Low‐light image enhancement via lightweight custom non‐linear transform network

Convolutional neural network (CNN)‐based models have shown significant progress in low light image enhancement. However, many existing models possess a large number of parameters, making them unsuitable for deployment on terminal devices. Moreover, adjustments to brightness, contrast, and colour in...

Full description

Saved in:
Bibliographic Details
Published inElectronics letters Vol. 60; no. 19
Main Author Li, Yang
Format Journal Article
LanguageEnglish
Published Wiley 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Convolutional neural network (CNN)‐based models have shown significant progress in low light image enhancement. However, many existing models possess a large number of parameters, making them unsuitable for deployment on terminal devices. Moreover, adjustments to brightness, contrast, and colour in images are often non‐linear, and convolution is not the best at capturing complex non‐linear relationships in image data. To address these issues, a model based on an end‐to‐end custom non‐linear transform network (CNTNet) is proposed. CNTNet combines a custom non‐linear transform layer with CNN layers to achieve image contrast and detail enhancement. The CNT layer in this model introduces transformation parameters at multiple scales to manipulate input images within various ranges. CNTNet progressively processes images by stacking multiple non‐linear transform layers and convolutional layers while integrating residual connections to capture and leverage subtle image features. The final output is generated through convolutional layers to obtain enhanced images. Experimental results of CNTNet demonstrate that, while maintaining a comparable level of image quality evaluation metrics to mainstream models, it significantly reduces the parameter count to only 2K. Piecewise linear mapping and convolution are both advantageous tools in image enhancement. This paper designs a network called custom non‐linear transform network, which combines trainable non‐linear mapping with a convolutional neural network. The advantage of trainable nonlinear mapping is its lightweight nature and effective adjustment of image brightness. Therefore, custom non‐linear transform network significantly reduces the number of model parameters while maintaining enhancement performance.
AbstractList Convolutional neural network (CNN)‐based models have shown significant progress in low light image enhancement. However, many existing models possess a large number of parameters, making them unsuitable for deployment on terminal devices. Moreover, adjustments to brightness, contrast, and colour in images are often non‐linear, and convolution is not the best at capturing complex non‐linear relationships in image data. To address these issues, a model based on an end‐to‐end custom non‐linear transform network (CNTNet) is proposed. CNTNet combines a custom non‐linear transform layer with CNN layers to achieve image contrast and detail enhancement. The CNT layer in this model introduces transformation parameters at multiple scales to manipulate input images within various ranges. CNTNet progressively processes images by stacking multiple non‐linear transform layers and convolutional layers while integrating residual connections to capture and leverage subtle image features. The final output is generated through convolutional layers to obtain enhanced images. Experimental results of CNTNet demonstrate that, while maintaining a comparable level of image quality evaluation metrics to mainstream models, it significantly reduces the parameter count to only 2K.
Abstract Convolutional neural network (CNN)‐based models have shown significant progress in low light image enhancement. However, many existing models possess a large number of parameters, making them unsuitable for deployment on terminal devices. Moreover, adjustments to brightness, contrast, and colour in images are often non‐linear, and convolution is not the best at capturing complex non‐linear relationships in image data. To address these issues, a model based on an end‐to‐end custom non‐linear transform network (CNTNet) is proposed. CNTNet combines a custom non‐linear transform layer with CNN layers to achieve image contrast and detail enhancement. The CNT layer in this model introduces transformation parameters at multiple scales to manipulate input images within various ranges. CNTNet progressively processes images by stacking multiple non‐linear transform layers and convolutional layers while integrating residual connections to capture and leverage subtle image features. The final output is generated through convolutional layers to obtain enhanced images. Experimental results of CNTNet demonstrate that, while maintaining a comparable level of image quality evaluation metrics to mainstream models, it significantly reduces the parameter count to only 2K.
Convolutional neural network (CNN)‐based models have shown significant progress in low light image enhancement. However, many existing models possess a large number of parameters, making them unsuitable for deployment on terminal devices. Moreover, adjustments to brightness, contrast, and colour in images are often non‐linear, and convolution is not the best at capturing complex non‐linear relationships in image data. To address these issues, a model based on an end‐to‐end custom non‐linear transform network (CNTNet) is proposed. CNTNet combines a custom non‐linear transform layer with CNN layers to achieve image contrast and detail enhancement. The CNT layer in this model introduces transformation parameters at multiple scales to manipulate input images within various ranges. CNTNet progressively processes images by stacking multiple non‐linear transform layers and convolutional layers while integrating residual connections to capture and leverage subtle image features. The final output is generated through convolutional layers to obtain enhanced images. Experimental results of CNTNet demonstrate that, while maintaining a comparable level of image quality evaluation metrics to mainstream models, it significantly reduces the parameter count to only 2K. Piecewise linear mapping and convolution are both advantageous tools in image enhancement. This paper designs a network called custom non‐linear transform network, which combines trainable non‐linear mapping with a convolutional neural network. The advantage of trainable nonlinear mapping is its lightweight nature and effective adjustment of image brightness. Therefore, custom non‐linear transform network significantly reduces the number of model parameters while maintaining enhancement performance.
Author Li, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-0087-3472
  surname: Li
  fullname: Li, Yang
  email: liyang_19901222@163.com
  organization: Jiangsu Vocational College of Information Technology
BookMark eNp9UMtOwzAQtFCRaAsXviBnpBY_6_iIqgKVInEAJG7WOlm3KWmMnEDVG5_AN_IlpCniyGm1szOzoxmRQR1qJOSS0Smj0lxjVfGpplSJEzJkQtGJYexlQIaUMjFRzMgzMmqaTbdyY_SQPGZh9_35VZWrdZuUW1hhgvUa6hy3WLfJRwlJf9thz8jfmzZsk-5rL6oRYtJGqBsfYgdjuwvx9ZyceqgavPidY_J8u3ia30-yh7vl_Cab5PKQBrRH7wSTRhuqcqm1mznKCjPj0oMpCnTGu2LGuRDoEHSaAkgFKUiac4ViTJZH3yLAxr7FLn7c2wCl7YEQVxZiW-YVWiWAzpzXgndqyUXKc6-404WTKk152nldHb3yGJomov_zY9QeqrWHam1fbUdmR_KurHD_D9MusowfNT97VYAg
Cites_doi 10.1016/j.engappai.2022.105532
10.1109/TIP.2016.2639450
10.1364/JOSA.61.000001
10.1109/TIP.2019.2910412
10.1007/s11263-021-01466-8
10.1109/ICIP.1996.560995
10.1109/TCSVT.2020.2967424
10.1016/j.patrec.2018.01.010
10.1109/CVPR.2019.00446
10.1117/12.805805
10.1109/TIP.2021.3051462
10.1007/s11263-020-01418-8
10.1109/CVPR42600.2020.00185
10.1016/j.patcog.2016.06.008
10.1109/TMM.2020.3037526
10.1609/aaai.v37i3.25364
10.1016/j.jvcir.2022.103712
10.1088/1742-6596/1019/1/012026
10.1109/CVPR.2018.00068
10.1002/cpe.5184
10.1007/978-3-030-58595-2_30
10.1007/978-3-031-08277-1_17
10.1007/s11548-020-02120-3
10.1145/3343031.3350926
10.1109/CVPR52688.2022.00555
10.1109/CVPR42600.2020.00313
10.1109/I2MTC.2012.6229639
10.1109/JSYST.2019.2952459
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ell2.70053
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_53a06bf7328a442382cf52b7db458828
10_1049_ell2_70053
ELL270053
Genre shortCommunication
GrantInformation_xml – fundername: Water Conservancy Science and Technology Project of Jiangsu Province
  funderid: 2022058
– fundername: Research Project of Jiangsu Vocational College of Information Technology
  funderid: 10072020028(001)
– fundername: 2021 Jiangsu Higher Education Teaching Reform Research Project
– fundername: Jiangsu Province Higher Vocational Colleges Engineering Technology Research and Development Center
  funderid: 11
– fundername: “Taihu Light” Science and Technology Research (Fundamental Research) Project
  funderid: K20221052; K20231011
– fundername: Jiangsu Province Higher Vocational Education High‐Level Professional Group Construction Project Funding
  funderid: 1
– fundername: Political Reform of the “4+N” Mixed Curriculum of the Program Design Foundation
  funderid: 2021JSJG504
– fundername: Jiangsu Provincial Colleges of Natural Science General Program
  funderid: 21KJB520006; 22KJB520017; 24KJB520009
– fundername: Jiangsu Province Vocational Education ‘Double Qualified’ Master Teacher Studio
  funderid: 31
– fundername: Jiangsu Information Vocational Technology College Research Platform
  funderid: 2
GroupedDBID -4A
-~X
.DC
0R~
0ZK
1OC
24P
29G
2QL
3EH
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ELQJU
ESX
F5P
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
IFIPE
IPLJI
ITC
JAVBF
K1G
K7-
L6V
LAI
LXO
LXU
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P0-
P2P
P62
PTHSS
QWB
R4Z
RIE
RIG
RNS
RUI
TN5
U5U
UNMZH
VH1
WH7
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
PUEGO
WIN
ID FETCH-LOGICAL-c4013-a7fefb31497905c477b6b01d9624fa9ddeb9fbd62233ebea788aa45a8a40c25e3
IEDL.DBID 24P
ISSN 0013-5194
IngestDate Wed Aug 27 01:20:03 EDT 2025
Sun Jul 06 05:02:28 EDT 2025
Wed Jan 22 17:16:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4013-a7fefb31497905c477b6b01d9624fa9ddeb9fbd62233ebea788aa45a8a40c25e3
ORCID 0000-0002-0087-3472
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.70053
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_53a06bf7328a442382cf52b7db458828
crossref_primary_10_1049_ell2_70053
wiley_primary_10_1049_ell2_70053_ELL270053
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2017; 61
2021; PP
1971; 61
2012
2017; 26
2019; 31
2023; 37
2018; 104
2021; 129
2019; 14
2009; 7240
2020; 15
2005
2018; 1019
2021; 30
2022
2020
2019; 28
2023; 117
2019
2018
2016
2020; 23
2023; 90
1996; 3
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 1780
  year: 2020
  end-page: 1789
  article-title: Zero‐reference deep curve estimation for low‐light image enhancement
– volume: 14
  start-page: 1592
  issue: 2
  year: 2019
  end-page: 1601
  article-title: Heterogeneous system‐on‐chip‐based lattice‐Boltzmann visual simulation system
  publication-title: IEEE Syst. J.
– volume: 31
  issue: 17
  year: 2019
  article-title: Zynq SoC based acceleration of the lattice Boltzmann method
  publication-title: Concurr. Comput.: Pract. Exp.
– volume: 23
  start-page: 4093
  year: 2020
  end-page: 4105
  article-title: TBEFN: a two‐branch exposure‐fusion network for low‐light image enhancement
  publication-title: IEEE Trans. Multimedia
– volume: 61
  start-page: 1
  issue: 1
  year: 1971
  end-page: 11
  article-title: Lightness and retinex theory
  publication-title: Josa
– year: 2005
  article-title: Single‐scale retinex using digital signal processors
– volume: 30
  start-page: 2340
  year: 2021
  end-page: 2349
  article-title: Enlightengan: deep light enhancement without paired supervision
  publication-title: IEEE Trans. Image Process.
– volume: 61
  start-page: 650
  year: 2017
  end-page: 662
  article-title: Llnet: A deep autoencoder approach to natural low‐light image enhancement
  publication-title: Pattern Recognit.
– volume: 129
  start-page: 1153
  year: 2021
  end-page: 1184
  article-title: Benchmarking low‐light image enhancement and beyond
  publication-title: Int. J. Comput. Vision
– start-page: 586
  year: 2018
  end-page: 595
  article-title: The unreasonable effectiveness of deep features as a perceptual metric
– volume: 28
  start-page: 4364
  issue: 9
  year: 2019
  end-page: 4375
  article-title: Low‐light image enhancement via a deep hybrid network
  publication-title: IEEE Trans. Image Process.
– year: 2016
– volume: 117
  year: 2023
  article-title: Automated liver tissues delineation techniques: a systematic survey on machine learning current trends and future orientations
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 5627
  year: 2022
  end-page: 5636
  article-title: Toward fast, flexible, and robust low‐light image enhancement
– start-page: 204
  year: 2022
  end-page: 212
  article-title: Scheduling techniques for liver segmentation: Reducelronplateau vs onecyclelr
– volume: 3
  start-page: 1003
  year: 1996
  end-page: 1006
  article-title: Multi‐scale retinex for color image enhancement
– start-page: 3060
  year: 2020
  end-page: 3069
  article-title: From fidelity to perceptual quality: a semi‐supervised approach for low‐light image enhancement
– volume: 129
  start-page: 2175
  issue: 11
  year: 2021
  end-page: 2193
  article-title: Attention guided low‐light image enhancement with a large scale low‐light simulation dataset
  publication-title: Int. J. Comput. Vision
– start-page: 4326
  year: 2019
  end-page: 4334
  article-title: A general and adaptive robust loss function
– volume: 7240
  start-page: 212
  year: 2009
  end-page: 223
  article-title: SS‐SSIM and MS‐SSIM for digital cinema applications
– volume: 37
  start-page: 2654
  year: 2023
  end-page: 2662
  article-title: Ultra‐high‐definition low‐light image enhancement: a benchmark and transformer‐based method
– year: 2022
– volume: 1019
  year: 2018
  article-title: A review of histogram equalization techniques in image enhancement application
– volume: 26
  start-page: 982
  issue: 2
  year: 2017
  end-page: 993
  article-title: Lime: Low‐light image enhancement via illumination map estimation
  publication-title: IEEE Trans. Image Process.
– volume: PP
  start-page: 1
  issue: 99
  year: 2021
  end-page: 1
  article-title: Retinexdip: A unified deep framework for low‐light image enhancement
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 492
  year: 2020
  end-page: 511
  article-title: Learning enriched features for real image restoration and enhancement
– start-page: 985
  year: 2012
  end-page: 990
  article-title: A universal hypercomplex color image quality index
– start-page: 1632
  year: 2019
  end-page: 1640
  article-title: Kindling the darkness: a practical low‐light image enhancer
– volume: 90
  year: 2023
  article-title: R2rnet: low‐light image enhancement via real‐low to real‐normal network
  publication-title: J. Visual Commun. Image Represent.
– volume: 15
  start-page: 629
  year: 2020
  end-page: 639
  article-title: Lattice‐Boltzmann interactive blood flow simulation pipeline
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 104
  start-page: 15
  year: 2018
  end-page: 22
  article-title: Lightennet: a convolutional neural network for weakly illuminated image enhancement
  publication-title: Pattern Recognit. Lett.
– ident: e_1_2_9_5_1
  doi: 10.1016/j.engappai.2022.105532
– ident: e_1_2_9_28_1
  doi: 10.1109/TIP.2016.2639450
– ident: e_1_2_9_14_1
– ident: e_1_2_9_8_1
  doi: 10.1364/JOSA.61.000001
– ident: e_1_2_9_4_1
  doi: 10.1109/TIP.2019.2910412
– ident: e_1_2_9_7_1
  doi: 10.1007/s11263-021-01466-8
– ident: e_1_2_9_10_1
  doi: 10.1109/ICIP.1996.560995
– ident: e_1_2_9_11_1
  doi: 10.1109/TCSVT.2020.2967424
– ident: e_1_2_9_17_1
  doi: 10.1016/j.patrec.2018.01.010
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR.2019.00446
– ident: e_1_2_9_25_1
  doi: 10.1117/12.805805
– ident: e_1_2_9_18_1
  doi: 10.1109/TIP.2021.3051462
– ident: e_1_2_9_6_1
  doi: 10.1007/s11263-020-01418-8
– ident: e_1_2_9_16_1
– ident: e_1_2_9_2_1
  doi: 10.1109/CVPR42600.2020.00185
– ident: e_1_2_9_13_1
  doi: 10.1016/j.patcog.2016.06.008
– ident: e_1_2_9_30_1
  doi: 10.1109/TMM.2020.3037526
– ident: e_1_2_9_15_1
  doi: 10.1609/aaai.v37i3.25364
– ident: e_1_2_9_27_1
  doi: 10.1016/j.jvcir.2022.103712
– ident: e_1_2_9_12_1
  doi: 10.1088/1742-6596/1019/1/012026
– ident: e_1_2_9_21_1
  doi: 10.1109/CVPR.2018.00068
– ident: e_1_2_9_33_1
  doi: 10.1002/cpe.5184
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-030-58595-2_30
– ident: e_1_2_9_20_1
  doi: 10.1007/978-3-031-08277-1_17
– ident: e_1_2_9_31_1
  doi: 10.1007/s11548-020-02120-3
– ident: e_1_2_9_22_1
– ident: e_1_2_9_26_1
  doi: 10.1145/3343031.3350926
– ident: e_1_2_9_3_1
  doi: 10.1109/CVPR52688.2022.00555
– ident: e_1_2_9_19_1
  doi: 10.1109/CVPR42600.2020.00313
– ident: e_1_2_9_9_1
– ident: e_1_2_9_24_1
  doi: 10.1109/I2MTC.2012.6229639
– ident: e_1_2_9_32_1
  doi: 10.1109/JSYST.2019.2952459
SSID ssj0012997
Score 2.4421616
Snippet Convolutional neural network (CNN)‐based models have shown significant progress in low light image enhancement. However, many existing models possess a large...
Abstract Convolutional neural network (CNN)‐based models have shown significant progress in low light image enhancement. However, many existing models possess...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms image and vision processing and display technology
image enhancement
multimedia computing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXAT0Ja7fZPJqjSkuR6kULvYVkk2ChXYu09upP8Df6S5xkd6W96MXbsg-yfDNkvkkm3yB0SSzjHW_ThBCXJjSzNNFBCdNyoAcZT7WOzSYeHnl_SO9HbLTS6ivUhJXywCVwLZbplBsfNGU0hdjfIblnxAhrwhlLEo_5Qsyrk6lq_wAmWVH3LgCOQmthUipbbjIh1yI431ooior96ww1hpjeDtquuCG-Kf9pF224Yg9trSgG7qOnwevy6-NzElJqPJ7CZIBd8RIsF1b58PtY4_hsGVc8cb4AbjfFkOLHjwpwazyvqSouyhLwAzTsdZ_v-knVFyHJQzYEYHrnTQa5TVDXyqkQhpu0bSUn1GsJE5aR3lgOkT8DG2nIcrWmTAOAaU6Yyw5RAwZ2RwhTYZgLlaSWOUhEnDTE-7bo8ByiFpVZE13UEKlZKX-h4rY1lSoAqSKQTXQb0Pt5I0hWxxtgSFUZUv1lyCa6itj_Mo7qDgYkXh3_x4gnaJMARSlL805RY_62cGdAMebmPHrTN1L-zJ4
  priority: 102
  providerName: Directory of Open Access Journals
Title Low‐light image enhancement via lightweight custom non‐linear transform network
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.70053
https://doaj.org/article/53a06bf7328a442382cf52b7db458828
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsQwEB50vehB_MX1ZwnoSajWNE1b8LLKisgqglbES0naRBfWKsuue_URfEafxJl0u-pF8FbShMBMMvNNMvkGYI8XoYxt4XucG98TQSE8RUyYhUR4EEhfKVds4vJKnqfi4j68n4Hj-i1MxQ8xPXCjneHsNW1wpasqJAhqSYn9Pj-IaBHNwhy9raWEPi6up3cIaGijun4B4hRRk5OK5PB77C935Fj7f6NU52bOlmBxgg9Zu1LoMsyYcgUWfrAGrsJN92X8-f7Rp7Ca9Z7RIDBTPpH26KSPvfUUc__G7tST5SPEd88Mw3w3qMSlzYY1XGVllQa-BulZ5_b03JvURvByiohQoNZYHWB8QwxbuYgiLbV_VCSSC6sSNFo6sbqQ6P0D1JPCSFcpEapYCT_noQnWoYETmw1gItKhoWzSIjQYjJhEc2uPoljm6LlEEjRhtxZR9lpRYGTu6lokGQkyc4JswglJb9qDaKtdw8vgMZvsgiwMlC-1JYIgJRDIxTy3IddRoenBLI-bsO9k_8c8Wafb5e5r8z-dt2CeIxyp0vC2oTEcjMwOwomhbrlV04K59l36kLZcUP4FrwbIfg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROFAOiJ9WXX4t0V4qhQbHcZIDB361QOBStkJcUjuxC9KSRbCw4sYj8CK8FE_CjJMscKnEgVuUOIkzmbG_GY-_AfjOi1DGtvA9zo3viaAQniImzEIiPAikr5QrNnF4JNsdsX8SnozAY7MXpuKHGAbcyDLceE0GTgHpyuEURJJpul2-GpEW1TmVB-ZugB7b9freNv7eH5zv7hxvtb26qICXkyuBPbHG6gAdA6KmykUUaan9tSKRXFiVoLXrxOpC4rQZ4AcqdBGVEqGKlfBzHpoAn_sJxghGoRGNbfzpnHaGyxY4tkdNyQSERqLhQxXJr5fevpkBXaGAt8DYzWy7UzBZQ1K2UenQNIyYcgYmXhEVzsLvtDd4un_okifPzi9wDGKmPCOFoeAiuz1XzF0buEAry28QUl6wsle6m0qUG-s3CJmVVeb5F-h8iOS-wii-2HwDJiIdGkpgLUKD_o9JNLd2LYpljpOlSIIWrDQiyi4r1o3MrZaLJCNBZk6QLdgk6Q1bEFO2O9G7-pfVhpeFgfKltsRJpARix5jnNuQ6KjTt0eVxC3462f_nPdlOmnJ3NPeexssw3j4-TLN07-hgHj5zRENVFuACjPavbswiopm-Xqp1iMHfj1bbZ_riBec
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRarKAfFoxfK0RLkgpQ2O7SQHDrxWPLaoEt0K9RLs2AakJYtgYcWNn8AP4VfxSxg7yQIXpB64RYmTOJMZzzf2-BuA71RzkVgdBpSaMGCRZoF0TJhaIDyIRCilLzbx61Dsdtj-MT8egcd6L0zJDzGccHOW4cdrZ-CX2pbxJnMcmabbpT9ip0RVSuWBuRtgwHa9vreNf3eF0tbOn63doKopEOQuksCOWGNVhHGBY6bKWRwrocI1nQrKrEzR2FVqlRboNSP8PokRopSMy0SyMKfcRPjcTzDK0Q2GDRjd-Nv51xmuWuDQHtcVExAZsZoOlaU_X3r7xgH6OgFvcbF3bK0JGK8QKdkoVWgSRkwxBWOveAqn4ajdGzzdP3RdIE_OL3AIIqY4c_ri5hbJ7bkk_trAz7OS_AYR5QUpeoW_qUC5kX4NkElRJp5_hc6HSO4bNPDFZgYIixU3Ln9Vc4Phj0kVtXYtTkSOvpKlUROWaxFllyXpRuYXy1maOUFmXpBN2HTSG7ZwRNn-RO_qNKvsLuORDIWyjpJIMoSOCc0tpyrWym3RpUkTVr3s33lPttNuU380-z-Nl-Dz7-1W1t47PJiDLxSxUJkDOA-N_tWNWUAs01eLlQoROPlorX0GJS8FBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90light+image+enhancement+via+lightweight+custom+non%E2%80%90linear+transform+network&rft.jtitle=Electronics+letters&rft.au=Li%2C+Yang&rft.date=2024-10-01&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=60&rft.issue=19&rft_id=info:doi/10.1049%2Fell2.70053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ell2_70053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon