A discriminant analysis of the P3b wave with electroencephalogram by feature‐electrode pairs in schizophrenia diagnosis

Schizophrenia is a disease that affects approximately 1% of the population. Its early accurate diagnosis is of vital importance to apply adequate therapy as soon as possible. We present a Statistical Discriminant Diagnosing (SDD) system that discriminates between healthy controls and subjects and th...

Full description

Saved in:
Bibliographic Details
Published inIET signal processing Vol. 17; no. 6
Main Authors Arribas, Juan I., San‐José‐Revuelta, Luis M.
Format Journal Article
LanguageEnglish
Published John Wiley & Sons, Inc 01.06.2023
Wiley
Subjects
Online AccessGet full text
ISSN1751-9675
1751-9683
DOI10.1049/sil2.12230

Cover

Abstract Schizophrenia is a disease that affects approximately 1% of the population. Its early accurate diagnosis is of vital importance to apply adequate therapy as soon as possible. We present a Statistical Discriminant Diagnosing (SDD) system that discriminates between healthy controls and subjects and that supports diagnosis by a medical professional. The system works with {feature, electrode} EEG pairs which are selected based on the statistical significance of the p‐values computed over the brain P3b wave. A bank of evoked potential pre‐processed and filtered EEG signals is recorded during an auditory odd‐ball (AOD) task and serves as input to the SDD system. These EEG signals comprise 20 features and 17 electrodes, both in time (t) and frequency (f) domain. The relevance of the Parieto‐Temporal region is shown, allowing us to identify highly discriminant {feature, electrode} pairs in the detection of schizophrenia, resulting lower p‐values in both Right and Left Hemispheres, as well as in Parieto‐Temporal EEG signals. See for instance, the {PSE, P4} pair, with p‐value = 0.00003 for (parametric) t Student and p‐value = 0.00019 for (nonparametric) U Mann‐Whitney tests, both under the 15 Hz cutoff frequency of a low pass EEG preprocessing filter. The relevance of this pair is in agreement with previously published related results. The proposed SDD system may provide the human expert (psychiatrist) with an objective complimentary information to help in the early diagnosis of schizophrenia. Early accurate diagnosis of schizophrenia is of vital importance to apply adequate therapy as soon as possible. We present a Statistical Discriminant Diagnosing (SDD) system that discriminates between healthy controls and subjects and that supports diagnosis by a medical professional. The system works with {feature, electrode} EEG pairs which are selected based on the statistical significance of the p‐values computed over the brain P3b wave. The proposed SDD system may provide the human expert (psychiatrist) with an objective complimentary information to help in the early diagnosis of schizophrenia.
AbstractList Schizophrenia is a disease that affects approximately 1% of the population. Its early accurate diagnosis is of vital importance to apply adequate therapy as soon as possible. We present a Statistical Discriminant Diagnosing (SDD) system that discriminates between healthy controls and subjects and that supports diagnosis by a medical professional. The system works with { feature , electrode } EEG pairs which are selected based on the statistical significance of the p ‐values computed over the brain P3b wave. A bank of evoked potential pre‐processed and filtered EEG signals is recorded during an auditory odd‐ball (AOD) task and serves as input to the SDD system. These EEG signals comprise 20 features and 17 electrodes, both in time ( t ) and frequency ( f ) domain. The relevance of the Parieto‐Temporal region is shown, allowing us to identify highly discriminant { feature , electrode } pairs in the detection of schizophrenia, resulting lower p ‐values in both Right and Left Hemispheres, as well as in Parieto‐Temporal EEG signals. See for instance, the { PSE , P4 } pair, with p ‐value = 0.00003 for (parametric) t Student and p ‐value = 0.00019 for (nonparametric) U Mann‐Whitney tests, both under the 15 Hz cutoff frequency of a low pass EEG preprocessing filter. The relevance of this pair is in agreement with previously published related results. The proposed SDD system may provide the human expert (psychiatrist) with an objective complimentary information to help in the early diagnosis of schizophrenia.
Schizophrenia is a disease that affects approximately 1% of the population. Its early accurate diagnosis is of vital importance to apply adequate therapy as soon as possible. We present a Statistical Discriminant Diagnosing (SDD) system that discriminates between healthy controls and subjects and that supports diagnosis by a medical professional. The system works with {feature, electrode} EEG pairs which are selected based on the statistical significance of the p‐values computed over the brain P3b wave. A bank of evoked potential pre‐processed and filtered EEG signals is recorded during an auditory odd‐ball (AOD) task and serves as input to the SDD system. These EEG signals comprise 20 features and 17 electrodes, both in time (t) and frequency (f) domain. The relevance of the Parieto‐Temporal region is shown, allowing us to identify highly discriminant {feature, electrode} pairs in the detection of schizophrenia, resulting lower p‐values in both Right and Left Hemispheres, as well as in Parieto‐Temporal EEG signals. See for instance, the {PSE, P4} pair, with p‐value = 0.00003 for (parametric) t Student and p‐value = 0.00019 for (nonparametric) U Mann‐Whitney tests, both under the 15 Hz cutoff frequency of a low pass EEG preprocessing filter. The relevance of this pair is in agreement with previously published related results. The proposed SDD system may provide the human expert (psychiatrist) with an objective complimentary information to help in the early diagnosis of schizophrenia.
Abstract Schizophrenia is a disease that affects approximately 1% of the population. Its early accurate diagnosis is of vital importance to apply adequate therapy as soon as possible. We present a Statistical Discriminant Diagnosing (SDD) system that discriminates between healthy controls and subjects and that supports diagnosis by a medical professional. The system works with {feature, electrode} EEG pairs which are selected based on the statistical significance of the p‐values computed over the brain P3b wave. A bank of evoked potential pre‐processed and filtered EEG signals is recorded during an auditory odd‐ball (AOD) task and serves as input to the SDD system. These EEG signals comprise 20 features and 17 electrodes, both in time (t) and frequency (f) domain. The relevance of the Parieto‐Temporal region is shown, allowing us to identify highly discriminant {feature, electrode} pairs in the detection of schizophrenia, resulting lower p‐values in both Right and Left Hemispheres, as well as in Parieto‐Temporal EEG signals. See for instance, the {PSE, P4} pair, with p‐value = 0.00003 for (parametric) t Student and p‐value = 0.00019 for (nonparametric) U Mann‐Whitney tests, both under the 15 Hz cutoff frequency of a low pass EEG preprocessing filter. The relevance of this pair is in agreement with previously published related results. The proposed SDD system may provide the human expert (psychiatrist) with an objective complimentary information to help in the early diagnosis of schizophrenia.
Schizophrenia is a disease that affects approximately 1% of the population. Its early accurate diagnosis is of vital importance to apply adequate therapy as soon as possible. We present a Statistical Discriminant Diagnosing (SDD) system that discriminates between healthy controls and subjects and that supports diagnosis by a medical professional. The system works with {feature, electrode} EEG pairs which are selected based on the statistical significance of the p‐values computed over the brain P3b wave. A bank of evoked potential pre‐processed and filtered EEG signals is recorded during an auditory odd‐ball (AOD) task and serves as input to the SDD system. These EEG signals comprise 20 features and 17 electrodes, both in time (t) and frequency (f) domain. The relevance of the Parieto‐Temporal region is shown, allowing us to identify highly discriminant {feature, electrode} pairs in the detection of schizophrenia, resulting lower p‐values in both Right and Left Hemispheres, as well as in Parieto‐Temporal EEG signals. See for instance, the {PSE, P4} pair, with p‐value = 0.00003 for (parametric) t Student and p‐value = 0.00019 for (nonparametric) U Mann‐Whitney tests, both under the 15 Hz cutoff frequency of a low pass EEG preprocessing filter. The relevance of this pair is in agreement with previously published related results. The proposed SDD system may provide the human expert (psychiatrist) with an objective complimentary information to help in the early diagnosis of schizophrenia. Early accurate diagnosis of schizophrenia is of vital importance to apply adequate therapy as soon as possible. We present a Statistical Discriminant Diagnosing (SDD) system that discriminates between healthy controls and subjects and that supports diagnosis by a medical professional. The system works with {feature, electrode} EEG pairs which are selected based on the statistical significance of the p‐values computed over the brain P3b wave. The proposed SDD system may provide the human expert (psychiatrist) with an objective complimentary information to help in the early diagnosis of schizophrenia.
Audience Academic
Author Arribas, Juan I.
San‐José‐Revuelta, Luis M.
Author_xml – sequence: 1
  givenname: Juan I.
  orcidid: 0000-0002-7486-6152
  surname: Arribas
  fullname: Arribas, Juan I.
  organization: University of Salamanca
– sequence: 2
  givenname: Luis M.
  orcidid: 0000-0002-8760-9577
  surname: San‐José‐Revuelta
  fullname: San‐José‐Revuelta, Luis M.
  email: lsanjose@tel.uva.es
  organization: University of Valladolid
BookMark eNp9kc-KFDEQxoOs4O7qxScIeBNmTNKdpPs4LP4ZGFBQz6EmqUxn6UmGpHVoTz6Cz-iTmN1eFgSRHBKK3_dVVb4rchFTREJecrbmrO3flDCKNReiYU_IJdeSr3rVNRePby2fkatSbhmTSnJxSeYNdaHYHI4hQpwoRBjnEgpNnk4D0k_Nnp7hO9JzmAaKI9opJ4wWTwOM6ZDhSPcz9QjTt4y_f_56IBzSE4RcaIi02CH8SKchYwxQu8EhptrhOXnqYSz44uG-Jl_fvf1y82G1-_h-e7PZrWzLOFuBVFoha4FLq0WnAJkEaKVm-86B6pExL7p9Y7lC3zElvWcCrHLAWaO4aq7JdvF1CW7NqW4KeTYJgrkvpHwwkKdgRzSi9Z22wiEq2TorOldNO9TC91b3sq1erxavA1Q8RJ-mDPZYP9BstNK8Ua2SlVr_g6rH4THYGpgPtf6X4PUisDmVktE_jsmZucvV3OVq7nOtMF_gc3WZ_0Oaz9udWDR_ADg1qAQ
Cites_doi 10.1109/tnsre.2020.3022715
10.1016/s0196‐0644(05)82571‐5
10.1016/j.biopsych.2017.02.206
10.3390/app9142870
10.1016/j.neuroimage.2012.03.079
10.1111/bdi.12561
10.3390/s22072517
10.1016/j.schres.2007.11.020
10.1001/archpsyc.1979.01780030017001
10.1016/0006‐3223(94)00131‐l
10.1007/s13246‐020‐00925‐9
10.1016/j.jneumeth.2003.10.009
10.1176/appi.books.9780890425596
10.1016/j.bspc.2021.102525
10.1016/j.artmed.2019.07.006
10.1016/j.schres.2018.01.006
10.1016/0168‐5597(84)90027‐3
10.1016/j.pnpbp.2006.05.019
10.1016/0013‐4694(88)90149‐6
10.1016/j.artmed.2021.102039
10.1890/12‐2010.1
10.1109/tbme.2016.2558824
10.1109/access.2020.2975848
10.1016/j.eswa.2021.116230
10.1093/schbul/sbn093
10.1017/s0033291718001575
10.4324/9780203843130
10.3109/10826084.2010.528123
10.1093/schbul/sby167
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
COPYRIGHT 2023 John Wiley & Sons, Inc.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: COPYRIGHT 2023 John Wiley & Sons, Inc.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/sil2.12230
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage n/a
ExternalDocumentID oai_doaj_org_article_24f87c2dee654dc28d16e8e72f9c7954
A767136465
10_1049_sil2_12230
SIL212230
Genre article
GrantInformation_xml – fundername: Instituto de Salud Carlos III
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
J9A
JAVBF
K6V
K7-
L6V
LAI
LXU
M43
M7S
MCNEO
NADUK
NXXTH
O9-
OCL
OK1
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
~ZZ
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
WIN
ID FETCH-LOGICAL-c4010-a5676e04a15c7286ae05aa4570b8da69e00f28b3c16ef8065ff02ac6da1036163
IEDL.DBID DOA
ISSN 1751-9675
IngestDate Wed Aug 27 01:29:37 EDT 2025
Tue Jun 17 22:03:28 EDT 2025
Tue Jun 10 21:05:00 EDT 2025
Tue Jul 01 01:30:36 EDT 2025
Wed Jan 22 16:22:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4010-a5676e04a15c7286ae05aa4570b8da69e00f28b3c16ef8065ff02ac6da1036163
ORCID 0000-0002-7486-6152
0000-0002-8760-9577
OpenAccessLink https://doaj.org/article/24f87c2dee654dc28d16e8e72f9c7954
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_24f87c2dee654dc28d16e8e72f9c7954
gale_infotracmisc_A767136465
gale_infotracacademiconefile_A767136465
crossref_primary_10_1049_sil2_12230
wiley_primary_10_1049_sil2_12230_SIL212230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle IET signal processing
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2012; 61
2017; 64
2019; 9
2006; 30
2021; 67
2017; 81
1979; 36
2012
2022; 192
1995; 37
1990; 19
2013; 83
2008
2008; 34
2005
2008; 99
2022; 22
2002
1988; 70
2018; 20
2019; 100
2020; 8
2004; 134
1984; 59
2021; 114
2019; 45
2020; 28
2019; 214
2019; 49
2017
1962
2011; 46
2015
2014
2013
2020; 43
e_1_2_10_23_1
Armitage P. (e_1_2_10_29_1) 2008
e_1_2_10_24_1
Zacks S. (e_1_2_10_39_1) 2014
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
Hollander M. (e_1_2_10_40_1) 2013
Johnson R.A. (e_1_2_10_34_1) 2002
e_1_2_10_2_1
McCathern A. (e_1_2_10_11_1) 2017
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
Cacoullos T. (e_1_2_10_33_1) 2014
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
Santos‐Mayo L. (e_1_2_10_27_1) 2015
McGarigal K. (e_1_2_10_41_1) 2013
Niedermeyer E. (e_1_2_10_14_1) 2005
Wilcox R.R. (e_1_2_10_31_1) 2012
Daniel W.W. (e_1_2_10_30_1) 2013
e_1_2_10_28_1
e_1_2_10_25_1
Owen D.B. (e_1_2_10_32_1) 1962
e_1_2_10_26_1
References_xml – volume: 20
  start-page: 49
  issue: 1
  year: 2018
  end-page: 59
  article-title: Reduced electroencephalogram responses to standard and target auditory stimuli in bipolar disorder and the impact of psychotic features: analysis of event‐related potentials, spectral power, and inter‐trial coherence
  publication-title: Bipolar Disord.
– volume: 22
  issue: 7
  year: 2022
  article-title: Comparison of machine learning algorithms in the prediction of hospitalized patients with schizophrenia
  publication-title: Sensors
– year: 1962
– year: 2005
– volume: 43
  start-page: 1229
  issue: 4
  year: 2020
  end-page: 1239
  article-title: Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals
  publication-title: Physical and Engineering Sciences in Medicine
– volume: 192
  year: 2022
  article-title: Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and rlndip technique with ann
  publication-title: Expert Syst. Appl.
– volume: 100
  year: 2019
  article-title: Automated detection of schizophrenia using nonlinear signal processing methods
  publication-title: Artif. Intell. Med.
– volume: 214
  start-page: 24
  year: 2019
  end-page: 33
  article-title: Effective connectivity within a triple network brain system discriminates schizophrenia spectrum disorders from psychotic bipolar disorder at the single‐subject level
  publication-title: Schizophr. Res.
– volume: 19
  start-page: 1054
  issue: 9
  year: 1990
  end-page: 1059
  article-title: Introduction to biostatistics: Part 5, statistical inference techniques for hypothesis testing with nonparametric data
  publication-title: Ann. Emerg. Med.
– volume: 114
  year: 2021
  article-title: Advanced EEG‐based learning approaches to predict schizophrenia: promises and pitfalls
  publication-title: Artif. Intell. Med.
– volume: 99
  start-page: 225
  issue: 1
  year: 2008
  end-page: 237
  article-title: The status of spectral EEG abnormality as a diagnostic test for schizophrenia
  publication-title: Schizophr. Res.
– volume: 46
  start-page: 669
  issue: 5
  year: 2011
  end-page: 677
  article-title: P3a amplitude predicts successful treatment program completion in substance‐dependent individuals
  publication-title: Subst. Use Misuse
– volume: 36
  start-page: 251
  issue: 3
  year: 1979
  end-page: 262
  article-title: Telemetered EEG‐EOG during psychotic behaviors of schizophrenia
  publication-title: Arch. Gen. Psychiatr.
– year: 2014
– volume: 9
  issue: 14
  year: 2019
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Appl. Sci.
– year: 2012
– volume: 83
  start-page: 557
  issue: 4
  year: 2013
  end-page: 574
  article-title: Permanova, anosim, and the mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing?
  publication-title: Ecol. Monogr.
– volume: 67
  year: 2021
  article-title: Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals
  publication-title: Biomed. Signal Process Control
– volume: 49
  start-page: 868
  issue: 5
  year: 2019
  end-page: 875
  article-title: Associations between P3a and P3b amplitudes and cognition in antipsychotic‐naïve first‐episode schizophrenia patients
  publication-title: Psychol. Med.
– volume: 61
  start-page: 606
  issue: 3
  year: 2012
  end-page: 612
  article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
  publication-title: Neuroimage
– volume: 59
  start-page: 104
  issue: 2
  year: 1984
  end-page: 124
  article-title: Clinical application of the P3 component of event‐related potentials. II. dementia, depression and schizophrenia
  publication-title: Electroencephalogr. Clin. Neurophysiology Evoked Potentials Sect.
– volume: 37
  start-page: 300
  issue: 5
  year: 1995
  end-page: 310
  article-title: Auditory P300 event‐related potentials and neuropsychological performance in schizophrenia and bipolar affective disorder
  publication-title: Biol. Psychiatr.
– year: 2002
– year: 2008
– volume: 28
  start-page: 2390
  issue: 11
  year: 2020
  end-page: 2400
  article-title: A computerized method for automatic detection of schizophrenia using EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 64
  start-page: 395
  issue: 2
  year: 2017
  end-page: 407
  article-title: A computer‐aided diagnosis system with EEG based on the P3b wave during an auditory odd‐ball task in schizophrenia
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 8
  start-page: 39875
  year: 2020
  end-page: 39897
  article-title: A framework for schizophrenia EEG signal classification with nature inspired optimization algorithms
  publication-title: IEEE Access
– volume: 81
  issue: 10
  year: 2017
  article-title: Emitted P3a and P3b in chronic schizophrenia and in first‐episode schizophrenia‐spectrum psychosis
  publication-title: Biol. Psychiatr.
– year: 2017
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  end-page: 21
  article-title: EEGLab: an open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
– volume: 70
  start-page: 510
  issue: 6
  year: 1988
  end-page: 523
  article-title: Talking off the top of your head: toward a mental prosthesis utilizing event‐related brain potentials
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 30
  start-page: 1426
  issue: 8
  year: 2006
  end-page: 1434
  article-title: Novelty P3 and P3b in first‐episode schizophrenia and chronic schizophrenia
  publication-title: Prog. Neuro Psychopharmacol. Biol. Psychiatr.
– volume: 45
  start-page: 1068
  issue: 5
  year: 2019
  end-page: 1080
  article-title: Auditory and visual oddball stimulus processing deficits in schizophrenia and the psychosis risk syndrome: forecasting psychosis risk with P300
  publication-title: Schizophr. Bull.
– volume: 34
  start-page: 907
  issue: 5
  year: 2008
  end-page: 926
  article-title: Event‐related EEG time‐frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia
  publication-title: Schizophr. Bull.
– year: 2015
– year: 2013
– ident: e_1_2_10_17_1
  doi: 10.1109/tnsre.2020.3022715
– ident: e_1_2_10_37_1
  doi: 10.1016/s0196‐0644(05)82571‐5
– ident: e_1_2_10_13_1
  doi: 10.1016/j.biopsych.2017.02.206
– volume-title: Statistical Methods in Medical Research
  year: 2008
  ident: e_1_2_10_29_1
– ident: e_1_2_10_19_1
  doi: 10.3390/app9142870
– ident: e_1_2_10_6_1
  doi: 10.1016/j.neuroimage.2012.03.079
– ident: e_1_2_10_21_1
  doi: 10.1111/bdi.12561
– ident: e_1_2_10_25_1
  doi: 10.3390/s22072517
– ident: e_1_2_10_3_1
  doi: 10.1016/j.schres.2007.11.020
– volume-title: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields
  year: 2005
  ident: e_1_2_10_14_1
– ident: e_1_2_10_15_1
  doi: 10.1001/archpsyc.1979.01780030017001
– volume-title: Discriminant Analysis and Applications
  year: 2014
  ident: e_1_2_10_33_1
– ident: e_1_2_10_8_1
  doi: 10.1016/0006‐3223(94)00131‐l
– volume-title: Bioestatistics
  year: 2013
  ident: e_1_2_10_30_1
– ident: e_1_2_10_23_1
  doi: 10.1007/s13246‐020‐00925‐9
– ident: e_1_2_10_38_1
  doi: 10.1016/j.jneumeth.2003.10.009
– volume-title: Multivariate Statistics for Wildlife and Ecology Research
  year: 2013
  ident: e_1_2_10_41_1
– ident: e_1_2_10_2_1
  doi: 10.1176/appi.books.9780890425596
– ident: e_1_2_10_16_1
  doi: 10.1016/j.bspc.2021.102525
– ident: e_1_2_10_42_1
  doi: 10.1016/j.artmed.2019.07.006
– ident: e_1_2_10_18_1
  doi: 10.1016/j.schres.2018.01.006
– volume-title: Emitted P3a and P3b in Chronic Schizophrenia and in First‐Episode Schizophrenia
  year: 2017
  ident: e_1_2_10_11_1
– volume-title: Introduction to Robust Estimation and Hypothesis Testing
  year: 2012
  ident: e_1_2_10_31_1
– ident: e_1_2_10_7_1
  doi: 10.1016/0168‐5597(84)90027‐3
– ident: e_1_2_10_10_1
  doi: 10.1016/j.pnpbp.2006.05.019
– ident: e_1_2_10_4_1
  doi: 10.1016/0013‐4694(88)90149‐6
– ident: e_1_2_10_24_1
  doi: 10.1016/j.artmed.2021.102039
– volume-title: Handbook of Statistical Tables
  year: 1962
  ident: e_1_2_10_32_1
– volume-title: Applied Multivariate Statistical Analysis
  year: 2002
  ident: e_1_2_10_34_1
– ident: e_1_2_10_36_1
  doi: 10.1890/12‐2010.1
– ident: e_1_2_10_22_1
  doi: 10.1109/tbme.2016.2558824
– volume-title: Diagnóstico automático de la esquizofrenia basado en el estudio de señales EEG de actividad cortical en el cerebro, Master Science Degree
  year: 2015
  ident: e_1_2_10_27_1
– ident: e_1_2_10_5_1
  doi: 10.1109/access.2020.2975848
– volume-title: Nonparametric Statistical Methods
  year: 2013
  ident: e_1_2_10_40_1
– volume-title: Parametric Statistical Inference: Basic Theory and Modern Approaches
  year: 2014
  ident: e_1_2_10_39_1
– ident: e_1_2_10_26_1
  doi: 10.1016/j.eswa.2021.116230
– ident: e_1_2_10_20_1
  doi: 10.1093/schbul/sbn093
– ident: e_1_2_10_9_1
  doi: 10.1017/s0033291718001575
– ident: e_1_2_10_35_1
  doi: 10.4324/9780203843130
– ident: e_1_2_10_28_1
  doi: 10.3109/10826084.2010.528123
– ident: e_1_2_10_12_1
  doi: 10.1093/schbul/sby167
SSID ssj0056512
Score 2.2854443
Snippet Schizophrenia is a disease that affects approximately 1% of the population. Its early accurate diagnosis is of vital importance to apply adequate therapy as...
Abstract Schizophrenia is a disease that affects approximately 1% of the population. Its early accurate diagnosis is of vital importance to apply adequate...
SourceID doaj
gale
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Analysis
decision support systems
Diagnosis
EEG
Electroencephalography
evoked related potential
Schizophrenia
statistical discriminant analysis
statistical discriminant diagnosing
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEBYhuTSHkrQN2fwUQQuFghutVpZkyGVbGtLSlkAbyE2MZKldaLzLZpOQWx6hz5gnyYzs3e5eCr0Ze2wPI4_mk0fzDWOvK-VFwoVy4avaFoSgC6sBClUmEDaZAQyoUPjrN316rj5flBdr7HheC9PyQyx-uJFn5PmaHBx824UEQS0VvY5-y3d9jG64YN-g2lpq3CDV2XweRqTS5joNNZJHXDwnJ1XV0d97V8JRZu1fzM3LYDVHm5Mt9rSDiXzYjus2W4vNM7a5RB74nN0NOZXUtm25mhmHjl6EjxNHVMfPBp7fwk3k9KuVd-1uyI8nvyATVV9yf8dTzMyeD_d_Ook68gnlePio4VfLO_LwbXlX3ujqBTs_-fjjw2nRNVIogqJkN5Ta6CgU9MtgJI5FFCWAKo3wtgZdRSGStH4Q-jomyrSmJCQEXUMfAxwith223oybuMt4pRG_WFP7FDH-aeUVQjYEbSKiuUGUPfZqbk83afkyXM5zq8qR1V22eo-9J1MvJIjjOp8YT3-6zmWcVMmaIOuIj1Z1kLZG9Ww0MlXBVKXqsTc0UI48cTaFAF1BASpKnFZuaDSuwLXSqNTBiiR6UFi5_DYP9T8Udt8_fZH5aO9_hPfZE2pP324tO2Drs-l1PEQQM_Mv87f6CK-I6_w
  priority: 102
  providerName: Wiley-Blackwell
Title A discriminant analysis of the P3b wave with electroencephalogram by feature‐electrode pairs in schizophrenia diagnosis
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12230
https://doaj.org/article/24f87c2dee654dc28d16e8e72f9c7954
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NixQxEA26Jz2Inzi6LgEFQWg3ncnncRSXVVQWdGFvoZJOcGDtHXZmV_bmT_A3-kusSvcsMxe9eGu6A13U66ReuiqvGHvhVRQFN8pN9J1riEE3zgA0ShcQrtgpTOmg8KfP5vBYfTjRJxutvqgmbJAHHhy3L1VxNskuZ6NVl6TrWpNdtrL4ZL2uSqDCi_VmaliDkaUMeU5LTeSRE6-FSZXfX85P5esWo6LYCkVVsf96Xd4kqjXSHNxld0aKyGeDaffYjdzfZ7c3hAMfsKsZp-O0Q0uufsVhlBbhZ4Ujo-NH08h_wGXm9JuVj61uaA4vvkEVqf7O4xUvuap6_v75axzRZb6g_A6f93y5WY2Hb6sVefPlQ3Z88O7r28NmbKLQJEWJbtDGmiwUtDpZiThkoQGUtiK6DozPQhTp4jShWwtlWUsREpLpoMXghmztEdvpz_r8mHFvkLs428WSMfYZFRXSNSRsAqFpQegJe772Z1gMWhmh5riVD-T1UL0-YW_I1dcjSN-63kDUw4h6-BfqE_aSgAo0C1fnkGA8TICGkp5VmFmDu2-jDBq1uzUSZ0_aevyqQv0Xg8OX9x9lvXryP0x_ym5Ry_qh3GyX7azOL_IzJDaruMduSnW0V7_kP3Vy9PI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELZQewAOVfkTKQUsgYSEtOA4Xtt7DIgqhbSqRCv1Zo29NkSCTZQEUG99hD4jT8KMdxOSCxK3aOPdtWZ2PJ89M98w9rJSXiTcKBe-qm1BCLqwGqBQZQJhkxnAgAqFT0716EJ9vCwvu9wcqoVp-SHWB25kGXm9JgOnA-l2w6mIJHMx-Sbf9NG94Y59VyEwp4w-qc5WCzFClTbYaaiTPALjFTupqt7-vXfLH2Xa_vXivIlWs7s52md7HU7kw1ax99it2NxndzfYAx-wqyGnmtq2L1ez5NDxi_Bp4gjr-NnA81_wM3I6a-Vdvxsy5NlXyEzV37m_4ilmas_f1zfdiDryGQV5-KThi82UPHxbTsubLB6yi6MP5-9HRddJoQiKot1QaqOjUNAvg5GojChKAFUa4W0NuopCJGn9IPR1TBRqTUlICLqGPno4hGyP2E4zbeJjxiuNAMaa2qeIDlArrxCzIWoTEcUNouyxFyt5ullLmOFyoFtVjqTustR77B2Jej2CSK7zhen8i-tsxkmVrAmyjvhoVQdpa5yejUamKpiqVD32ihTlyBSXcwjQVRTgRInUyg2Nxi24Vhondbg1Ek0obP39Oqv6HxN2n4_HMv86-J_Bz9nt0fnJ2I2PTz89YXeoV32bZ3bIdpbzH_EpIpqlf5a_2z-FHO9v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1faxQxEA-lhaIPUqvi2WoDCoKwmstlkyz4cmqPVmsp6EnxJeSvHujecXcqffMj-Bn7STqT3bvevQh9W3azu2Emk_klk_kNIc8q4ViChXLhqqALRNCFltYWokyW6aR6toeJwh9P5dFQvD8vzzfI60UuTMMPsdxwQ8vI8zUa-CSkZr0pkCNzNvrBX3bBu8GCfQtp8mCUb_W_DL8OFzMxYJUm2qmwlDwg4wU9qaheXb-95pAyb_9ydl6Fq9nfDHbInRYo0n6j2btkI9a75PYKfeA9ctGnmFTbFOaq59S2BCN0nCjgOnrWc_SP_R0pbrbStuANWvLku81U1T-pu6ApZm7Py7__2hYh0glGeeioprPVM3nwt3wubzS7T4aDw89vj4q2lELhBYa7bSmVjEzYbukVB21EVlorSsWcDlZWkbHEtev5rowJY60pMW69DLYLLg4w2wOyWY_r-JDQSgKC0Sq4FMEDSuEEgDaAbSyCuC0rO-TpQp5m0jBmmBzpFpVBqZss9Q55g6JetkCW63xjPP1mWqMxXCStPA8RPi2C5zpA93RUPFVeVaXokOeoKIO2OJ9ab9uUAugoslqZvpKwBpdCQqf211qCDfm1xy-yqv_TYfPp-ITnq0c3aXxAts_eDczJ8emHPXILa9U358z2yeZ8-is-BkQzd0_agXsFmVzwXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+discriminant+analysis+of+the+P3b+wave+with+electroencephalogram+by+feature%E2%80%90electrode+pairs+in+schizophrenia+diagnosis&rft.jtitle=IET+signal+processing&rft.au=Juan+I.+Arribas&rft.au=Luis+M.+San%E2%80%90Jos%C3%A9%E2%80%90Revuelta&rft.date=2023-06-01&rft.pub=Wiley&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=17&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Fsil2.12230&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_24f87c2dee654dc28d16e8e72f9c7954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon