DiatOmicBase: a versatile gene‐centered platform for mining functional omics data in diatom research
SUMMARY Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for explo...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 121; no. 6; pp. e70061 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2025
Wiley John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome‐enabled datasets have been generated, based on RNA‐Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior‐art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non‐coding RNAs, and read densities from RNA‐Seq experiments. We developed a semi‐automatically updated transcriptomic module to explore both publicly available RNA‐Seq experiments and users' private datasets. Using gene‐level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co‐expression network analysis. Users can create heatmaps to visualize pre‐computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum, we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community.
Significance Statement
In recent years, diatoms have become the subject of increasing interest because of their ecological importance and their biotechnological potential for natural products such as pigments and polyunsaturated fatty acids. Here, we present an interactive web‐based server that integrates public diatom omics (genomics, transcriptomics, epigenomics, proteomics, sequence variants) data to connect individual diatom genes to broader‐scale functional processes. |
---|---|
AbstractList | Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome-enabled datasets have been generated, based on RNA-Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior-art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non-coding RNAs, and read densities from RNA-Seq experiments. We developed a semi-automatically updated transcriptomic module to explore both publicly available RNA-Seq experiments and users' private datasets. Using gene-level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co-expression network analysis. Users can create heatmaps to visualize pre-computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum, we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community. Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome-enabled datasets have been generated, based on RNA-Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior-art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non-coding RNAs, and read densities from RNA-Seq experiments. We developed a semi-automatically updated transcriptomic module to explore both publicly available RNA-Seq experiments and users' private datasets. Using gene-level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co-expression network analysis. Users can create heatmaps to visualize pre-computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum, we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community.Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome-enabled datasets have been generated, based on RNA-Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior-art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non-coding RNAs, and read densities from RNA-Seq experiments. We developed a semi-automatically updated transcriptomic module to explore both publicly available RNA-Seq experiments and users' private datasets. Using gene-level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co-expression network analysis. Users can create heatmaps to visualize pre-computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum, we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community. Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome‐enabled datasets have been generated, based on RNA‐Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior‐art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non‐coding RNAs, and read densities from RNA‐Seq experiments. We developed a semi‐automatically updated transcriptomic module to explore both publicly available RNA‐Seq experiments and users' private datasets. Using gene‐level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co‐expression network analysis. Users can create heatmaps to visualize pre‐computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum, we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community. Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome‐enabled datasets have been generated, based on RNA‐Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior‐art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non‐coding RNAs, and read densities from RNA‐Seq experiments. We developed a semi‐automatically updated transcriptomic module to explore both publicly available RNA‐Seq experiments and users' private datasets. Using gene‐level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co‐expression network analysis. Users can create heatmaps to visualize pre‐computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum , we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community. In recent years, diatoms have become the subject of increasing interest because of their ecological importance and their biotechnological potential for natural products such as pigments and polyunsaturated fatty acids. Here, we present an interactive web‐based server that integrates public diatom omics (genomics, transcriptomics, epigenomics, proteomics, sequence variants) data to connect individual diatom genes to broader‐scale functional processes. SUMMARYDiatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome‐enabled datasets have been generated, based on RNA‐Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior‐art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non‐coding RNAs, and read densities from RNA‐Seq experiments. We developed a semi‐automatically updated transcriptomic module to explore both publicly available RNA‐Seq experiments and users' private datasets. Using gene‐level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co‐expression network analysis. Users can create heatmaps to visualize pre‐computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum, we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community. Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome‐enabled datasets have been generated, based on RNA‐Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior‐art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non‐coding RNAs, and read densities from RNA‐Seq experiments. We developed a semi‐automatically updated transcriptomic module to explore both publicly available RNA‐Seq experiments and users' private datasets. Using gene‐level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co‐expression network analysis. Users can create heatmaps to visualize pre‐computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum , we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community. In recent years, diatoms have become the subject of increasing interest because of their ecological importance and their biotechnological potential for natural products such as pigments and polyunsaturated fatty acids. Here, we present an interactive web‐based server that integrates public diatom omics (genomics, transcriptomics, epigenomics, proteomics, sequence variants) data to connect individual diatom genes to broader‐scale functional processes. SUMMARY Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome‐enabled datasets have been generated, based on RNA‐Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior‐art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non‐coding RNAs, and read densities from RNA‐Seq experiments. We developed a semi‐automatically updated transcriptomic module to explore both publicly available RNA‐Seq experiments and users' private datasets. Using gene‐level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co‐expression network analysis. Users can create heatmaps to visualize pre‐computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum, we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community. Significance Statement In recent years, diatoms have become the subject of increasing interest because of their ecological importance and their biotechnological potential for natural products such as pigments and polyunsaturated fatty acids. Here, we present an interactive web‐based server that integrates public diatom omics (genomics, transcriptomics, epigenomics, proteomics, sequence variants) data to connect individual diatom genes to broader‐scale functional processes. |
Author | Vandepoele, Klaas Cruz de Carvalho, Helena Fabris, Michele Vincens, Pierre Zweig, Nathanaël Bowler, Chris Villar, Emilie Monteil, Raphael Dorrell, Richard G. Liu, Shun Falciatore, Angela Duchene, Carole |
AuthorAffiliation | 3 Faculté des Sciences et Technologie Université Paris Est‐Créteil (UPEC) Créteil 94000 France 4 Institut de Biologie Physico‐Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS) Sorbonne Université Paris 75005 France 9 VIB Center for AI & Computational Biology, VIB Ghent Belgium 11 Present address: Guangzhou Marine Geological Survey Guangzhou China 1 Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM Université PSL Paris 75005 France 2 EV Consulting Marseille France 10 Present address: Department of Algal Development and Evolution Max Planck Institute for Biology Tuebingen 72076 Germany 5 CNRS, IBPS, CQSB‐ Department of Computational, Quantitative and Synthetic Biology, UMR7238 Sorbonne Université 4 place Jussieu Paris 75005 France 6 SDU Biotechnology, Department of Green Technology University of Southern Denmark Campusvej 55 Odense M 5230 Denmark 7 Depar |
AuthorAffiliation_xml | – name: 2 EV Consulting Marseille France – name: 6 SDU Biotechnology, Department of Green Technology University of Southern Denmark Campusvej 55 Odense M 5230 Denmark – name: 11 Present address: Guangzhou Marine Geological Survey Guangzhou China – name: 1 Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM Université PSL Paris 75005 France – name: 5 CNRS, IBPS, CQSB‐ Department of Computational, Quantitative and Synthetic Biology, UMR7238 Sorbonne Université 4 place Jussieu Paris 75005 France – name: 3 Faculté des Sciences et Technologie Université Paris Est‐Créteil (UPEC) Créteil 94000 France – name: 7 Department of Plant Biotechnology and Bioinformatics Ghent University Technologiepark 71 Ghent 9052 Belgium – name: 9 VIB Center for AI & Computational Biology, VIB Ghent Belgium – name: 4 Institut de Biologie Physico‐Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS) Sorbonne Université Paris 75005 France – name: 10 Present address: Department of Algal Development and Evolution Max Planck Institute for Biology Tuebingen 72076 Germany – name: 8 VIB‐UGent Center for Plant Systems Biology Technologiepark 71 Ghent 9052 Belgium |
Author_xml | – sequence: 1 givenname: Emilie orcidid: 0000-0002-6075-8003 surname: Villar fullname: Villar, Emilie organization: EV Consulting – sequence: 2 givenname: Nathanaël surname: Zweig fullname: Zweig, Nathanaël organization: Université PSL – sequence: 3 givenname: Pierre surname: Vincens fullname: Vincens, Pierre organization: Université PSL – sequence: 4 givenname: Helena surname: Cruz de Carvalho fullname: Cruz de Carvalho, Helena organization: Université Paris Est‐Créteil (UPEC) – sequence: 5 givenname: Carole surname: Duchene fullname: Duchene, Carole organization: Sorbonne Université – sequence: 6 givenname: Shun surname: Liu fullname: Liu, Shun organization: Université PSL – sequence: 7 givenname: Raphael surname: Monteil fullname: Monteil, Raphael organization: Sorbonne Université – sequence: 8 givenname: Richard G. surname: Dorrell fullname: Dorrell, Richard G. organization: Sorbonne Université – sequence: 9 givenname: Michele orcidid: 0000-0003-2910-2089 surname: Fabris fullname: Fabris, Michele organization: University of Southern Denmark – sequence: 10 givenname: Klaas orcidid: 0000-0003-4790-2725 surname: Vandepoele fullname: Vandepoele, Klaas organization: VIB Center for AI & Computational Biology, VIB – sequence: 11 givenname: Chris surname: Bowler fullname: Bowler, Chris email: cbowler@biologie.ens.fr organization: Université PSL – sequence: 12 givenname: Angela surname: Falciatore fullname: Falciatore, Angela email: angela.falciatore@ibpc.fr organization: Sorbonne Université |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40089834$$D View this record in MEDLINE/PubMed https://hal.science/hal-05027476$$DView record in HAL |
BookMark | eNqNks1u1DAQxy1URLeFAy-ALHGhh7T-ShxzQaV8FLRSORSJm-V1JrteJfbWThb11kfgGXkSHLYUqISED7Zk_-Y___HMAdrzwQNCTyk5pnmdDJv1sSSkog_QjPKqLDjlX_bQjKiKFFJQto8OUloTQiWvxCO0LwipVc3FDLVvnBkuemdfmwQvscFbiMkMrgO8BA_fb75Z8ANEaPCmM0MbYo_zhnvnnV_idvR2cMGbDocsknBjBoOdx02WDT2OkMBEu3qMHramS_Dk9jxEn9-9vTw7L-YX7z-cnc4LKwilhWU8O6yV5JTactGqtmIAppRlbcqyUQsJZc2UMKxsuVFSiIYysI3gTC5qw_gherXT3YyLHprJezSd3kTXm3itg3H67xfvVnoZtppSRUlVqaxwtFNY3Ys7P53r6Y6UhEkhqy3N7IvbbDFcjZAG3btkoeuMhzAmzRkhTHFF_gOlUla5-qrO6PN76DqMMX_xRNVMECXp5PPZn5XeWf3V2t-F2BhSitDeIZToaWx0Hhv9c2wye7Jjv-bGX_8b1JefPu4ifgAJI8MJ |
Cites_doi | 10.1093/nar/gkac420 10.1016/j.margen.2015.10.011 10.1007/s10811‐021‐02376‐5 10.1186/s13059‐015‐0671‐8 10.1007/978-3-030-92499-7_21 10.1093/plphys/kiac455 10.1186/s12864‐021‐07666‐3 10.1128/aem.02097‐21 10.1016/j.ympev.2007.03.024 10.1371/journal.pbio.3001893 10.1016/S0005-2728(01)00205-5 10.1038/nature25982 10.1074/mcp.M114.043083 10.1038/s41396-019-0528-3 10.1038/75556 10.1186/1471-2105-9-393 10.3390/plants13111465 10.1007/s11120‐022‐00915‐w 10.1146/annurev-arplant-050718-095841 10.1111/tpj.16271 10.1073/pnas.1509523113 10.3389/fpls.2020.590949 10.1016/j.envint.2020.106262 10.7554/eLife.52770 10.1007/978-3-030-92499-7_26 10.1111/j.1529‐8817.2007.00384.x 10.1007/s11120-010-9579-z 10.1038/nature20803 10.1093/jxb/erx163 10.1038/ncomms3091 10.1016/j.cub.2014.12.004 10.1016/j.bbabio.2012.10.017 10.1073/pnas.1805243115 10.1016/j.cub.2020.11.073 10.5194/bg-18-1269-2021 10.1016/j.xgen.2022.100123 10.1038/ncomms15885 10.1016/j.tplants.2022.04.006 10.1073/pnas.1419818112 10.1007/s00438-006-0199-4 10.1038/s41467-019-12407-y 10.1111/jpy.13323 10.1007/978-3-030-92499-7 10.1016/j.tplants.2011.10.004 10.1371/journal.pgen.1006490 10.7717/peerj.13607 10.1038/s41586-024-08301-3 10.1093/jxb/eraa575 10.1038/s41467-019-12043-6 10.1038/s41598-018-23106-x 10.1038/s41580-020-00315-9 10.1126/science.adg7921 10.1126/sciadv.aar4536 10.1111/jpy.13342 10.1093/molbev/msaa182 10.1021/pr200600f 10.1111/jpy.13362 10.1016/j.bbabio.2020.148350 10.1111/jpy.13400 10.1038/nature14599 10.1038/s41598-020-65941-x 10.1093/bioinformatics/btt656 10.1104/pp.15.01300 10.1016/j.febslet.2012.07.026 10.1016/j.jmb.2004.05.028 10.1007/978-1-4939-1136-3_16 10.1038/s41598-023-35403-1 10.1515/hsz‐2020‐0197 10.1111/nph.13787 10.1016/j.tig.2022.11.001 10.1111/j.1574-6968.2001.tb10611.x 10.1371/journal.pone.0129081 10.1038/s41598-020-71002-0 10.1038/nature07539 10.1111/tpj.12734 10.1105/tpc.16.00910 10.1111/nph.19429 10.15252/embj.201696392 10.1038/s41467-020-17191-8 10.1016/j.molp.2018.08.005 10.1002/pld3.472 10.1105/tpc.19.00158 10.1111/nph.17129 10.1080/0269249X.2013.877083 10.1080/0269249X.2014.883727 10.1093/jxb/erq136 10.1038/s41598-023-29489-w 10.1186/gb‐2012‐13‐7‐r66 10.1073/pnas.1819660116 10.1111/1462‐2920.12174 10.1016/j.cell.2024.09.013 10.1093/nar/gkm259 10.1186/1471‐2164‐15‐698 10.1080/09670262.2020.1744039 10.1126/science.1101156 10.1186/s13059‐016‐0924‐1 10.1038/nature10074 10.1002/lno.10800 10.1016/j.margen.2015.05.018 10.1002/0470857897.ch8 10.1016/j.isci.2020.101730 10.1016/j.cell.2024.09.025 10.1093/plcell/koae168 10.1007/978-3-030-92499-7_16 10.1186/s13059‐014‐0550‐8 10.1186/s12859‐018‐2486‐6 10.1007/s10126‐020‐09976‐1 10.1073/pnas.0711370105 10.1111/nph.15685 10.1093/pcp/pcad023 10.1371/journal.pbio.1001889 10.1016/j.gene.2011.02.001 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by Society for Experimental Biology and John Wiley & Sons Ltd. 2025 The Author(s). The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NonCommercial |
Copyright_xml | – notice: 2025 The Author(s). published by Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2025 The Author(s). The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NonCommercial |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 1XC VOOES 5PM |
DOI | 10.1111/tpj.70061 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
DocumentTitleAlternate | DiatOmicBase |
EISSN | 1365-313X |
EndPage | n/a |
ExternalDocumentID | PMC11910669 oai_HAL_hal_05027476v1 40089834 10_1111_tpj_70061 TPJ70061 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Fonds Wetenschappelijk Onderzoek funderid: 01G01323; 01G01715; I002819N – fundername: Villum Fonden funderid: 37521 – fundername: European Research Council funderid: 101039760 – fundername: Agence Nationale de la Recherche funderid: ANR 19‐CE43‐0011‐01; ANR‐10‐INBS‐02; ANR‐10‐LABX‐54; ANR‐11‐IDEX‐0001‐02; ANR‐11‐LABX‐0011‐01; ANR‐19‐CE20‐0020 – fundername: Gordon and Betty Moore Foundation funderid: GBMF8752 – fundername: Fondation Bettencourt Schueller – fundername: H2020 European Research Council funderid: 835067 – fundername: Horizon Europe BlueRemediomics funderid: 101082304 – fundername: Villum Fonden grantid: 37521 – fundername: Fonds Wetenschappelijk Onderzoek grantid: 01G01715 – fundername: Agence Nationale de la Recherche grantid: ANR 19-CE43-0011-01 – fundername: H2020 European Research Council grantid: 835067 – fundername: Agence Nationale de la Recherche grantid: ANR-10-INBS-02 – fundername: Agence Nationale de la Recherche grantid: ANR-19-CE20-0020 – fundername: European Research Council grantid: 101039760 – fundername: Agence Nationale de la Recherche grantid: ANR-10-LABX-54 – fundername: Agence Nationale de la Recherche grantid: ANR-11-IDEX-0001-02 – fundername: Horizon Europe BlueRemediomics grantid: 101082304 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c4011-c23736897311c5bf9f62eea5758a55d9b7e58294a25f3a9744d12ecd4327b8a23 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Thu Aug 21 18:33:46 EDT 2025 Tue Aug 26 06:22:03 EDT 2025 Fri Jul 11 18:36:50 EDT 2025 Fri Jul 11 16:04:17 EDT 2025 Fri Jul 25 19:40:04 EDT 2025 Mon Jul 21 06:04:00 EDT 2025 Tue Jul 01 05:16:26 EDT 2025 Sat Mar 29 09:27:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Thalassiosira pseudonana ecotype variants diatoms RNA‐Seq datasets Phaeodactylum tricornutum genome portal genome browser gene models histone marks protein domains non‐coding RNAs RNA-Seq datasets noncoding RNAs |
Language | English |
License | Attribution-NonCommercial 2025 The Author(s). The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4011-c23736897311c5bf9f62eea5758a55d9b7e58294a25f3a9744d12ecd4327b8a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6075-8003 0000-0003-2910-2089 0000-0003-4790-2725 0000-0002-2223-3556 0000-0003-3835-6187 0000-0003-3318-9578 0000-0002-6719-9347 0000-0002-4339-7787 0000-0001-6263-9115 0000-0003-1827-1792 0000-0002-3477-4106 0009-0002-6575-0147 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.70061 |
PMID | 40089834 |
PQID | 3182409719 |
PQPubID | 31702 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11910669 hal_primary_oai_HAL_hal_05027476v1 proquest_miscellaneous_3200293901 proquest_miscellaneous_3177623768 proquest_journals_3182409719 pubmed_primary_40089834 crossref_primary_10_1111_tpj_70061 wiley_primary_10_1111_tpj_70061_TPJ70061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 2025-Mar 20250301 2025-03 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2025 |
Publisher | Blackwell Publishing Ltd Wiley John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: John Wiley and Sons Inc |
References | 2011; 476 2013; 4 2010; 106 2019; 10 2024; 187 2020; 14 2008; 105 2022; 20 2020; 11 2014; 29 2020; 10 2024; 36 2021; 72 2025; 637 2012; 13 2022; 27 2011; 473 2023; 64 2018; 8 2018; 4 2015; 81 2014; 15 2007; 4 2014; 12 2012; 586 2021; 146 2023; 59 2022; 190 2017; 68 2024; 241 2020; 37 2015; 524 2020; 32 2022; 88 2024; 13 2004; 306 2016; 17 2019; 222 2009; 457 2016; 12 2018; 19 2022; 6 2015; 112 2018; 115 2016; 210 2002; 247 2020; 23 2022; 10 2020; 22 2022; 2 2014; 30 2016; 170 2017; 541 2018; 11 2016; 26 2017; 8 2021; 22 2023; 39 2023; 382 2008; 9 2020; 401 2001; 1507 2011; 10 2020; 55 2011; 16 2007; 35 2010; 61 2013; 15 2021; 31 2021; 33 2017; 36 2016; 113 2019; 116 2022; 153 2004; 340 2015; 14 2023; 13 2019; 70 2015; 16 2000; 25 2022; 50 2021; 229 2015; 10 2009 2018; 63 2017; 29 2015; 24 2015; 25 2021; 10 2021; 1862 2022 2021 2021; 18 2018; 555 2023; 115 2008; 456 2014 2007; 43 2007; 45 2013; 1827 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 Vanormelingen P. (e_1_2_9_108_1) 2009 e_1_2_9_112_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 15 start-page: 2147 year: 2013 end-page: 2153 article-title: Pico‐PLAZA, a genome database of microbial photosynthetic eukaryotes publication-title: Environmental Microbiology – volume: 59 start-page: 809 issue: 5 year: 2023 end-page: 817 article-title: ( ) (Hustedt) Hasle et Heimdal (Bacillariophyceae): a genetically tractable model organism for studying diatom biology, including biological silica formation publication-title: Journal of Phycology – volume: 25 start-page: 25 year: 2000 end-page: 29 article-title: Gene ontology: tool for the unification of biology publication-title: Nature Genetics – volume: 340 start-page: 783 year: 2004 end-page: 795 article-title: Improved prediction of signal peptides: SignalP 3.0 publication-title: Journal of Molecular Biology – volume: 524 start-page: 366 year: 2015 end-page: 369 article-title: Energetic coupling between plastids and mitochondria drives CO assimilation in diatoms publication-title: Nature – volume: 29 start-page: 2047 year: 2017 end-page: 2070 article-title: Nitrate reductase knockout uncouples nitrate transport from nitrate assimilation and drives repartitioning of carbon flux in a model pennate diatom publication-title: The Plant Cell – volume: 11 start-page: 1292 year: 2018 end-page: 1307 article-title: Genome annotation of a model diatom using an integrated proteogenomic pipeline publication-title: Molecular Plant – volume: 586 start-page: 2917 year: 2012 end-page: 2924 article-title: The importance of flavodoxin for environmental stress tolerance in photosynthetic microorganisms and transgenic plants. Mechanism, evolution and biotechnological potential publication-title: FEBS Letters – volume: 36 start-page: 1559 year: 2017 end-page: 1576 article-title: The transcription factor bZIP14 regulates the TCA cycle in the diatom publication-title: The EMBO Journal – volume: 36 issue: 9 year: 2024 article-title: Complementary environmental analysis and functional characterization of lower glycolysis‐gluconeogenesis in the diatom plastid publication-title: The Plant Cell – volume: 45 start-page: 193 year: 2007 end-page: 210 article-title: Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms publication-title: Molecular Phylogenetics and Evolution – volume: 170 start-page: 489 year: 2016 end-page: 498 article-title: Profiling of the early nitrogen stress response in the diatom reveals a novel family of RING‐domain transcription factors publication-title: Plant Physiology – volume: 555 start-page: 534 year: 2018 end-page: 537 article-title: Carbonate‐sensitive phytotransferrin controls high‐affinity iron uptake in diatoms publication-title: Nature – volume: 210 start-page: 497 year: 2016 end-page: 510 article-title: Noncoding and coding transcriptome responses of a marine diatom to phosphate fluctuations publication-title: New Phytologist – start-page: 775 year: 2022 end-page: 808 – volume: 18 start-page: 1269 year: 2021 end-page: 1289 article-title: Reviews and syntheses: the biogeochemical cycle of silicon in the modern ocean publication-title: Biogeosciences – volume: 10 year: 2021 article-title: Proximity proteomics in a marine diatom reveals a putative cell surface‐to‐chloroplast iron trafficking pathway publication-title: eLife – volume: 26 start-page: 21 year: 2016 end-page: 28 article-title: Pan‐transcriptomic analysis identifies coordinated and orthologous functional modules in the diatoms and publication-title: Marine Genomics – volume: 43 start-page: 992 year: 2007 end-page: 1009 article-title: Genetic and phenotypic characterization of (Bacillariophyceae) accessions1 publication-title: Journal of Phycology – start-page: 159 year: 2009 end-page: 171 – volume: 12 year: 2016 article-title: Transcriptional orchestration of the global cellular response of a model pennate diatom to diel light cycling under iron limitation publication-title: PLoS Genetics – year: 2022 – volume: 637 start-page: 691 year: 2025 end-page: 697 article-title: Diatom phytochromes integrate the underwater light spectrum to sense depth publication-title: Nature – volume: 241 start-page: 811 year: 2024 end-page: 826 article-title: Dicer‐dependent heterochromatic small RNAs in the model diatom species publication-title: New Phytologist – volume: 59 start-page: 1114 year: 2023 end-page: 1122 article-title: : an established model species for diatom molecular research and an emerging chassis for algal synthetic biology publication-title: Journal of Phycology – volume: 25 start-page: 364 year: 2015 end-page: 371 article-title: A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake publication-title: Current Biology – volume: 10 start-page: 9449 year: 2020 article-title: Genome‐enabled phylogenetic and functional reconstruction of an araphid pennate diatom sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal publication-title: Scientific Reports – volume: 55 start-page: 339 year: 2020 end-page: 360 article-title: Iron uptake proteins in algae and the role of iron starvation‐induced proteins (ISIPs) publication-title: European Journal of Phycology – volume: 11 year: 2020 article-title: PhaeoNet: a holistic RNAseq‐based portrait of transcriptional coordination in the model diatom publication-title: Frontiers in Plant Science – volume: 29 start-page: 91 year: 2014 end-page: 104 article-title: An introduction to the vast world of transposable elements – what about the diatoms? publication-title: Diatom Research – volume: 81 start-page: 519 year: 2015 end-page: 528 article-title: Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage publication-title: The Plant Journal – start-page: 607 year: 2022 end-page: 639 – volume: 222 start-page: 1364 year: 2019 end-page: 1379 article-title: Cross‐compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom publication-title: The New Phytologist – volume: 33 start-page: 1473 year: 2021 end-page: 1485 article-title: Fucoxanthin biosynthesis has a positive correlation with the specific growth rate in the culture of microalga publication-title: Journal of Applied Phycology – volume: 68 start-page: 3937 year: 2017 end-page: 3948 article-title: The diversity of CO ‐concentrating mechanisms in marine diatoms as inferred from their genetic content publication-title: Journal of Experimental Botany – volume: 27 start-page: 971 year: 2022 end-page: 980 article-title: An ancient function of PGR5 in iron delivery? publication-title: Trends in Plant Science – volume: 1862 year: 2021 article-title: Enhancement of excitation‐energy quenching in fucoxanthin chlorophyll / ‐binding proteins isolated from a diatom upon excess‐light illumination publication-title: Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics – volume: 229 start-page: 3208 year: 2021 end-page: 3220 article-title: Genome wide natural variation of H3K27me3 selectively marks genes predicted to be important for cell differentiation in publication-title: New Phytologist – volume: 476 start-page: 20 year: 2011 end-page: 26 article-title: Complex repeat structures and novel features in the mitochondrial genomes of the diatoms and publication-title: Gene – volume: 23 year: 2020 article-title: The aureochrome photoreceptor Pt is a highly effective blue light switch in diatoms publication-title: iScience – volume: 1827 start-page: 303 year: 2013 end-page: 310 article-title: Identification of several sub‐populations in the pool of light harvesting proteins in the pennate diatom publication-title: Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics – volume: 14 start-page: 347 year: 2020 end-page: 363 article-title: A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom publication-title: The ISME Journal – volume: 17 start-page: 66 year: 2016 article-title: JBrowse: a dynamic web platform for genome visualization and analysis publication-title: Genome Biology – volume: 112 start-page: 412 year: 2015 end-page: 417 article-title: Remodeling of intermediate metabolism in the diatom under nitrogen stress publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 1507 start-page: 161 year: 2001 end-page: 179 article-title: Ferredoxin and flavodoxin reduction by photosystem I publication-title: Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics – volume: 13 start-page: 8320 year: 2023 article-title: PhaeoEpiView: an epigenome browser of the newly assembled genome of the model diatom publication-title: Scientific Reports – volume: 70 start-page: 605 year: 2019 end-page: 638 article-title: Comparative and functional algal genomics publication-title: Annual Review of Plant Biology – volume: 22 start-page: 96 year: 2021 end-page: 118 article-title: Gene regulation by long non‐coding RNAs and its biological functions publication-title: Nature Reviews. Molecular Cell Biology – volume: 106 start-page: 179 year: 2010 end-page: 189 article-title: Electrochromism: a useful probe to study algal photosynthesis publication-title: Photosynthesis Research – volume: 10 start-page: 5338 year: 2011 end-page: 5353 article-title: The thylakoid membrane proteome of two marine diatoms outlines both diatom‐specific and species‐specific features of the photosynthetic machinery publication-title: Journal of Proteome Research – volume: 14 start-page: 1113 year: 2015 end-page: 1126 article-title: MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites publication-title: Molecular & Cellular Proteomics – volume: 35 start-page: W585 year: 2007 end-page: W587 article-title: WoLF PSORT: protein localization predictor publication-title: Nucleic Acids Research – volume: 9 start-page: 393 year: 2008 article-title: HECTAR: a method to predict subcellular targeting in heterokonts publication-title: BMC Bioinformatics – volume: 15 year: 2014 article-title: The diversity of small non‐coding RNAs in the diatom publication-title: BMC Genomics – volume: 116 start-page: 13137 year: 2019 end-page: 13142 article-title: bHLH‐PAS protein RITMO1 regulates diel biological rhythms in the marine diatom publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 115 start-page: 926 year: 2023 end-page: 936 article-title: Mobilization of a diatom mutator‐like element (MULE) transposon inactivates the uridine monophosphate synthase (UMPS) locus in publication-title: The Plant Journal – volume: 20 year: 2022 article-title: Whole‐genome scanning reveals environmental selection mechanisms that shape diversity in populations of the epipelagic diatom publication-title: PLoS Biology – volume: 10 year: 2015 article-title: Diversity and evolutionary history of iron metabolism genes in diatoms publication-title: PLoS One – volume: 105 start-page: 10438 year: 2008 end-page: 10443 article-title: Whole‐cell response of the pennate diatom to iron starvation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 541 start-page: 536 year: 2017 end-page: 540 article-title: Evolutionary genomics of the cold‐adapted diatom publication-title: Nature – volume: 187 start-page: 5935 year: 2024 end-page: 5950.e18 article-title: A protein blueprint of the diatom CO ‐fixing organelle publication-title: Cell – volume: 456 start-page: 239 year: 2008 end-page: 244 article-title: The genome reveals the evolutionary history of diatom genomes publication-title: Nature – volume: 64 start-page: 622 year: 2023 end-page: 636 article-title: The heat shock transcription factor PtHSF1 mediates triacylglycerol and fucoxanthin synthesis by regulating the expression of GPAT3 and DXS in publication-title: Plant & Cell Physiology – year: 2021 – volume: 190 start-page: 2295 year: 2022 end-page: 2314 article-title: Transcriptomic and metabolic signatures of diatom plasticity to light fluctuations publication-title: Plant Physiology – volume: 115 start-page: E12275 year: 2018 end-page: E12284 article-title: Different iron storage strategies among bloom‐forming diatoms publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 59 start-page: 637 year: 2023 end-page: 643 article-title: The pennate diatom as a model for diatom life cycles, from the laboratory to the sea publication-title: Journal of Phycology – volume: 31 start-page: 978 year: 2021 end-page: 989.e4 article-title: A novel Ca signaling pathway coordinates environmental phosphorus sensing and nitrogen metabolism in marine diatoms publication-title: Current Biology – volume: 146 year: 2021 article-title: Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems publication-title: Environment International – volume: 306 start-page: 79 year: 2004 end-page: 86 article-title: The genome of the diatom : ecology, evolution, and metabolism publication-title: Science – volume: 13 start-page: 2440 year: 2023 article-title: Differential expression patterns of long noncoding RNAs in a pleiomorphic diatom and relation to hyposalinity publication-title: Scientific Reports – volume: 16 start-page: 102 year: 2015 article-title: An integrative analysis of post‐translational histone modifications in the marine diatom publication-title: Genome Biology – volume: 10 year: 2022 article-title: Telomere‐to‐telomere genome assembly of publication-title: PeerJ – volume: 30 start-page: 923 year: 2014 end-page: 930 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 8 start-page: 4834 year: 2018 article-title: Integrative analysis of large scale transcriptome data draws a comprehensive landscape of genome and evolutionary origin of diatoms publication-title: Scientific Reports – volume: 12 year: 2014 article-title: The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing publication-title: PLoS Biology – volume: 72 start-page: 2165 year: 2021 end-page: 2180 article-title: Iron metabolism strategies in diatoms publication-title: Journal of Experimental Botany – volume: 29 start-page: 75 year: 2014 end-page: 89 article-title: Functional investigations in diatoms need more than a transcriptomic approach publication-title: Diatom Research – volume: 247 start-page: 91 year: 2002 end-page: 101 article-title: The KEGG database publication-title: Novartis Foundation Symposium – volume: 4 start-page: 2091 year: 2013 article-title: Insights into the role of DNA methylation in diatoms by genome‐wide profiling in publication-title: Nature Communications – volume: 382 start-page: 92 year: 2023 end-page: 98 article-title: A chlorophyll c synthase widely co‐opted by phytoplankton publication-title: Science – volume: 401 start-page: 1495 year: 2020 end-page: 1501 article-title: Specific acclimations to phosphorus limitation in the marine diatom publication-title: Biological Chemistry – volume: 22 start-page: 379 year: 2021 article-title: Re‐examination of two diatom reference genomes using long‐read sequencing publication-title: BMC Genomics – volume: 113 start-page: E1516 year: 2016 end-page: E1525 article-title: Insights into global diatom distribution and diversity in the world's ocean publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 437 year: 2014 end-page: 464 – volume: 19 start-page: 534 year: 2018 article-title: iDEP: an integrated web application for differential expression and pathway analysis of RNA‐Seq data publication-title: BMC Bioinformatics – volume: 50 start-page: W516 year: 2022 end-page: W526 article-title: The ocean gene atlas v2.0: online exploration of the biogeography and phylogeny of plankton genes publication-title: Nucleic Acids Research – volume: 10 start-page: 4167 year: 2019 article-title: Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom publication-title: Nature Communications – volume: 473 start-page: 203 year: 2011 end-page: 207 article-title: Evolution and metabolic significance of the urea cycle in photosynthetic diatoms publication-title: Nature – volume: 37 start-page: 3243 year: 2020 end-page: 3257 article-title: Comprehensive and functional analysis of horizontal gene transfer events in diatoms publication-title: Molecular Biology and Evolution – volume: 61 start-page: 3079 year: 2010 end-page: 3087 article-title: Characterization of a trimeric light‐harvesting complex in the diatom built of FcpA and FcpE proteins publication-title: Journal of Experimental Botany – volume: 88 year: 2022 article-title: Phytate as a phosphorus nutrient with impacts on iron stress‐related gene expression for phytoplankton: insights from the diatom publication-title: Applied and Environmental Microbiology – volume: 4 year: 2018 article-title: Endocytosis‐mediated siderophore uptake as a strategy for Fe acquisition in diatoms publication-title: Science Advances – volume: 457 start-page: 467 year: 2009 end-page: 470 article-title: Ferritin is used for iron storage in bloom‐forming marine pennate diatoms publication-title: Nature – volume: 4 start-page: 427 year: 2007 end-page: 439 article-title: Chloroplast genomes of the diatoms and : comparison with other plastid genomes of the red lineage publication-title: Molecular Genetics and Genomics – volume: 8 year: 2017 article-title: Plastid thylakoid architecture optimizes photosynthesis in diatoms publication-title: Nature Communications – volume: 2 year: 2022 article-title: Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean publication-title: Cell Genomics – volume: 39 start-page: 187 year: 2023 end-page: 207 article-title: RNA out of the mist publication-title: Trends in Genetics – volume: 24 start-page: 95 year: 2015 end-page: 108 article-title: The diatom molecular toolkit to handle nitrogen uptake publication-title: Marine Genomics – volume: 6 year: 2022 article-title: In vivo localization of iron starvation induced proteins under variable iron supplementation regimes in publication-title: Plant Direct – volume: 10 start-page: 4552 year: 2019 article-title: Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom publication-title: Nature Communications – volume: 16 start-page: 645 year: 2011 end-page: 655 article-title: A structural phylogenetic map for chloroplast photosynthesis publication-title: Trends in Plant Science – volume: 32 start-page: 547 year: 2020 end-page: 572 article-title: Diatom molecular research comes of age: model species for studying phytoplankton biology and diversity publication-title: The Plant Cell – volume: 22 start-page: 551 year: 2020 end-page: 563 article-title: Comparative gene analysis focused on silica cell wall formation: identification of diatom‐specific SET domain protein methyltransferases publication-title: Marine Biotechnology – volume: 13 start-page: 1465 issue: 11 year: 2024 article-title: A knockout of the photoreceptor Pt results in altered diel expression of diatom clock components publication-title: Plants – volume: 59 start-page: 418 year: 2023 end-page: 431 article-title: The inhibition and recovery mechanisms of the diatom in response to high light stress – a study combining physiological and transcriptional analysis publication-title: Journal of Phycology – volume: 11 start-page: 3320 year: 2020 article-title: The genome provides insights into the evolutionary adaptations of benthic diatoms publication-title: Nature Communications – volume: 187 start-page: 5919 year: 2024 end-page: 5934.e19 article-title: Diatom pyrenoids are encased in a protein shell that enables efficient CO fixation publication-title: Cell – volume: 153 start-page: 59 year: 2022 end-page: 70 article-title: Light‐harvesting complex gene regulation by a MYB‐family transcription factor in the marine diatom, publication-title: Photosynthesis Research – volume: 13 year: 2012 article-title: Genome and low‐iron response of an oceanic diatom adapted to chronic iron limitation publication-title: Genome Biology – volume: 10 start-page: 14110 year: 2020 article-title: Global identification of a marine diatom long noncoding natural antisense transcripts (NATs) and their response to phosphate fluctuations publication-title: Scientific Reports – volume: 15 start-page: 550 year: 2014 article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2 publication-title: Genome Biology – volume: 63 start-page: 1677 year: 2018 end-page: 1691 article-title: Iron storage capacities and associated ferritin gene expression among marine diatoms publication-title: Limnology and Oceanography – ident: e_1_2_9_111_1 doi: 10.1093/nar/gkac420 – ident: e_1_2_9_12_1 doi: 10.1016/j.margen.2015.10.011 – ident: e_1_2_9_59_1 doi: 10.1007/s10811‐021‐02376‐5 – ident: e_1_2_9_110_1 doi: 10.1186/s13059‐015‐0671‐8 – ident: e_1_2_9_49_1 doi: 10.1007/978-3-030-92499-7_21 – ident: e_1_2_9_115_1 doi: 10.1093/plphys/kiac455 – ident: e_1_2_9_33_1 doi: 10.1186/s12864‐021‐07666‐3 – ident: e_1_2_9_64_1 doi: 10.1128/aem.02097‐21 – ident: e_1_2_9_8_1 doi: 10.1016/j.ympev.2007.03.024 – ident: e_1_2_9_83_1 doi: 10.1371/journal.pbio.3001893 – ident: e_1_2_9_96_1 doi: 10.1016/S0005-2728(01)00205-5 – ident: e_1_2_9_78_1 doi: 10.1038/nature25982 – ident: e_1_2_9_35_1 doi: 10.1074/mcp.M114.043083 – ident: e_1_2_9_91_1 doi: 10.1038/s41396-019-0528-3 – ident: e_1_2_9_11_1 doi: 10.1038/75556 – ident: e_1_2_9_43_1 doi: 10.1186/1471-2105-9-393 – ident: e_1_2_9_69_1 doi: 10.3390/plants13111465 – ident: e_1_2_9_3_1 doi: 10.1007/s11120‐022‐00915‐w – ident: e_1_2_9_16_1 doi: 10.1146/annurev-arplant-050718-095841 – ident: e_1_2_9_2_1 doi: 10.1111/tpj.16271 – ident: e_1_2_9_70_1 doi: 10.1073/pnas.1509523113 – ident: e_1_2_9_4_1 doi: 10.3389/fpls.2020.590949 – ident: e_1_2_9_99_1 doi: 10.1016/j.envint.2020.106262 – ident: e_1_2_9_105_1 doi: 10.7554/eLife.52770 – ident: e_1_2_9_58_1 doi: 10.1007/978-3-030-92499-7_26 – start-page: 159 volume-title: Protist diversity and geographical distribution. Topics in biodiversity and conservation year: 2009 ident: e_1_2_9_108_1 – ident: e_1_2_9_73_1 doi: 10.1111/j.1529‐8817.2007.00384.x – ident: e_1_2_9_14_1 doi: 10.1007/s11120-010-9579-z – ident: e_1_2_9_79_1 doi: 10.1038/nature20803 – ident: e_1_2_9_97_1 doi: 10.1093/jxb/erx163 – ident: e_1_2_9_109_1 doi: 10.1038/ncomms3091 – ident: e_1_2_9_80_1 doi: 10.1016/j.cub.2014.12.004 – ident: e_1_2_9_44_1 doi: 10.1016/j.bbabio.2012.10.017 – ident: e_1_2_9_60_1 doi: 10.1073/pnas.1805243115 – ident: e_1_2_9_45_1 doi: 10.1016/j.cub.2020.11.073 – ident: e_1_2_9_104_1 doi: 10.5194/bg-18-1269-2021 – ident: e_1_2_9_26_1 doi: 10.1016/j.xgen.2022.100123 – ident: e_1_2_9_34_1 doi: 10.1038/ncomms15885 – ident: e_1_2_9_61_1 doi: 10.1016/j.tplants.2022.04.006 – ident: e_1_2_9_63_1 doi: 10.1073/pnas.1419818112 – ident: e_1_2_9_87_1 doi: 10.1007/s00438-006-0199-4 – ident: e_1_2_9_100_1 doi: 10.1038/s41467-019-12407-y – ident: e_1_2_9_53_1 doi: 10.1111/jpy.13323 – ident: e_1_2_9_31_1 doi: 10.1007/978-3-030-92499-7 – ident: e_1_2_9_7_1 doi: 10.1016/j.tplants.2011.10.004 – ident: e_1_2_9_101_1 doi: 10.1371/journal.pgen.1006490 – ident: e_1_2_9_38_1 doi: 10.7717/peerj.13607 – ident: e_1_2_9_28_1 doi: 10.1038/s41586-024-08301-3 – ident: e_1_2_9_36_1 doi: 10.1093/jxb/eraa575 – ident: e_1_2_9_19_1 doi: 10.1038/s41467-019-12043-6 – ident: e_1_2_9_90_1 doi: 10.1038/s41598-018-23106-x – ident: e_1_2_9_103_1 doi: 10.1038/s41580-020-00315-9 – ident: e_1_2_9_50_1 doi: 10.1126/science.adg7921 – ident: e_1_2_9_56_1 doi: 10.1126/sciadv.aar4536 – ident: e_1_2_9_32_1 doi: 10.1111/jpy.13342 – ident: e_1_2_9_106_1 doi: 10.1093/molbev/msaa182 – ident: e_1_2_9_39_1 doi: 10.1021/pr200600f – ident: e_1_2_9_89_1 doi: 10.1111/jpy.13362 – ident: e_1_2_9_81_1 doi: 10.1016/j.bbabio.2020.148350 – ident: e_1_2_9_94_1 doi: 10.1111/jpy.13400 – ident: e_1_2_9_13_1 doi: 10.1038/nature14599 – ident: e_1_2_9_95_1 doi: 10.1038/s41598-020-65941-x – ident: e_1_2_9_65_1 doi: 10.1093/bioinformatics/btt656 – ident: e_1_2_9_74_1 doi: 10.1104/pp.15.01300 – ident: e_1_2_9_66_1 doi: 10.1016/j.febslet.2012.07.026 – ident: e_1_2_9_29_1 doi: 10.1016/j.jmb.2004.05.028 – ident: e_1_2_9_51_1 doi: 10.1007/978-1-4939-1136-3_16 – ident: e_1_2_9_112_1 doi: 10.1038/s41598-023-35403-1 – ident: e_1_2_9_25_1 doi: 10.1515/hsz‐2020‐0197 – ident: e_1_2_9_23_1 doi: 10.1111/nph.13787 – ident: e_1_2_9_76_1 doi: 10.1016/j.tig.2022.11.001 – ident: e_1_2_9_17_1 doi: 10.1111/j.1574-6968.2001.tb10611.x – ident: e_1_2_9_40_1 doi: 10.1371/journal.pone.0129081 – ident: e_1_2_9_88_1 – ident: e_1_2_9_22_1 doi: 10.1038/s41598-020-71002-0 – ident: e_1_2_9_72_1 doi: 10.1038/nature07539 – ident: e_1_2_9_41_1 doi: 10.1111/tpj.12734 – ident: e_1_2_9_77_1 doi: 10.1105/tpc.16.00910 – ident: e_1_2_9_42_1 doi: 10.1111/nph.19429 – ident: e_1_2_9_75_1 doi: 10.15252/embj.201696392 – ident: e_1_2_9_85_1 doi: 10.1038/s41467-020-17191-8 – ident: e_1_2_9_113_1 doi: 10.1016/j.molp.2018.08.005 – ident: e_1_2_9_55_1 doi: 10.1002/pld3.472 – ident: e_1_2_9_30_1 doi: 10.1105/tpc.19.00158 – ident: e_1_2_9_114_1 doi: 10.1111/nph.17129 – ident: e_1_2_9_46_1 doi: 10.1080/0269249X.2013.877083 – ident: e_1_2_9_47_1 doi: 10.1080/0269249X.2014.883727 – ident: e_1_2_9_52_1 doi: 10.1093/jxb/erq136 – ident: e_1_2_9_24_1 doi: 10.1038/s41598-023-29489-w – ident: e_1_2_9_67_1 doi: 10.1186/gb‐2012‐13‐7‐r66 – ident: e_1_2_9_9_1 doi: 10.1073/pnas.1819660116 – ident: e_1_2_9_107_1 doi: 10.1111/1462‐2920.12174 – ident: e_1_2_9_98_1 doi: 10.1016/j.cell.2024.09.013 – ident: e_1_2_9_48_1 doi: 10.1093/nar/gkm259 – ident: e_1_2_9_93_1 doi: 10.1186/1471‐2164‐15‐698 – ident: e_1_2_9_15_1 doi: 10.1080/09670262.2020.1744039 – ident: e_1_2_9_10_1 doi: 10.1126/science.1101156 – ident: e_1_2_9_20_1 doi: 10.1186/s13059‐016‐0924‐1 – ident: e_1_2_9_5_1 doi: 10.1038/nature10074 – ident: e_1_2_9_21_1 doi: 10.1002/lno.10800 – ident: e_1_2_9_92_1 doi: 10.1016/j.margen.2015.05.018 – ident: e_1_2_9_54_1 doi: 10.1002/0470857897.ch8 – ident: e_1_2_9_71_1 doi: 10.1016/j.isci.2020.101730 – ident: e_1_2_9_82_1 doi: 10.1016/j.cell.2024.09.025 – ident: e_1_2_9_27_1 doi: 10.1093/plcell/koae168 – ident: e_1_2_9_62_1 doi: 10.1007/978-3-030-92499-7_16 – ident: e_1_2_9_68_1 doi: 10.1186/s13059‐014‐0550‐8 – ident: e_1_2_9_37_1 doi: 10.1186/s12859‐018‐2486‐6 – ident: e_1_2_9_84_1 doi: 10.1007/s10126‐020‐09976‐1 – ident: e_1_2_9_6_1 doi: 10.1073/pnas.0711370105 – ident: e_1_2_9_18_1 doi: 10.1111/nph.15685 – ident: e_1_2_9_102_1 doi: 10.1093/pcp/pcad023 – ident: e_1_2_9_57_1 doi: 10.1371/journal.pbio.1001889 – ident: e_1_2_9_86_1 doi: 10.1016/j.gene.2011.02.001 |
SSID | ssj0017364 |
Score | 2.475574 |
Snippet | SUMMARY
Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic... Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom... Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom... SUMMARYDiatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources,... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e70061 |
SubjectTerms | Annotations Aquatic environment Availability Biochemistry, Molecular Biology bioinformatics Biotechnology cell biology Data analysis data collection Data Mining Databases, Genetic Datasets diatoms Diatoms - genetics DNA methylation ecotype variants ecotypes evolution Experiments gene expression regulation gene models Gene sequencing genes Genetic resources Genome - genetics genome browser genome portal Genomes Genomics histone marks Histones Life Sciences Marine microorganisms methylation microalgae Microbiology and Parasitology Molecular Sequence Annotation Network analysis non‐coding RNAs Phaeodactylum tricornutum physiology Plankton protein domains Proteomics Quantitative Methods Resource Ribonucleic acid RNA RNA‐Seq datasets sequence analysis species Thalassiosira pseudonana Transcriptome - genetics Transcriptomics |
Title | DiatOmicBase: a versatile gene‐centered platform for mining functional omics data in diatom research |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.70061 https://www.ncbi.nlm.nih.gov/pubmed/40089834 https://www.proquest.com/docview/3182409719 https://www.proquest.com/docview/3177623768 https://www.proquest.com/docview/3200293901 https://hal.science/hal-05027476 https://pubmed.ncbi.nlm.nih.gov/PMC11910669 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThRBEK4A4eBFUVRWkbTEg5fZMD09Mz14ApVsCCgxkHAwmfTfZBfY2Y07S4InH8Fn9Ems6vkJC9EYL5vNdm3S01XV9VVP9VcAb6KU2x1pbJBIbgMhrAkoDwmME1moCoeQnO4OH39KBmfi8Dw-X4J37V2Ymh-iO3Ajz_D7NTm40rNbTl5NL_opRWDcf6lWiwDRl446KkyjmjoKEXqAUZM3rEJUxdP9cyEWLQ-pEvI-zLxfLXkbxfowdPAIvrYPUFefXPbnle6b73e4Hf_zCdfgYQNP2V5tT49hyZVPYHV_ghDyZh2KD6jIz-OR2cfYt8sUo5oOVO2VY2iH7tePnzR76v7JpleqIjzM8IONfRcKRjG0PnpkdBd6xqg8lY1KRt1CJmPWEA8Nn8LZwcfT94OgadQQGEFHrIZHuNySumCFJtZFViTcOYVIUKo4tplOXSx5JhSPi0hhBiNsyJ2xIuKplopHz2ClnJRuA1jqIhvGNim0RnlMX6Q0LlRaFpI6NckebLcqy6c1H0fe5jG4XrlfLxRCZXbjxKA92DvK6bed2OfhyTUKbba6zhu_neW4w3FiAAuzHrzuhtHj6DWKKt1kTjIpRhDcmOVfZKj2JaPzpB48r82nmw7umjKTkeiBXDCshfkujpSjoWf-JjY-xIg4ubfecP68BPnpyaH_8uLfRV_CA07djX2F3SasVN_m7hVCrkpvwTIXJ1vew34DDPIpGA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB71gUQv0PIogRYWxIGLo3q9tteIS0tbpW1aEEqlXpC13l0rgcaJqFOpnPgJ_EZ-CTPrhxoqEOolirITab2zs_PNePYbgNdBzM2W1MaLJDeeEEZ7FId42orEV7lFSE53h49Pot6pODwLzxbgXXMXpuKHaBNuZBnuvCYDp4T0NSsvp1-6MbngRVimjt7EnL_7qSWP8uOgIo9CjO6h3-Q1rxDV8bR_nfNGi0OqhbwJNG_WS17Hsc4R7d-Hz80jVPUnX7uzMuvq73-wO972GVfhXo1Q2Xa1pdZgwRYP4M7OBFHk1UPId1GXH8YjvYPu7y1TjMo6ULvnluFWtL9-_KTpUwNQNj1XJUFihh9s7BpRMHKjVfaR0XXoC0YVqmxUMGoYMhmzmnto-AhO9_cG73te3avB04KyrJoHuN6SGmH5OszyJI-4tQrBoFRhaJIstqHkiVA8zAOFQYwwPrfaiIDHmVQ8eAxLxaSwT4DFNjB-aKI8y1AeIxgptfVVJnNJzZpkB141OkunFSVH2oQyuF6pWy8UQm2240Si3dvup_TbVuhC8egShTYaZae16V6keMhxIgHzkw68bIfR6OhNiirsZEYyMToRPJvlP2So_CWhlFIH1qv9004HD06ZyEB0QM7trLn5zo8Uo6Ej_yZCPoSJOLk3buf8fQnSwcdD9-Xp_4u-gLu9wXE_7R-cHD2DFU7Njl3B3QYsld9mdhMRWJk9d4b2G306LF0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xEtrLivd2eRnEgUtQ4ziJs3viVZV3DyBxixzbUYtoWi1lpb3tT-A37i_ZGSeNqBCISxXV08oaZ2a-scffAOwFMTdNqY0XSW48IYz2KA_xtBWJr3KLkJzuDl9dR-07cX4f3k_Bz_FdmJIfot5wI8tw_poMfGjyV0Y-Gj4cxBSBp2GWDvuonouLTn2EEAcldxRCdA_DJq9ohaiMp_7pRDCa7lIp5Fuc-bZc8jWMdXGotQBfKwDJDssVX4QpWyzB3NEAQd6fZchPUNU3_Z4-wuj0gylGVReo_EfL8E2x__6-0N9Tf042fFQjQqwMP1jf9YlgFOXKzUFGt5WfGBWQsl7BqJ_HoM8qaqDuCty1Tm-P217VSsHTgjZBNQ9QH5L6VPk6zPIkj7i1CrGaVGFokiy2oeSJUDzMA4U5hjA-t9qIgMeZVDxYhZliUNhvwGIbGD80UZ5lKI8JhpTa-iqTuaReSrIBu2OdpsOSMSMdZxqo-NQpHoVQ2_U4cVy3Dy9T-q4Zukw5-o1CG-PFSCvLekrRB3Hi6PKTBuzUw2gTdNChCjt4JpkYfTy6TvmBDFWnJLTj04C1cn3r6aBfk4kMRAPkxMpPzHdypOh1HTc38eUhisPJ7buX5H0VpLedc_fw_fOi2zDfOWmll2fXF-vwhVMrYlcOtwEzo1_PdhPx0SjbcnbwH8C4Cs4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DiatOmicBase%3A+a+versatile+gene%E2%80%90centered+platform+for+mining+functional+omics+data+in+diatom+research&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Villar%2C+Emilie&rft.au=Zweig%2C+Nathana%C3%ABl&rft.au=Vincens%2C+Pierre&rft.au=Cruz+de+Carvalho%2C+Helena&rft.date=2025-03-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=121&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Ftpj.70061&rft.externalDBID=10.1111%252Ftpj.70061&rft.externalDocID=TPJ70061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |