Propensity Score Methods: Theory and Practice for Anesthesia Research
Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators may statistically evaluate the relationship between a treatment or therapy and outcomes. However, inherent in observational data is the potent...
Saved in:
Published in | Anesthesia and analgesia Vol. 127; no. 4; pp. 1074 - 1084 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
International Anesthesia Research Society
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators may statistically evaluate the relationship between a treatment or therapy and outcomes. However, inherent in observational data is the potential for confounding arising from the nonrandom assignment of treatment. In this statistical grand rounds, we describe the use of propensity score methods (ie, using the probability of receiving treatment given covariates) to reduce bias due to measured confounders in anesthesia and perioperative medicine research. We provide a description of the theory and background appropriate for the anesthesia researcher and describe statistical assumptions that should be assessed in the course of a research study using the propensity score. We further describe 2 propensity score methods for evaluating the association of treatment or therapy with outcomes, propensity score matching and inverse probability of treatment weighting, and compare to covariate-adjusted regression analysis. We distinguish several estimators of treatment effect available with propensity score methods, including the average treatment effect, the average treatment effect for the treated, and average treatment effect for the controls or untreated, and compare to the conditional treatment effect in covariate-adjusted regression. We highlight the relative advantages of the various methods and estimators, describe analysis assumptions and how to critically evaluate them, and demonstrate methods in an analysis of thoracic epidural analgesia and new-onset atrial arrhythmias after pulmonary resection. |
---|---|
AbstractList | Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators may statistically evaluate the relationship between a treatment or therapy and outcomes. However, inherent in observational data is the potential for confounding arising from the nonrandom assignment of treatment. In this statistical grand rounds, we describe the use of propensity score methods (ie, using the probability of receiving treatment given covariates) to reduce bias due to measured confounders in anesthesia and perioperative medicine research. We provide a description of the theory and background appropriate for the anesthesia researcher and describe statistical assumptions that should be assessed in the course of a research study using the propensity score. We further describe 2 propensity score methods for evaluating the association of treatment or therapy with outcomes, propensity score matching and inverse probability of treatment weighting, and compare to covariate-adjusted regression analysis. We distinguish several estimators of treatment effect available with propensity score methods, including the average treatment effect, the average treatment effect for the treated, and average treatment effect for the controls or untreated, and compare to the conditional treatment effect in covariate-adjusted regression. We highlight the relative advantages of the various methods and estimators, describe analysis assumptions and how to critically evaluate them, and demonstrate methods in an analysis of thoracic epidural analgesia and new-onset atrial arrhythmias after pulmonary resection. Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators may statistically evaluate the relationship between a treatment or therapy and outcomes. However, inherent in observational data is the potential for confounding arising from the nonrandom assignment of treatment. In this statistical grand rounds, we describe the use of propensity score methods (ie, using the probability of receiving treatment given covariates) to reduce bias due to measured confounders in anesthesia and perioperative medicine research. We provide a description of the theory and background appropriate for the anesthesia researcher and describe statistical assumptions that should be assessed in the course of a research study using the propensity score. We further describe 2 propensity score methods for evaluating the association of treatment or therapy with outcomes, propensity score matching and inverse probability of treatment weighting, and compare to covariate-adjusted regression analysis. We distinguish several estimators of treatment effect available with propensity score methods, including the average treatment effect, the average treatment effect for the treated, and average treatment effect for the controls or untreated, and compare to the conditional treatment effect in covariate-adjusted regression. We highlight the relative advantages of the various methods and estimators, describe analysis assumptions and how to critically evaluate them, and demonstrate methods in an analysis of thoracic epidural analgesia and new-onset atrial arrhythmias after pulmonary resection.Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators may statistically evaluate the relationship between a treatment or therapy and outcomes. However, inherent in observational data is the potential for confounding arising from the nonrandom assignment of treatment. In this statistical grand rounds, we describe the use of propensity score methods (ie, using the probability of receiving treatment given covariates) to reduce bias due to measured confounders in anesthesia and perioperative medicine research. We provide a description of the theory and background appropriate for the anesthesia researcher and describe statistical assumptions that should be assessed in the course of a research study using the propensity score. We further describe 2 propensity score methods for evaluating the association of treatment or therapy with outcomes, propensity score matching and inverse probability of treatment weighting, and compare to covariate-adjusted regression analysis. We distinguish several estimators of treatment effect available with propensity score methods, including the average treatment effect, the average treatment effect for the treated, and average treatment effect for the controls or untreated, and compare to the conditional treatment effect in covariate-adjusted regression. We highlight the relative advantages of the various methods and estimators, describe analysis assumptions and how to critically evaluate them, and demonstrate methods in an analysis of thoracic epidural analgesia and new-onset atrial arrhythmias after pulmonary resection. |
Author | Schulte, Phillip J. Mascha, Edward J. |
AuthorAffiliation | From the Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio |
AuthorAffiliation_xml | – name: Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio – name: From the Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota |
Author_xml | – sequence: 1 givenname: Phillip J. surname: Schulte fullname: Schulte, Phillip J. organization: From the Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota – sequence: 2 givenname: Edward J. surname: Mascha fullname: Mascha, Edward J. organization: Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29750691$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVtLwzAUx4MoOqffQKSPvlRzadPGtyHzAt7w8hzS0zNa7ZqZZIx9ezOnICJoXpJz-P3P5Z9dstnbHgk5YPSYcSZORrfjY_rtcMXpBhmwnMu0yFW5SQYxK1KulNohu96_xJDRUm6THa6KnErFBmR87-wMe9-GZfII1mFyg6GxtT9Nnhq0bpmYvk7unYHQAiYT65JRjz406FuTPKBH46DZI1sT03nc_7yH5Pl8_HR2mV7fXVydja5TyGLrtGKSMyPjM69pBgVWxshKQCYqBAUSEIqMTkwtQOVKMgBaVzmA5KqmwKkYkqN13Zmzb_M4hp62HrDrTI927nVESl4IHv0ZksNPdF5NsdYz106NW-qv1SNwugbAWe8dTjS0wYTW9sGZttOM6pXPOvqsf_ocxdkP8Vf9P2TlWrawXUDnX7v5Ap1u0HSh-WfHX6UfXC5Uyikr2SpIV59fineva58B |
CitedBy_id | crossref_primary_10_2147_PPA_S270557 crossref_primary_10_1016_j_jcrc_2020_04_003 crossref_primary_10_1213_ANE_0000000000004667 crossref_primary_10_1111_jocn_17476 crossref_primary_10_1111_cns_14762 crossref_primary_10_3344_kjp_24173 crossref_primary_10_1016_j_vaccine_2022_09_025 crossref_primary_10_1007_s00268_020_05940_1 crossref_primary_10_1007_s00540_022_03101_3 crossref_primary_10_1053_j_jvca_2020_12_024 crossref_primary_10_3390_jcm10071425 crossref_primary_10_1016_j_bja_2022_04_026 crossref_primary_10_1016_j_bjae_2024_11_006 crossref_primary_10_1002_mnfr_202400373 crossref_primary_10_1016_j_iccn_2024_103626 crossref_primary_10_1016_j_iccn_2024_103749 crossref_primary_10_1213_ANE_0000000000005763 crossref_primary_10_1213_ANE_0000000000006853 crossref_primary_10_1111_ajt_16425 crossref_primary_10_1213_ANE_0000000000003982 crossref_primary_10_1213_ANE_0000000000005248 crossref_primary_10_1213_ANE_0000000000005482 crossref_primary_10_1016_j_jtcvs_2023_05_037 crossref_primary_10_1097_ALN_0000000000004894 crossref_primary_10_3748_wjg_v25_i24_2990 crossref_primary_10_1016_j_accpm_2023_101200 crossref_primary_10_1016_j_gie_2022_03_023 crossref_primary_10_1213_ANE_0000000000005773 crossref_primary_10_1053_j_jvca_2023_07_027 crossref_primary_10_1213_ANE_0000000000005656 crossref_primary_10_1213_ANE_0000000000006741 crossref_primary_10_1213_ANE_0000000000004560 crossref_primary_10_1213_ANE_0000000000005770 crossref_primary_10_1016_j_bja_2025_01_039 crossref_primary_10_1093_ejcts_ezad089 crossref_primary_10_1016_j_neurom_2024_03_001 crossref_primary_10_1016_j_bjane_2023_11_004 crossref_primary_10_1213_ANE_0000000000006906 crossref_primary_10_1097_ALN_0000000000004404 crossref_primary_10_1213_ANE_0000000000005819 crossref_primary_10_1213_ANE_0000000000004211 crossref_primary_10_12998_wjcc_v10_i9_2721 crossref_primary_10_1186_s12888_024_05520_w crossref_primary_10_1213_ANE_0000000000005943 crossref_primary_10_1213_ANE_0000000000004336 crossref_primary_10_1213_ANE_0000000000006076 crossref_primary_10_1186_s12916_024_03773_6 crossref_primary_10_1213_ANE_0000000000007167 crossref_primary_10_1038_s41598_021_85714_4 crossref_primary_10_1186_s12877_025_05817_9 crossref_primary_10_1053_j_jvca_2023_11_040 crossref_primary_10_1186_s12877_023_04368_1 crossref_primary_10_1016_j_jclinepi_2023_01_002 crossref_primary_10_1016_j_jclinane_2022_110961 crossref_primary_10_1053_j_jvca_2022_11_021 crossref_primary_10_12998_wjcc_v10_i9_2719 crossref_primary_10_1016_j_asjsur_2023_04_061 crossref_primary_10_1038_s41598_020_70533_w crossref_primary_10_1016_j_chest_2024_10_008 crossref_primary_10_1213_ANE_0000000000005829 crossref_primary_10_1515_jpm_2019_0412 crossref_primary_10_1213_ANE_0000000000006765 crossref_primary_10_1213_ANE_0000000000006647 crossref_primary_10_1213_ANE_0000000000006521 crossref_primary_10_2147_CLEP_S373291 crossref_primary_10_1213_ANE_0000000000006005 crossref_primary_10_1213_ANE_0000000000006247 crossref_primary_10_2337_dc21_0552 crossref_primary_10_1007_s00259_022_05734_8 crossref_primary_10_1007_s40121_024_01005_1 crossref_primary_10_1213_ANE_0000000000006760 crossref_primary_10_1016_j_jclinane_2022_110989 crossref_primary_10_1213_ANE_0000000000005152 crossref_primary_10_1213_ANE_0000000000005394 crossref_primary_10_1016_j_jclinane_2023_111321 crossref_primary_10_1002_ehf2_13328 crossref_primary_10_1007_s00540_020_02882_9 crossref_primary_10_1111_ggi_14894 crossref_primary_10_4103_IJPC_IJPC_100_19 crossref_primary_10_1213_ANE_0000000000004627 crossref_primary_10_1001_jama_2024_0762 crossref_primary_10_1213_ANE_0000000000005318 crossref_primary_10_1016_j_ijoa_2020_09_001 crossref_primary_10_1016_j_jvs_2023_05_015 crossref_primary_10_1213_ANE_0000000000004993 crossref_primary_10_1186_s12893_024_02521_0 crossref_primary_10_1111_nicc_13240 crossref_primary_10_1213_ANE_0000000000004117 crossref_primary_10_3390_jcm12123907 crossref_primary_10_1213_ANE_0000000000005842 crossref_primary_10_1016_j_anrea_2023_10_001 crossref_primary_10_1097_JS9_0000000000001831 crossref_primary_10_1097_MD_0000000000025235 crossref_primary_10_1038_s41598_024_71134_7 crossref_primary_10_1038_s41598_024_56665_3 crossref_primary_10_1016_j_jmig_2023_09_003 crossref_primary_10_1038_s41598_021_85830_1 crossref_primary_10_1001_jamanetworkopen_2022_3890 crossref_primary_10_1007_s00464_024_11327_3 crossref_primary_10_1080_27707571_2022_2153448 crossref_primary_10_1016_j_ajic_2019_08_017 crossref_primary_10_1186_s12884_023_05728_w crossref_primary_10_1016_j_bja_2022_08_014 crossref_primary_10_1213_ANE_0000000000004239 crossref_primary_10_3390_jcm10040706 crossref_primary_10_1213_ANE_0000000000006785 crossref_primary_10_1016_j_transproceed_2024_01_025 crossref_primary_10_1213_ANE_0000000000007358 crossref_primary_10_1213_ANE_0000000000005051 crossref_primary_10_1213_ANE_0000000000006383 crossref_primary_10_1016_j_lungcan_2021_09_010 crossref_primary_10_1016_j_healun_2022_10_016 crossref_primary_10_1053_j_jvca_2020_09_115 crossref_primary_10_1016_j_athoracsur_2021_03_069 crossref_primary_10_2147_DDDT_S394664 crossref_primary_10_1002_clc_23771 crossref_primary_10_1097_SLA_0000000000005887 crossref_primary_10_23736_S0375_9393_21_15668_8 crossref_primary_10_1177_0885066620977181 crossref_primary_10_1016_j_bja_2023_06_054 crossref_primary_10_1213_ANE_0000000000005739 crossref_primary_10_1097_CMR_0000000000000856 crossref_primary_10_1016_j_jclinane_2022_110915 crossref_primary_10_1213_ANE_0000000000004770 crossref_primary_10_1038_s41598_022_20584_y crossref_primary_10_1213_ANE_0000000000003963 crossref_primary_10_1213_ANE_0000000000004017 crossref_primary_10_1002_phar_2517 crossref_primary_10_1016_j_jcv_2023_105600 crossref_primary_10_1097_SLE_0000000000001341 crossref_primary_10_1053_j_jvca_2020_07_015 crossref_primary_10_1053_j_jvca_2020_09_126 crossref_primary_10_1097_SLA_0000000000004024 crossref_primary_10_1016_j_pcorm_2024_100376 crossref_primary_10_1038_s41598_023_32730_1 crossref_primary_10_18553_jmcp_2022_28_3_325 crossref_primary_10_3390_jcm11195521 |
Cites_doi | 10.1002/pst.537 10.1002/sim.5984 10.1002/sim.3782 10.1002/pst.433 10.1257/aer.91.2.107 10.1001/archpediatrics.2009.31 10.1037/1082-989X.9.4.403 10.1002/bimj.200610279 10.1002/sim.3697 10.1080/01621459.1984.10478078 10.1002/sim.4200 10.1002/sim.3811 10.1093/aje/kwv254 10.1111/1475-6773.12020 10.1093/aje/kwp436 10.2105/AJPH.94.3.423 10.1002/sim.6004 10.1213/ANE.0b013e3182a44cb9 10.1002/sim.1903 10.1002/sim.5753 10.1093/aje/kwj149 10.1002/sim.2328 10.1515/ijb-2012-0030 10.1002/bimj.200810488 10.1007/s00540-014-1865-z 10.1002/sim.7084 10.1198/016214501753382309 10.1177/0272989X09341755 10.1080/10543400601044790 10.1097/00001648-200009000-00012 10.1093/aje/kwn164 10.1198/016214504000001187 10.1080/00273171.2011.568786 10.1136/ebmed-2016-110401 10.7326/0003-4819-127-8_Part_2-199710151-00064 10.1093/jnci/djw323 10.1001/jama.2012.9502 10.1002/sim.5705 10.1016/j.jclinepi.2009.11.020 10.2202/1557-4679.1146 10.1093/aje/kwr364 10.1002/pds.3263 10.1177/0962280215601134 10.1214/09-STS313 10.1097/EDE.0b013e318289dedf 10.1002/sim.2580 10.1161/CIRCULATIONAHA.107.721357 10.2307/2529684 10.1213/ANE.0000000000002787 10.1016/S0895-4356(00)00321-8 10.1214/ss/1009211805 10.1162/003465302317331982 |
ContentType | Journal Article |
Copyright | International Anesthesia Research Society 2018 International Anesthesia Research Society |
Copyright_xml | – notice: International Anesthesia Research Society – notice: 2018 International Anesthesia Research Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1213/ANE.0000000000002920 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1526-7598 |
EndPage | 1084 |
ExternalDocumentID | 29750691 10_1213_ANE_0000000000002920 10.1213/ANE.0000000000002920 00000539-201810000-00038 |
Genre | Journal Article |
GroupedDBID | --- .-D .XZ .Z2 01R 026 0R~ 1J1 23M 2WC 40H 4Q1 4Q2 4Q3 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AAUEB AAWTL AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPPZ ABPXF ABVCZ ABXVJ ABXYN ABZAD ABZZY ACCJW ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACLED ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADGGA ADHPY AE6 AEBDS AEETU AENEX AFBFQ AFDTB AFEXH AFMBP AFMFG AFNMH AFSOK AFUWQ AGINI AHOMT AHQNM AHQVU AHVBC AHXIK AIJEX AINUH AJCLO AJIOK AJNWD AJRGT AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BOYCO BQLVK C45 CS3 DIWNM E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 JK8 K8S KD2 KMI L-C L7B MZP N9A N~7 N~B O9- OAG OAH OB4 ODMTH OHYEH OK1 OL1 OLG OLH OLL OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PONUX RIG RLZ S4R S4S TEORI TR2 TSPGW V2I VVN W3M W8F WOQ WOW X3V X3W XXN XYM YFH YOC ZFV .55 .GJ 1CY 3O- 53G AAFWJ AAQQT AAYXX ABKPX ADFPA ADNKB ADSXY AE3 AFFNX AHRYX AJNYG BS7 C1A CITATION DUNZO FW0 J5H M18 N4W N~M OCUKA ODA ORVUJ OUVQU P-K R58 X7M YQJ ZGI ZXP ZZMQN ACIJW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4010-b1621a60105d04c7ebaa6b3c43bec9c6cec740fad3c95961cc0db5cc629d0c203 |
ISSN | 0003-2999 1526-7598 |
IngestDate | Fri Jul 11 11:29:49 EDT 2025 Thu Apr 03 06:56:04 EDT 2025 Tue Aug 12 03:57:49 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Fri May 16 03:42:32 EDT 2025 Fri May 16 03:46:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4010-b1621a60105d04c7ebaa6b3c43bec9c6cec740fad3c95961cc0db5cc629d0c203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29750691 |
PQID | 2038273221 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2038273221 pubmed_primary_29750691 crossref_citationtrail_10_1213_ANE_0000000000002920 crossref_primary_10_1213_ANE_0000000000002920 wolterskluwer_health_10_1213_ANE_0000000000002920 wolterskluwer_health_00000539-201810000-00038 |
PublicationCentury | 2000 |
PublicationDate | 2018-October-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-October-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Anesthesia and analgesia |
PublicationTitleAlternate | Anesth Analg |
PublicationYear | 2018 |
Publisher | International Anesthesia Research Society |
Publisher_xml | – name: International Anesthesia Research Society |
References | Cole (R22-20230721) 2008; 168 Westreich (R23-20230721) 2010; 171 Normand (R37-20230721) 2001; 54 Ho (R2-20230721) 2008; 118 Austin (R17-20230721) 2011; 46 Komatsu (R4-20230721) 2015; 29 Abadie (R47-20230721) 2008; 76 Austin (R48-20230721) 2009; 29 Lunceford (R34-20230721) 2004; 23 Rassen (R28-20230721) 2012; 21 Kauermann (R41-20230721) 2001; 96 Austin (R46-20230721) 2011; 30 Stampf (R9-20230721) 2010; 29 Austin (R8-20230721) 2014; 33 Gayat (R44-20230721) 2012; 11 Li (R55-20230721) 2013; 9 Imai (R53-20230721) 2004; 99 Austin (R27-20230721) 2014; 33 Dehejia (R29-20230721) 2002; 84 Brookhart (R20-20230721) 2006; 163 Austin (R36-20230721) 2009; 28 Lee (R13-20230721) 2010; 29 Austin (R25-20230721) 2009; 51 Brooks (R49-20230721) 2013; 48 Rosenbaum (R35-20230721) 1984; 79 Heckman (R7-20230721) 2001; 91 Austin (R40-20230721) 2016; 35 Austin (R32-20230721) 2011; 10 Mascha (R38-20230721) 2013; 117 McCaffrey (R14-20230721) 2004; 9 Rubin (R21-20230721) 1997; 127 McCaffrey (R51-20230721) 2013; 32 Austin (R24-20230721) 2017; 26 Rassen (R54-20230721) 2013; 24 Rubin (R31-20230721) 1973; 29 Cummings (R11-20230721) 2009; 163 Hernán (R39-20230721) 2000; 11 Hernán (R5-20230721) 2016; 183 Thomas (R56-20230721) 2012; 308 Austin (R45-20230721) 2009; 5 Stuart (R43-20230721) 2010; 25 Austin (R16-20230721) 2007; 26 Austin (R10-20230721) 2013; 32 Greenland (R12-20230721) 1999; 14 Murray (R42-20230721) 2004; 94 Westreich (R15-20230721) 2010; 63 Austin (R26-20230721) 2006; 25 Murad (R1-20230721) 2016; 21 Staffa (R3-20230721) 2018; 127 Myers (R19-20230721) 2011; 174 Masch (R6-20230721) 2007; 49 Jung (R18-20230721) 2007; 17 Yao (R50-20230721) 2017; 109 |
References_xml | – volume: 11 start-page: 222 year: 2012 ident: R44-20230721 article-title: Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study. publication-title: Pharm Stat doi: 10.1002/pst.537 – volume: 33 start-page: 1242 year: 2014 ident: R8-20230721 article-title: The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. publication-title: Stat Med doi: 10.1002/sim.5984 – volume: 29 start-page: 337 year: 2010 ident: R13-20230721 article-title: Improving propensity score weighting using machine learning. publication-title: Stat Med doi: 10.1002/sim.3782 – volume: 10 start-page: 150 year: 2011 ident: R32-20230721 article-title: Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. publication-title: Pharm Stat doi: 10.1002/pst.433 – volume: 91 start-page: 107 year: 2001 ident: R7-20230721 article-title: Policy-relevant treatment effects. publication-title: Am Econ Rev doi: 10.1257/aer.91.2.107 – volume: 163 start-page: 438 year: 2009 ident: R11-20230721 article-title: The relative merits of risk ratios and odds ratios. publication-title: Arch Pediatr Adolesc Med doi: 10.1001/archpediatrics.2009.31 – volume: 9 start-page: 403 year: 2004 ident: R14-20230721 article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies. publication-title: Psychol Methods doi: 10.1037/1082-989X.9.4.403 – volume: 49 start-page: 378 year: 2007 ident: R6-20230721 article-title: Estimating treatment effect heterogeneity for binary outcomes via Dirichlet multinomial constraints. publication-title: Biom J doi: 10.1002/bimj.200610279 – volume: 28 start-page: 3083 year: 2009 ident: R36-20230721 article-title: Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. publication-title: Stat Med doi: 10.1002/sim.3697 – volume: 79 start-page: 516 year: 1984 ident: R35-20230721 article-title: Reducing bias in observational studies using subclassification on the propensity score. publication-title: J Am Stat Assoc doi: 10.1080/01621459.1984.10478078 – volume: 30 start-page: 1292 year: 2011 ident: R46-20230721 article-title: Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. publication-title: Stat Med doi: 10.1002/sim.4200 – volume: 29 start-page: 760 year: 2010 ident: R9-20230721 article-title: Estimators and confidence intervals for the marginal odds ratio using logistic regression and propensity score stratification. publication-title: Stat Med doi: 10.1002/sim.3811 – volume: 183 start-page: 758 year: 2016 ident: R5-20230721 article-title: Using big data to emulate a target trial when a randomized trial is not available. publication-title: Am J Epidemiol doi: 10.1093/aje/kwv254 – volume: 48 start-page: 1487 year: 2013 ident: R49-20230721 article-title: Squeezing the balloon: propensity scores and unmeasured covariate balance. publication-title: Health Serv Res doi: 10.1111/1475-6773.12020 – volume: 171 start-page: 674 year: 2010 ident: R23-20230721 article-title: Invited commentary: positivity in practice. publication-title: Am J Epidemiol doi: 10.1093/aje/kwp436 – volume: 94 start-page: 423 year: 2004 ident: R42-20230721 article-title: Design and analysis of group-randomized trials: a review of recent methodological developments. publication-title: Am J Public Health doi: 10.2105/AJPH.94.3.423 – volume: 33 start-page: 1057 year: 2014 ident: R27-20230721 article-title: A comparison of 12 algorithms for matching on the propensity score. publication-title: Stat Med doi: 10.1002/sim.6004 – volume: 117 start-page: 980 year: 2013 ident: R38-20230721 article-title: Statistical grand rounds: understanding the mechanism: mediation analysis in randomized and nonrandomized studies. publication-title: Anesth Analg doi: 10.1213/ANE.0b013e3182a44cb9 – volume: 23 start-page: 2937 year: 2004 ident: R34-20230721 article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. publication-title: Stat Med doi: 10.1002/sim.1903 – volume: 32 start-page: 3388 year: 2013 ident: R51-20230721 article-title: A tutorial on propensity score estimation for multiple treatments using generalized boosted models. publication-title: Stat Med doi: 10.1002/sim.5753 – volume: 163 start-page: 1149 year: 2006 ident: R20-20230721 article-title: Variable selection for propensity score models. publication-title: Am J Epidemiol doi: 10.1093/aje/kwj149 – volume: 25 start-page: 2084 year: 2006 ident: R26-20230721 article-title: A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. publication-title: Stat Med doi: 10.1002/sim.2328 – volume: 9 start-page: 215 year: 2013 ident: R55-20230721 article-title: A weighting analogue to pair matching in propensity score analysis. publication-title: Int J Biostat doi: 10.1515/ijb-2012-0030 – volume: 51 start-page: 171 year: 2009 ident: R25-20230721 article-title: Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. publication-title: Biom J doi: 10.1002/bimj.200810488 – volume: 29 start-page: 47 year: 2015 ident: R4-20230721 article-title: Association of thoracic epidural analgesia with risk of atrial arrhythmias after pulmonary resection: a retrospective cohort study. publication-title: J Anesth doi: 10.1007/s00540-014-1865-z – volume: 35 start-page: 5642 year: 2016 ident: R40-20230721 article-title: Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis. publication-title: Stat Med doi: 10.1002/sim.7084 – volume: 96 start-page: 1387 year: 2001 ident: R41-20230721 article-title: A note on the efficiency of sandwich covariance matrix estimation. publication-title: J Am Stat Assoc doi: 10.1198/016214501753382309 – volume: 29 start-page: 661 year: 2009 ident: R48-20230721 article-title: The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies. publication-title: Med Decis Making doi: 10.1177/0272989X09341755 – volume: 76 start-page: 1537 year: 2008 ident: R47-20230721 article-title: Notes and comments on the failure of the bootstrap. publication-title: Econometrica – volume: 17 start-page: 35 year: 2007 ident: R18-20230721 article-title: A note on sample size calculation based on propensity analysis in nonrandomized trials. publication-title: J Biopharm Stat doi: 10.1080/10543400601044790 – volume: 11 start-page: 561 year: 2000 ident: R39-20230721 article-title: Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. publication-title: Epidemiology doi: 10.1097/00001648-200009000-00012 – volume: 168 start-page: 656 year: 2008 ident: R22-20230721 article-title: Constructing inverse probability weights for marginal structural models. publication-title: Am J Epidemiol doi: 10.1093/aje/kwn164 – volume: 99 start-page: 854 year: 2004 ident: R53-20230721 article-title: Causal inference with general treatment regimes: generalizing the propensity score. publication-title: J Am Stat Assoc doi: 10.1198/016214504000001187 – volume: 46 start-page: 399 year: 2011 ident: R17-20230721 article-title: An introduction to propensity score methods for reducing the effects of confounding in observational studies. publication-title: Multivariate Behav Res doi: 10.1080/00273171.2011.568786 – volume: 21 start-page: 125 year: 2016 ident: R1-20230721 article-title: New evidence pyramid. publication-title: Evid Based Med doi: 10.1136/ebmed-2016-110401 – volume: 127 start-page: 757 year: 1997 ident: R21-20230721 article-title: Estimating causal effects from large data sets using propensity scores. publication-title: Ann Intern Med doi: 10.7326/0003-4819-127-8_Part_2-199710151-00064 – volume: 109 start-page: djw323 year: 2017 ident: R50-20230721 article-title: Reporting and guidelines in propensity score analysis: a systematic review of cancer and cancer surgical studies. publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djw323 – volume: 308 start-page: 773 year: 2012 ident: R56-20230721 article-title: The value of statistical analysis plans in observational research: defining high-quality research from the start. publication-title: JAMA doi: 10.1001/jama.2012.9502 – volume: 32 start-page: 2837 year: 2013 ident: R10-20230721 article-title: The performance of different propensity score methods for estimating marginal hazard ratios. publication-title: Stat Med doi: 10.1002/sim.5705 – volume: 63 start-page: 826 year: 2010 ident: R15-20230721 article-title: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2009.11.020 – volume: 5 start-page: Article 13 year: 2009 ident: R45-20230721 article-title: Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses. publication-title: Int J Biostat doi: 10.2202/1557-4679.1146 – volume: 174 start-page: 1213 year: 2011 ident: R19-20230721 article-title: Effects of adjusting for instrumental variables on bias and precision of effect estimates. publication-title: Am J Epidemiol doi: 10.1093/aje/kwr364 – volume: 21 start-page: 69 issue: suppl 2 year: 2012 ident: R28-20230721 article-title: One-to-many propensity score matching in cohort studies. publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.3263 – volume: 26 start-page: 2505 year: 2017 ident: R24-20230721 article-title: Estimating the effect of treatment on binary outcomes using full matching on the propensity score. publication-title: Stat Methods Med Res doi: 10.1177/0962280215601134 – volume: 25 start-page: 1 year: 2010 ident: R43-20230721 article-title: Matching methods for causal inference: a review and a look forward. publication-title: Stat Sci doi: 10.1214/09-STS313 – volume: 24 start-page: 401 year: 2013 ident: R54-20230721 article-title: Matching by propensity score in cohort studies with three treatment groups. publication-title: Epidemiology doi: 10.1097/EDE.0b013e318289dedf – volume: 26 start-page: 734 year: 2007 ident: R16-20230721 article-title: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. publication-title: Stat Med doi: 10.1002/sim.2580 – volume: 118 start-page: 1675 year: 2008 ident: R2-20230721 article-title: Evaluating the evidence: is there a rigid hierarchy? publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.721357 – volume: 29 start-page: 159 year: 1973 ident: R31-20230721 article-title: Matching to remove bias in observational studies. publication-title: Biometrics doi: 10.2307/2529684 – volume: 127 start-page: 1066 year: 2018 ident: R3-20230721 article-title: Five steps to successfully implement and evaluate propensity score matching in clinical research studies. publication-title: Anesth Analg doi: 10.1213/ANE.0000000000002787 – volume: 54 start-page: 387 year: 2001 ident: R37-20230721 article-title: Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores. publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(00)00321-8 – volume: 14 start-page: 29 year: 1999 ident: R12-20230721 article-title: Confounding and collapsibility in causal inference. publication-title: Stat Sci doi: 10.1214/ss/1009211805 – volume: 84 start-page: 151 year: 2002 ident: R29-20230721 article-title: Propensity score-matching methods for nonexperimental causal studies. publication-title: Rev Econ Stat doi: 10.1162/003465302317331982 |
SSID | ssj0001086 |
Score | 2.5928109 |
Snippet | Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1074 |
SubjectTerms | Analgesia, Epidural - adverse effects Anesthesiology - methods Anesthesiology - statistics & numerical data Arrhythmias, Cardiac - epidemiology Bias Confounding Factors (Epidemiology) Data Accuracy Data Interpretation, Statistical Data Mining - methods Databases, Factual Evidence-Based Medicine - methods Evidence-Based Medicine - statistics & numerical data Observational Studies as Topic - methods Observational Studies as Topic - statistics & numerical data Pneumonectomy - adverse effects Propensity Score Randomized Controlled Trials as Topic Research Design - statistics & numerical data Risk Assessment Risk Factors Treatment Outcome |
Title | Propensity Score Methods: Theory and Practice for Anesthesia Research |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00000539-201810000-00038 https://www.ncbi.nlm.nih.gov/pubmed/29750691 https://www.proquest.com/docview/2038273221 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9aXxQpFb_OqkTwraQmm2z21rciV0uhRWgL97Yk2RRLy564dwj-9c4k2Y-2R7Xew3Js9uayO7OTmczHj5CPuZkasIY087WSTAnu2VRoz2wuS-ucNEXIdj861gdn6nCezwcwzlBdsrS77vfaupL_4SqcA75ilew9ONsThRPwHfgLR-AwHP-Jx99wJ70JWRUn2I5y5yjgQbcplQLD57EYIFZChZTCPdBtYPS1F6bPuhsbqKPh2MYVcUDai155n7jvq6sIqZcCCTuHu8O2NvjKwRqNWNDdUNpVENM-P23QlIjxFsGLek0Zy_iTSKiR3sO0ztEaKnjEfbulnzMR-kQcz2LfyPRBxKxhPepi8DeWqT55EN0WoFMBleomlYfkUQb-AkJZfJ0PuT4IJ9VBJ-JNpRpKoPJp3Vyu2yi3HI8n5OmvBeYytJehlGFkkJxukc3kSdC9KBbPyAPfPCezQSRoEAmaROIzjQJBgau0EwgKAkEHjtNOIF6Qs_3Z6ZcDlpAymFOYzWCFzoRB3zqvuXKFt8ZoK52S8IqWTjvvCsXPTS1dmZdaOMdrmzuns7LmLuPyJdloFo1_TWjhc66tzcFS9Mpl5yYv0NApVc2BdC0nRHbPpnKpjTyimVxVd_FlQlj_qx-xjcpfrv_QPfYK9B0GsUzjF6u2gslOweTOMjEhryI_eopYJc51CSPsGoOqWFMc_wWUEEOJD4EtFkLjEyLWXn_XDN_c8462yePhPXtLNpY_V_4d2LNL-z7I6h98b5BP |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propensity+Score+Methods%3A+Theory+and+Practice+for+Anesthesia+Research&rft.jtitle=Anesthesia+and+analgesia&rft.au=Schulte%2C+Phillip+J.&rft.au=Mascha%2C+Edward+J.&rft.date=2018-10-01&rft.issn=0003-2999&rft.volume=127&rft.issue=4&rft.spage=1074&rft.epage=1084&rft_id=info:doi/10.1213%2FANE.0000000000002920&rft.externalDBID=n%2Fa&rft.externalDocID=10_1213_ANE_0000000000002920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2999&client=summon |