Propensity Score Methods: Theory and Practice for Anesthesia Research

Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators may statistically evaluate the relationship between a treatment or therapy and outcomes. However, inherent in observational data is the potent...

Full description

Saved in:
Bibliographic Details
Published inAnesthesia and analgesia Vol. 127; no. 4; pp. 1074 - 1084
Main Authors Schulte, Phillip J., Mascha, Edward J.
Format Journal Article
LanguageEnglish
Published United States International Anesthesia Research Society 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators may statistically evaluate the relationship between a treatment or therapy and outcomes. However, inherent in observational data is the potential for confounding arising from the nonrandom assignment of treatment. In this statistical grand rounds, we describe the use of propensity score methods (ie, using the probability of receiving treatment given covariates) to reduce bias due to measured confounders in anesthesia and perioperative medicine research. We provide a description of the theory and background appropriate for the anesthesia researcher and describe statistical assumptions that should be assessed in the course of a research study using the propensity score. We further describe 2 propensity score methods for evaluating the association of treatment or therapy with outcomes, propensity score matching and inverse probability of treatment weighting, and compare to covariate-adjusted regression analysis. We distinguish several estimators of treatment effect available with propensity score methods, including the average treatment effect, the average treatment effect for the treated, and average treatment effect for the controls or untreated, and compare to the conditional treatment effect in covariate-adjusted regression. We highlight the relative advantages of the various methods and estimators, describe analysis assumptions and how to critically evaluate them, and demonstrate methods in an analysis of thoracic epidural analgesia and new-onset atrial arrhythmias after pulmonary resection.
AbstractList Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators may statistically evaluate the relationship between a treatment or therapy and outcomes. However, inherent in observational data is the potential for confounding arising from the nonrandom assignment of treatment. In this statistical grand rounds, we describe the use of propensity score methods (ie, using the probability of receiving treatment given covariates) to reduce bias due to measured confounders in anesthesia and perioperative medicine research. We provide a description of the theory and background appropriate for the anesthesia researcher and describe statistical assumptions that should be assessed in the course of a research study using the propensity score. We further describe 2 propensity score methods for evaluating the association of treatment or therapy with outcomes, propensity score matching and inverse probability of treatment weighting, and compare to covariate-adjusted regression analysis. We distinguish several estimators of treatment effect available with propensity score methods, including the average treatment effect, the average treatment effect for the treated, and average treatment effect for the controls or untreated, and compare to the conditional treatment effect in covariate-adjusted regression. We highlight the relative advantages of the various methods and estimators, describe analysis assumptions and how to critically evaluate them, and demonstrate methods in an analysis of thoracic epidural analgesia and new-onset atrial arrhythmias after pulmonary resection.
Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators may statistically evaluate the relationship between a treatment or therapy and outcomes. However, inherent in observational data is the potential for confounding arising from the nonrandom assignment of treatment. In this statistical grand rounds, we describe the use of propensity score methods (ie, using the probability of receiving treatment given covariates) to reduce bias due to measured confounders in anesthesia and perioperative medicine research. We provide a description of the theory and background appropriate for the anesthesia researcher and describe statistical assumptions that should be assessed in the course of a research study using the propensity score. We further describe 2 propensity score methods for evaluating the association of treatment or therapy with outcomes, propensity score matching and inverse probability of treatment weighting, and compare to covariate-adjusted regression analysis. We distinguish several estimators of treatment effect available with propensity score methods, including the average treatment effect, the average treatment effect for the treated, and average treatment effect for the controls or untreated, and compare to the conditional treatment effect in covariate-adjusted regression. We highlight the relative advantages of the various methods and estimators, describe analysis assumptions and how to critically evaluate them, and demonstrate methods in an analysis of thoracic epidural analgesia and new-onset atrial arrhythmias after pulmonary resection.Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators may statistically evaluate the relationship between a treatment or therapy and outcomes. However, inherent in observational data is the potential for confounding arising from the nonrandom assignment of treatment. In this statistical grand rounds, we describe the use of propensity score methods (ie, using the probability of receiving treatment given covariates) to reduce bias due to measured confounders in anesthesia and perioperative medicine research. We provide a description of the theory and background appropriate for the anesthesia researcher and describe statistical assumptions that should be assessed in the course of a research study using the propensity score. We further describe 2 propensity score methods for evaluating the association of treatment or therapy with outcomes, propensity score matching and inverse probability of treatment weighting, and compare to covariate-adjusted regression analysis. We distinguish several estimators of treatment effect available with propensity score methods, including the average treatment effect, the average treatment effect for the treated, and average treatment effect for the controls or untreated, and compare to the conditional treatment effect in covariate-adjusted regression. We highlight the relative advantages of the various methods and estimators, describe analysis assumptions and how to critically evaluate them, and demonstrate methods in an analysis of thoracic epidural analgesia and new-onset atrial arrhythmias after pulmonary resection.
Author Schulte, Phillip J.
Mascha, Edward J.
AuthorAffiliation From the Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio
AuthorAffiliation_xml – name: Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio
– name: From the Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
Author_xml – sequence: 1
  givenname: Phillip J.
  surname: Schulte
  fullname: Schulte, Phillip J.
  organization: From the Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
– sequence: 2
  givenname: Edward J.
  surname: Mascha
  fullname: Mascha, Edward J.
  organization: Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29750691$$D View this record in MEDLINE/PubMed
BookMark eNqNkVtLwzAUx4MoOqffQKSPvlRzadPGtyHzAt7w8hzS0zNa7ZqZZIx9ezOnICJoXpJz-P3P5Z9dstnbHgk5YPSYcSZORrfjY_rtcMXpBhmwnMu0yFW5SQYxK1KulNohu96_xJDRUm6THa6KnErFBmR87-wMe9-GZfII1mFyg6GxtT9Nnhq0bpmYvk7unYHQAiYT65JRjz406FuTPKBH46DZI1sT03nc_7yH5Pl8_HR2mV7fXVydja5TyGLrtGKSMyPjM69pBgVWxshKQCYqBAUSEIqMTkwtQOVKMgBaVzmA5KqmwKkYkqN13Zmzb_M4hp62HrDrTI927nVESl4IHv0ZksNPdF5NsdYz106NW-qv1SNwugbAWe8dTjS0wYTW9sGZttOM6pXPOvqsf_ocxdkP8Vf9P2TlWrawXUDnX7v5Ap1u0HSh-WfHX6UfXC5Uyikr2SpIV59fineva58B
CitedBy_id crossref_primary_10_2147_PPA_S270557
crossref_primary_10_1016_j_jcrc_2020_04_003
crossref_primary_10_1213_ANE_0000000000004667
crossref_primary_10_1111_jocn_17476
crossref_primary_10_1111_cns_14762
crossref_primary_10_3344_kjp_24173
crossref_primary_10_1016_j_vaccine_2022_09_025
crossref_primary_10_1007_s00268_020_05940_1
crossref_primary_10_1007_s00540_022_03101_3
crossref_primary_10_1053_j_jvca_2020_12_024
crossref_primary_10_3390_jcm10071425
crossref_primary_10_1016_j_bja_2022_04_026
crossref_primary_10_1016_j_bjae_2024_11_006
crossref_primary_10_1002_mnfr_202400373
crossref_primary_10_1016_j_iccn_2024_103626
crossref_primary_10_1016_j_iccn_2024_103749
crossref_primary_10_1213_ANE_0000000000005763
crossref_primary_10_1213_ANE_0000000000006853
crossref_primary_10_1111_ajt_16425
crossref_primary_10_1213_ANE_0000000000003982
crossref_primary_10_1213_ANE_0000000000005248
crossref_primary_10_1213_ANE_0000000000005482
crossref_primary_10_1016_j_jtcvs_2023_05_037
crossref_primary_10_1097_ALN_0000000000004894
crossref_primary_10_3748_wjg_v25_i24_2990
crossref_primary_10_1016_j_accpm_2023_101200
crossref_primary_10_1016_j_gie_2022_03_023
crossref_primary_10_1213_ANE_0000000000005773
crossref_primary_10_1053_j_jvca_2023_07_027
crossref_primary_10_1213_ANE_0000000000005656
crossref_primary_10_1213_ANE_0000000000006741
crossref_primary_10_1213_ANE_0000000000004560
crossref_primary_10_1213_ANE_0000000000005770
crossref_primary_10_1016_j_bja_2025_01_039
crossref_primary_10_1093_ejcts_ezad089
crossref_primary_10_1016_j_neurom_2024_03_001
crossref_primary_10_1016_j_bjane_2023_11_004
crossref_primary_10_1213_ANE_0000000000006906
crossref_primary_10_1097_ALN_0000000000004404
crossref_primary_10_1213_ANE_0000000000005819
crossref_primary_10_1213_ANE_0000000000004211
crossref_primary_10_12998_wjcc_v10_i9_2721
crossref_primary_10_1186_s12888_024_05520_w
crossref_primary_10_1213_ANE_0000000000005943
crossref_primary_10_1213_ANE_0000000000004336
crossref_primary_10_1213_ANE_0000000000006076
crossref_primary_10_1186_s12916_024_03773_6
crossref_primary_10_1213_ANE_0000000000007167
crossref_primary_10_1038_s41598_021_85714_4
crossref_primary_10_1186_s12877_025_05817_9
crossref_primary_10_1053_j_jvca_2023_11_040
crossref_primary_10_1186_s12877_023_04368_1
crossref_primary_10_1016_j_jclinepi_2023_01_002
crossref_primary_10_1016_j_jclinane_2022_110961
crossref_primary_10_1053_j_jvca_2022_11_021
crossref_primary_10_12998_wjcc_v10_i9_2719
crossref_primary_10_1016_j_asjsur_2023_04_061
crossref_primary_10_1038_s41598_020_70533_w
crossref_primary_10_1016_j_chest_2024_10_008
crossref_primary_10_1213_ANE_0000000000005829
crossref_primary_10_1515_jpm_2019_0412
crossref_primary_10_1213_ANE_0000000000006765
crossref_primary_10_1213_ANE_0000000000006647
crossref_primary_10_1213_ANE_0000000000006521
crossref_primary_10_2147_CLEP_S373291
crossref_primary_10_1213_ANE_0000000000006005
crossref_primary_10_1213_ANE_0000000000006247
crossref_primary_10_2337_dc21_0552
crossref_primary_10_1007_s00259_022_05734_8
crossref_primary_10_1007_s40121_024_01005_1
crossref_primary_10_1213_ANE_0000000000006760
crossref_primary_10_1016_j_jclinane_2022_110989
crossref_primary_10_1213_ANE_0000000000005152
crossref_primary_10_1213_ANE_0000000000005394
crossref_primary_10_1016_j_jclinane_2023_111321
crossref_primary_10_1002_ehf2_13328
crossref_primary_10_1007_s00540_020_02882_9
crossref_primary_10_1111_ggi_14894
crossref_primary_10_4103_IJPC_IJPC_100_19
crossref_primary_10_1213_ANE_0000000000004627
crossref_primary_10_1001_jama_2024_0762
crossref_primary_10_1213_ANE_0000000000005318
crossref_primary_10_1016_j_ijoa_2020_09_001
crossref_primary_10_1016_j_jvs_2023_05_015
crossref_primary_10_1213_ANE_0000000000004993
crossref_primary_10_1186_s12893_024_02521_0
crossref_primary_10_1111_nicc_13240
crossref_primary_10_1213_ANE_0000000000004117
crossref_primary_10_3390_jcm12123907
crossref_primary_10_1213_ANE_0000000000005842
crossref_primary_10_1016_j_anrea_2023_10_001
crossref_primary_10_1097_JS9_0000000000001831
crossref_primary_10_1097_MD_0000000000025235
crossref_primary_10_1038_s41598_024_71134_7
crossref_primary_10_1038_s41598_024_56665_3
crossref_primary_10_1016_j_jmig_2023_09_003
crossref_primary_10_1038_s41598_021_85830_1
crossref_primary_10_1001_jamanetworkopen_2022_3890
crossref_primary_10_1007_s00464_024_11327_3
crossref_primary_10_1080_27707571_2022_2153448
crossref_primary_10_1016_j_ajic_2019_08_017
crossref_primary_10_1186_s12884_023_05728_w
crossref_primary_10_1016_j_bja_2022_08_014
crossref_primary_10_1213_ANE_0000000000004239
crossref_primary_10_3390_jcm10040706
crossref_primary_10_1213_ANE_0000000000006785
crossref_primary_10_1016_j_transproceed_2024_01_025
crossref_primary_10_1213_ANE_0000000000007358
crossref_primary_10_1213_ANE_0000000000005051
crossref_primary_10_1213_ANE_0000000000006383
crossref_primary_10_1016_j_lungcan_2021_09_010
crossref_primary_10_1016_j_healun_2022_10_016
crossref_primary_10_1053_j_jvca_2020_09_115
crossref_primary_10_1016_j_athoracsur_2021_03_069
crossref_primary_10_2147_DDDT_S394664
crossref_primary_10_1002_clc_23771
crossref_primary_10_1097_SLA_0000000000005887
crossref_primary_10_23736_S0375_9393_21_15668_8
crossref_primary_10_1177_0885066620977181
crossref_primary_10_1016_j_bja_2023_06_054
crossref_primary_10_1213_ANE_0000000000005739
crossref_primary_10_1097_CMR_0000000000000856
crossref_primary_10_1016_j_jclinane_2022_110915
crossref_primary_10_1213_ANE_0000000000004770
crossref_primary_10_1038_s41598_022_20584_y
crossref_primary_10_1213_ANE_0000000000003963
crossref_primary_10_1213_ANE_0000000000004017
crossref_primary_10_1002_phar_2517
crossref_primary_10_1016_j_jcv_2023_105600
crossref_primary_10_1097_SLE_0000000000001341
crossref_primary_10_1053_j_jvca_2020_07_015
crossref_primary_10_1053_j_jvca_2020_09_126
crossref_primary_10_1097_SLA_0000000000004024
crossref_primary_10_1016_j_pcorm_2024_100376
crossref_primary_10_1038_s41598_023_32730_1
crossref_primary_10_18553_jmcp_2022_28_3_325
crossref_primary_10_3390_jcm11195521
Cites_doi 10.1002/pst.537
10.1002/sim.5984
10.1002/sim.3782
10.1002/pst.433
10.1257/aer.91.2.107
10.1001/archpediatrics.2009.31
10.1037/1082-989X.9.4.403
10.1002/bimj.200610279
10.1002/sim.3697
10.1080/01621459.1984.10478078
10.1002/sim.4200
10.1002/sim.3811
10.1093/aje/kwv254
10.1111/1475-6773.12020
10.1093/aje/kwp436
10.2105/AJPH.94.3.423
10.1002/sim.6004
10.1213/ANE.0b013e3182a44cb9
10.1002/sim.1903
10.1002/sim.5753
10.1093/aje/kwj149
10.1002/sim.2328
10.1515/ijb-2012-0030
10.1002/bimj.200810488
10.1007/s00540-014-1865-z
10.1002/sim.7084
10.1198/016214501753382309
10.1177/0272989X09341755
10.1080/10543400601044790
10.1097/00001648-200009000-00012
10.1093/aje/kwn164
10.1198/016214504000001187
10.1080/00273171.2011.568786
10.1136/ebmed-2016-110401
10.7326/0003-4819-127-8_Part_2-199710151-00064
10.1093/jnci/djw323
10.1001/jama.2012.9502
10.1002/sim.5705
10.1016/j.jclinepi.2009.11.020
10.2202/1557-4679.1146
10.1093/aje/kwr364
10.1002/pds.3263
10.1177/0962280215601134
10.1214/09-STS313
10.1097/EDE.0b013e318289dedf
10.1002/sim.2580
10.1161/CIRCULATIONAHA.107.721357
10.2307/2529684
10.1213/ANE.0000000000002787
10.1016/S0895-4356(00)00321-8
10.1214/ss/1009211805
10.1162/003465302317331982
ContentType Journal Article
Copyright International Anesthesia Research Society
2018 International Anesthesia Research Society
Copyright_xml – notice: International Anesthesia Research Society
– notice: 2018 International Anesthesia Research Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1213/ANE.0000000000002920
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1526-7598
EndPage 1084
ExternalDocumentID 29750691
10_1213_ANE_0000000000002920
10.1213/ANE.0000000000002920
00000539-201810000-00038
Genre Journal Article
GroupedDBID ---
.-D
.XZ
.Z2
01R
026
0R~
1J1
23M
2WC
40H
4Q1
4Q2
4Q3
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAUEB
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPPZ
ABPXF
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACCJW
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACLED
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
AE6
AEBDS
AEETU
AENEX
AFBFQ
AFDTB
AFEXH
AFMBP
AFMFG
AFNMH
AFSOK
AFUWQ
AGINI
AHOMT
AHQNM
AHQVU
AHVBC
AHXIK
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJRGT
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BOYCO
BQLVK
C45
CS3
DIWNM
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
JK8
K8S
KD2
KMI
L-C
L7B
MZP
N9A
N~7
N~B
O9-
OAG
OAH
OB4
ODMTH
OHYEH
OK1
OL1
OLG
OLH
OLL
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PONUX
RIG
RLZ
S4R
S4S
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
ZFV
.55
.GJ
1CY
3O-
53G
AAFWJ
AAQQT
AAYXX
ABKPX
ADFPA
ADNKB
ADSXY
AE3
AFFNX
AHRYX
AJNYG
BS7
C1A
CITATION
DUNZO
FW0
J5H
M18
N4W
N~M
OCUKA
ODA
ORVUJ
OUVQU
P-K
R58
X7M
YQJ
ZGI
ZXP
ZZMQN
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4010-b1621a60105d04c7ebaa6b3c43bec9c6cec740fad3c95961cc0db5cc629d0c203
ISSN 0003-2999
1526-7598
IngestDate Fri Jul 11 11:29:49 EDT 2025
Thu Apr 03 06:56:04 EDT 2025
Tue Aug 12 03:57:49 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Fri May 16 03:42:32 EDT 2025
Fri May 16 03:46:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4010-b1621a60105d04c7ebaa6b3c43bec9c6cec740fad3c95961cc0db5cc629d0c203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29750691
PQID 2038273221
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2038273221
pubmed_primary_29750691
crossref_citationtrail_10_1213_ANE_0000000000002920
crossref_primary_10_1213_ANE_0000000000002920
wolterskluwer_health_10_1213_ANE_0000000000002920
wolterskluwer_health_00000539-201810000-00038
PublicationCentury 2000
PublicationDate 2018-October-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-October-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Anesthesia and analgesia
PublicationTitleAlternate Anesth Analg
PublicationYear 2018
Publisher International Anesthesia Research Society
Publisher_xml – name: International Anesthesia Research Society
References Cole (R22-20230721) 2008; 168
Westreich (R23-20230721) 2010; 171
Normand (R37-20230721) 2001; 54
Ho (R2-20230721) 2008; 118
Austin (R17-20230721) 2011; 46
Komatsu (R4-20230721) 2015; 29
Abadie (R47-20230721) 2008; 76
Austin (R48-20230721) 2009; 29
Lunceford (R34-20230721) 2004; 23
Rassen (R28-20230721) 2012; 21
Kauermann (R41-20230721) 2001; 96
Austin (R46-20230721) 2011; 30
Stampf (R9-20230721) 2010; 29
Austin (R8-20230721) 2014; 33
Gayat (R44-20230721) 2012; 11
Li (R55-20230721) 2013; 9
Imai (R53-20230721) 2004; 99
Austin (R27-20230721) 2014; 33
Dehejia (R29-20230721) 2002; 84
Brookhart (R20-20230721) 2006; 163
Austin (R36-20230721) 2009; 28
Lee (R13-20230721) 2010; 29
Austin (R25-20230721) 2009; 51
Brooks (R49-20230721) 2013; 48
Rosenbaum (R35-20230721) 1984; 79
Heckman (R7-20230721) 2001; 91
Austin (R40-20230721) 2016; 35
Austin (R32-20230721) 2011; 10
Mascha (R38-20230721) 2013; 117
McCaffrey (R14-20230721) 2004; 9
Rubin (R21-20230721) 1997; 127
McCaffrey (R51-20230721) 2013; 32
Austin (R24-20230721) 2017; 26
Rassen (R54-20230721) 2013; 24
Rubin (R31-20230721) 1973; 29
Cummings (R11-20230721) 2009; 163
Hernán (R39-20230721) 2000; 11
Hernán (R5-20230721) 2016; 183
Thomas (R56-20230721) 2012; 308
Austin (R45-20230721) 2009; 5
Stuart (R43-20230721) 2010; 25
Austin (R16-20230721) 2007; 26
Austin (R10-20230721) 2013; 32
Greenland (R12-20230721) 1999; 14
Murray (R42-20230721) 2004; 94
Westreich (R15-20230721) 2010; 63
Austin (R26-20230721) 2006; 25
Murad (R1-20230721) 2016; 21
Staffa (R3-20230721) 2018; 127
Myers (R19-20230721) 2011; 174
Masch (R6-20230721) 2007; 49
Jung (R18-20230721) 2007; 17
Yao (R50-20230721) 2017; 109
References_xml – volume: 11
  start-page: 222
  year: 2012
  ident: R44-20230721
  article-title: Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study.
  publication-title: Pharm Stat
  doi: 10.1002/pst.537
– volume: 33
  start-page: 1242
  year: 2014
  ident: R8-20230721
  article-title: The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments.
  publication-title: Stat Med
  doi: 10.1002/sim.5984
– volume: 29
  start-page: 337
  year: 2010
  ident: R13-20230721
  article-title: Improving propensity score weighting using machine learning.
  publication-title: Stat Med
  doi: 10.1002/sim.3782
– volume: 10
  start-page: 150
  year: 2011
  ident: R32-20230721
  article-title: Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies.
  publication-title: Pharm Stat
  doi: 10.1002/pst.433
– volume: 91
  start-page: 107
  year: 2001
  ident: R7-20230721
  article-title: Policy-relevant treatment effects.
  publication-title: Am Econ Rev
  doi: 10.1257/aer.91.2.107
– volume: 163
  start-page: 438
  year: 2009
  ident: R11-20230721
  article-title: The relative merits of risk ratios and odds ratios.
  publication-title: Arch Pediatr Adolesc Med
  doi: 10.1001/archpediatrics.2009.31
– volume: 9
  start-page: 403
  year: 2004
  ident: R14-20230721
  article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies.
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.9.4.403
– volume: 49
  start-page: 378
  year: 2007
  ident: R6-20230721
  article-title: Estimating treatment effect heterogeneity for binary outcomes via Dirichlet multinomial constraints.
  publication-title: Biom J
  doi: 10.1002/bimj.200610279
– volume: 28
  start-page: 3083
  year: 2009
  ident: R36-20230721
  article-title: Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples.
  publication-title: Stat Med
  doi: 10.1002/sim.3697
– volume: 79
  start-page: 516
  year: 1984
  ident: R35-20230721
  article-title: Reducing bias in observational studies using subclassification on the propensity score.
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1984.10478078
– volume: 30
  start-page: 1292
  year: 2011
  ident: R46-20230721
  article-title: Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples.
  publication-title: Stat Med
  doi: 10.1002/sim.4200
– volume: 29
  start-page: 760
  year: 2010
  ident: R9-20230721
  article-title: Estimators and confidence intervals for the marginal odds ratio using logistic regression and propensity score stratification.
  publication-title: Stat Med
  doi: 10.1002/sim.3811
– volume: 183
  start-page: 758
  year: 2016
  ident: R5-20230721
  article-title: Using big data to emulate a target trial when a randomized trial is not available.
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwv254
– volume: 48
  start-page: 1487
  year: 2013
  ident: R49-20230721
  article-title: Squeezing the balloon: propensity scores and unmeasured covariate balance.
  publication-title: Health Serv Res
  doi: 10.1111/1475-6773.12020
– volume: 171
  start-page: 674
  year: 2010
  ident: R23-20230721
  article-title: Invited commentary: positivity in practice.
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp436
– volume: 94
  start-page: 423
  year: 2004
  ident: R42-20230721
  article-title: Design and analysis of group-randomized trials: a review of recent methodological developments.
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.94.3.423
– volume: 33
  start-page: 1057
  year: 2014
  ident: R27-20230721
  article-title: A comparison of 12 algorithms for matching on the propensity score.
  publication-title: Stat Med
  doi: 10.1002/sim.6004
– volume: 117
  start-page: 980
  year: 2013
  ident: R38-20230721
  article-title: Statistical grand rounds: understanding the mechanism: mediation analysis in randomized and nonrandomized studies.
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0b013e3182a44cb9
– volume: 23
  start-page: 2937
  year: 2004
  ident: R34-20230721
  article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study.
  publication-title: Stat Med
  doi: 10.1002/sim.1903
– volume: 32
  start-page: 3388
  year: 2013
  ident: R51-20230721
  article-title: A tutorial on propensity score estimation for multiple treatments using generalized boosted models.
  publication-title: Stat Med
  doi: 10.1002/sim.5753
– volume: 163
  start-page: 1149
  year: 2006
  ident: R20-20230721
  article-title: Variable selection for propensity score models.
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwj149
– volume: 25
  start-page: 2084
  year: 2006
  ident: R26-20230721
  article-title: A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use.
  publication-title: Stat Med
  doi: 10.1002/sim.2328
– volume: 9
  start-page: 215
  year: 2013
  ident: R55-20230721
  article-title: A weighting analogue to pair matching in propensity score analysis.
  publication-title: Int J Biostat
  doi: 10.1515/ijb-2012-0030
– volume: 51
  start-page: 171
  year: 2009
  ident: R25-20230721
  article-title: Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations.
  publication-title: Biom J
  doi: 10.1002/bimj.200810488
– volume: 29
  start-page: 47
  year: 2015
  ident: R4-20230721
  article-title: Association of thoracic epidural analgesia with risk of atrial arrhythmias after pulmonary resection: a retrospective cohort study.
  publication-title: J Anesth
  doi: 10.1007/s00540-014-1865-z
– volume: 35
  start-page: 5642
  year: 2016
  ident: R40-20230721
  article-title: Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis.
  publication-title: Stat Med
  doi: 10.1002/sim.7084
– volume: 96
  start-page: 1387
  year: 2001
  ident: R41-20230721
  article-title: A note on the efficiency of sandwich covariance matrix estimation.
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382309
– volume: 29
  start-page: 661
  year: 2009
  ident: R48-20230721
  article-title: The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies.
  publication-title: Med Decis Making
  doi: 10.1177/0272989X09341755
– volume: 76
  start-page: 1537
  year: 2008
  ident: R47-20230721
  article-title: Notes and comments on the failure of the bootstrap.
  publication-title: Econometrica
– volume: 17
  start-page: 35
  year: 2007
  ident: R18-20230721
  article-title: A note on sample size calculation based on propensity analysis in nonrandomized trials.
  publication-title: J Biopharm Stat
  doi: 10.1080/10543400601044790
– volume: 11
  start-page: 561
  year: 2000
  ident: R39-20230721
  article-title: Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men.
  publication-title: Epidemiology
  doi: 10.1097/00001648-200009000-00012
– volume: 168
  start-page: 656
  year: 2008
  ident: R22-20230721
  article-title: Constructing inverse probability weights for marginal structural models.
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwn164
– volume: 99
  start-page: 854
  year: 2004
  ident: R53-20230721
  article-title: Causal inference with general treatment regimes: generalizing the propensity score.
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000001187
– volume: 46
  start-page: 399
  year: 2011
  ident: R17-20230721
  article-title: An introduction to propensity score methods for reducing the effects of confounding in observational studies.
  publication-title: Multivariate Behav Res
  doi: 10.1080/00273171.2011.568786
– volume: 21
  start-page: 125
  year: 2016
  ident: R1-20230721
  article-title: New evidence pyramid.
  publication-title: Evid Based Med
  doi: 10.1136/ebmed-2016-110401
– volume: 127
  start-page: 757
  year: 1997
  ident: R21-20230721
  article-title: Estimating causal effects from large data sets using propensity scores.
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-127-8_Part_2-199710151-00064
– volume: 109
  start-page: djw323
  year: 2017
  ident: R50-20230721
  article-title: Reporting and guidelines in propensity score analysis: a systematic review of cancer and cancer surgical studies.
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djw323
– volume: 308
  start-page: 773
  year: 2012
  ident: R56-20230721
  article-title: The value of statistical analysis plans in observational research: defining high-quality research from the start.
  publication-title: JAMA
  doi: 10.1001/jama.2012.9502
– volume: 32
  start-page: 2837
  year: 2013
  ident: R10-20230721
  article-title: The performance of different propensity score methods for estimating marginal hazard ratios.
  publication-title: Stat Med
  doi: 10.1002/sim.5705
– volume: 63
  start-page: 826
  year: 2010
  ident: R15-20230721
  article-title: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2009.11.020
– volume: 5
  start-page: Article 13
  year: 2009
  ident: R45-20230721
  article-title: Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses.
  publication-title: Int J Biostat
  doi: 10.2202/1557-4679.1146
– volume: 174
  start-page: 1213
  year: 2011
  ident: R19-20230721
  article-title: Effects of adjusting for instrumental variables on bias and precision of effect estimates.
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwr364
– volume: 21
  start-page: 69
  issue: suppl 2
  year: 2012
  ident: R28-20230721
  article-title: One-to-many propensity score matching in cohort studies.
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.3263
– volume: 26
  start-page: 2505
  year: 2017
  ident: R24-20230721
  article-title: Estimating the effect of treatment on binary outcomes using full matching on the propensity score.
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280215601134
– volume: 25
  start-page: 1
  year: 2010
  ident: R43-20230721
  article-title: Matching methods for causal inference: a review and a look forward.
  publication-title: Stat Sci
  doi: 10.1214/09-STS313
– volume: 24
  start-page: 401
  year: 2013
  ident: R54-20230721
  article-title: Matching by propensity score in cohort studies with three treatment groups.
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e318289dedf
– volume: 26
  start-page: 734
  year: 2007
  ident: R16-20230721
  article-title: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study.
  publication-title: Stat Med
  doi: 10.1002/sim.2580
– volume: 118
  start-page: 1675
  year: 2008
  ident: R2-20230721
  article-title: Evaluating the evidence: is there a rigid hierarchy?
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.721357
– volume: 29
  start-page: 159
  year: 1973
  ident: R31-20230721
  article-title: Matching to remove bias in observational studies.
  publication-title: Biometrics
  doi: 10.2307/2529684
– volume: 127
  start-page: 1066
  year: 2018
  ident: R3-20230721
  article-title: Five steps to successfully implement and evaluate propensity score matching in clinical research studies.
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0000000000002787
– volume: 54
  start-page: 387
  year: 2001
  ident: R37-20230721
  article-title: Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores.
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(00)00321-8
– volume: 14
  start-page: 29
  year: 1999
  ident: R12-20230721
  article-title: Confounding and collapsibility in causal inference.
  publication-title: Stat Sci
  doi: 10.1214/ss/1009211805
– volume: 84
  start-page: 151
  year: 2002
  ident: R29-20230721
  article-title: Propensity score-matching methods for nonexperimental causal studies.
  publication-title: Rev Econ Stat
  doi: 10.1162/003465302317331982
SSID ssj0001086
Score 2.5928109
Snippet Observational data are often readily available or less costly to obtain than conducting a randomized controlled trial. With observational data, investigators...
SourceID proquest
pubmed
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1074
SubjectTerms Analgesia, Epidural - adverse effects
Anesthesiology - methods
Anesthesiology - statistics & numerical data
Arrhythmias, Cardiac - epidemiology
Bias
Confounding Factors (Epidemiology)
Data Accuracy
Data Interpretation, Statistical
Data Mining - methods
Databases, Factual
Evidence-Based Medicine - methods
Evidence-Based Medicine - statistics & numerical data
Observational Studies as Topic - methods
Observational Studies as Topic - statistics & numerical data
Pneumonectomy - adverse effects
Propensity Score
Randomized Controlled Trials as Topic
Research Design - statistics & numerical data
Risk Assessment
Risk Factors
Treatment Outcome
Title Propensity Score Methods: Theory and Practice for Anesthesia Research
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00000539-201810000-00038
https://www.ncbi.nlm.nih.gov/pubmed/29750691
https://www.proquest.com/docview/2038273221
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9aXxQpFb_OqkTwraQmm2z21rciV0uhRWgL97Yk2RRLy564dwj-9c4k2Y-2R7Xew3Js9uayO7OTmczHj5CPuZkasIY087WSTAnu2VRoz2wuS-ucNEXIdj861gdn6nCezwcwzlBdsrS77vfaupL_4SqcA75ilew9ONsThRPwHfgLR-AwHP-Jx99wJ70JWRUn2I5y5yjgQbcplQLD57EYIFZChZTCPdBtYPS1F6bPuhsbqKPh2MYVcUDai155n7jvq6sIqZcCCTuHu8O2NvjKwRqNWNDdUNpVENM-P23QlIjxFsGLek0Zy_iTSKiR3sO0ztEaKnjEfbulnzMR-kQcz2LfyPRBxKxhPepi8DeWqT55EN0WoFMBleomlYfkUQb-AkJZfJ0PuT4IJ9VBJ-JNpRpKoPJp3Vyu2yi3HI8n5OmvBeYytJehlGFkkJxukc3kSdC9KBbPyAPfPCezQSRoEAmaROIzjQJBgau0EwgKAkEHjtNOIF6Qs_3Z6ZcDlpAymFOYzWCFzoRB3zqvuXKFt8ZoK52S8IqWTjvvCsXPTS1dmZdaOMdrmzuns7LmLuPyJdloFo1_TWjhc66tzcFS9Mpl5yYv0NApVc2BdC0nRHbPpnKpjTyimVxVd_FlQlj_qx-xjcpfrv_QPfYK9B0GsUzjF6u2gslOweTOMjEhryI_eopYJc51CSPsGoOqWFMc_wWUEEOJD4EtFkLjEyLWXn_XDN_c8462yePhPXtLNpY_V_4d2LNL-z7I6h98b5BP
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propensity+Score+Methods%3A+Theory+and+Practice+for+Anesthesia+Research&rft.jtitle=Anesthesia+and+analgesia&rft.au=Schulte%2C+Phillip+J.&rft.au=Mascha%2C+Edward+J.&rft.date=2018-10-01&rft.issn=0003-2999&rft.volume=127&rft.issue=4&rft.spage=1074&rft.epage=1084&rft_id=info:doi/10.1213%2FANE.0000000000002920&rft.externalDBID=n%2Fa&rft.externalDocID=10_1213_ANE_0000000000002920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2999&client=summon