Alpha‐Linolenic Acid Supplementation Improves Testosterone Production in an Aged Breeder Rooster Model: Role of Mitochondrial Modulation and SIRT1 Activation
Scope Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. Methods and results To investigate the effects of dietary supplementation with alpha‐linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the u...
Saved in:
Published in | Molecular nutrition & food research Vol. 68; no. 22; pp. e2400522 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scope
Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.
Methods and results
To investigate the effects of dietary supplementation with alpha‐linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis‐related enzymes. ALA supplementation exerts anti‐apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro‐apoptotic factors and a higher expression of the anti‐apoptotic factor B‐cell lymphoma 2 (Bcl‐2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function‐related genes.
Conclusion
These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway.
ALA promotes testosterone production and the expression of testosterone biosynthesis‐related enzymes StAR, P450scc, and 3β‐HSD in rooster testis and its Leydig cells by activating the SIRT1 pathway. ALA enhances expressions of mitochondrial biogenesis regulatory factors PGC‐1α, NRF1, and TFAM in Leydig cells by activating the SIRT1 pathway. |
---|---|
AbstractList | SCOPE: Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. METHODS AND RESULTS: To investigate the effects of dietary supplementation with alpha‐linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis‐related enzymes. ALA supplementation exerts anti‐apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro‐apoptotic factors and a higher expression of the anti‐apoptotic factor B‐cell lymphoma 2 (Bcl‐2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function‐related genes. CONCLUSION: These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway. Scope Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. Methods and results To investigate the effects of dietary supplementation with alpha‐linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis‐related enzymes. ALA supplementation exerts anti‐apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro‐apoptotic factors and a higher expression of the anti‐apoptotic factor B‐cell lymphoma 2 (Bcl‐2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function‐related genes. Conclusion These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway. ALA promotes testosterone production and the expression of testosterone biosynthesis‐related enzymes StAR, P450scc, and 3β‐HSD in rooster testis and its Leydig cells by activating the SIRT1 pathway. ALA enhances expressions of mitochondrial biogenesis regulatory factors PGC‐1α, NRF1, and TFAM in Leydig cells by activating the SIRT1 pathway. Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.SCOPEAging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.To investigate the effects of dietary supplementation with alpha-linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis-related enzymes. ALA supplementation exerts anti-apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro-apoptotic factors and a higher expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl-2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function-related genes.METHODS AND RESULTSTo investigate the effects of dietary supplementation with alpha-linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis-related enzymes. ALA supplementation exerts anti-apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro-apoptotic factors and a higher expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl-2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function-related genes.These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway.CONCLUSIONThese findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway. ScopeAging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.Methods and resultsTo investigate the effects of dietary supplementation with alpha‐linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis‐related enzymes. ALA supplementation exerts anti‐apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro‐apoptotic factors and a higher expression of the anti‐apoptotic factor B‐cell lymphoma 2 (Bcl‐2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function‐related genes.ConclusionThese findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway. Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. To investigate the effects of dietary supplementation with alpha-linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis-related enzymes. ALA supplementation exerts anti-apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro-apoptotic factors and a higher expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl-2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function-related genes. These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway. |
Author | Zhao, Zhi‐xian Sheng, Xi‐Hui Wang, Xiang‐Guo Long, Cheng Willing, Benjamin P. Xiao, Long‐Fei Qi, Xiao‐Long |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0002-6603-6685 surname: Long fullname: Long, Cheng organization: University of Alberta – sequence: 2 givenname: Zhi‐xian surname: Zhao fullname: Zhao, Zhi‐xian organization: Beijing University of Agriculture – sequence: 3 givenname: Benjamin P. surname: Willing fullname: Willing, Benjamin P. organization: University of Alberta – sequence: 4 givenname: Xi‐Hui surname: Sheng fullname: Sheng, Xi‐Hui organization: Beijing University of Agriculture – sequence: 5 givenname: Xiang‐Guo surname: Wang fullname: Wang, Xiang‐Guo organization: Beijing University of Agriculture – sequence: 6 givenname: Long‐Fei surname: Xiao fullname: Xiao, Long‐Fei organization: Beijing University of Agriculture – sequence: 7 givenname: Xiao‐Long surname: Qi fullname: Qi, Xiao‐Long email: qixiaolong@bua.edu.cn organization: Ministry of Agriculture and Rural Affairs |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39491816$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuEzEUhi1URC-wZYkssWGT4GN7Eg-7UNESKQEUwnrkeM5QVx57sGeKuuMR-ga8G0-Ck5Qsuikr28fffy46_yk58sEjIS-BjYEx_rb1TRxzxiVjBedPyAlMQIwkCHF0uPPimJymdM2YAC7FM3IsSlmCgskJ-T1z3ZX-8-tuYX1w6K2hM2Nr-nXoOoct-l73Nng6b7sYbjDRNaY-pB5j7oN-iaEezA6wnmpPZ9-xpu8jYo2RrsIOpMtQo3uXnw5paOjS9sFcBV9Hq932c3D7GtrnuvPVGnILvb3ZBZ-Tp412CV_cn2fk28WH9fnH0eLz5fx8thgZyQBGRcEV0wxrzQWIKYISRjSqLpTa8InIMVGaUmvdoNIotZripmhq0NNJw0tU4oy82efNY_4Y8oxVa5NB57THMKRKQCH5BIDBf6BcKFYUSmb09QP0OgzR50GqXUulAsky9eqeGjYt1lUXbavjbfVvSxkY7wETQ0oRmwMCrNraoNraoDrYIAvkA4Gx-0X2UVv3qOyndXj7SJFq-eliJZUC8RdnM8f3 |
CitedBy_id | crossref_primary_10_1016_j_psj_2024_104658 |
Cites_doi | 10.18632/oncotarget.11573 10.1016/j.steroids.2014.03.016 10.1073/pnas.1009176107 10.7150/ijbs.78654 10.1038/nrm2952 10.1007/s00441-020-03312-8 10.1186/s11658-019-0158-9 10.1080/15384101.2017.1295182 10.1002/fsn3.1859 10.14348/molcells.2016.2318 10.1074/jbc.M110.163667 10.1093/humrep/deaa153 10.3390/antiox11091684 10.3390/ijms19113447 10.1080/15376516.2017.1354413 10.1210/er.2003-0030 10.3389/fphar.2020.01225 10.3390/md19040182 10.1016/j.theriogenology.2023.06.030 10.1007/978-1-4419-1599-3_6 10.7150/thno.42387 10.1021/acs.chemrestox.8b00201 10.1016/j.cell.2014.03.026 10.1089/ars.2017.7290 10.1631/jzus.B1700148 10.1093/biolre/ioab150 10.1016/j.ccr.2020.213419 10.3390/molecules24173084 10.3390/cells8080928 10.1016/j.scitotenv.2019.135077 10.12659/MSM.911714 10.1371/journal.pone.0226769 10.1101/gad.843800 10.1631/jzus.B1500158 10.1016/j.theriogenology.2019.03.016 10.1196/annals.1427.006 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7T5 7T7 7TK 8FD C1K FR3 H94 K9. NAPCQ P64 7X8 7S9 L.6 |
DOI | 10.1002/mnfr.202400522 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Nursing & Allied Health Premium MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1613-4133 |
EndPage | n/a |
ExternalDocumentID | 39491816 10_1002_mnfr_202400522 MNFR4881 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: R&D Program of Beijing Municipal Education Commission funderid: KM202310020008 – fundername: National Key R&D Program of China funderid: 2023YFD1301803 – fundername: Beijing University of Agriculture funderid: BUA‐HHXD2022008 – fundername: Modern Agricultural Industry Technology System‐Peking Poultry Innovation Team funderid: BJJQ‐G11 – fundername: Technology Innovation “spark action” support program of the – fundername: National Natural Science Foundation of China funderid: 32472955; 32302795 – fundername: Technology Innovation "spark action" support program of the – fundername: National Natural Science Foundation of China grantid: 32472955 – fundername: National Key R&D Program of China grantid: 2023YFD1301803 – fundername: Beijing University of Agriculture grantid: BUA-HHXD2022008 – fundername: National Natural Science Foundation of China grantid: 32302795 – fundername: Modern Agricultural Industry Technology System-Peking Poultry Innovation Team grantid: BJJQ-G11 – fundername: R&D Program of Beijing Municipal Education Commission grantid: KM202310020008 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QO 7QP 7T5 7T7 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. NAPCQ P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4011-55280a0eda23137e183c3f8d588b26331339c9aaafe8ae4a87eb5fd1a76f29e83 |
IEDL.DBID | DR2 |
ISSN | 1613-4125 1613-4133 |
IngestDate | Fri Jul 11 08:24:36 EDT 2025 Fri Jul 11 06:43:15 EDT 2025 Wed Aug 13 03:53:01 EDT 2025 Wed Feb 19 02:04:24 EST 2025 Thu Apr 24 22:58:35 EDT 2025 Tue Jul 01 04:01:56 EDT 2025 Wed Jan 22 17:12:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | mitochondrial function SIRT1 pathway alpha‐linolenic acid breeder roosters testosterone production Leydig cells |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4011-55280a0eda23137e183c3f8d588b26331339c9aaafe8ae4a87eb5fd1a76f29e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6603-6685 |
PMID | 39491816 |
PQID | 3133998140 |
PQPubID | 2045123 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3154261101 proquest_miscellaneous_3123805584 proquest_journals_3133998140 pubmed_primary_39491816 crossref_primary_10_1002_mnfr_202400522 crossref_citationtrail_10_1002_mnfr_202400522 wiley_primary_10_1002_mnfr_202400522_MNFR4881 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 2024-Nov 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Molecular nutrition & food research |
PublicationTitleAlternate | Mol Nutr Food Res |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2021; 9 2010; 11 2018; 28 2010; 107 2004; 25 2021; 105 2023; 19 2019; 14 2019; 17 2007 2020; 701 2023; 209 2021; 384 2020; 35 2020; 420 2020; 11 2020; 10 2014; 84 2016; 39 2016; 17 2014; 157 2018; 19 2016; 7 2008; 1147 2000; 14 2019; 41 2017; 16 2019; 24 2021; 19 2019; 25 2022; 11 2018; 31 2009; 665 2019; 131 2011; 286 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_40_1 Li W. (e_1_2_10_19_1) 2019; 41 Ye G. (e_1_2_10_23_1) 2019; 17 e_1_2_10_1_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 Bock W. J. (e_1_2_10_11_1) 2007 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 157 start-page: 882 year: 2014 publication-title: Cell – volume: 41 start-page: 102 year: 2019 publication-title: J. Jilin Agric. Univ. – volume: 31 start-page: 1315 year: 2018 publication-title: Chem. Res. Toxicol. – volume: 1147 start-page: 321 year: 2008 publication-title: Ann. N. Y. Acad. Sci. – volume: 39 start-page: 87 year: 2016 publication-title: Mol. Cells – volume: 665 start-page: 78 year: 2009 publication-title: Adv. Exp. Med. Biol. – volume: 19 start-page: 182 year: 2021 publication-title: Mar. Drugs – volume: 24 start-page: 3084 year: 2019 publication-title: Molecules – volume: 209 start-page: 170 year: 2023 publication-title: Theriogenology – volume: 105 start-page: 1307 year: 2021 publication-title: Biol. Reprod. – volume: 11 start-page: 1684 year: 2022 publication-title: Antioxidants (Basel) – volume: 701 year: 2020 publication-title: Sci. Total Environ. – volume: 28 start-page: 23 year: 2018 publication-title: Toxicol. Mech. Methods – year: 2007 – volume: 24 start-page: 36 year: 2019 publication-title: Cell. Mol. Biol. Lett. – volume: 25 start-page: 1220 year: 2019 publication-title: Med. Sci. Monit. – volume: 11 start-page: 621 year: 2010 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 19 start-page: 484 year: 2023 publication-title: Int. J. Biol. Sci. – volume: 9 start-page: 44 year: 2021 publication-title: Food Sci. Nutr. – volume: 84 start-page: 103 year: 2014 publication-title: Steroids – volume: 10 start-page: 4822 year: 2020 publication-title: Theranostics – volume: 25 start-page: 947 year: 2004 publication-title: Endocr. Rev. – volume: 35 start-page: 2072 year: 2020 publication-title: Hum. Reprod. – volume: 28 start-page: 643 year: 2018 publication-title: Antioxid. Redox Signal. – volume: 14 start-page: 3075 year: 2000 publication-title: Genes Dev. – volume: 19 start-page: 415 year: 2018 publication-title: J. Zhejiang Univ. Sci. B – volume: 420 year: 2020 publication-title: Coord. Chem. Rev. – volume: 8 start-page: 928 year: 2019 publication-title: Cells – volume: 131 start-page: 9 year: 2019 publication-title: Theriogenology – volume: 11 year: 2020 publication-title: Front. Pharm. – volume: 286 start-page: 5289 year: 2011 publication-title: J. Biol. Chem. – volume: 17 start-page: 195 year: 2019 publication-title: Oncol. Lett. – volume: 7 year: 2016 publication-title: Oncotarget – volume: 16 start-page: 707 year: 2017 publication-title: Cell Cycle – volume: 384 start-page: 195 year: 2021 publication-title: Cell Tissue Res. – volume: 14 year: 2019 publication-title: PLoS ONE – volume: 17 start-page: 136 year: 2016 publication-title: J. Zhejiang Univ. Sci. B – volume: 19 start-page: 3447 year: 2018 publication-title: Int. J. Mol. Sci. – volume: 107 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – ident: e_1_2_10_32_1 doi: 10.18632/oncotarget.11573 – volume-title: Reproductive Biology and Phylogeny of Birds: Phylogeny, Morphology, Hormones, Fertilization (Volume 6A of Series) year: 2007 ident: e_1_2_10_11_1 – ident: e_1_2_10_4_1 doi: 10.1016/j.steroids.2014.03.016 – ident: e_1_2_10_6_1 doi: 10.1073/pnas.1009176107 – volume: 41 start-page: 102 year: 2019 ident: e_1_2_10_19_1 publication-title: J. Jilin Agric. Univ. – ident: e_1_2_10_17_1 doi: 10.7150/ijbs.78654 – ident: e_1_2_10_12_1 doi: 10.1038/nrm2952 – ident: e_1_2_10_18_1 doi: 10.1007/s00441-020-03312-8 – ident: e_1_2_10_33_1 doi: 10.1186/s11658-019-0158-9 – ident: e_1_2_10_24_1 doi: 10.1080/15384101.2017.1295182 – ident: e_1_2_10_25_1 doi: 10.1002/fsn3.1859 – ident: e_1_2_10_20_1 doi: 10.14348/molcells.2016.2318 – ident: e_1_2_10_36_1 doi: 10.1074/jbc.M110.163667 – ident: e_1_2_10_27_1 doi: 10.1093/humrep/deaa153 – ident: e_1_2_10_13_1 doi: 10.3390/antiox11091684 – ident: e_1_2_10_22_1 doi: 10.3390/ijms19113447 – ident: e_1_2_10_26_1 doi: 10.1080/15376516.2017.1354413 – ident: e_1_2_10_3_1 doi: 10.1210/er.2003-0030 – ident: e_1_2_10_28_1 doi: 10.3389/fphar.2020.01225 – ident: e_1_2_10_8_1 doi: 10.3390/md19040182 – ident: e_1_2_10_39_1 doi: 10.1016/j.theriogenology.2023.06.030 – ident: e_1_2_10_31_1 doi: 10.1007/978-1-4419-1599-3_6 – ident: e_1_2_10_14_1 doi: 10.7150/thno.42387 – ident: e_1_2_10_30_1 doi: 10.1021/acs.chemrestox.8b00201 – ident: e_1_2_10_10_1 doi: 10.1016/j.cell.2014.03.026 – volume: 17 start-page: 195 year: 2019 ident: e_1_2_10_23_1 publication-title: Oncol. Lett. – ident: e_1_2_10_29_1 doi: 10.1089/ars.2017.7290 – ident: e_1_2_10_5_1 doi: 10.1016/j.theriogenology.2023.06.030 – ident: e_1_2_10_7_1 doi: 10.1631/jzus.B1700148 – ident: e_1_2_10_35_1 doi: 10.1093/biolre/ioab150 – ident: e_1_2_10_40_1 doi: 10.1016/j.ccr.2020.213419 – ident: e_1_2_10_34_1 doi: 10.3390/molecules24173084 – ident: e_1_2_10_16_1 doi: 10.3390/cells8080928 – ident: e_1_2_10_21_1 doi: 10.1016/j.scitotenv.2019.135077 – ident: e_1_2_10_37_1 doi: 10.12659/MSM.911714 – ident: e_1_2_10_15_1 doi: 10.1371/journal.pone.0226769 – ident: e_1_2_10_2_1 doi: 10.1101/gad.843800 – ident: e_1_2_10_38_1 doi: 10.1631/jzus.B1500158 – ident: e_1_2_10_1_1 doi: 10.1016/j.theriogenology.2019.03.016 – ident: e_1_2_10_9_1 doi: 10.1196/annals.1427.006 |
SSID | ssj0031243 |
Score | 2.4391034 |
Snippet | Scope
Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.
Methods and results
To investigate... Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. To investigate the effects of dietary... ScopeAging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.Methods and resultsTo investigate the... Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health.SCOPEAging in males can lead to declines in... SCOPE: Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. METHODS AND RESULTS: To investigate... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2400522 |
SubjectTerms | Aging alpha-linolenic acid alpha-Linolenic Acid - administration & dosage alpha-Linolenic Acid - pharmacology Animals Apoptosis B-cell lymphoma biogenesis Biosynthesis breeder roosters Cell culture Dietary Supplements food research Genes In vivo methods and tests Leydig cells Leydig Cells - drug effects Leydig Cells - metabolism Linolenic acid Lymphoma Male Mitochondria Mitochondria - drug effects Mitochondria - metabolism mitochondrial function Modulation Molecular modelling Reproductive health roosters siRNA SIRT1 pathway SIRT1 protein Sirtuin 1 - genetics Sirtuin 1 - metabolism Testis - drug effects Testis - metabolism Testosterone testosterone production |
Title | Alpha‐Linolenic Acid Supplementation Improves Testosterone Production in an Aged Breeder Rooster Model: Role of Mitochondrial Modulation and SIRT1 Activation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.202400522 https://www.ncbi.nlm.nih.gov/pubmed/39491816 https://www.proquest.com/docview/3133998140 https://www.proquest.com/docview/3123805584 https://www.proquest.com/docview/3154261101 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhp1z6SF9O0qJCaE9ObEt-qLftY0kCu5RlA7kZSR6VJRtvyO5eeupP6D_If8sv6Yxlu92WtpReDLbHeIQ0M5-k0TeMHUriHNNO4dwk1ngxNtSauAh17EQMGGIyOig8Gmcn5_LsIr344RS_54foF9zIMhp_TQauzfL4O2noVe2Iz5NyIBFDoBOmhC1CRZOeP0pg8Goy7DFmhRJDecfaGCXHm59vRqVfoOYmcm1Cz_A-053SPuPk8mi9Mkf28098jv_TqgfsXotL-cAPpIdsC-pdFryfwYq_4i156JyPO-7-R-x2QKd07758xdks7e3PLB_YWcWbMqE-JZ0EuV-1gCWfUg0bomVY1MA_eqJZEpjVXNd88Akq_vYGiNuCTxaNIKdCbfM3eDsHvnB8hN4HvXVdkdHQy7b0GH6P_z2dTGNUoSvX9pidDz9M352EbbWH0Epap03TpIh0BJVGyClyQF9jhSuqtChMkgl8JpRVWmsHhQapixxM6qpY55lLFBTiCduusQXPGDeJclbaPIIsk1ViTG4jAJOrKM-LSoqAhV1vl7alQqeKHPPSkzgnJXVD2XdDwF738teeBOS3kgfd4ClbZ7AsG9UVUYsF7GX_Gs2Y9mZ0DYs1ySB2ilKEg3-SSWnCi040YE_9wOzVEUoqBGsZNq0ZXn_RsxyNhxP03fHeP8rvsx166E9jHrDt1c0aniMsW5kXjel9A7X4MmM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcoBLKb81FFgkfk5u_f-DxCEQooQ2EYpSqTezux6jiOCgJhGCUx-BN-AZeBUegSdhxmsbBQSIQw9cLMU7ice7OzPfbma_AbgfMOeYLFJam7iSLkrbUjIXoXQL30UKMREfFB6Oov5R8OI4PN6AL81ZGMMP0W64sWVU_poNnDek93-whr4tCyb05CRIAhF1XuUBfnhPq7bFk0GXhviB5_WeT5717bqwgK0D3hIMQy9xpIO5JHTjx0jTWvtFkodJorzIp3t-qlMpZYGJxEAmMaqwyF0ZR4WXYuLT756D81xGnOn6u-OWscqncFnl9FOUtAMCDw1PpOPtr-u7Hgd_AbfrWLkKdr1L8LXpJpPj8mZvtVR7-uNPDJL_VT9uw1YNvUXH2Mpl2MDyCljdKS7FQ1Hzo87EqClPcBU-d_gg8rfTT7Rg5_SFqRYdPc1FVQnVZN2zoDAbM7gQEy7Tw8wT8xLFS8OlywLTUshSdF5jLp6eINN3iPG8EhRci272mD7OUMwLMSQHSwGpzNkvcGNdXY2-T88djCcuqdBUpLsGR2fSX9dhs6Q32AGhvLTQgY4djKIg95SKtYOo4tSJ4yQPfAvsZnplumZ756Ijs8zwVHsZD3vWDrsFj1r5d4bn5LeSu81szWp_t8gq1VNmT7PgXttMnor_fpIlzlcsQ_DQCQnx_kkm5DU9xQkLbhhLaNXx0yAlPBrRq1Xz-S96ZsNRb0zhyb35j_J34UJ_MjzMDgejg1twkQXM4dNd2FyerPA2odClulPZvYBXZ20g3wF8cZAn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIiEu_P8YCiwSP6e0_rcXiUMgRA0lURWlUm_uej2LIoJTNYkQnHgE3oBX4FV4BZ6EGa9tFBAgDj1wiZTs2B7v7sx8u5n9BuBByJxjykham3iKPnLdUYq5CJVnAg8pxMR8UHg4incPwpeH0eEGfGnOwlh-iHbDjS2j8tds4MeF2flBGvq2NMznyTmQhCHqtMo9fP-OFm2Lp4MejfBD3--_mDzf7dR1BTo65B3BKPJTV7lYKAI3QYI0q3Vg0iJK09yPA_otkFoqpQymCkOVJphHpvBUEhtfYhrQfc_A2TB2JReL6I1bwqqAomWV0k9BshMSdmhoIl1_Z13f9TD4C7Zdh8pVrOtfhK9NL9kUlzfbq2W-rT_8RCD5P3XjJbhQA2_RtZZyGTawvAJOb4pL8UjU7KgzMWqKE1yFz10-hvzt4ydarnPywlSLrp4WoqqDanPuWVDYbRlciAkX6WHeiXmJYt8y6bLAtBSqFN3XWIhnJ8jkHWI8rwQFV6KbPaGvMxRzI4bkXikclQV7BW6sa6vR9fTcwXjikQpNPbprcHAq_XUdNkt6g5sgcl8aHerExTgOCz_PE-0i5ol0kyQtwsCBTjO7Ml1zvXPJkVlmWar9jIc9a4fdgcet_LFlOfmt5FYzWbPa2y2ySnXJ3GkO3G-byU_xn0-qxPmKZQgcuhHh3T_JRLyipyjhwA1rCK06gQwlodGYXq2azn_RMxuO-mMKTt6tf5S_B-f2e_3s1WC0dxvOc7s9eboFm8uTFd4hCLrM71ZWL-DotO3jOyxEjtY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpha%E2%80%90Linolenic+Acid+Supplementation+Improves+Testosterone+Production+in+an+Aged+Breeder+Rooster+Model%3A+Role+of+Mitochondrial+Modulation+and+SIRT1+Activation&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Long%2C+Cheng&rft.au=Zhi%E2%80%90xian+Zhao&rft.au=Willing%2C+Benjamin+P&rft.au=Xi%E2%80%90Hui+Sheng&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=68&rft.issue=22&rft_id=info:doi/10.1002%2Fmnfr.202400522&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |