Group Invariant Scattering
This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$, which are Lipschitz‐continuous to the action of diffeomorphisms. A scattering propagator is a path‐ordered product of nonlinear and noncommuting operators, each of which c...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 65; no. 10; pp. 1331 - 1398 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2012
John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper constructs translation‐invariant operators on
$\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$, which are Lipschitz‐continuous to the action of diffeomorphisms. A scattering propagator is a path‐ordered product of nonlinear and noncommuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz‐continuous to the action of C2 diffeomorphisms. As the window size increases, it converges to a wavelet scattering transform that is translation invariant. Scattering coefficients also provide representations of stationary processes. Expected values depend upon high‐order moments and can discriminate processes having the same power spectrum. Scattering operators are extended on L2(G), where G is a compact Lie group, and are invariant under the action of G. Combining a scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$
and on L2(SO(d)) defines a translation‐ and rotation‐invariant scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$. © 2012 Wiley Periodicals, Inc. |
---|---|
AbstractList | This paper constructs translation-invariant operators on L2(Rd), which are Lipschitz-continuous to the action of diffeomorphisms. A scattering propagator is a path-ordered product of nonlinear and noncommuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz-continuous to the action of C2 diffeomorphisms. As the window size increases, it converges to a wavelet scattering transform that is translation invariant. Scattering coefficients also provide representations of stationary processes. Expected values depend upon high-order moments and can discriminate processes having the same power spectrum. Scattering operators are extended on L2(G), where G is a compact Lie group, and are invariant under the action of G. Combining a scattering on L2(Rd) and on L2(SO(d)) defines a translation- and rotation-invariant scattering on L2(Rd). [PUBLICATION ABSTRACT] This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$, which are Lipschitz‐continuous to the action of diffeomorphisms. A scattering propagator is a path‐ordered product of nonlinear and noncommuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz‐continuous to the action of C2 diffeomorphisms. As the window size increases, it converges to a wavelet scattering transform that is translation invariant. Scattering coefficients also provide representations of stationary processes. Expected values depend upon high‐order moments and can discriminate processes having the same power spectrum. Scattering operators are extended on L2(G), where G is a compact Lie group, and are invariant under the action of G. Combining a scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ and on L2(SO(d)) defines a translation‐ and rotation‐invariant scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$. © 2012 Wiley Periodicals, Inc. This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ , which are Lipschitz‐continuous to the action of diffeomorphisms. A scattering propagator is a path‐ordered product of nonlinear and noncommuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz‐continuous to the action of C 2 diffeomorphisms. As the window size increases, it converges to a wavelet scattering transform that is translation invariant. Scattering coefficients also provide representations of stationary processes. Expected values depend upon high‐order moments and can discriminate processes having the same power spectrum. Scattering operators are extended on L 2 ( G ), where G is a compact Lie group, and are invariant under the action of G . Combining a scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ and on L 2 ( SO ( d )) defines a translation‐ and rotation‐invariant scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ . © 2012 Wiley Periodicals, Inc. |
Author | Mallat, Stéphane |
Author_xml | – sequence: 1 givenname: Stéphane surname: Mallat fullname: Mallat, Stéphane email: mallat@cmap.polytechnique.fr organization: Ecole Polytechnique, CMAP, 91128 PALAISEAU CEDEX, FRANCE |
BookMark | eNp9j0FPwkAQhTcGEwE9ePVE4slDYWZnuy1HgoIoURI1ettsy9YsYlu2i8q_t4p6MNHT5CXf9yavxRp5kRvGDhG6CMB7aam7HAXSDmsi9KMACHmDNQEQApIC9lirqhZ1RBFTkx2NXbEuO5P8RTurc9-5SbX3xtn8cZ_tZnpZmYOv22Z3o7Pb4XkwvR5PhoNpkApACuaJFpQJkkkiSQOJuRahkVpixjMAGUI_7RuOnNDMZUxRYkIDCUGss4QipDY73vaWrlitTeXVoli7vH6pEHiMEEZxVFMnWyp1RVU5k6nS2WftNjWkPqarerr6nF6zvV9sar32tsi903b5n_Fql2bzd7UazgbfRrA1bOXN24-h3ZOSEUWhur8aqws5G12e8gcl6B2gnnhq |
CODEN | CPMAMV |
CitedBy_id | crossref_primary_10_1016_j_apnum_2024_09_022 crossref_primary_10_1016_j_optcom_2024_130465 crossref_primary_10_1371_journal_pcbi_1005742 crossref_primary_10_3389_fnins_2017_00485 crossref_primary_10_3390_ma14081957 crossref_primary_10_1016_j_media_2021_102254 crossref_primary_10_1016_j_bspc_2021_102806 crossref_primary_10_1007_s11042_024_20284_x crossref_primary_10_3847_1538_3881_ac9b1f crossref_primary_10_1109_ACCESS_2022_3196338 crossref_primary_10_1016_j_aim_2020_107485 crossref_primary_10_1016_j_dsp_2018_07_005 crossref_primary_10_1109_TSP_2024_3378379 crossref_primary_10_1016_j_neunet_2018_08_019 crossref_primary_10_1109_TPAMI_2020_3025258 crossref_primary_10_1186_s13636_018_0138_4 crossref_primary_10_1016_j_addma_2022_103250 crossref_primary_10_1109_TBME_2017_2759665 crossref_primary_10_1186_s13636_020_00187_z crossref_primary_10_3390_app11114945 crossref_primary_10_1007_s10796_023_10371_z crossref_primary_10_1002_fsn3_2699 crossref_primary_10_1016_j_precisioneng_2022_05_011 crossref_primary_10_3390_rs12213655 crossref_primary_10_1016_j_irbm_2024_100842 crossref_primary_10_1007_s12220_020_00575_z crossref_primary_10_1093_mnras_stac3822 crossref_primary_10_3390_e22090936 crossref_primary_10_3390_rs11232868 crossref_primary_10_1121_10_0026241 crossref_primary_10_1155_2016_3946312 crossref_primary_10_1007_s10699_021_09813_1 crossref_primary_10_1016_j_sigpro_2013_12_004 crossref_primary_10_1051_0004_6361_202038044 crossref_primary_10_3150_23_BEJ1676 crossref_primary_10_1109_JIOT_2024_3403976 crossref_primary_10_1016_j_spa_2024_104477 crossref_primary_10_1016_j_specom_2016_03_001 crossref_primary_10_1016_j_apacoust_2020_107854 crossref_primary_10_3390_jcm12113843 crossref_primary_10_1364_OE_486213 crossref_primary_10_1103_PhysRevD_106_103509 crossref_primary_10_3390_s19081790 crossref_primary_10_1103_PhysRevD_110_043535 crossref_primary_10_3390_e25030419 crossref_primary_10_1142_S0219530519410021 crossref_primary_10_1103_PhysRevD_102_103506 crossref_primary_10_1109_TSP_2024_3378001 crossref_primary_10_1109_JIOT_2024_3501387 crossref_primary_10_1109_TIP_2021_3115001 crossref_primary_10_1109_ACCESS_2019_2959081 crossref_primary_10_1017_S0962492919000059 crossref_primary_10_3389_fcvm_2022_855356 crossref_primary_10_3847_1538_4357_acc02a crossref_primary_10_1109_LSP_2022_3199669 crossref_primary_10_1016_j_patcog_2018_07_025 crossref_primary_10_1088_1361_6501_ad26c5 crossref_primary_10_1016_j_inffus_2018_01_007 crossref_primary_10_1007_s10044_015_0509_8 crossref_primary_10_1177_20416695231157349 crossref_primary_10_1007_s00365_021_09546_1 crossref_primary_10_1007_s43670_024_00092_y crossref_primary_10_1121_10_0036219 crossref_primary_10_3390_s21154981 crossref_primary_10_1073_pnas_2015509117 crossref_primary_10_1088_1741_2552_acf78a crossref_primary_10_1109_JBHI_2021_3132157 crossref_primary_10_1002_cam4_6672 crossref_primary_10_1016_j_acha_2023_03_001 crossref_primary_10_2139_ssrn_4110396 crossref_primary_10_1016_j_matpur_2020_08_010 crossref_primary_10_3847_1538_4357_abe46d crossref_primary_10_1109_TGRS_2014_2360672 crossref_primary_10_1109_TSP_2021_3082465 crossref_primary_10_1007_s10776_021_00526_7 crossref_primary_10_1109_TIP_2014_2387379 crossref_primary_10_1029_2021RG000742 crossref_primary_10_1016_j_jneumeth_2023_109983 crossref_primary_10_1016_j_tcs_2015_06_048 crossref_primary_10_1007_s10472_022_09830_1 crossref_primary_10_1109_JIOT_2024_3391662 crossref_primary_10_1016_j_imavis_2018_05_003 crossref_primary_10_5334_tismir_55 crossref_primary_10_1109_TSP_2021_3084537 crossref_primary_10_3389_fams_2021_689991 crossref_primary_10_1073_pnas_2201854119 crossref_primary_10_1109_MSP_2022_3205430 crossref_primary_10_3389_fphys_2022_905447 crossref_primary_10_1109_TSP_2021_3098936 crossref_primary_10_3389_frai_2022_786091 crossref_primary_10_1049_htl2_12025 crossref_primary_10_1016_j_jvcir_2017_11_023 crossref_primary_10_1007_s00041_024_10069_z crossref_primary_10_1016_j_ymssp_2025_112335 crossref_primary_10_1109_JSTSP_2016_2647202 crossref_primary_10_1142_S0218202521500500 crossref_primary_10_1103_PhysRevD_105_103534 crossref_primary_10_1109_TGRS_2023_3300272 crossref_primary_10_1109_TCI_2017_2752150 crossref_primary_10_1016_j_sigpro_2014_12_028 crossref_primary_10_1371_journal_pcbi_1003963 crossref_primary_10_3390_rs15143466 crossref_primary_10_1109_ACCESS_2022_3210344 crossref_primary_10_1051_0004_6361_202346814 crossref_primary_10_1007_s00603_023_03600_z crossref_primary_10_1109_JBHI_2022_3227407 crossref_primary_10_1016_j_asoc_2024_111886 crossref_primary_10_1109_ACCESS_2024_3384349 crossref_primary_10_1007_s00365_021_09544_3 crossref_primary_10_3390_s21237894 crossref_primary_10_1038_s41598_025_90152_7 crossref_primary_10_3389_fncom_2021_692334 crossref_primary_10_3390_electronics12183858 crossref_primary_10_1093_mnras_staa3165 crossref_primary_10_1016_j_neuroimage_2016_10_001 crossref_primary_10_1016_j_acha_2015_06_008 crossref_primary_10_1016_j_ymssp_2023_110614 crossref_primary_10_1073_pnas_2309624121 crossref_primary_10_1371_journal_pcbi_1010484 crossref_primary_10_55525_tjst_1063039 crossref_primary_10_1109_TSP_2015_2432731 crossref_primary_10_1007_s10032_018_0308_z crossref_primary_10_1016_j_measurement_2024_116348 crossref_primary_10_1016_j_isci_2023_108674 crossref_primary_10_1017_fms_2020_40 crossref_primary_10_1109_JBHI_2020_3045274 crossref_primary_10_1016_j_acha_2020_05_007 crossref_primary_10_1088_1361_6579_aad5a9 crossref_primary_10_3390_biomedinformatics3030049 crossref_primary_10_1007_s43670_024_00093_x crossref_primary_10_12677_CSA_2017_76065 crossref_primary_10_1016_j_sigpro_2018_03_012 crossref_primary_10_1109_TASLP_2022_3156785 crossref_primary_10_1039_D3AN02235H crossref_primary_10_1088_2631_8695_ad5928 crossref_primary_10_1109_TSP_2017_2708039 crossref_primary_10_1016_j_bspc_2021_103078 crossref_primary_10_1137_16M1081087 crossref_primary_10_1007_s10921_024_01061_0 crossref_primary_10_1016_j_jeurceramsoc_2021_11_024 crossref_primary_10_1016_j_neucom_2018_05_121 crossref_primary_10_1109_MSP_2020_3016143 crossref_primary_10_1109_JBHI_2020_3012666 crossref_primary_10_1016_j_pmcj_2022_101569 crossref_primary_10_3389_fmats_2019_00168 crossref_primary_10_1038_s41598_023_46200_1 crossref_primary_10_1109_TSP_2024_3349788 crossref_primary_10_4018_IJMDEM_2018070102 crossref_primary_10_1109_JSEN_2020_3015781 crossref_primary_10_1007_s11042_017_4824_5 crossref_primary_10_1016_j_measurement_2024_115112 crossref_primary_10_1109_TIT_2017_2776228 crossref_primary_10_1016_j_newar_2024_101713 crossref_primary_10_1137_151004896 crossref_primary_10_1016_j_neucom_2018_06_025 crossref_primary_10_3390_s22228958 crossref_primary_10_1080_09298215_2015_1132737 crossref_primary_10_1007_s00034_024_02967_w crossref_primary_10_1007_s10462_023_10502_7 crossref_primary_10_1007_s13369_017_2945_9 crossref_primary_10_1016_j_engappai_2025_110546 crossref_primary_10_1109_ACCESS_2017_2736014 crossref_primary_10_3389_feart_2023_1228103 crossref_primary_10_5664_jcsm_8820 crossref_primary_10_1016_j_bspc_2023_104981 crossref_primary_10_1103_PhysRevD_109_083535 crossref_primary_10_1109_TPAMI_2022_3165730 crossref_primary_10_1109_TIT_2019_2935447 crossref_primary_10_1016_j_istruc_2024_107048 crossref_primary_10_1016_j_sigpro_2016_07_026 crossref_primary_10_1016_j_bbe_2024_11_003 crossref_primary_10_1109_JSEN_2024_3419434 crossref_primary_10_1051_0004_6361_201834975 crossref_primary_10_1109_LGRS_2023_3234972 crossref_primary_10_3847_1538_4357_ac7a3d crossref_primary_10_1109_TPAMI_2012_230 crossref_primary_10_1137_16M1075454 crossref_primary_10_3847_1538_4357_ad5ff0 crossref_primary_10_3390_s23094449 crossref_primary_10_1142_S021969131350001X crossref_primary_10_1002_rob_21867 crossref_primary_10_1007_s00041_015_9457_3 crossref_primary_10_1109_TIT_2017_2756880 crossref_primary_10_1155_2021_9936285 crossref_primary_10_1016_j_jco_2015_04_003 crossref_primary_10_3390_eng5010021 crossref_primary_10_1109_TIT_2019_2961812 crossref_primary_10_1007_s00170_024_14006_8 crossref_primary_10_1109_TASLP_2022_3178239 crossref_primary_10_1115_1_4065639 crossref_primary_10_5802_jedp_660 crossref_primary_10_1137_21M1465056 crossref_primary_10_1080_01630563_2024_2422064 crossref_primary_10_1016_j_compbiomed_2022_105479 crossref_primary_10_1016_j_eswa_2023_120019 crossref_primary_10_1109_TSP_2023_3304410 crossref_primary_10_1109_ACCESS_2019_2927825 crossref_primary_10_1016_j_measurement_2022_112041 crossref_primary_10_1007_s12652_023_04746_y crossref_primary_10_1016_j_coisb_2020_07_013 crossref_primary_10_1109_TCI_2022_3175309 crossref_primary_10_3390_en14206796 crossref_primary_10_1002_widm_1495 crossref_primary_10_1016_j_asoc_2019_105912 crossref_primary_10_1007_s11265_021_01720_9 crossref_primary_10_1137_22M1510352 crossref_primary_10_1109_TSP_2019_2918992 crossref_primary_10_1016_j_bspc_2023_105071 crossref_primary_10_1016_j_patrec_2014_03_001 crossref_primary_10_1002_pamm_202300169 crossref_primary_10_1002_widm_1483 crossref_primary_10_1016_j_compbiomed_2023_107611 crossref_primary_10_1088_1475_7516_2024_07_021 crossref_primary_10_1109_TASLP_2021_3104193 crossref_primary_10_1109_TNNLS_2019_2919705 crossref_primary_10_3390_rs10040501 crossref_primary_10_3390_s20072024 crossref_primary_10_1007_s12652_024_04786_y crossref_primary_10_1016_j_acha_2017_08_005 crossref_primary_10_1016_j_engappai_2023_106903 crossref_primary_10_1109_ACCESS_2020_3000895 crossref_primary_10_1109_ACCESS_2022_3212146 crossref_primary_10_1093_imaiai_iaw007 crossref_primary_10_1093_imaiai_iaw009 crossref_primary_10_1093_imaiai_iaaa016 crossref_primary_10_1214_22_EJP766 crossref_primary_10_1016_j_acha_2014_09_001 crossref_primary_10_1002_smtd_202300923 crossref_primary_10_1109_TPAMI_2013_50 crossref_primary_10_3390_sym14010089 crossref_primary_10_1051_0004_6361_202142852 crossref_primary_10_1088_1361_6579_ada51b crossref_primary_10_1109_TIM_2020_3041905 crossref_primary_10_1016_j_acha_2024_101724 crossref_primary_10_1007_s11704_023_2570_6 crossref_primary_10_1016_j_acha_2024_101722 crossref_primary_10_1093_mnras_stac977 crossref_primary_10_1016_j_engappai_2024_109375 crossref_primary_10_1016_j_neucom_2015_09_004 crossref_primary_10_3390_e24111646 crossref_primary_10_1007_s11042_021_11060_2 crossref_primary_10_1109_TBME_2013_2294324 crossref_primary_10_1137_17M1129441 crossref_primary_10_1002_ima_23020 crossref_primary_10_1007_s13137_015_0069_5 crossref_primary_10_3847_1538_4357_aca538 crossref_primary_10_1007_s00365_022_09601_5 crossref_primary_10_1016_j_compbiomed_2021_104814 crossref_primary_10_1109_LSP_2020_3001457 crossref_primary_10_1007_s10844_013_0250_y crossref_primary_10_1063_5_0016020 crossref_primary_10_1209_0295_5075_acd71b crossref_primary_10_1007_s00466_023_02302_1 crossref_primary_10_1109_TSP_2023_3293716 crossref_primary_10_1016_j_neucom_2018_02_076 crossref_primary_10_1109_ACCESS_2022_3222495 crossref_primary_10_1186_s13640_021_00548_4 crossref_primary_10_1093_mnras_stab2102 crossref_primary_10_3390_e22111237 crossref_primary_10_3390_s22041535 crossref_primary_10_1109_TSP_2014_2326991 crossref_primary_10_1371_journal_pcbi_1005019 crossref_primary_10_1029_2024EA003865 crossref_primary_10_3390_app13126861 crossref_primary_10_1016_j_bspc_2019_101576 crossref_primary_10_1016_j_jhydrol_2019_124296 crossref_primary_10_1007_s10994_022_06225_5 crossref_primary_10_1109_JSTARS_2024_3514855 crossref_primary_10_1109_TIP_2025_3531988 crossref_primary_10_1016_j_measurement_2024_115078 crossref_primary_10_1088_1475_7516_2022_11_020 crossref_primary_10_1016_j_acha_2023_101597 crossref_primary_10_1016_j_matpur_2023_10_008 crossref_primary_10_1016_j_acha_2024_101635 crossref_primary_10_1007_s10915_017_0429_4 crossref_primary_10_1016_j_acha_2024_101634 crossref_primary_10_1109_TBME_2022_3215092 crossref_primary_10_1038_s41593_019_0377_4 crossref_primary_10_1007_s11042_018_6342_5 crossref_primary_10_1109_TIP_2019_2916768 crossref_primary_10_1016_j_sigpro_2025_109891 crossref_primary_10_1016_j_jvcir_2019_03_010 crossref_primary_10_1016_j_artmed_2014_05_003 crossref_primary_10_1109_TBME_2014_2375292 crossref_primary_10_1214_14_AOS1276 crossref_primary_10_2139_ssrn_3290910 crossref_primary_10_3934_fods_2022001 crossref_primary_10_1103_PhysRevE_96_052111 crossref_primary_10_1098_rsta_2015_0203 crossref_primary_10_1364_OE_460208 crossref_primary_10_32604_csse_2022_021980 crossref_primary_10_1016_j_bea_2024_100117 crossref_primary_10_1103_PhysRevApplied_10_054001 crossref_primary_10_1109_LGRS_2022_3183495 crossref_primary_10_1137_17M1141771 crossref_primary_10_1109_ACCESS_2024_3482117 crossref_primary_10_1088_1361_6579_ab2664 crossref_primary_10_1155_2020_3215681 crossref_primary_10_1109_LRA_2024_3487512 crossref_primary_10_1007_s10462_024_10722_5 crossref_primary_10_1016_j_jhydrol_2016_06_063 crossref_primary_10_1109_TNNLS_2022_3160169 crossref_primary_10_1016_j_media_2020_101849 crossref_primary_10_1007_s10208_024_09656_9 crossref_primary_10_1016_j_compbiomed_2024_107976 crossref_primary_10_1109_TGRS_2020_3040203 crossref_primary_10_1088_1538_3873_acf073 crossref_primary_10_1088_2632_2153_acda10 crossref_primary_10_1016_j_neucom_2024_127699 crossref_primary_10_1109_TNSRE_2023_3241241 crossref_primary_10_3389_fnbot_2021_752752 crossref_primary_10_1142_S021969131550006X crossref_primary_10_1007_s43670_021_00005_3 crossref_primary_10_3847_1538_4365_ab9d82 crossref_primary_10_1063_1_5023798 crossref_primary_10_1109_ACCESS_2023_3243432 crossref_primary_10_1162_neco_a_00990 crossref_primary_10_1016_j_acha_2019_06_003 crossref_primary_10_1016_j_jmaa_2024_128557 crossref_primary_10_1007_s11831_017_9219_2 crossref_primary_10_1109_JSEN_2024_3360188 crossref_primary_10_1093_pnasnexus_pgae103 crossref_primary_10_1007_s00041_016_9489_3 crossref_primary_10_1016_j_acha_2024_101669 crossref_primary_10_1016_j_apacoust_2017_08_002 crossref_primary_10_1016_j_nicl_2023_103374 crossref_primary_10_1109_LGRS_2025_3534251 crossref_primary_10_1016_j_crma_2018_03_003 crossref_primary_10_1088_1475_7516_2024_11_061 crossref_primary_10_1016_j_biosystemseng_2021_11_023 crossref_primary_10_14495_jsiaml_15_21 crossref_primary_10_1016_j_neucom_2016_08_006 crossref_primary_10_1109_TSP_2020_3036902 crossref_primary_10_1016_j_ascom_2019_03_004 crossref_primary_10_1109_TSP_2020_3026980 crossref_primary_10_1109_TPAMI_2018_2855738 crossref_primary_10_1109_ACCESS_2025_3550303 crossref_primary_10_1017_S0956792522000365 crossref_primary_10_1137_23M1584836 crossref_primary_10_1007_s11042_022_14062_w crossref_primary_10_1126_science_aau0323 crossref_primary_10_1007_s00041_019_09705_w crossref_primary_10_1007_s10208_018_9399_7 crossref_primary_10_1137_22M1503579 crossref_primary_10_1109_ACCESS_2023_3337992 crossref_primary_10_1007_s00521_018_3704_x crossref_primary_10_3390_bioengineering11101000 crossref_primary_10_1016_j_protcy_2014_11_025 crossref_primary_10_1155_2018_1712686 crossref_primary_10_1016_j_measurement_2022_111276 crossref_primary_10_1109_MSP_2017_2693418 crossref_primary_10_1109_LRA_2022_3143200 crossref_primary_10_1007_s00170_023_10834_2 crossref_primary_10_1038_s42256_019_0087_3 crossref_primary_10_1016_j_nicl_2017_02_004 crossref_primary_10_1109_ACCESS_2024_3416056 crossref_primary_10_1109_TNNLS_2022_3223212 crossref_primary_10_1051_0004_6361_202244566 crossref_primary_10_1103_PhysRevD_109_103503 crossref_primary_10_3390_s25030699 crossref_primary_10_1051_0004_6361_202451396 crossref_primary_10_2139_ssrn_3822407 crossref_primary_10_1109_TAI_2021_3135248 crossref_primary_10_1093_mnras_stad2778 crossref_primary_10_1109_TSP_2024_3420930 crossref_primary_10_1016_j_compbiomed_2023_107259 crossref_primary_10_1137_21M1454511 crossref_primary_10_1137_19M1294484 crossref_primary_10_1093_mnras_stac2662 crossref_primary_10_1016_j_compbiomed_2023_107493 crossref_primary_10_5194_gmd_16_7143_2023 crossref_primary_10_11834_jig_230069 crossref_primary_10_1109_JPROC_2021_3055400 crossref_primary_10_1016_j_sigpro_2022_108529 crossref_primary_10_3390_axioms8040106 crossref_primary_10_3390_s23031589 crossref_primary_10_1007_s13042_016_0498_y crossref_primary_10_1109_ACCESS_2024_3522122 crossref_primary_10_1109_TMC_2022_3227299 crossref_primary_10_1109_TBME_2018_2850356 crossref_primary_10_1063_5_0010781 crossref_primary_10_1016_j_artint_2022_103803 crossref_primary_10_1051_0004_6361_202346017 crossref_primary_10_1088_1361_6560_ad6f6a crossref_primary_10_1109_TASLP_2024_3426996 crossref_primary_10_1109_ACCESS_2022_3156569 crossref_primary_10_1016_j_ins_2020_10_006 crossref_primary_10_1016_j_jvcir_2016_11_003 crossref_primary_10_1109_JSEN_2022_3218182 |
Cites_doi | 10.1111/j.1749-6632.1988.tb32998.x 10.1109/ISCAS.2010.5537907 10.1137/050622729 10.1137/S0036141002404838 10.4171/RMI/17 10.1016/S0005-1098(98)00019-3 10.1038/14819 10.1017/CBO9780511609565 10.1109/CVPR.2011.5995635 10.1007/BF02392052 10.1007/s12220-010-9150-3 10.1090/cbms/079 10.1515/9781400881871 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Oct 2012 |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Oct 2012 |
DBID | BSCLL AAYXX CITATION JQ2 |
DOI | 10.1002/cpa.21413 |
DatabaseName | Istex CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 1398 |
ExternalDocumentID | 2722081751 10_1002_cpa_21413 CPA21413 ark_67375_WNG_J6PFKD2X_4 |
Genre | article Feature |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c4013-dba43f436bb63a034da45e6a61f2f006509c9e21231ed6837be5e0b308afb3713 |
IEDL.DBID | DR2 |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 19:22:43 EDT 2025 Tue Jul 01 02:50:29 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Wed Jan 22 16:30:55 EST 2025 Wed Oct 30 09:55:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4013-dba43f436bb63a034da45e6a61f2f006509c9e21231ed6837be5e0b308afb3713 |
Notes | ark:/67375/WNG-J6PFKD2X-4 istex:146AD406FDD3515FF2EC5C902DE71DF3E3912EFC ArticleID:CPA21413 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1028105787 |
PQPubID | 48818 |
PageCount | 68 |
ParticipantIDs | proquest_journals_1028105787 crossref_primary_10_1002_cpa_21413 crossref_citationtrail_10_1002_cpa_21413 wiley_primary_10_1002_cpa_21413_CPA21413 istex_primary_ark_67375_WNG_J6PFKD2X_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2012 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: October 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationTitleAlternate | Comm. Pure Appl. Math |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company John Wiley and Sons, Limited |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: John Wiley and Sons, Limited |
References | Stein, E. M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. (English summary) With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, N.J., 1993. Olver, P. J. Equivalence, invariants and symmetry. Cambridge University Press, Cambridge, 1995. Frankel, T. The geometry of physics: an introduction. 2nd ed. Cambridge University Press, Cambridge, 2004. Meyer, Y. Wavelets and operators. Cambridge Studies in Advanced Mathematics, Vol. 37. Cambridge University Press, Cambridge, 1992. Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. PAMI, to appear. Bruna, J.; Mallat, S. Classification with scattering operators. 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ( 2011), 1561-1566. doi:10.1109/CVPR.2011.5995635 Frazier, M.; Jawerth, B.; Weiss, G. Littlewood-Paley theory and the study of function spaces. CBMS Regional Conference Series in Mathematics, 79. Published for the Conference Board of the Mathematical Sciences, Washington, D.C., by the American Mathematical Society, Providence, R.I., 1991. Hörmander, L. Fourier integral operators. I. Acta Math. 127 ( 1971), no. 1, 79-183. Willard, S. General topology. Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1970. Stein, E. M. Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematics Studies, 63. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. Rahman, I. U.; Drori, I.; Stodden, V. C.; Donoho, D. L.; Schrder, P. Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4 ( 2005), no. 4, 1201-1232. Lohmiller, W.; Slotine, J. J. E. On contraction analysis for nonlinear systems. Automatica 34 ( 1998), no. 6, 683-696. Riesenhuber, M.; Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2 ( 1999), 1019-1025. Trouv, A.; Younes, L. Local geometry of deformable templates. SIAM J. Math. Anal. 37 ( 2005), no. 1, 17-59 (electronic). doi:10.1137/S0036141002404838 Bouvrie, J.; Rosasco, L.; Poggio, T. On invariance in hierarchical models. Advances in Neural Information Processing Systems 22, 162-170, 2009. David, G.; Journé, J.-L.; Semmes, S. Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. (French) [Calderón-Zygmund operators, para-accretive functions and interpolation] Rev. Mat. Iberoamericana 1 ( 1985), no. 4, 1-56. Geller, D.; Pesenson, I. Z. Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds. J. Geom. Anal. 21 ( 2011), no. 2, 334-371. 1985; 1 2012 2011 2009 1971; 127 2005; 4 2011; 21 1995 2004 1993 1992; 37 1999; 2 1970 1991 2005; 37 1998; 34 Frankel T. (e_1_2_1_7_2) 2004 Bouvrie J. (e_1_2_1_3_2) 2009 Bruna J. (e_1_2_1_5_2) e_1_2_1_6_2 e_1_2_1_4_2 Willard S. (e_1_2_1_23_2) 1970 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_22_2 e_1_2_1_12_2 e_1_2_1_20_2 e_1_2_1_10_2 e_1_2_1_15_2 e_1_2_1_16_2 Stein E. M. (e_1_2_1_21_2) 1993 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: Frankel, T. The geometry of physics: an introduction. 2nd ed. Cambridge University Press, Cambridge, 2004. – reference: David, G.; Journé, J.-L.; Semmes, S. Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. (French) [Calderón-Zygmund operators, para-accretive functions and interpolation] Rev. Mat. Iberoamericana 1 ( 1985), no. 4, 1-56. – reference: Riesenhuber, M.; Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2 ( 1999), 1019-1025. – reference: Willard, S. General topology. Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1970. – reference: Hörmander, L. Fourier integral operators. I. Acta Math. 127 ( 1971), no. 1, 79-183. – reference: Meyer, Y. Wavelets and operators. Cambridge Studies in Advanced Mathematics, Vol. 37. Cambridge University Press, Cambridge, 1992. – reference: Trouv, A.; Younes, L. Local geometry of deformable templates. SIAM J. Math. Anal. 37 ( 2005), no. 1, 17-59 (electronic). doi:10.1137/S0036141002404838 – reference: Stein, E. M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. (English summary) With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, N.J., 1993. – reference: Frazier, M.; Jawerth, B.; Weiss, G. Littlewood-Paley theory and the study of function spaces. CBMS Regional Conference Series in Mathematics, 79. Published for the Conference Board of the Mathematical Sciences, Washington, D.C., by the American Mathematical Society, Providence, R.I., 1991. – reference: Bruna, J.; Mallat, S. Classification with scattering operators. 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ( 2011), 1561-1566. doi:10.1109/CVPR.2011.5995635 – reference: Rahman, I. U.; Drori, I.; Stodden, V. C.; Donoho, D. L.; Schrder, P. Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4 ( 2005), no. 4, 1201-1232. – reference: Lohmiller, W.; Slotine, J. J. E. On contraction analysis for nonlinear systems. Automatica 34 ( 1998), no. 6, 683-696. – reference: Olver, P. J. Equivalence, invariants and symmetry. Cambridge University Press, Cambridge, 1995. – reference: Geller, D.; Pesenson, I. Z. Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds. J. Geom. Anal. 21 ( 2011), no. 2, 334-371. – reference: Bouvrie, J.; Rosasco, L.; Poggio, T. On invariance in hierarchical models. Advances in Neural Information Processing Systems 22, 162-170, 2009. – reference: Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. PAMI, to appear. – reference: Stein, E. M. Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematics Studies, 63. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. – article-title: Invariant scattering convolution networks publication-title: IEEE Trans. PAMI – volume: 21 start-page: 334 year: 2011 end-page: 371 article-title: Band‐limited localized Parseval frames and Besov spaces on compact homogeneous manifolds publication-title: J. Geom. Anal. – year: 2011 – volume: 2 start-page: 1019 year: 1999 end-page: 1025 article-title: Hierarchical models of object recognition in cortex publication-title: Nat. Neurosci. – volume: 4 start-page: 1201 year: 2005 end-page: 1232 article-title: Multiscale representations for manifold‐valued data publication-title: Multiscale Model. Simul. – volume: 127 start-page: 79 year: 1971 end-page: 183 article-title: Fourier integral operators. I publication-title: Acta Math. – volume: 37 year: 1992 – start-page: 162 year: 2009 end-page: 170 article-title: On invariance in hierarchical models publication-title: Advances in Neural Information Processing Systems 22 – volume: 1 start-page: 1 year: 1985 end-page: 56 article-title: Opérateurs de Calderón‐Zygmund, fonctions para‐accrétives et interpolation. (French) [Calderón‐Zygmund operators, para‐accretive functions and interpolation] publication-title: Rev. Mat. Iberoamericana – year: 2004 – year: 1995 – year: 1970 – year: 1991 – start-page: 1561 year: 2011 end-page: 1566 article-title: Classification with scattering operators publication-title: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 253 end-page: 256 – year: 1993 – volume: 37 start-page: 17 year: 2005 end-page: 59 article-title: Local geometry of deformable templates publication-title: SIAM J. Math. Anal. – volume: 34 start-page: 683 year: 1998 end-page: 696 article-title: On contraction analysis for nonlinear systems publication-title: Automatica – year: 2012 – ident: e_1_2_1_5_2 article-title: Invariant scattering convolution networks publication-title: IEEE Trans. PAMI – ident: e_1_2_1_15_2 doi: 10.1111/j.1749-6632.1988.tb32998.x – ident: e_1_2_1_14_2 – volume-title: The geometry of physics: an introduction year: 2004 ident: e_1_2_1_7_2 – ident: e_1_2_1_12_2 doi: 10.1109/ISCAS.2010.5537907 – ident: e_1_2_1_17_2 doi: 10.1137/050622729 – start-page: 162 year: 2009 ident: e_1_2_1_3_2 article-title: On invariance in hierarchical models publication-title: Advances in Neural Information Processing Systems 22 – ident: e_1_2_1_22_2 doi: 10.1137/S0036141002404838 – volume-title: General topology year: 1970 ident: e_1_2_1_23_2 – ident: e_1_2_1_6_2 doi: 10.4171/RMI/17 – ident: e_1_2_1_13_2 doi: 10.1016/S0005-1098(98)00019-3 – ident: e_1_2_1_18_2 doi: 10.1038/14819 – ident: e_1_2_1_16_2 doi: 10.1017/CBO9780511609565 – ident: e_1_2_1_19_2 – ident: e_1_2_1_2_2 – ident: e_1_2_1_4_2 doi: 10.1109/CVPR.2011.5995635 – volume-title: Harmonic analysis: real‐variable methods, orthogonality, and oscillatory integrals year: 1993 ident: e_1_2_1_21_2 – ident: e_1_2_1_10_2 – ident: e_1_2_1_11_2 doi: 10.1007/BF02392052 – ident: e_1_2_1_9_2 doi: 10.1007/s12220-010-9150-3 – ident: e_1_2_1_8_2 doi: 10.1090/cbms/079 – ident: e_1_2_1_20_2 doi: 10.1515/9781400881871 |
SSID | ssj0011483 |
Score | 2.5722256 |
Snippet | This paper constructs translation‐invariant operators on
$\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$, which are Lipschitz‐continuous... This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ , which are... This paper constructs translation-invariant operators on L2(Rd), which are Lipschitz-continuous to the action of diffeomorphisms. A scattering propagator is a... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1331 |
SubjectTerms | Expected values Lie groups Mathematical functions Scattering Wavelet transforms |
Title | Group Invariant Scattering |
URI | https://api.istex.fr/ark:/67375/WNG-J6PFKD2X-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21413 https://www.proquest.com/docview/1028105787 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3rwLbZWWUTEy7bZbDa7xVOp1lppKWqxByEk2eRSWUsfIv56k-xDKwribQ-zbCaTyXyTnXwDwCkLQ8VYJN1ABdjFDRy7LCTQVYSTyFc4RrG5nNzrk84Qd0fBqAQu8rswKT9EceBmPMPu18bBGZ_VP0lDxYTVkIdtx1pTq2UA0V1BHWVgfvp32ewzBMOcVQiievHmUixaNdP6tgQ0v8JVG2_am-ApH2laZjKuLea8Jt6_kTj-U5UtsJHhUKeZLpxtUJLJDljvFSSus11QsedSzk3yqvNpbQDnXlgyTh3s9sCwffXQ6rhZKwVXmATKjTnDeuZ9wjnxGfRxzHAgCSOeQiql0RMNacKYJ2NtpJDLQELuw4gp7utEdh-sJC-JPACOwgqHQhCiQtNIHXKoPCKQIbaLmR_BMjjPJ5WKjGfctLt4pilDMqJaXWrVLYOTQnSSkmv8JHRmLVNIsOnYVKOFAX3sX9MuGbRvL9GI4jKo5qajmSPOqMFPppVxFOpxWRv8_iXaGjTtQ-XvoodgTUMolJb3VcHKfLqQRxqmzPmxXY8fQRjfLA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xOEAPpYWiLqUlqgriksXrOE449IDYbndZdoV4qHsztmNfQAGxSx_8Jv4K_6ke51FAVOqFQ285jJLRvMcZfwPwSSaJlTI1YWxjFrJtloUy4SS0XPE0siyjGV5OHgx594TtjeLRFNxWd2EKfIj6wA09w8drdHA8kN76gxqqL2WTtlwQLkcq--bXD9ewjT_32k6765R2vhzvdsNyp0CosZMIMyWZYyHiSvFIkohlksWGS96y1BZ4cnrbYDxvmcxxmygTG6IikkqrItfRufdOwyxuEEek_vZhDVaFjUXxPxsjG2ekwjEidKtm9UH2m0VF_nxQ2t4vkH2G6yzAXSWbYrDlrHk9UU198wg28n8R3it4WZbawU7hG69hyuSL8GJQ49SOl2DFH70Fvfy7dI6YT4Ij7fFGXT5_AyfPwtwyzOQXuXkLgWWWJVpzbhPcFU8UsS2uKWL3ZTJKSQM2Ky0KXUKp40aPc1GAQFPhxCu8eBvwsSa9LPBDniLa8KZQU8irMxy4S2LxbfhV7PGDTr9NR4I1YLWyFVHGmrHAEhG3NaeJ48sr_e9fErsHO_5h5d9J12CuezzYF_u9Yf8dzLuKkRbTjKswM7m6Nu9dVTZRH7wzBHD63Ab0GxWYPAM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61iVSVA5QWREqAFWoRl029Xq93c-ihSpo2DY2ilojcjO21L0VLlAeP_qX-FX5Ube8DWlGJSw7c9jDaHc17vONvAPZ4HGvOE-VHOiI-aZPU5zFFvqaCJqEmKU7t5eTzIT0dk7NJNFmDm_IuTI4PUR24Wc9w8do6-DTVB79BQ-WUt3BgYnAxUTlQP7-bfm1-2O8a5e5j3Dv-2Dn1i5UCvrSNhJ8KTgwHIRWChhyFJOUkUpTTQGOdw8nJtrLhPFCpYTYWKlJIhCjhWoSmoTPvXYc6oaht90R0LyqsKttX5L-zbWCjBJUwRggfVKzeSX51q8cfdyrbP-tjl-B6T-BXKZp8ruWqtVyIlry-hxr5n8huCx4XhbZ3lHvGU1hT2TY8Oq9Qauc7sOsO3rx-9o0bN8wW3qV0aKMmmz-D8UqYew617GumXoCniSaxlJTq2G6KRwLpgEpskftSHiaoAe9LJTJZAKnbfR5fWA4BjZkRL3PibcDbinSao4f8jeids4SKgs-u7LhdHLFPwxN2Rke9QRdPGGlAszQVVkSaObMFot3VnMSGL6fzh7_EOqMj97D776RvYGPU7bEP_eHgJWyachHno4xNqC1mS_XKlGQL8dq5ggefV20_t_t0OrI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+Invariant+Scattering&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Mallat%2C+St%C3%A9phane&rft.date=2012-10-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=65&rft.issue=10&rft.spage=1331&rft.epage=1398&rft_id=info:doi/10.1002%2Fcpa.21413&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_21413 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |