Alpha‐Linolenic Acid Supplementation Improves Testosterone Production in an Aged Breeder Rooster Model: Role of Mitochondrial Modulation and SIRT1 Activation

Scope Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. Methods and results To investigate the effects of dietary supplementation with alpha‐linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the u...

Full description

Saved in:
Bibliographic Details
Published inMolecular nutrition & food research Vol. 68; no. 22; pp. e2400522 - n/a
Main Authors Long, Cheng, Zhao, Zhi‐xian, Willing, Benjamin P., Sheng, Xi‐Hui, Wang, Xiang‐Guo, Xiao, Long‐Fei, Qi, Xiao‐Long
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scope Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. Methods and results To investigate the effects of dietary supplementation with alpha‐linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis‐related enzymes. ALA supplementation exerts anti‐apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro‐apoptotic factors and a higher expression of the anti‐apoptotic factor B‐cell lymphoma 2 (Bcl‐2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function‐related genes. Conclusion These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway. ALA promotes testosterone production and the expression of testosterone biosynthesis‐related enzymes StAR, P450scc, and 3β‐HSD in rooster testis and its Leydig cells by activating the SIRT1 pathway. ALA enhances expressions of mitochondrial biogenesis regulatory factors PGC‐1α, NRF1, and TFAM in Leydig cells by activating the SIRT1 pathway.
AbstractList SCOPE: Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. METHODS AND RESULTS: To investigate the effects of dietary supplementation with alpha‐linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis‐related enzymes. ALA supplementation exerts anti‐apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro‐apoptotic factors and a higher expression of the anti‐apoptotic factor B‐cell lymphoma 2 (Bcl‐2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function‐related genes. CONCLUSION: These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway.
Scope Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. Methods and results To investigate the effects of dietary supplementation with alpha‐linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis‐related enzymes. ALA supplementation exerts anti‐apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro‐apoptotic factors and a higher expression of the anti‐apoptotic factor B‐cell lymphoma 2 (Bcl‐2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function‐related genes. Conclusion These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway. ALA promotes testosterone production and the expression of testosterone biosynthesis‐related enzymes StAR, P450scc, and 3β‐HSD in rooster testis and its Leydig cells by activating the SIRT1 pathway. ALA enhances expressions of mitochondrial biogenesis regulatory factors PGC‐1α, NRF1, and TFAM in Leydig cells by activating the SIRT1 pathway.
Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.SCOPEAging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.To investigate the effects of dietary supplementation with alpha-linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis-related enzymes. ALA supplementation exerts anti-apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro-apoptotic factors and a higher expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl-2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function-related genes.METHODS AND RESULTSTo investigate the effects of dietary supplementation with alpha-linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis-related enzymes. ALA supplementation exerts anti-apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro-apoptotic factors and a higher expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl-2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function-related genes.These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway.CONCLUSIONThese findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway.
ScopeAging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.Methods and resultsTo investigate the effects of dietary supplementation with alpha‐linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis‐related enzymes. ALA supplementation exerts anti‐apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro‐apoptotic factors and a higher expression of the anti‐apoptotic factor B‐cell lymphoma 2 (Bcl‐2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function‐related genes.ConclusionThese findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway.
Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. To investigate the effects of dietary supplementation with alpha-linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis-related enzymes. ALA supplementation exerts anti-apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro-apoptotic factors and a higher expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl-2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function-related genes. These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway.
Author Zhao, Zhi‐xian
Sheng, Xi‐Hui
Wang, Xiang‐Guo
Long, Cheng
Willing, Benjamin P.
Xiao, Long‐Fei
Qi, Xiao‐Long
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0002-6603-6685
  surname: Long
  fullname: Long, Cheng
  organization: University of Alberta
– sequence: 2
  givenname: Zhi‐xian
  surname: Zhao
  fullname: Zhao, Zhi‐xian
  organization: Beijing University of Agriculture
– sequence: 3
  givenname: Benjamin P.
  surname: Willing
  fullname: Willing, Benjamin P.
  organization: University of Alberta
– sequence: 4
  givenname: Xi‐Hui
  surname: Sheng
  fullname: Sheng, Xi‐Hui
  organization: Beijing University of Agriculture
– sequence: 5
  givenname: Xiang‐Guo
  surname: Wang
  fullname: Wang, Xiang‐Guo
  organization: Beijing University of Agriculture
– sequence: 6
  givenname: Long‐Fei
  surname: Xiao
  fullname: Xiao, Long‐Fei
  organization: Beijing University of Agriculture
– sequence: 7
  givenname: Xiao‐Long
  surname: Qi
  fullname: Qi, Xiao‐Long
  email: qixiaolong@bua.edu.cn
  organization: Ministry of Agriculture and Rural Affairs
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39491816$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhi1URC-wZYkssWGT4GN7Eg-7UNESKQEUwnrkeM5QVx57sGeKuuMR-ga8G0-Ck5Qsuikr28fffy46_yk58sEjIS-BjYEx_rb1TRxzxiVjBedPyAlMQIwkCHF0uPPimJymdM2YAC7FM3IsSlmCgskJ-T1z3ZX-8-tuYX1w6K2hM2Nr-nXoOoct-l73Nng6b7sYbjDRNaY-pB5j7oN-iaEezA6wnmpPZ9-xpu8jYo2RrsIOpMtQo3uXnw5paOjS9sFcBV9Hq932c3D7GtrnuvPVGnILvb3ZBZ-Tp412CV_cn2fk28WH9fnH0eLz5fx8thgZyQBGRcEV0wxrzQWIKYISRjSqLpTa8InIMVGaUmvdoNIotZripmhq0NNJw0tU4oy82efNY_4Y8oxVa5NB57THMKRKQCH5BIDBf6BcKFYUSmb09QP0OgzR50GqXUulAsky9eqeGjYt1lUXbavjbfVvSxkY7wETQ0oRmwMCrNraoNraoDrYIAvkA4Gx-0X2UVv3qOyndXj7SJFq-eliJZUC8RdnM8f3
CitedBy_id crossref_primary_10_1016_j_psj_2024_104658
Cites_doi 10.18632/oncotarget.11573
10.1016/j.steroids.2014.03.016
10.1073/pnas.1009176107
10.7150/ijbs.78654
10.1038/nrm2952
10.1007/s00441-020-03312-8
10.1186/s11658-019-0158-9
10.1080/15384101.2017.1295182
10.1002/fsn3.1859
10.14348/molcells.2016.2318
10.1074/jbc.M110.163667
10.1093/humrep/deaa153
10.3390/antiox11091684
10.3390/ijms19113447
10.1080/15376516.2017.1354413
10.1210/er.2003-0030
10.3389/fphar.2020.01225
10.3390/md19040182
10.1016/j.theriogenology.2023.06.030
10.1007/978-1-4419-1599-3_6
10.7150/thno.42387
10.1021/acs.chemrestox.8b00201
10.1016/j.cell.2014.03.026
10.1089/ars.2017.7290
10.1631/jzus.B1700148
10.1093/biolre/ioab150
10.1016/j.ccr.2020.213419
10.3390/molecules24173084
10.3390/cells8080928
10.1016/j.scitotenv.2019.135077
10.12659/MSM.911714
10.1371/journal.pone.0226769
10.1101/gad.843800
10.1631/jzus.B1500158
10.1016/j.theriogenology.2019.03.016
10.1196/annals.1427.006
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7T5
7T7
7TK
8FD
C1K
FR3
H94
K9.
NAPCQ
P64
7X8
7S9
L.6
DOI 10.1002/mnfr.202400522
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
Nursing & Allied Health Premium
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1613-4133
EndPage n/a
ExternalDocumentID 39491816
10_1002_mnfr_202400522
MNFR4881
Genre article
Journal Article
GrantInformation_xml – fundername: R&D Program of Beijing Municipal Education Commission
  funderid: KM202310020008
– fundername: National Key R&D Program of China
  funderid: 2023YFD1301803
– fundername: Beijing University of Agriculture
  funderid: BUA‐HHXD2022008
– fundername: Modern Agricultural Industry Technology System‐Peking Poultry Innovation Team
  funderid: BJJQ‐G11
– fundername: Technology Innovation “spark action” support program of the
– fundername: National Natural Science Foundation of China
  funderid: 32472955; 32302795
– fundername: Technology Innovation "spark action" support program of the
– fundername: National Natural Science Foundation of China
  grantid: 32472955
– fundername: National Key R&D Program of China
  grantid: 2023YFD1301803
– fundername: Beijing University of Agriculture
  grantid: BUA-HHXD2022008
– fundername: National Natural Science Foundation of China
  grantid: 32302795
– fundername: Modern Agricultural Industry Technology System-Peking Poultry Innovation Team
  grantid: BJJQ-G11
– fundername: R&D Program of Beijing Municipal Education Commission
  grantid: KM202310020008
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
Y6R
~IA
~KM
~WT
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QO
7QP
7T5
7T7
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
NAPCQ
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c4011-55280a0eda23137e183c3f8d588b26331339c9aaafe8ae4a87eb5fd1a76f29e83
IEDL.DBID DR2
ISSN 1613-4125
1613-4133
IngestDate Fri Jul 11 08:24:36 EDT 2025
Fri Jul 11 06:43:15 EDT 2025
Wed Aug 13 03:53:01 EDT 2025
Wed Feb 19 02:04:24 EST 2025
Thu Apr 24 22:58:35 EDT 2025
Tue Jul 01 04:01:56 EDT 2025
Wed Jan 22 17:12:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords mitochondrial function
SIRT1 pathway
alpha‐linolenic acid
breeder roosters
testosterone production
Leydig cells
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4011-55280a0eda23137e183c3f8d588b26331339c9aaafe8ae4a87eb5fd1a76f29e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6603-6685
PMID 39491816
PQID 3133998140
PQPubID 2045123
PageCount 12
ParticipantIDs proquest_miscellaneous_3154261101
proquest_miscellaneous_3123805584
proquest_journals_3133998140
pubmed_primary_39491816
crossref_primary_10_1002_mnfr_202400522
crossref_citationtrail_10_1002_mnfr_202400522
wiley_primary_10_1002_mnfr_202400522_MNFR4881
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-Nov
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Molecular nutrition & food research
PublicationTitleAlternate Mol Nutr Food Res
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2021; 9
2010; 11
2018; 28
2010; 107
2004; 25
2021; 105
2023; 19
2019; 14
2019; 17
2007
2020; 701
2023; 209
2021; 384
2020; 35
2020; 420
2020; 11
2020; 10
2014; 84
2016; 39
2016; 17
2014; 157
2018; 19
2016; 7
2008; 1147
2000; 14
2019; 41
2017; 16
2019; 24
2021; 19
2019; 25
2022; 11
2018; 31
2009; 665
2019; 131
2011; 286
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_40_1
Li W. (e_1_2_10_19_1) 2019; 41
Ye G. (e_1_2_10_23_1) 2019; 17
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
Bock W. J. (e_1_2_10_11_1) 2007
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 157
  start-page: 882
  year: 2014
  publication-title: Cell
– volume: 41
  start-page: 102
  year: 2019
  publication-title: J. Jilin Agric. Univ.
– volume: 31
  start-page: 1315
  year: 2018
  publication-title: Chem. Res. Toxicol.
– volume: 1147
  start-page: 321
  year: 2008
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 39
  start-page: 87
  year: 2016
  publication-title: Mol. Cells
– volume: 665
  start-page: 78
  year: 2009
  publication-title: Adv. Exp. Med. Biol.
– volume: 19
  start-page: 182
  year: 2021
  publication-title: Mar. Drugs
– volume: 24
  start-page: 3084
  year: 2019
  publication-title: Molecules
– volume: 209
  start-page: 170
  year: 2023
  publication-title: Theriogenology
– volume: 105
  start-page: 1307
  year: 2021
  publication-title: Biol. Reprod.
– volume: 11
  start-page: 1684
  year: 2022
  publication-title: Antioxidants (Basel)
– volume: 701
  year: 2020
  publication-title: Sci. Total Environ.
– volume: 28
  start-page: 23
  year: 2018
  publication-title: Toxicol. Mech. Methods
– year: 2007
– volume: 24
  start-page: 36
  year: 2019
  publication-title: Cell. Mol. Biol. Lett.
– volume: 25
  start-page: 1220
  year: 2019
  publication-title: Med. Sci. Monit.
– volume: 11
  start-page: 621
  year: 2010
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 19
  start-page: 484
  year: 2023
  publication-title: Int. J. Biol. Sci.
– volume: 9
  start-page: 44
  year: 2021
  publication-title: Food Sci. Nutr.
– volume: 84
  start-page: 103
  year: 2014
  publication-title: Steroids
– volume: 10
  start-page: 4822
  year: 2020
  publication-title: Theranostics
– volume: 25
  start-page: 947
  year: 2004
  publication-title: Endocr. Rev.
– volume: 35
  start-page: 2072
  year: 2020
  publication-title: Hum. Reprod.
– volume: 28
  start-page: 643
  year: 2018
  publication-title: Antioxid. Redox Signal.
– volume: 14
  start-page: 3075
  year: 2000
  publication-title: Genes Dev.
– volume: 19
  start-page: 415
  year: 2018
  publication-title: J. Zhejiang Univ. Sci. B
– volume: 420
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 8
  start-page: 928
  year: 2019
  publication-title: Cells
– volume: 131
  start-page: 9
  year: 2019
  publication-title: Theriogenology
– volume: 11
  year: 2020
  publication-title: Front. Pharm.
– volume: 286
  start-page: 5289
  year: 2011
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 195
  year: 2019
  publication-title: Oncol. Lett.
– volume: 7
  year: 2016
  publication-title: Oncotarget
– volume: 16
  start-page: 707
  year: 2017
  publication-title: Cell Cycle
– volume: 384
  start-page: 195
  year: 2021
  publication-title: Cell Tissue Res.
– volume: 14
  year: 2019
  publication-title: PLoS ONE
– volume: 17
  start-page: 136
  year: 2016
  publication-title: J. Zhejiang Univ. Sci. B
– volume: 19
  start-page: 3447
  year: 2018
  publication-title: Int. J. Mol. Sci.
– volume: 107
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– ident: e_1_2_10_32_1
  doi: 10.18632/oncotarget.11573
– volume-title: Reproductive Biology and Phylogeny of Birds: Phylogeny, Morphology, Hormones, Fertilization (Volume 6A of Series)
  year: 2007
  ident: e_1_2_10_11_1
– ident: e_1_2_10_4_1
  doi: 10.1016/j.steroids.2014.03.016
– ident: e_1_2_10_6_1
  doi: 10.1073/pnas.1009176107
– volume: 41
  start-page: 102
  year: 2019
  ident: e_1_2_10_19_1
  publication-title: J. Jilin Agric. Univ.
– ident: e_1_2_10_17_1
  doi: 10.7150/ijbs.78654
– ident: e_1_2_10_12_1
  doi: 10.1038/nrm2952
– ident: e_1_2_10_18_1
  doi: 10.1007/s00441-020-03312-8
– ident: e_1_2_10_33_1
  doi: 10.1186/s11658-019-0158-9
– ident: e_1_2_10_24_1
  doi: 10.1080/15384101.2017.1295182
– ident: e_1_2_10_25_1
  doi: 10.1002/fsn3.1859
– ident: e_1_2_10_20_1
  doi: 10.14348/molcells.2016.2318
– ident: e_1_2_10_36_1
  doi: 10.1074/jbc.M110.163667
– ident: e_1_2_10_27_1
  doi: 10.1093/humrep/deaa153
– ident: e_1_2_10_13_1
  doi: 10.3390/antiox11091684
– ident: e_1_2_10_22_1
  doi: 10.3390/ijms19113447
– ident: e_1_2_10_26_1
  doi: 10.1080/15376516.2017.1354413
– ident: e_1_2_10_3_1
  doi: 10.1210/er.2003-0030
– ident: e_1_2_10_28_1
  doi: 10.3389/fphar.2020.01225
– ident: e_1_2_10_8_1
  doi: 10.3390/md19040182
– ident: e_1_2_10_39_1
  doi: 10.1016/j.theriogenology.2023.06.030
– ident: e_1_2_10_31_1
  doi: 10.1007/978-1-4419-1599-3_6
– ident: e_1_2_10_14_1
  doi: 10.7150/thno.42387
– ident: e_1_2_10_30_1
  doi: 10.1021/acs.chemrestox.8b00201
– ident: e_1_2_10_10_1
  doi: 10.1016/j.cell.2014.03.026
– volume: 17
  start-page: 195
  year: 2019
  ident: e_1_2_10_23_1
  publication-title: Oncol. Lett.
– ident: e_1_2_10_29_1
  doi: 10.1089/ars.2017.7290
– ident: e_1_2_10_5_1
  doi: 10.1016/j.theriogenology.2023.06.030
– ident: e_1_2_10_7_1
  doi: 10.1631/jzus.B1700148
– ident: e_1_2_10_35_1
  doi: 10.1093/biolre/ioab150
– ident: e_1_2_10_40_1
  doi: 10.1016/j.ccr.2020.213419
– ident: e_1_2_10_34_1
  doi: 10.3390/molecules24173084
– ident: e_1_2_10_16_1
  doi: 10.3390/cells8080928
– ident: e_1_2_10_21_1
  doi: 10.1016/j.scitotenv.2019.135077
– ident: e_1_2_10_37_1
  doi: 10.12659/MSM.911714
– ident: e_1_2_10_15_1
  doi: 10.1371/journal.pone.0226769
– ident: e_1_2_10_2_1
  doi: 10.1101/gad.843800
– ident: e_1_2_10_38_1
  doi: 10.1631/jzus.B1500158
– ident: e_1_2_10_1_1
  doi: 10.1016/j.theriogenology.2019.03.016
– ident: e_1_2_10_9_1
  doi: 10.1196/annals.1427.006
SSID ssj0031243
Score 2.4391034
Snippet Scope Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. Methods and results To investigate...
Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. To investigate the effects of dietary...
ScopeAging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.Methods and resultsTo investigate the...
Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.SCOPEAging in males can lead to declines in...
SCOPE: Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. METHODS AND RESULTS: To investigate...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2400522
SubjectTerms Aging
alpha-linolenic acid
alpha-Linolenic Acid - administration & dosage
alpha-Linolenic Acid - pharmacology
Animals
Apoptosis
B-cell lymphoma
biogenesis
Biosynthesis
breeder roosters
Cell culture
Dietary Supplements
food research
Genes
In vivo methods and tests
Leydig cells
Leydig Cells - drug effects
Leydig Cells - metabolism
Linolenic acid
Lymphoma
Male
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
mitochondrial function
Modulation
Molecular modelling
Reproductive health
roosters
siRNA
SIRT1 pathway
SIRT1 protein
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
Testis - drug effects
Testis - metabolism
Testosterone
testosterone production
Title Alpha‐Linolenic Acid Supplementation Improves Testosterone Production in an Aged Breeder Rooster Model: Role of Mitochondrial Modulation and SIRT1 Activation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.202400522
https://www.ncbi.nlm.nih.gov/pubmed/39491816
https://www.proquest.com/docview/3133998140
https://www.proquest.com/docview/3123805584
https://www.proquest.com/docview/3154261101
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhp1z6SF9O0qJCaE9ObEt-qLftY0kCu5RlA7kZSR6VJRtvyO5eeupP6D_If8sv6Yxlu92WtpReDLbHeIQ0M5-k0TeMHUriHNNO4dwk1ngxNtSauAh17EQMGGIyOig8Gmcn5_LsIr344RS_54foF9zIMhp_TQauzfL4O2noVe2Iz5NyIBFDoBOmhC1CRZOeP0pg8Goy7DFmhRJDecfaGCXHm59vRqVfoOYmcm1Cz_A-053SPuPk8mi9Mkf28098jv_TqgfsXotL-cAPpIdsC-pdFryfwYq_4i156JyPO-7-R-x2QKd07758xdks7e3PLB_YWcWbMqE-JZ0EuV-1gCWfUg0bomVY1MA_eqJZEpjVXNd88Akq_vYGiNuCTxaNIKdCbfM3eDsHvnB8hN4HvXVdkdHQy7b0GH6P_z2dTGNUoSvX9pidDz9M352EbbWH0Epap03TpIh0BJVGyClyQF9jhSuqtChMkgl8JpRVWmsHhQapixxM6qpY55lLFBTiCduusQXPGDeJclbaPIIsk1ViTG4jAJOrKM-LSoqAhV1vl7alQqeKHPPSkzgnJXVD2XdDwF738teeBOS3kgfd4ClbZ7AsG9UVUYsF7GX_Gs2Y9mZ0DYs1ySB2ilKEg3-SSWnCi040YE_9wOzVEUoqBGsZNq0ZXn_RsxyNhxP03fHeP8rvsx166E9jHrDt1c0aniMsW5kXjel9A7X4MmM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcoBLKb81FFgkfk5u_f-DxCEQooQ2EYpSqTezux6jiOCgJhGCUx-BN-AZeBUegSdhxmsbBQSIQw9cLMU7ice7OzPfbma_AbgfMOeYLFJam7iSLkrbUjIXoXQL30UKMREfFB6Oov5R8OI4PN6AL81ZGMMP0W64sWVU_poNnDek93-whr4tCyb05CRIAhF1XuUBfnhPq7bFk0GXhviB5_WeT5717bqwgK0D3hIMQy9xpIO5JHTjx0jTWvtFkodJorzIp3t-qlMpZYGJxEAmMaqwyF0ZR4WXYuLT756D81xGnOn6u-OWscqncFnl9FOUtAMCDw1PpOPtr-u7Hgd_AbfrWLkKdr1L8LXpJpPj8mZvtVR7-uNPDJL_VT9uw1YNvUXH2Mpl2MDyCljdKS7FQ1Hzo87EqClPcBU-d_gg8rfTT7Rg5_SFqRYdPc1FVQnVZN2zoDAbM7gQEy7Tw8wT8xLFS8OlywLTUshSdF5jLp6eINN3iPG8EhRci272mD7OUMwLMSQHSwGpzNkvcGNdXY2-T88djCcuqdBUpLsGR2fSX9dhs6Q32AGhvLTQgY4djKIg95SKtYOo4tSJ4yQPfAvsZnplumZ756Ijs8zwVHsZD3vWDrsFj1r5d4bn5LeSu81szWp_t8gq1VNmT7PgXttMnor_fpIlzlcsQ_DQCQnx_kkm5DU9xQkLbhhLaNXx0yAlPBrRq1Xz-S96ZsNRb0zhyb35j_J34UJ_MjzMDgejg1twkQXM4dNd2FyerPA2odClulPZvYBXZ20g3wF8cZAn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIiEu_P8YCiwSP6e0_rcXiUMgRA0lURWlUm_uej2LIoJTNYkQnHgE3oBX4FV4BZ6EGa9tFBAgDj1wiZTs2B7v7sx8u5n9BuBByJxjykham3iKPnLdUYq5CJVnAg8pxMR8UHg4incPwpeH0eEGfGnOwlh-iHbDjS2j8tds4MeF2flBGvq2NMznyTmQhCHqtMo9fP-OFm2Lp4MejfBD3--_mDzf7dR1BTo65B3BKPJTV7lYKAI3QYI0q3Vg0iJK09yPA_otkFoqpQymCkOVJphHpvBUEhtfYhrQfc_A2TB2JReL6I1bwqqAomWV0k9BshMSdmhoIl1_Z13f9TD4C7Zdh8pVrOtfhK9NL9kUlzfbq2W-rT_8RCD5P3XjJbhQA2_RtZZyGTawvAJOb4pL8UjU7KgzMWqKE1yFz10-hvzt4ydarnPywlSLrp4WoqqDanPuWVDYbRlciAkX6WHeiXmJYt8y6bLAtBSqFN3XWIhnJ8jkHWI8rwQFV6KbPaGvMxRzI4bkXikclQV7BW6sa6vR9fTcwXjikQpNPbprcHAq_XUdNkt6g5sgcl8aHerExTgOCz_PE-0i5ol0kyQtwsCBTjO7Ml1zvXPJkVlmWar9jIc9a4fdgcet_LFlOfmt5FYzWbPa2y2ySnXJ3GkO3G-byU_xn0-qxPmKZQgcuhHh3T_JRLyipyjhwA1rCK06gQwlodGYXq2azn_RMxuO-mMKTt6tf5S_B-f2e_3s1WC0dxvOc7s9eboFm8uTFd4hCLrM71ZWL-DotO3jOyxEjtY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpha%E2%80%90Linolenic+Acid+Supplementation+Improves+Testosterone+Production+in+an+Aged+Breeder+Rooster+Model%3A+Role+of+Mitochondrial+Modulation+and+SIRT1+Activation&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Long%2C+Cheng&rft.au=Zhi%E2%80%90xian+Zhao&rft.au=Willing%2C+Benjamin+P&rft.au=Xi%E2%80%90Hui+Sheng&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=68&rft.issue=22&rft_id=info:doi/10.1002%2Fmnfr.202400522&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon