_10_1007_s00041_013_9292_3
crossref_primary_10_1007_s11045_021_00784_x
crossref_primary_10_1364_OPTICA_397214
crossref_primary_10_3390_app13053067
crossref_primary_10_1007_s11036_016_0748_y
crossref_primary_10_1109_LSP_2022_3165759
crossref_primary_10_1137_15M1042280
crossref_primary_10_1016_j_matpur_2022_05_008
crossref_primary_10_1007_s10208_022_09580_w
crossref_primary_10_1007_s11760_019_01427_2
crossref_primary_10_1109_TSP_2019_2953582
crossref_primary_10_1109_TSP_2021_3068353
crossref_primary_10_1109_LSP_2015_2485281
crossref_primary_10_1016_j_sigpro_2021_108450
crossref_primary_10_1109_ACCESS_2019_2960826
crossref_primary_10_1109_TSP_2025_3536846
crossref_primary_10_1109_TVT_2020_3016671
crossref_primary_10_1088_1361_6420_ac64fb
crossref_primary_10_17341_gazimmfd_416379
Cites_doi 10.1007/b105056
10.1023/A:1023289301743
10.1090/S0025-5718-1995-1265014-7
10.1093/comjnl/bxm075
10.1137/0149053
10.1002/j.1538-7305.1978.tb02104.x
10.1016/j.jmaa.2012.05.011
10.1073/pnas.0502269102
10.1109/TSP.2008.928510
10.1190/1.1836821
10.1109/MSP.2003.1203207
10.1109/TIT.2005.858979
10.1080/10556789908805762
10.1109/TSP.2006.890907
10.1364/JOSA.57.001190
10.1090/S0025-5718-2011-02539-1
10.1366/0003702944027589
10.1017/CBO9780511804441
10.1137/110838509
10.1016/j.acha.2012.08.003
10.1137/0523074
10.1109/8.320744
10.1051/0004-6361:20042320
10.1109/TMI.2005.861705
10.1109/ICASSP.2005.1416407
10.1109/TIT.2005.864420
10.1190/1.1441261
10.1190/1.1440378
10.1016/j.laa.2009.11.022
10.1051/cocv/2011205
10.1137/0907087
10.1109/TIT.2005.862083
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Jun 2014
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Jun 2014
DBID BSCLL
AAYXX
CITATION
JQ2
DOI 10.1002/cpa.21455
DatabaseName Istex
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 956
ExternalDocumentID 3276395111
10_1002_cpa_21455
CPA21455
ark_67375_WNG_M9WBPKLL_R
Genre article
Feature
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
ADXHL
AEFGJ
AETEA
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AMVHM
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c4015-b4864c1c64c16ad665e7936df1ec642a9e90ecce953ee58963abef5d5f1eb26a3
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Fri Jul 25 19:20:38 EDT 2025
Tue Jul 01 02:50:29 EDT 2025
Thu Apr 24 23:12:31 EDT 2025
Wed Aug 20 01:20:54 EDT 2025
Wed Oct 30 09:55:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4015-b4864c1c64c16ad665e7936df1ec642a9e90ecce953ee58963abef5d5f1eb26a3
Notes istex:9B4AFE759331A2BCD5EB671057A192B760591727
ArticleID:CPA21455
ark:/67375/WNG-M9WBPKLL-R
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1516511575
PQPubID 48818
PageCount 51
ParticipantIDs proquest_journals_1516511575
crossref_citationtrail_10_1002_cpa_21455
crossref_primary_10_1002_cpa_21455
wiley_primary_10_1002_cpa_21455_CPA21455
istex_primary_ark_67375_WNG_M9WBPKLL_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationTitleAlternate Comm. Pure Appl. Math
PublicationYear 2014
Publisher Blackwell Publishing Ltd
John Wiley and Sons, Limited
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons, Limited
References Candès, E. J.; Tao, T. Decoding by linear programming. IEEE Trans. Inform. Theory 51 (2005), no. 12, 4203-4215.
Batenkov, D.; Yomdin, Y. Algebraic Fourier reconstruction of piecewise smooth functions. Math. Comp. 81 (2012), no. 277, 277-318.
McCutchen, C. W. Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am. 57 (1967), no. 10, 1190-1190. doi: 10.1364/JOSA.57.001190
Odendaal, J.; Barnard, E.; Pistorius, C. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Transactions on Antennas and Propagation 42 (1994), no. 10, 1386-1391.
Claerbout, J. F.; Muir, F. Robust modeling with erratic data. Geophysics 38 (1973), no. 5, 826-844. doi: 10.1190/1.1440378
Bredies, K.; Pikkarainen, H. K. Inverse problems in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations 19 (2013), 190-218. doi: 10.1051/cocv/2011205
Rudin, W. Real and complex analysis. Third edition. McGraw-Hill, New York, 1987.
Candès, E. J.; Romberg, J.; Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52 (2006), no. 2, 489-509.
de Castro, Y.; Gamboa, F. Exact reconstruction using Beurling minimal extrapolation. J. Math. Anal. Appl. 395 (2012), no. 1, 336-354.
Tropp, J. A. Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52 (2006), no. 3, 1030-1051.
Fannjiang, A.; Liao, W. Coherence-pattern guided compressive sensing with unresolved grids. SIAM J. Imaging Sci. 5 (2012), no. 1, 179-202.
Harris, T. D.; Grober, R. D.; Trautman, J. K.; Betzig, E. Super-resolution imaging spectroscopy. Appl. Spectrosc. 48 (1994), no. 1, 14A-21A.
Duarte, M. F.; Baraniuk, R. G. Spectral compressive sensing. Appl. Comput. Harmon. Anal., in press. doi: 10.1016/j.acha.2012.08.003
Santosa, F.; Symes, W. W. Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Statist. Comput. 7 (1986), no. 4, 1307-1330.
Donoho, D. L.; Stark, P. B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49 (1989), no. 3, 906-931.
Khaidukov, V.; Landa, E.; Moser, T. J. Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution. Geophysics 69 (2004), no. 6, 1478-1490. doi: 10.1190/1.1836821
Donoho, D. L.; Tanner, J. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. 102 (2005), no. 27, 9446-9451.
Donoho, D. L. Superresolution via sparsity constraints. SIAM J. Math. Anal. 23 (1992), no. 5, 1309-1331.
Banerjee, N. S.; Geer, J. F. Exponentially accurate approximations to periodic Lipschitz functions based on Fourier series partial sums. J. Sci. Comput. 13 (1998), no. 4, 419-460.
Slepian, D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V - The discrete case. Bell System Technical Journal 57 (1978), 1371-1430.
Dragotti, P. L.; Vetterli, M.; Blu, T. Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix. IEEE Trans. Signal Process. 55 (2007), no. 5, part 1, 1741-1757.
Puschmann, K. G.; Kneer, F. On super-resolution in astronomical imaging. Astronomy and Astrophysics 436 (2005), no. 1, 373-378. doi: 10.1051/0004-6361:20042320
Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical recipes in C: the art of scientific computing. Second edition. Cambridge University Press, Cambridge, 1992.
Zhang, F. The Schur Complement and Its Applications. Springer Science, New York, 2005.
Bhaskar, B. N.; Tang, G.; Recht, B. Atomic norm denoising with applications to line spectral estimation. Preprint, 2012. arxiv1204.0562 [cs.IT]
Eckhoff, K. S. Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comp. 64 (1995), no. 210, 671-690.
Park, S. C.; Park, M. K.; Kang, M. G. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine 20 (2003), no. 3, 21-36.
Boyd, S.; Vandenberghe, L. Convex optimization. Cambridge University Press, Cambridge, 2004.
Dossal, C.; Peyré, G.; Fadili, J. A numerical exploration of compressed sampling recovery. Linear Algebra Appl. 432 (2010), no. 7, 1663-1679.
Levy, S.; Fullagar, P. K. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics 46 (1981), no. 9, 1235-1243. doi: 10.1190/1.1441261
Toh, K. C.; Todd, M. J.; Tütüncü, R. H. SDPT3-a Matlab software package for semidefinite programming, Version 1.3. Optim. Methods Softw. 11/12 (1999), no. 1-4, 545-581.
Greenspan, H. Super-resolution in medical imaging. Comput. J. 52 (2009), no. 1, 43-63. doi: 10.1093/comjnl/bxm075
Kennedy, J. A.; Israel, O.; Frenkel, A.; Bar-Shalom, R.; Azhari, H. Super-resolution in PET imaging. IEEE Transactions on Medical Imaging 25 (2006), no. 2, 137-147.
Tan, V. Y. F.; Goyal, V. K. Estimating signals with finite rate of innovation from noisy samples: A stochastic algorithm. IEEE Trans. Signal Process. 56 (2008), no. 10, part 2, 5135-5146.
2012; 81
2006; 52
2012
2004; 69
1973; 38
2005; 436
2008
1981; 46
2007
1974
2008; 56
2005
2004
1994; 48
1992
1978; 57
1989; 49
2007; 55
1994; 42
2013; 19
1995; 64
2012; 395
2009; 52
1986; 7
2005; 102
2006; 25
2010; 432
2005; 51
1987
1967; 57
5
1999; 11/12
1992; 23
2012; 5
2003; 20
1998; 13
Bhaskar B. N. (e_1_2_1_4_1) 2012
Rockafellar R. (e_1_2_1_35_1) 1974
e_1_2_1_42_1
e_1_2_1_20_1
Rudin W. (e_1_2_1_36_1) 1987
e_1_2_1_41_1
e_1_2_1_40_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_29_1
Dossal C. (e_1_2_1_15_1) 2005
Press W. H. (e_1_2_1_33_1) 1992
Grant M. (e_1_2_1_23_1) 2008
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
Dumitrescu B. (e_1_2_1_19_1) 2007
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
Kahane J. P. (e_1_2_1_26_1) 2012
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_9_1
e_1_2_1_18_1
References_xml – reference: Dossal, C.; Peyré, G.; Fadili, J. A numerical exploration of compressed sampling recovery. Linear Algebra Appl. 432 (2010), no. 7, 1663-1679.
– reference: Kennedy, J. A.; Israel, O.; Frenkel, A.; Bar-Shalom, R.; Azhari, H. Super-resolution in PET imaging. IEEE Transactions on Medical Imaging 25 (2006), no. 2, 137-147.
– reference: Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical recipes in C: the art of scientific computing. Second edition. Cambridge University Press, Cambridge, 1992.
– reference: Eckhoff, K. S. Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comp. 64 (1995), no. 210, 671-690.
– reference: Claerbout, J. F.; Muir, F. Robust modeling with erratic data. Geophysics 38 (1973), no. 5, 826-844. doi: 10.1190/1.1440378
– reference: Tan, V. Y. F.; Goyal, V. K. Estimating signals with finite rate of innovation from noisy samples: A stochastic algorithm. IEEE Trans. Signal Process. 56 (2008), no. 10, part 2, 5135-5146.
– reference: Tropp, J. A. Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52 (2006), no. 3, 1030-1051.
– reference: Levy, S.; Fullagar, P. K. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics 46 (1981), no. 9, 1235-1243. doi: 10.1190/1.1441261
– reference: Candès, E. J.; Romberg, J.; Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52 (2006), no. 2, 489-509.
– reference: Zhang, F. The Schur Complement and Its Applications. Springer Science, New York, 2005.
– reference: Puschmann, K. G.; Kneer, F. On super-resolution in astronomical imaging. Astronomy and Astrophysics 436 (2005), no. 1, 373-378. doi: 10.1051/0004-6361:20042320
– reference: Candès, E. J.; Tao, T. Decoding by linear programming. IEEE Trans. Inform. Theory 51 (2005), no. 12, 4203-4215.
– reference: Bredies, K.; Pikkarainen, H. K. Inverse problems in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations 19 (2013), 190-218. doi: 10.1051/cocv/2011205
– reference: Banerjee, N. S.; Geer, J. F. Exponentially accurate approximations to periodic Lipschitz functions based on Fourier series partial sums. J. Sci. Comput. 13 (1998), no. 4, 419-460.
– reference: Donoho, D. L.; Tanner, J. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. 102 (2005), no. 27, 9446-9451.
– reference: Harris, T. D.; Grober, R. D.; Trautman, J. K.; Betzig, E. Super-resolution imaging spectroscopy. Appl. Spectrosc. 48 (1994), no. 1, 14A-21A.
– reference: Odendaal, J.; Barnard, E.; Pistorius, C. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Transactions on Antennas and Propagation 42 (1994), no. 10, 1386-1391.
– reference: Park, S. C.; Park, M. K.; Kang, M. G. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine 20 (2003), no. 3, 21-36.
– reference: Greenspan, H. Super-resolution in medical imaging. Comput. J. 52 (2009), no. 1, 43-63. doi: 10.1093/comjnl/bxm075
– reference: Santosa, F.; Symes, W. W. Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Statist. Comput. 7 (1986), no. 4, 1307-1330.
– reference: Rudin, W. Real and complex analysis. Third edition. McGraw-Hill, New York, 1987.
– reference: Donoho, D. L. Superresolution via sparsity constraints. SIAM J. Math. Anal. 23 (1992), no. 5, 1309-1331.
– reference: Duarte, M. F.; Baraniuk, R. G. Spectral compressive sensing. Appl. Comput. Harmon. Anal., in press. doi: 10.1016/j.acha.2012.08.003
– reference: Slepian, D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V - The discrete case. Bell System Technical Journal 57 (1978), 1371-1430.
– reference: Donoho, D. L.; Stark, P. B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49 (1989), no. 3, 906-931.
– reference: Fannjiang, A.; Liao, W. Coherence-pattern guided compressive sensing with unresolved grids. SIAM J. Imaging Sci. 5 (2012), no. 1, 179-202.
– reference: Toh, K. C.; Todd, M. J.; Tütüncü, R. H. SDPT3-a Matlab software package for semidefinite programming, Version 1.3. Optim. Methods Softw. 11/12 (1999), no. 1-4, 545-581.
– reference: Boyd, S.; Vandenberghe, L. Convex optimization. Cambridge University Press, Cambridge, 2004.
– reference: McCutchen, C. W. Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am. 57 (1967), no. 10, 1190-1190. doi: 10.1364/JOSA.57.001190
– reference: Batenkov, D.; Yomdin, Y. Algebraic Fourier reconstruction of piecewise smooth functions. Math. Comp. 81 (2012), no. 277, 277-318.
– reference: Bhaskar, B. N.; Tang, G.; Recht, B. Atomic norm denoising with applications to line spectral estimation. Preprint, 2012. arxiv1204.0562 [cs.IT]
– reference: de Castro, Y.; Gamboa, F. Exact reconstruction using Beurling minimal extrapolation. J. Math. Anal. Appl. 395 (2012), no. 1, 336-354.
– reference: Dragotti, P. L.; Vetterli, M.; Blu, T. Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix. IEEE Trans. Signal Process. 55 (2007), no. 5, part 1, 1741-1757.
– reference: Khaidukov, V.; Landa, E.; Moser, T. J. Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution. Geophysics 69 (2004), no. 6, 1478-1490. doi: 10.1190/1.1836821
– volume: 57
  start-page: 1190
  issue: 10
  year: 1967
  end-page: 1190
  article-title: Superresolution in microscopy and the Abbe resolution limit
  publication-title: J. Opt. Soc. Am.
– article-title: Spectral compressive sensing
  publication-title: Appl. Comput. Harmon. Anal.
– year: 2005
– volume: 49
  start-page: 906
  issue: 3
  year: 1989
  end-page: 931
  article-title: Uncertainty principles and signal recovery
  publication-title: SIAM J. Appl. Math.
– year: 2007
– year: 1987
– volume: 64
  start-page: 671
  issue: 210
  year: 1995
  end-page: 690
  article-title: Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions
  publication-title: Math. Comp.
– start-page: 95
  year: 2008
  end-page: 110
– volume: 69
  start-page: 1478
  issue: 6
  year: 2004
  end-page: 1490
  article-title: Diffraction imaging by focusing‐defocusing: An outlook on seismic superresolution
  publication-title: Geophysics
– volume: 52
  start-page: 43
  issue: 1
  year: 2009
  end-page: 63
  article-title: Super‐resolution in medical imaging
  publication-title: Comput. J.
– start-page: 17
  year: 2012
  end-page: 54
– volume: 25
  start-page: 137
  issue: 2
  year: 2006
  end-page: 147
  article-title: Super‐resolution in PET imaging
  publication-title: IEEE Transactions on Medical Imaging
– volume: 23
  start-page: 1309
  issue: 5
  year: 1992
  end-page: 1331
  article-title: Superresolution via sparsity constraints
  publication-title: SIAM J. Math. Anal.
– volume: 436
  start-page: 373
  issue: 1
  year: 2005
  end-page: 378
  article-title: On super‐resolution in astronomical imaging
  publication-title: Astronomy and Astrophysics
– volume: 20
  start-page: 21
  issue: 3
  year: 2003
  end-page: 36
  article-title: Super‐resolution image reconstruction: a technical overview
  publication-title: IEEE Signal Processing Magazine
– year: 1992
– volume: 81
  start-page: 277
  issue: 277
  year: 2012
  end-page: 318
  article-title: Algebraic Fourier reconstruction of piecewise smooth functions
  publication-title: Math. Comp.
– year: 2012
– volume: 52
  start-page: 1030
  issue: 3
  year: 2006
  end-page: 1051
  article-title: Just relax: convex programming methods for identifying sparse signals in noise
  publication-title: IEEE Trans. Inform. Theory
– volume: 55
  start-page: 1741
  issue: 5
  year: 2007
  end-page: 1757
  article-title: Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang‐Fix
  publication-title: IEEE Trans. Signal Process.
– volume: 7
  start-page: 1307
  issue: 4
  year: 1986
  end-page: 1330
  article-title: Linear inversion of band‐limited reflection seismograms
  publication-title: SIAM J. Sci. Statist. Comput.
– volume: 5
  start-page: 179
  issue: 1
  year: 2012
  end-page: 202
  article-title: Coherence‐pattern guided compressive sensing with unresolved grids
  publication-title: SIAM J. Imaging Sci.
– volume: 5
  start-page: 729
  end-page: 732
– volume: 56
  start-page: 5135
  issue: 10
  year: 2008
  end-page: 5146
  article-title: Estimating signals with finite rate of innovation from noisy samples: A stochastic algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 190
  year: 2013
  end-page: 218
  article-title: Inverse problems in spaces of measures
  publication-title: ESAIM: Control, Optimisation and Calculus of Variations
– volume: 38
  start-page: 826
  issue: 5
  year: 1973
  end-page: 844
  article-title: Robust modeling with erratic data
  publication-title: Geophysics
– volume: 57
  start-page: 1371
  year: 1978
  end-page: 1430
  article-title: Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V ‐ The discrete case
  publication-title: Bell System Technical Journal
– volume: 13
  start-page: 419
  issue: 4
  year: 1998
  end-page: 460
  article-title: Exponentially accurate approximations to periodic Lipschitz functions based on Fourier series partial sums
  publication-title: J. Sci. Comput.
– year: 2004
– volume: 102
  start-page: 9446
  issue: 27
  year: 2005
  end-page: 9451
  article-title: Sparse nonnegative solutions of underdetermined linear equations by linear programming
  publication-title: Proc. Natl. Acad. Sci.
– volume: 432
  start-page: 1663
  issue: 7
  year: 2010
  end-page: 1679
  article-title: A numerical exploration of compressed sampling recovery
  publication-title: Linear Algebra Appl.
– volume: 48
  start-page: 14A
  issue: 1
  year: 1994
  end-page: 21A
  article-title: Super‐resolution imaging spectroscopy
  publication-title: Appl. Spectrosc.
– year: 1974
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inform. Theory
– volume: 51
  start-page: 4203
  issue: 12
  year: 2005
  end-page: 4215
  article-title: Decoding by linear programming
  publication-title: IEEE Trans. Inform. Theory
– volume: 46
  start-page: 1235
  issue: 9
  year: 1981
  end-page: 1243
  article-title: Reconstruction of a sparse spike train from a portion of its spectrum and application to high‐resolution deconvolution
  publication-title: Geophysics
– volume: 42
  start-page: 1386
  issue: 10
  year: 1994
  end-page: 1391
  article-title: Two‐dimensional superresolution radar imaging using the MUSIC algorithm
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: 395
  start-page: 336
  issue: 1
  year: 2012
  end-page: 354
  article-title: Exact reconstruction using Beurling minimal extrapolation
  publication-title: J. Math. Anal. Appl.
– volume: 11/12
  start-page: 545
  issue: 1‐4
  year: 1999
  end-page: 581
  article-title: SDPT3—a Matlab software package for semidefinite programming, Version 1.3
  publication-title: Optim. Methods Softw.
– ident: e_1_2_1_42_1
  doi: 10.1007/b105056
– ident: e_1_2_1_2_1
  doi: 10.1023/A:1023289301743
– volume-title: Atomic norm denoising with applications to line spectral estimation
  year: 2012
  ident: e_1_2_1_4_1
– ident: e_1_2_1_20_1
  doi: 10.1090/S0025-5718-1995-1265014-7
– ident: e_1_2_1_24_1
  doi: 10.1093/comjnl/bxm075
– ident: e_1_2_1_13_1
  doi: 10.1137/0149053
– ident: e_1_2_1_38_1
  doi: 10.1002/j.1538-7305.1978.tb02104.x
– ident: e_1_2_1_11_1
  doi: 10.1016/j.jmaa.2012.05.011
– volume-title: Numerical recipes in C: the art of scientific computing
  year: 1992
  ident: e_1_2_1_33_1
– volume-title: Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, 16
  year: 1974
  ident: e_1_2_1_35_1
– ident: e_1_2_1_14_1
  doi: 10.1073/pnas.0502269102
– ident: e_1_2_1_39_1
  doi: 10.1109/TSP.2008.928510
– volume-title: Real and complex analysis
  year: 1987
  ident: e_1_2_1_36_1
– ident: e_1_2_1_28_1
  doi: 10.1190/1.1836821
– ident: e_1_2_1_32_1
  doi: 10.1109/MSP.2003.1203207
– ident: e_1_2_1_8_1
  doi: 10.1109/TIT.2005.858979
– ident: e_1_2_1_40_1
  doi: 10.1080/10556789908805762
– ident: e_1_2_1_17_1
  doi: 10.1109/TSP.2006.890907
– ident: e_1_2_1_30_1
  doi: 10.1364/JOSA.57.001190
– ident: e_1_2_1_3_1
  doi: 10.1090/S0025-5718-2011-02539-1
– ident: e_1_2_1_25_1
  doi: 10.1366/0003702944027589
– volume-title: Thesis, École Polytechnique
  year: 2005
  ident: e_1_2_1_15_1
– ident: e_1_2_1_5_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_2_1_21_1
  doi: 10.1137/110838509
– ident: e_1_2_1_18_1
  doi: 10.1016/j.acha.2012.08.003
– ident: e_1_2_1_12_1
  doi: 10.1137/0523074
– ident: e_1_2_1_31_1
  doi: 10.1109/8.320744
– ident: e_1_2_1_34_1
  doi: 10.1051/0004-6361:20042320
– ident: e_1_2_1_27_1
  doi: 10.1109/TMI.2005.861705
– ident: e_1_2_1_22_1
  doi: 10.1109/ICASSP.2005.1416407
– start-page: 17
  volume-title: Editions de l'École polytechnique
  year: 2012
  ident: e_1_2_1_26_1
– ident: e_1_2_1_41_1
  doi: 10.1109/TIT.2005.864420
– ident: e_1_2_1_29_1
  doi: 10.1190/1.1441261
– ident: e_1_2_1_9_1
  doi: 10.1190/1.1440378
– start-page: 95
  volume-title: Lecture Notes in Control and Information Sciences
  year: 2008
  ident: e_1_2_1_23_1
– ident: e_1_2_1_16_1
  doi: 10.1016/j.laa.2009.11.022
– ident: e_1_2_1_6_1
  doi: 10.1051/cocv/2011205
– ident: e_1_2_1_37_1
  doi: 10.1137/0907087
– ident: e_1_2_1_10_1
– ident: e_1_2_1_7_1
  doi: 10.1109/TIT.2005.862083
– volume-title: Signals and Communication Technology
  year: 2007
  ident: e_1_2_1_19_1
SSID ssj0011483
Score 2.6133773
Snippet This paper develops a mathematical theory of super‐resolution. Broadly speaking, super‐resolution is the problem of recovering the fine details of an...
This paper develops a mathematical theory of super-resolution. Broadly speaking, super-resolution is the problem of recovering the fine details of an object --...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 906
SubjectTerms Mathematical problems
Optimization
Theory
Title Towards a Mathematical Theory of Super-resolution
URI https://api.istex.fr/ark:/67375/WNG-M9WBPKLL-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21455
https://www.proquest.com/docview/1516511575
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5FL3pwF-vGICJepo4zSdrgSYtVtBVxQQ9CyDaXSls6LYgnf4K_0V_iSzIzLiiIl2EIL7O8Jfky894XhLalTkgCAR0ymC5DXKcybMhUhzrVLGGGaIxtoXDngp7e4rN7cl9BB0UtjOeHKD-42chw47UNcCGzvQ_SUDUQNUezDeOvzdWygOiqpI6yMN__XbbjDMVRwSoUxXtlzy9z0aRV69MXoPkZrrr5pjWLHoon9Wkm3dp4JGvq-RuJ4z9fZQ7N5Dg0OPSOM48qpreApjsliWu2iJIbl1KbBSL4aIc-vpw_6KfB9Xhghm8vr7Bkzz14Cd22jm-ap2G-x0KoYGVFQokbFKt9ZQ9UaEqJgYilOt030BYLZlgEVjYMLGpIA8JVSJMSTUBAxlQky2ii1--ZFRRgk6YsZZQBiMOGEKkViTSpJ1REKiH1KtottM1VTkBu98F45J46OeagB-70UEVbpejAs278JLTjTFZKiGHXpqnVCb-7OOEddnd0ed5u86sqWi9syvMIzTggHUos0xBcZ9cZ5_c78ebloTtZ_bvoGpoCbIV9Vtk6mhgNx2YD8MtIbjpHfQcISety
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH7U9qAe3MVq1UFEvEyddpK0AS_uVdsiWtGLhMkkc1Fq6QLiyZ_gb_SX-JJZXFAQL8MQXpjkLcmXzMsXgE2pfOpjQLscp0uX1Jh06zJSrooU97mmihBzULjVZo1rcnZLb3Owm56Fifkhsg03Exl2vDYBbjakdz5YQ8NeULY822NQMDd6G-b8w8uMPMoA_fj_shlpGPFSXiGvupNV_TIbFYxin75Azc-A1c44x9Nwl7Y1TjS5L4-Gshw-f6Nx_G9nZmAqgaLOXuw7s5DT3TmYbGU8roN58Ds2q3bgBM5HOdaJT_Q7j5FzNerp_tvLK67aEydegOvjo85Bw02uWXBDXFxRV5I6I2ElNA8WKMaoxqBlKqpoLKsGXHMPDa05GlXTOkZsIHVEFUUBWWWBvwj57mNXL4FDdBTxiDOOOI5oSqUKqadozWeBF_q0VoTtVN0iTDjIzVUYDyJmT64K1IOweijCRibai4k3fhLasjbLJIL-vclUq1Fx0z4RLX6zf3HebIrLIpRSo4okSAcCwQ66TQUBK7bLWuf3L4mDiz37svx30XUYb3RaTdE8bZ-vwARCLRInmZUgP-yP9CrCmaFcs177DsI3744
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB48QPTBW6znIiK-bF27Sdrgk1e92lI8sA9C2GySF6WWHiA--RP8jf4SJ9nDAwXxZVnCZI-ZTPJld-YbgE2pQhqiQ_scl0uflJn0K9IoXxnFQ66pIsQmCtcb7PSGnLdoawj2slyYhB8i_-BmPcPN19bBO8rsfJCGxp2o6Gi2h2GUsIDbug1Hlzl3lMX5ye9lO9EwEmS0QkFpJ-_6ZTEatXp9-oI0P-NVt-BUp-Aue9QkzuS-OOjLYvz8jcXxn-8yDZMpEPX2k5EzA0O6PQsT9ZzFtTcH4bWLqe15kffRjn2SfH7v0XhXg47uvr284p49HcLzcFM9vj489dMiC36MWyvqS1JhJN6N7YFFijGq0WWZMrsa20oR1zxAM2uOJtW0gv4aSW2ooiggSywKF2Ck_djWi-ARbQw3nHFEcURTKlVMA0XLIYuCOKTlAmxn2hZxykBuC2E8iIQ7uSRQD8LpoQAbuWgnod34SWjLmSyXiLr3Nk6tTMVt40TU-e1B86JWE5cFWMlsKlIX7QmEOoxaqiG8zrYzzu93EofNfXey9HfRdRhrHlVF7axxsQzjiLNIEmG2AiP97kCvIpbpyzU3Zt8BBkvuPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+Mathematical+Theory+of+Super-resolution&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Cand%C3%A8s%2C+Emmanuel+J&rft.au=Fernandez-Granda%2C+Carlos&rft.date=2014-06-01&rft.pub=John+Wiley+and+Sons%2C+Limited&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=67&rft.issue=6&rft.spage=906&rft_id=info:doi/10.1002%2Fcpa.21455&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3276395111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon