Group Invariant Scattering

This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$, which are Lipschitz‐continuous to the action of diffeomorphisms. A scattering propagator is a path‐ordered product of nonlinear and noncommuting operators, each of which c...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 65; no. 10; pp. 1331 - 1398
Main Author Mallat, Stéphane
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2012
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$, which are Lipschitz‐continuous to the action of diffeomorphisms. A scattering propagator is a path‐ordered product of nonlinear and noncommuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz‐continuous to the action of C2 diffeomorphisms. As the window size increases, it converges to a wavelet scattering transform that is translation invariant. Scattering coefficients also provide representations of stationary processes. Expected values depend upon high‐order moments and can discriminate processes having the same power spectrum. Scattering operators are extended on L2(G), where G is a compact Lie group, and are invariant under the action of G. Combining a scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ and on L2(SO(d)) defines a translation‐ and rotation‐invariant scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$. © 2012 Wiley Periodicals, Inc.
AbstractList This paper constructs translation-invariant operators on L2(Rd), which are Lipschitz-continuous to the action of diffeomorphisms. A scattering propagator is a path-ordered product of nonlinear and noncommuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz-continuous to the action of C2 diffeomorphisms. As the window size increases, it converges to a wavelet scattering transform that is translation invariant. Scattering coefficients also provide representations of stationary processes. Expected values depend upon high-order moments and can discriminate processes having the same power spectrum. Scattering operators are extended on L2(G), where G is a compact Lie group, and are invariant under the action of G. Combining a scattering on L2(Rd) and on L2(SO(d)) defines a translation- and rotation-invariant scattering on L2(Rd). [PUBLICATION ABSTRACT]
This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$, which are Lipschitz‐continuous to the action of diffeomorphisms. A scattering propagator is a path‐ordered product of nonlinear and noncommuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz‐continuous to the action of C2 diffeomorphisms. As the window size increases, it converges to a wavelet scattering transform that is translation invariant. Scattering coefficients also provide representations of stationary processes. Expected values depend upon high‐order moments and can discriminate processes having the same power spectrum. Scattering operators are extended on L2(G), where G is a compact Lie group, and are invariant under the action of G. Combining a scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ and on L2(SO(d)) defines a translation‐ and rotation‐invariant scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$. © 2012 Wiley Periodicals, Inc.
This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ , which are Lipschitz‐continuous to the action of diffeomorphisms. A scattering propagator is a path‐ordered product of nonlinear and noncommuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz‐continuous to the action of C 2 diffeomorphisms. As the window size increases, it converges to a wavelet scattering transform that is translation invariant. Scattering coefficients also provide representations of stationary processes. Expected values depend upon high‐order moments and can discriminate processes having the same power spectrum. Scattering operators are extended on L 2 ( G ), where G is a compact Lie group, and are invariant under the action of G . Combining a scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ and on L 2 ( SO ( d )) defines a translation‐ and rotation‐invariant scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ . © 2012 Wiley Periodicals, Inc.
Author Mallat, Stéphane
Author_xml – sequence: 1
  givenname: Stéphane
  surname: Mallat
  fullname: Mallat, Stéphane
  email: mallat@cmap.polytechnique.fr
  organization: Ecole Polytechnique, CMAP, 91128 PALAISEAU CEDEX, FRANCE
BookMark eNp9j0FPwkAQhTcGEwE9ePVE4slDYWZnuy1HgoIoURI1ettsy9YsYlu2i8q_t4p6MNHT5CXf9yavxRp5kRvGDhG6CMB7aam7HAXSDmsi9KMACHmDNQEQApIC9lirqhZ1RBFTkx2NXbEuO5P8RTurc9-5SbX3xtn8cZ_tZnpZmYOv22Z3o7Pb4XkwvR5PhoNpkApACuaJFpQJkkkiSQOJuRahkVpixjMAGUI_7RuOnNDMZUxRYkIDCUGss4QipDY73vaWrlitTeXVoli7vH6pEHiMEEZxVFMnWyp1RVU5k6nS2WftNjWkPqarerr6nF6zvV9sar32tsi903b5n_Fql2bzd7UazgbfRrA1bOXN24-h3ZOSEUWhur8aqws5G12e8gcl6B2gnnhq
CODEN CPMAMV
CitedBy_id crossref_primary_10_1016_j_apnum_2024_09_022
crossref_primary_10_1016_j_optcom_2024_130465
crossref_primary_10_1371_journal_pcbi_1005742
crossref_primary_10_3389_fnins_2017_00485
crossref_primary_10_3390_ma14081957
crossref_primary_10_1016_j_media_2021_102254
crossref_primary_10_1016_j_bspc_2021_102806
crossref_primary_10_1007_s11042_024_20284_x
crossref_primary_10_3847_1538_3881_ac9b1f
crossref_primary_10_1109_ACCESS_2022_3196338
crossref_primary_10_1016_j_aim_2020_107485
crossref_primary_10_1016_j_dsp_2018_07_005
crossref_primary_10_1109_TSP_2024_3378379
crossref_primary_10_1016_j_neunet_2018_08_019
crossref_primary_10_1109_TPAMI_2020_3025258
crossref_primary_10_1186_s13636_018_0138_4
crossref_primary_10_1016_j_addma_2022_103250
crossref_primary_10_1109_TBME_2017_2759665
crossref_primary_10_1186_s13636_020_00187_z
crossref_primary_10_3390_app11114945
crossref_primary_10_1007_s10796_023_10371_z
crossref_primary_10_1002_fsn3_2699
crossref_primary_10_1016_j_precisioneng_2022_05_011
crossref_primary_10_3390_rs12213655
crossref_primary_10_1016_j_irbm_2024_100842
crossref_primary_10_1007_s12220_020_00575_z
crossref_primary_10_1093_mnras_stac3822
crossref_primary_10_3390_e22090936
crossref_primary_10_3390_rs11232868
crossref_primary_10_1121_10_0026241
crossref_primary_10_1155_2016_3946312
crossref_primary_10_1007_s10699_021_09813_1
crossref_primary_10_1016_j_sigpro_2013_12_004
crossref_primary_10_1051_0004_6361_202038044
crossref_primary_10_3150_23_BEJ1676
crossref_primary_10_1109_JIOT_2024_3403976
crossref_primary_10_1016_j_spa_2024_104477
crossref_primary_10_1016_j_specom_2016_03_001
crossref_primary_10_1016_j_apacoust_2020_107854
crossref_primary_10_3390_jcm12113843
crossref_primary_10_1364_OE_486213
crossref_primary_10_1103_PhysRevD_106_103509
crossref_primary_10_3390_s19081790
crossref_primary_10_1103_PhysRevD_110_043535
crossref_primary_10_3390_e25030419
crossref_primary_10_1142_S0219530519410021
crossref_primary_10_1103_PhysRevD_102_103506
crossref_primary_10_1109_TSP_2024_3378001
crossref_primary_10_1109_JIOT_2024_3501387
crossref_primary_10_1109_TIP_2021_3115001
crossref_primary_10_1109_ACCESS_2019_2959081
crossref_primary_10_1017_S0962492919000059
crossref_primary_10_3389_fcvm_2022_855356
crossref_primary_10_3847_1538_4357_acc02a
crossref_primary_10_1109_LSP_2022_3199669
crossref_primary_10_1016_j_patcog_2018_07_025
crossref_primary_10_1088_1361_6501_ad26c5
crossref_primary_10_1016_j_inffus_2018_01_007
crossref_primary_10_1007_s10044_015_0509_8
crossref_primary_10_1177_20416695231157349
crossref_primary_10_1007_s00365_021_09546_1
crossref_primary_10_1007_s43670_024_00092_y
crossref_primary_10_1121_10_0036219
crossref_primary_10_3390_s21154981
crossref_primary_10_1073_pnas_2015509117
crossref_primary_10_1088_1741_2552_acf78a
crossref_primary_10_1109_JBHI_2021_3132157
crossref_primary_10_1002_cam4_6672
crossref_primary_10_1016_j_acha_2023_03_001
crossref_primary_10_2139_ssrn_4110396
crossref_primary_10_1016_j_matpur_2020_08_010
crossref_primary_10_3847_1538_4357_abe46d
crossref_primary_10_1109_TGRS_2014_2360672
crossref_primary_10_1109_TSP_2021_3082465
crossref_primary_10_1007_s10776_021_00526_7
crossref_primary_10_1109_TIP_2014_2387379
crossref_primary_10_1029_2021RG000742
crossref_primary_10_1016_j_jneumeth_2023_109983
crossref_primary_10_1016_j_tcs_2015_06_048
crossref_primary_10_1007_s10472_022_09830_1
crossref_primary_10_1109_JIOT_2024_3391662
crossref_primary_10_1016_j_imavis_2018_05_003
crossref_primary_10_5334_tismir_55
crossref_primary_10_1109_TSP_2021_3084537
crossref_primary_10_3389_fams_2021_689991
crossref_primary_10_1073_pnas_2201854119
crossref_primary_10_1109_MSP_2022_3205430
crossref_primary_10_3389_fphys_2022_905447
crossref_primary_10_1109_TSP_2021_3098936
crossref_primary_10_3389_frai_2022_786091
crossref_primary_10_1049_htl2_12025
crossref_primary_10_1016_j_jvcir_2017_11_023
crossref_primary_10_1007_s00041_024_10069_z
crossref_primary_10_1016_j_ymssp_2025_112335
crossref_primary_10_1109_JSTSP_2016_2647202
crossref_primary_10_1142_S0218202521500500
crossref_primary_10_1103_PhysRevD_105_103534
crossref_primary_10_1109_TGRS_2023_3300272
crossref_primary_10_1109_TCI_2017_2752150
crossref_primary_10_1016_j_sigpro_2014_12_028
crossref_primary_10_1371_journal_pcbi_1003963
crossref_primary_10_3390_rs15143466
crossref_primary_10_1109_ACCESS_2022_3210344
crossref_primary_10_1051_0004_6361_202346814
crossref_primary_10_1007_s00603_023_03600_z
crossref_primary_10_1109_JBHI_2022_3227407
crossref_primary_10_1016_j_asoc_2024_111886
crossref_primary_10_1109_ACCESS_2024_3384349
crossref_primary_10_1007_s00365_021_09544_3
crossref_primary_10_3390_s21237894
crossref_primary_10_1038_s41598_025_90152_7
crossref_primary_10_3389_fncom_2021_692334
crossref_primary_10_3390_electronics12183858
crossref_primary_10_1093_mnras_staa3165
crossref_primary_10_1016_j_neuroimage_2016_10_001
crossref_primary_10_1016_j_acha_2015_06_008
crossref_primary_10_1016_j_ymssp_2023_110614
crossref_primary_10_1073_pnas_2309624121
crossref_primary_10_1371_journal_pcbi_1010484
crossref_primary_10_55525_tjst_1063039
crossref_primary_10_1109_TSP_2015_2432731
crossref_primary_10_1007_s10032_018_0308_z
crossref_primary_10_1016_j_measurement_2024_116348
crossref_primary_10_1016_j_isci_2023_108674
crossref_primary_10_1017_fms_2020_40
crossref_primary_10_1109_JBHI_2020_3045274
crossref_primary_10_1016_j_acha_2020_05_007
crossref_primary_10_1088_1361_6579_aad5a9
crossref_primary_10_3390_biomedinformatics3030049
crossref_primary_10_1007_s43670_024_00093_x
crossref_primary_10_12677_CSA_2017_76065
crossref_primary_10_1016_j_sigpro_2018_03_012
crossref_primary_10_1109_TASLP_2022_3156785
crossref_primary_10_1039_D3AN02235H
crossref_primary_10_1088_2631_8695_ad5928
crossref_primary_10_1109_TSP_2017_2708039
crossref_primary_10_1016_j_bspc_2021_103078
crossref_primary_10_1137_16M1081087
crossref_primary_10_1007_s10921_024_01061_0
crossref_primary_10_1016_j_jeurceramsoc_2021_11_024
crossref_primary_10_1016_j_neucom_2018_05_121
crossref_primary_10_1109_MSP_2020_3016143
crossref_primary_10_1109_JBHI_2020_3012666
crossref_primary_10_1016_j_pmcj_2022_101569
crossref_primary_10_3389_fmats_2019_00168
crossref_primary_10_1038_s41598_023_46200_1
crossref_primary_10_1109_TSP_2024_3349788
crossref_primary_10_4018_IJMDEM_2018070102
crossref_primary_10_1109_JSEN_2020_3015781
crossref_primary_10_1007_s11042_017_4824_5
crossref_primary_10_1016_j_measurement_2024_115112
crossref_primary_10_1109_TIT_2017_2776228
crossref_primary_10_1016_j_newar_2024_101713
crossref_primary_10_1137_151004896
crossref_primary_10_1016_j_neucom_2018_06_025
crossref_primary_10_3390_s22228958
crossref_primary_10_1080_09298215_2015_1132737
crossref_primary_10_1007_s00034_024_02967_w
crossref_primary_10_1007_s10462_023_10502_7
crossref_primary_10_1007_s13369_017_2945_9
crossref_primary_10_1016_j_engappai_2025_110546
crossref_primary_10_1109_ACCESS_2017_2736014
crossref_primary_10_3389_feart_2023_1228103
crossref_primary_10_5664_jcsm_8820
crossref_primary_10_1016_j_bspc_2023_104981
crossref_primary_10_1103_PhysRevD_109_083535
crossref_primary_10_1109_TPAMI_2022_3165730
crossref_primary_10_1109_TIT_2019_2935447
crossref_primary_10_1016_j_istruc_2024_107048
crossref_primary_10_1016_j_sigpro_2016_07_026
crossref_primary_10_1016_j_bbe_2024_11_003
crossref_primary_10_1109_JSEN_2024_3419434
crossref_primary_10_1051_0004_6361_201834975
crossref_primary_10_1109_LGRS_2023_3234972
crossref_primary_10_3847_1538_4357_ac7a3d
crossref_primary_10_1109_TPAMI_2012_230
crossref_primary_10_1137_16M1075454
crossref_primary_10_3847_1538_4357_ad5ff0
crossref_primary_10_3390_s23094449
crossref_primary_10_1142_S021969131350001X
crossref_primary_10_1002_rob_21867
crossref_primary_10_1007_s00041_015_9457_3
crossref_primary_10_1109_TIT_2017_2756880
crossref_primary_10_1155_2021_9936285
crossref_primary_10_1016_j_jco_2015_04_003
crossref_primary_10_3390_eng5010021
crossref_primary_10_1109_TIT_2019_2961812
crossref_primary_10_1007_s00170_024_14006_8
crossref_primary_10_1109_TASLP_2022_3178239
crossref_primary_10_1115_1_4065639
crossref_primary_10_5802_jedp_660
crossref_primary_10_1137_21M1465056
crossref_primary_10_1080_01630563_2024_2422064
crossref_primary_10_1016_j_compbiomed_2022_105479
crossref_primary_10_1016_j_eswa_2023_120019
crossref_primary_10_1109_TSP_2023_3304410
crossref_primary_10_1109_ACCESS_2019_2927825
crossref_primary_10_1016_j_measurement_2022_112041
crossref_primary_10_1007_s12652_023_04746_y
crossref_primary_10_1016_j_coisb_2020_07_013
crossref_primary_10_1109_TCI_2022_3175309
crossref_primary_10_3390_en14206796
crossref_primary_10_1002_widm_1495
crossref_primary_10_1016_j_asoc_2019_105912
crossref_primary_10_1007_s11265_021_01720_9
crossref_primary_10_1137_22M1510352
crossref_primary_10_1109_TSP_2019_2918992
crossref_primary_10_1016_j_bspc_2023_105071
crossref_primary_10_1016_j_patrec_2014_03_001
crossref_primary_10_1002_pamm_202300169
crossref_primary_10_1002_widm_1483
crossref_primary_10_1016_j_compbiomed_2023_107611
crossref_primary_10_1088_1475_7516_2024_07_021
crossref_primary_10_1109_TASLP_2021_3104193
crossref_primary_10_1109_TNNLS_2019_2919705
crossref_primary_10_3390_rs10040501
crossref_primary_10_3390_s20072024
crossref_primary_10_1007_s12652_024_04786_y
crossref_primary_10_1016_j_acha_2017_08_005
crossref_primary_10_1016_j_engappai_2023_106903
crossref_primary_10_1109_ACCESS_2020_3000895
crossref_primary_10_1109_ACCESS_2022_3212146
crossref_primary_10_1093_imaiai_iaw007
crossref_primary_10_1093_imaiai_iaw009
crossref_primary_10_1093_imaiai_iaaa016
crossref_primary_10_1214_22_EJP766
crossref_primary_10_1016_j_acha_2014_09_001
crossref_primary_10_1002_smtd_202300923
crossref_primary_10_1109_TPAMI_2013_50
crossref_primary_10_3390_sym14010089
crossref_primary_10_1051_0004_6361_202142852
crossref_primary_10_1088_1361_6579_ada51b
crossref_primary_10_1109_TIM_2020_3041905
crossref_primary_10_1016_j_acha_2024_101724
crossref_primary_10_1007_s11704_023_2570_6
crossref_primary_10_1016_j_acha_2024_101722
crossref_primary_10_1093_mnras_stac977
crossref_primary_10_1016_j_engappai_2024_109375
crossref_primary_10_1016_j_neucom_2015_09_004
crossref_primary_10_3390_e24111646
crossref_primary_10_1007_s11042_021_11060_2
crossref_primary_10_1109_TBME_2013_2294324
crossref_primary_10_1137_17M1129441
crossref_primary_10_1002_ima_23020
crossref_primary_10_1007_s13137_015_0069_5
crossref_primary_10_3847_1538_4357_aca538
crossref_primary_10_1007_s00365_022_09601_5
crossref_primary_10_1016_j_compbiomed_2021_104814
crossref_primary_10_1109_LSP_2020_3001457
crossref_primary_10_1007_s10844_013_0250_y
crossref_primary_10_1063_5_0016020
crossref_primary_10_1209_0295_5075_acd71b
crossref_primary_10_1007_s00466_023_02302_1
crossref_primary_10_1109_TSP_2023_3293716
crossref_primary_10_1016_j_neucom_2018_02_076
crossref_primary_10_1109_ACCESS_2022_3222495
crossref_primary_10_1186_s13640_021_00548_4
crossref_primary_10_1093_mnras_stab2102
crossref_primary_10_3390_e22111237
crossref_primary_10_3390_s22041535
crossref_primary_10_1109_TSP_2014_2326991
crossref_primary_10_1371_journal_pcbi_1005019
crossref_primary_10_1029_2024EA003865
crossref_primary_10_3390_app13126861
crossref_primary_10_1016_j_bspc_2019_101576
crossref_primary_10_1016_j_jhydrol_2019_124296
crossref_primary_10_1007_s10994_022_06225_5
crossref_primary_10_1109_JSTARS_2024_3514855
crossref_primary_10_1109_TIP_2025_3531988
crossref_primary_10_1016_j_measurement_2024_115078
crossref_primary_10_1088_1475_7516_2022_11_020
crossref_primary_10_1016_j_acha_2023_101597
crossref_primary_10_1016_j_matpur_2023_10_008
crossref_primary_10_1016_j_acha_2024_101635
crossref_primary_10_1007_s10915_017_0429_4
crossref_primary_10_1016_j_acha_2024_101634
crossref_primary_10_1109_TBME_2022_3215092
crossref_primary_10_1038_s41593_019_0377_4
crossref_primary_10_1007_s11042_018_6342_5
crossref_primary_10_1109_TIP_2019_2916768
crossref_primary_10_1016_j_sigpro_2025_109891
crossref_primary_10_1016_j_jvcir_2019_03_010
crossref_primary_10_1016_j_artmed_2014_05_003
crossref_primary_10_1109_TBME_2014_2375292
crossref_primary_10_1214_14_AOS1276
crossref_primary_10_2139_ssrn_3290910
crossref_primary_10_3934_fods_2022001
crossref_primary_10_1103_PhysRevE_96_052111
crossref_primary_10_1098_rsta_2015_0203
crossref_primary_10_1364_OE_460208
crossref_primary_10_32604_csse_2022_021980
crossref_primary_10_1016_j_bea_2024_100117
crossref_primary_10_1103_PhysRevApplied_10_054001
crossref_primary_10_1109_LGRS_2022_3183495
crossref_primary_10_1137_17M1141771
crossref_primary_10_1109_ACCESS_2024_3482117
crossref_primary_10_1088_1361_6579_ab2664
crossref_primary_10_1155_2020_3215681
crossref_primary_10_1109_LRA_2024_3487512
crossref_primary_10_1007_s10462_024_10722_5
crossref_primary_10_1016_j_jhydrol_2016_06_063
crossref_primary_10_1109_TNNLS_2022_3160169
crossref_primary_10_1016_j_media_2020_101849
crossref_primary_10_1007_s10208_024_09656_9
crossref_primary_10_1016_j_compbiomed_2024_107976
crossref_primary_10_1109_TGRS_2020_3040203
crossref_primary_10_1088_1538_3873_acf073
crossref_primary_10_1088_2632_2153_acda10
crossref_primary_10_1016_j_neucom_2024_127699
crossref_primary_10_1109_TNSRE_2023_3241241
crossref_primary_10_3389_fnbot_2021_752752
crossref_primary_10_1142_S021969131550006X
crossref_primary_10_1007_s43670_021_00005_3
crossref_primary_10_3847_1538_4365_ab9d82
crossref_primary_10_1063_1_5023798
crossref_primary_10_1109_ACCESS_2023_3243432
crossref_primary_10_1162_neco_a_00990
crossref_primary_10_1016_j_acha_2019_06_003
crossref_primary_10_1016_j_jmaa_2024_128557
crossref_primary_10_1007_s11831_017_9219_2
crossref_primary_10_1109_JSEN_2024_3360188
crossref_primary_10_1093_pnasnexus_pgae103
crossref_primary_10_1007_s00041_016_9489_3
crossref_primary_10_1016_j_acha_2024_101669
crossref_primary_10_1016_j_apacoust_2017_08_002
crossref_primary_10_1016_j_nicl_2023_103374
crossref_primary_10_1109_LGRS_2025_3534251
crossref_primary_10_1016_j_crma_2018_03_003
crossref_primary_10_1088_1475_7516_2024_11_061
crossref_primary_10_1016_j_biosystemseng_2021_11_023
crossref_primary_10_14495_jsiaml_15_21
crossref_primary_10_1016_j_neucom_2016_08_006
crossref_primary_10_1109_TSP_2020_3036902
crossref_primary_10_1016_j_ascom_2019_03_004
crossref_primary_10_1109_TSP_2020_3026980
crossref_primary_10_1109_TPAMI_2018_2855738
crossref_primary_10_1109_ACCESS_2025_3550303
crossref_primary_10_1017_S0956792522000365
crossref_primary_10_1137_23M1584836
crossref_primary_10_1007_s11042_022_14062_w
crossref_primary_10_1126_science_aau0323
crossref_primary_10_1007_s00041_019_09705_w
crossref_primary_10_1007_s10208_018_9399_7
crossref_primary_10_1137_22M1503579
crossref_primary_10_1109_ACCESS_2023_3337992
crossref_primary_10_1007_s00521_018_3704_x
crossref_primary_10_3390_bioengineering11101000
crossref_primary_10_1016_j_protcy_2014_11_025
crossref_primary_10_1155_2018_1712686
crossref_primary_10_1016_j_measurement_2022_111276
crossref_primary_10_1109_MSP_2017_2693418
crossref_primary_10_1109_LRA_2022_3143200
crossref_primary_10_1007_s00170_023_10834_2
crossref_primary_10_1038_s42256_019_0087_3
crossref_primary_10_1016_j_nicl_2017_02_004
crossref_primary_10_1109_ACCESS_2024_3416056
crossref_primary_10_1109_TNNLS_2022_3223212
crossref_primary_10_1051_0004_6361_202244566
crossref_primary_10_1103_PhysRevD_109_103503
crossref_primary_10_3390_s25030699
crossref_primary_10_1051_0004_6361_202451396
crossref_primary_10_2139_ssrn_3822407
crossref_primary_10_1109_TAI_2021_3135248
crossref_primary_10_1093_mnras_stad2778
crossref_primary_10_1109_TSP_2024_3420930
crossref_primary_10_1016_j_compbiomed_2023_107259
crossref_primary_10_1137_21M1454511
crossref_primary_10_1137_19M1294484
crossref_primary_10_1093_mnras_stac2662
crossref_primary_10_1016_j_compbiomed_2023_107493
crossref_primary_10_5194_gmd_16_7143_2023
crossref_primary_10_11834_jig_230069
crossref_primary_10_1109_JPROC_2021_3055400
crossref_primary_10_1016_j_sigpro_2022_108529
crossref_primary_10_3390_axioms8040106
crossref_primary_10_3390_s23031589
crossref_primary_10_1007_s13042_016_0498_y
crossref_primary_10_1109_ACCESS_2024_3522122
crossref_primary_10_1109_TMC_2022_3227299
crossref_primary_10_1109_TBME_2018_2850356
crossref_primary_10_1063_5_0010781
crossref_primary_10_1016_j_artint_2022_103803
crossref_primary_10_1051_0004_6361_202346017
crossref_primary_10_1088_1361_6560_ad6f6a
crossref_primary_10_1109_TASLP_2024_3426996
crossref_primary_10_1109_ACCESS_2022_3156569
crossref_primary_10_1016_j_ins_2020_10_006
crossref_primary_10_1016_j_jvcir_2016_11_003
crossref_primary_10_1109_JSEN_2022_3218182
Cites_doi 10.1111/j.1749-6632.1988.tb32998.x
10.1109/ISCAS.2010.5537907
10.1137/050622729
10.1137/S0036141002404838
10.4171/RMI/17
10.1016/S0005-1098(98)00019-3
10.1038/14819
10.1017/CBO9780511609565
10.1109/CVPR.2011.5995635
10.1007/BF02392052
10.1007/s12220-010-9150-3
10.1090/cbms/079
10.1515/9781400881871
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Oct 2012
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Oct 2012
DBID BSCLL
AAYXX
CITATION
JQ2
DOI 10.1002/cpa.21413
DatabaseName Istex
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 1398
ExternalDocumentID 2722081751
10_1002_cpa_21413
CPA21413
ark_67375_WNG_J6PFKD2X_4
Genre article
Feature
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c4013-dba43f436bb63a034da45e6a61f2f006509c9e21231ed6837be5e0b308afb3713
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Fri Jul 25 19:22:43 EDT 2025
Tue Jul 01 02:50:29 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Wed Jan 22 16:30:55 EST 2025
Wed Oct 30 09:55:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4013-dba43f436bb63a034da45e6a61f2f006509c9e21231ed6837be5e0b308afb3713
Notes ark:/67375/WNG-J6PFKD2X-4
istex:146AD406FDD3515FF2EC5C902DE71DF3E3912EFC
ArticleID:CPA21413
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1028105787
PQPubID 48818
PageCount 68
ParticipantIDs proquest_journals_1028105787
crossref_primary_10_1002_cpa_21413
crossref_citationtrail_10_1002_cpa_21413
wiley_primary_10_1002_cpa_21413_CPA21413
istex_primary_ark_67375_WNG_J6PFKD2X_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2012
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: October 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationTitleAlternate Comm. Pure Appl. Math
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
John Wiley and Sons, Limited
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: John Wiley and Sons, Limited
References Stein, E. M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. (English summary) With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, N.J., 1993.
Olver, P. J. Equivalence, invariants and symmetry. Cambridge University Press, Cambridge, 1995.
Frankel, T. The geometry of physics: an introduction. 2nd ed. Cambridge University Press, Cambridge, 2004.
Meyer, Y. Wavelets and operators. Cambridge Studies in Advanced Mathematics, Vol. 37. Cambridge University Press, Cambridge, 1992.
Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. PAMI, to appear.
Bruna, J.; Mallat, S. Classification with scattering operators. 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ( 2011), 1561-1566. doi:10.1109/CVPR.2011.5995635
Frazier, M.; Jawerth, B.; Weiss, G. Littlewood-Paley theory and the study of function spaces. CBMS Regional Conference Series in Mathematics, 79. Published for the Conference Board of the Mathematical Sciences, Washington, D.C., by the American Mathematical Society, Providence, R.I., 1991.
Hörmander, L. Fourier integral operators. I. Acta Math. 127 ( 1971), no. 1, 79-183.
Willard, S. General topology. Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1970.
Stein, E. M. Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematics Studies, 63. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970.
Rahman, I. U.; Drori, I.; Stodden, V. C.; Donoho, D. L.; Schrder, P. Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4 ( 2005), no. 4, 1201-1232.
Lohmiller, W.; Slotine, J. J. E. On contraction analysis for nonlinear systems. Automatica 34 ( 1998), no. 6, 683-696.
Riesenhuber, M.; Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2 ( 1999), 1019-1025.
Trouv, A.; Younes, L. Local geometry of deformable templates. SIAM J. Math. Anal. 37 ( 2005), no. 1, 17-59 (electronic). doi:10.1137/S0036141002404838
Bouvrie, J.; Rosasco, L.; Poggio, T. On invariance in hierarchical models. Advances in Neural Information Processing Systems 22, 162-170, 2009.
David, G.; Journé, J.-L.; Semmes, S. Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. (French) [Calderón-Zygmund operators, para-accretive functions and interpolation] Rev. Mat. Iberoamericana 1 ( 1985), no. 4, 1-56.
Geller, D.; Pesenson, I. Z. Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds. J. Geom. Anal. 21 ( 2011), no. 2, 334-371.
1985; 1
2012
2011
2009
1971; 127
2005; 4
2011; 21
1995
2004
1993
1992; 37
1999; 2
1970
1991
2005; 37
1998; 34
Frankel T. (e_1_2_1_7_2) 2004
Bouvrie J. (e_1_2_1_3_2) 2009
Bruna J. (e_1_2_1_5_2)
e_1_2_1_6_2
e_1_2_1_4_2
Willard S. (e_1_2_1_23_2) 1970
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_22_2
e_1_2_1_12_2
e_1_2_1_20_2
e_1_2_1_10_2
e_1_2_1_15_2
e_1_2_1_16_2
Stein E. M. (e_1_2_1_21_2) 1993
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Frankel, T. The geometry of physics: an introduction. 2nd ed. Cambridge University Press, Cambridge, 2004.
– reference: David, G.; Journé, J.-L.; Semmes, S. Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. (French) [Calderón-Zygmund operators, para-accretive functions and interpolation] Rev. Mat. Iberoamericana 1 ( 1985), no. 4, 1-56.
– reference: Riesenhuber, M.; Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2 ( 1999), 1019-1025.
– reference: Willard, S. General topology. Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1970.
– reference: Hörmander, L. Fourier integral operators. I. Acta Math. 127 ( 1971), no. 1, 79-183.
– reference: Meyer, Y. Wavelets and operators. Cambridge Studies in Advanced Mathematics, Vol. 37. Cambridge University Press, Cambridge, 1992.
– reference: Trouv, A.; Younes, L. Local geometry of deformable templates. SIAM J. Math. Anal. 37 ( 2005), no. 1, 17-59 (electronic). doi:10.1137/S0036141002404838
– reference: Stein, E. M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. (English summary) With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, N.J., 1993.
– reference: Frazier, M.; Jawerth, B.; Weiss, G. Littlewood-Paley theory and the study of function spaces. CBMS Regional Conference Series in Mathematics, 79. Published for the Conference Board of the Mathematical Sciences, Washington, D.C., by the American Mathematical Society, Providence, R.I., 1991.
– reference: Bruna, J.; Mallat, S. Classification with scattering operators. 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ( 2011), 1561-1566. doi:10.1109/CVPR.2011.5995635
– reference: Rahman, I. U.; Drori, I.; Stodden, V. C.; Donoho, D. L.; Schrder, P. Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4 ( 2005), no. 4, 1201-1232.
– reference: Lohmiller, W.; Slotine, J. J. E. On contraction analysis for nonlinear systems. Automatica 34 ( 1998), no. 6, 683-696.
– reference: Olver, P. J. Equivalence, invariants and symmetry. Cambridge University Press, Cambridge, 1995.
– reference: Geller, D.; Pesenson, I. Z. Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds. J. Geom. Anal. 21 ( 2011), no. 2, 334-371.
– reference: Bouvrie, J.; Rosasco, L.; Poggio, T. On invariance in hierarchical models. Advances in Neural Information Processing Systems 22, 162-170, 2009.
– reference: Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. PAMI, to appear.
– reference: Stein, E. M. Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematics Studies, 63. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970.
– article-title: Invariant scattering convolution networks
  publication-title: IEEE Trans. PAMI
– volume: 21
  start-page: 334
  year: 2011
  end-page: 371
  article-title: Band‐limited localized Parseval frames and Besov spaces on compact homogeneous manifolds
  publication-title: J. Geom. Anal.
– year: 2011
– volume: 2
  start-page: 1019
  year: 1999
  end-page: 1025
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nat. Neurosci.
– volume: 4
  start-page: 1201
  year: 2005
  end-page: 1232
  article-title: Multiscale representations for manifold‐valued data
  publication-title: Multiscale Model. Simul.
– volume: 127
  start-page: 79
  year: 1971
  end-page: 183
  article-title: Fourier integral operators. I
  publication-title: Acta Math.
– volume: 37
  year: 1992
– start-page: 162
  year: 2009
  end-page: 170
  article-title: On invariance in hierarchical models
  publication-title: Advances in Neural Information Processing Systems 22
– volume: 1
  start-page: 1
  year: 1985
  end-page: 56
  article-title: Opérateurs de Calderón‐Zygmund, fonctions para‐accrétives et interpolation. (French) [Calderón‐Zygmund operators, para‐accretive functions and interpolation]
  publication-title: Rev. Mat. Iberoamericana
– year: 2004
– year: 1995
– year: 1970
– year: 1991
– start-page: 1561
  year: 2011
  end-page: 1566
  article-title: Classification with scattering operators
  publication-title: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 253
  end-page: 256
– year: 1993
– volume: 37
  start-page: 17
  year: 2005
  end-page: 59
  article-title: Local geometry of deformable templates
  publication-title: SIAM J. Math. Anal.
– volume: 34
  start-page: 683
  year: 1998
  end-page: 696
  article-title: On contraction analysis for nonlinear systems
  publication-title: Automatica
– year: 2012
– ident: e_1_2_1_5_2
  article-title: Invariant scattering convolution networks
  publication-title: IEEE Trans. PAMI
– ident: e_1_2_1_15_2
  doi: 10.1111/j.1749-6632.1988.tb32998.x
– ident: e_1_2_1_14_2
– volume-title: The geometry of physics: an introduction
  year: 2004
  ident: e_1_2_1_7_2
– ident: e_1_2_1_12_2
  doi: 10.1109/ISCAS.2010.5537907
– ident: e_1_2_1_17_2
  doi: 10.1137/050622729
– start-page: 162
  year: 2009
  ident: e_1_2_1_3_2
  article-title: On invariance in hierarchical models
  publication-title: Advances in Neural Information Processing Systems 22
– ident: e_1_2_1_22_2
  doi: 10.1137/S0036141002404838
– volume-title: General topology
  year: 1970
  ident: e_1_2_1_23_2
– ident: e_1_2_1_6_2
  doi: 10.4171/RMI/17
– ident: e_1_2_1_13_2
  doi: 10.1016/S0005-1098(98)00019-3
– ident: e_1_2_1_18_2
  doi: 10.1038/14819
– ident: e_1_2_1_16_2
  doi: 10.1017/CBO9780511609565
– ident: e_1_2_1_19_2
– ident: e_1_2_1_2_2
– ident: e_1_2_1_4_2
  doi: 10.1109/CVPR.2011.5995635
– volume-title: Harmonic analysis: real‐variable methods, orthogonality, and oscillatory integrals
  year: 1993
  ident: e_1_2_1_21_2
– ident: e_1_2_1_10_2
– ident: e_1_2_1_11_2
  doi: 10.1007/BF02392052
– ident: e_1_2_1_9_2
  doi: 10.1007/s12220-010-9150-3
– ident: e_1_2_1_8_2
  doi: 10.1090/cbms/079
– ident: e_1_2_1_20_2
  doi: 10.1515/9781400881871
SSID ssj0011483
Score 2.5722256
Snippet This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$, which are Lipschitz‐continuous...
This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ , which are...
This paper constructs translation-invariant operators on L2(Rd), which are Lipschitz-continuous to the action of diffeomorphisms. A scattering propagator is a...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1331
SubjectTerms Expected values
Lie groups
Mathematical functions
Scattering
Wavelet transforms
Title Group Invariant Scattering
URI https://api.istex.fr/ark:/67375/WNG-J6PFKD2X-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21413
https://www.proquest.com/docview/1028105787
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3rwLbZWWUTEy7bZbDa7xVOp1lppKWqxByEk2eRSWUsfIv56k-xDKwribQ-zbCaTyXyTnXwDwCkLQ8VYJN1ABdjFDRy7LCTQVYSTyFc4RrG5nNzrk84Qd0fBqAQu8rswKT9EceBmPMPu18bBGZ_VP0lDxYTVkIdtx1pTq2UA0V1BHWVgfvp32ewzBMOcVQiievHmUixaNdP6tgQ0v8JVG2_am-ApH2laZjKuLea8Jt6_kTj-U5UtsJHhUKeZLpxtUJLJDljvFSSus11QsedSzk3yqvNpbQDnXlgyTh3s9sCwffXQ6rhZKwVXmATKjTnDeuZ9wjnxGfRxzHAgCSOeQiql0RMNacKYJ2NtpJDLQELuw4gp7utEdh-sJC-JPACOwgqHQhCiQtNIHXKoPCKQIbaLmR_BMjjPJ5WKjGfctLt4pilDMqJaXWrVLYOTQnSSkmv8JHRmLVNIsOnYVKOFAX3sX9MuGbRvL9GI4jKo5qajmSPOqMFPppVxFOpxWRv8_iXaGjTtQ-XvoodgTUMolJb3VcHKfLqQRxqmzPmxXY8fQRjfLA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xOEAPpYWiLqUlqgriksXrOE449IDYbndZdoV4qHsztmNfQAGxSx_8Jv4K_6ke51FAVOqFQ285jJLRvMcZfwPwSSaJlTI1YWxjFrJtloUy4SS0XPE0siyjGV5OHgx594TtjeLRFNxWd2EKfIj6wA09w8drdHA8kN76gxqqL2WTtlwQLkcq--bXD9ewjT_32k6765R2vhzvdsNyp0CosZMIMyWZYyHiSvFIkohlksWGS96y1BZ4cnrbYDxvmcxxmygTG6IikkqrItfRufdOwyxuEEek_vZhDVaFjUXxPxsjG2ekwjEidKtm9UH2m0VF_nxQ2t4vkH2G6yzAXSWbYrDlrHk9UU198wg28n8R3it4WZbawU7hG69hyuSL8GJQ49SOl2DFH70Fvfy7dI6YT4Ij7fFGXT5_AyfPwtwyzOQXuXkLgWWWJVpzbhPcFU8UsS2uKWL3ZTJKSQM2Ky0KXUKp40aPc1GAQFPhxCu8eBvwsSa9LPBDniLa8KZQU8irMxy4S2LxbfhV7PGDTr9NR4I1YLWyFVHGmrHAEhG3NaeJ48sr_e9fErsHO_5h5d9J12CuezzYF_u9Yf8dzLuKkRbTjKswM7m6Nu9dVTZRH7wzBHD63Ab0GxWYPAM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61iVSVA5QWREqAFWoRl029Xq93c-ihSpo2DY2ilojcjO21L0VLlAeP_qX-FX5Ube8DWlGJSw7c9jDaHc17vONvAPZ4HGvOE-VHOiI-aZPU5zFFvqaCJqEmKU7t5eTzIT0dk7NJNFmDm_IuTI4PUR24Wc9w8do6-DTVB79BQ-WUt3BgYnAxUTlQP7-bfm1-2O8a5e5j3Dv-2Dn1i5UCvrSNhJ8KTgwHIRWChhyFJOUkUpTTQGOdw8nJtrLhPFCpYTYWKlJIhCjhWoSmoTPvXYc6oaht90R0LyqsKttX5L-zbWCjBJUwRggfVKzeSX51q8cfdyrbP-tjl-B6T-BXKZp8ruWqtVyIlry-hxr5n8huCx4XhbZ3lHvGU1hT2TY8Oq9Qauc7sOsO3rx-9o0bN8wW3qV0aKMmmz-D8UqYew617GumXoCniSaxlJTq2G6KRwLpgEpskftSHiaoAe9LJTJZAKnbfR5fWA4BjZkRL3PibcDbinSao4f8jeids4SKgs-u7LhdHLFPwxN2Rke9QRdPGGlAszQVVkSaObMFot3VnMSGL6fzh7_EOqMj97D776RvYGPU7bEP_eHgJWyachHno4xNqC1mS_XKlGQL8dq5ggefV20_t_t0OrI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+Invariant+Scattering&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Mallat%2C+St%C3%A9phane&rft.date=2012-10-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=65&rft.issue=10&rft.spage=1331&rft.epage=1398&rft_id=info:doi/10.1002%2Fcpa.21413&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_21413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon