Electrical swing adsorption on functionalized hollow fibers
[Display omitted] •Preparing two different highly absorptive hollow fibers with Joule heating properties.•Proof-of-concept module yields promising CO2 capacities.•Adequate models describe the kinetics and isotherms precisely.•Mathematical modelling proves the potential of an electrical swing adsorpt...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 371; pp. 107 - 117 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Preparing two different highly absorptive hollow fibers with Joule heating properties.•Proof-of-concept module yields promising CO2 capacities.•Adequate models describe the kinetics and isotherms precisely.•Mathematical modelling proves the potential of an electrical swing adsorption process with our fibers.
Temperature swing adsorption (TSA) is a favorable adsorption technique when applied for capturing CO2 but limited by long cycle times and low concentrations of the recovered adsorbate. Direct heating of the adsorbent can mitigate these drawbacks. Combined with the beneficial mass transfer of a hollow fiber geometry it offers a powerful sorption process. In this study, we combine the advantages of direct heating and the benefits of the hollow fiber geometry in electrically conducting hybrid hollow fibers. Two different solid sorbents are manufactured and characterized: polyethylenimine-impregnated silicon carbide fibers (SiC-PEI) and fibers consisting of a carbon nanotube matrix with dispersed zeolite particles (CNT-zeolite). Both fibers exhibit Joule heating properties and high adsorption capacities. The CO2 uptake, CO2 isotherms, and the kinetic behavior are examined. The maximum CO2 uptakes at 30 °C and 15 vol% CO2 are 8.3 mg/gfiber for SiC-PEI and 102.2 mg/gfiber for CNT-zeolite. A lab-scale module is designed and used to determine the CO2 capacity of a fiber bundle. The energy requirement to heat such a fiber bundle from ambient temperature to 80 °C is 3.1 J/gFiberK (SiC-PEI) and 15.8 J/gFiberK (CNT-zeolite). To investigate the suitability of the fibers for real process applicability, a mathematical model is established and simulation results are presented and discussed. The two different approaches prove to be viable options for CO2 separation. They are not limited to CO2 capture but can be expanded to other gas separation tasks. |
---|---|
AbstractList | [Display omitted]
•Preparing two different highly absorptive hollow fibers with Joule heating properties.•Proof-of-concept module yields promising CO2 capacities.•Adequate models describe the kinetics and isotherms precisely.•Mathematical modelling proves the potential of an electrical swing adsorption process with our fibers.
Temperature swing adsorption (TSA) is a favorable adsorption technique when applied for capturing CO2 but limited by long cycle times and low concentrations of the recovered adsorbate. Direct heating of the adsorbent can mitigate these drawbacks. Combined with the beneficial mass transfer of a hollow fiber geometry it offers a powerful sorption process. In this study, we combine the advantages of direct heating and the benefits of the hollow fiber geometry in electrically conducting hybrid hollow fibers. Two different solid sorbents are manufactured and characterized: polyethylenimine-impregnated silicon carbide fibers (SiC-PEI) and fibers consisting of a carbon nanotube matrix with dispersed zeolite particles (CNT-zeolite). Both fibers exhibit Joule heating properties and high adsorption capacities. The CO2 uptake, CO2 isotherms, and the kinetic behavior are examined. The maximum CO2 uptakes at 30 °C and 15 vol% CO2 are 8.3 mg/gfiber for SiC-PEI and 102.2 mg/gfiber for CNT-zeolite. A lab-scale module is designed and used to determine the CO2 capacity of a fiber bundle. The energy requirement to heat such a fiber bundle from ambient temperature to 80 °C is 3.1 J/gFiberK (SiC-PEI) and 15.8 J/gFiberK (CNT-zeolite). To investigate the suitability of the fibers for real process applicability, a mathematical model is established and simulation results are presented and discussed. The two different approaches prove to be viable options for CO2 separation. They are not limited to CO2 capture but can be expanded to other gas separation tasks. |
Author | Lohaus, Theresa Abduly, Lorenz Keller, Laura Hadler, Greta Wessling, Matthias |
Author_xml | – sequence: 1 givenname: Laura surname: Keller fullname: Keller, Laura organization: RWTH Aachen University, Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany – sequence: 2 givenname: Theresa surname: Lohaus fullname: Lohaus, Theresa organization: RWTH Aachen University, Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany – sequence: 3 givenname: Lorenz surname: Abduly fullname: Abduly, Lorenz organization: RWTH Aachen University, Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany – sequence: 4 givenname: Greta surname: Hadler fullname: Hadler, Greta organization: RWTH Aachen University, Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany – sequence: 5 givenname: Matthias orcidid: 0000-0001-8469-4289 surname: Wessling fullname: Wessling, Matthias email: Manuscripts.CVT@avt.rwth-aachen.de organization: RWTH Aachen University, Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany |
BookMark | eNp9kMtOwzAQRS1UJNrCB7DLDySMH3lYXaGqPKRKbGBtOWMbHJmksgMVfD2JYMWi0khzN-dq5qzIoh96S8g1hYICrW66Am1XMKCyAFEAk2dkSZua55xRtpgyb8q8kaK-IKuUOgCoJJVLstkFi2P0qEOWjr5_zbRJQzyMfuizadxHj3PWwX9bk70NIQzHzPnWxnRJzp0OyV797TV5uds9bx_y_dP94_Z2n6MAGHPneOUMODBcUMFEiVWphWul0Sgai1RLaJtauhYEIKfAGBoqsG0sL0FSvib1by_GIaVonUI_6vmqMWofFAU1O1Cdmhyo2YECoSYHE0n_kYfo33X8Oslsfhk7vfTpbVQJve3RGh8nVcoM_gT9AwuMd0Y |
CitedBy_id | crossref_primary_10_1007_s40726_019_00128_1 crossref_primary_10_1039_D4TA00301B crossref_primary_10_1002_cssc_202200761 crossref_primary_10_1016_j_seppur_2022_121295 crossref_primary_10_1039_D2CS00465H crossref_primary_10_1021_cbe_3c00079 crossref_primary_10_1021_acssuschemeng_1c00547 crossref_primary_10_1016_j_cartre_2022_100224 crossref_primary_10_1016_j_jenvman_2025_124924 crossref_primary_10_1016_j_seppur_2024_128522 crossref_primary_10_1016_j_scitotenv_2023_163343 crossref_primary_10_1021_acs_energyfuels_3c00381 crossref_primary_10_1016_j_cej_2020_126142 crossref_primary_10_1016_j_seppur_2021_120249 crossref_primary_10_1016_j_joule_2023_05_016 crossref_primary_10_1016_j_memsci_2020_118431 crossref_primary_10_1016_j_seppur_2022_121660 crossref_primary_10_1252_jcej_20we112 crossref_primary_10_1016_j_resenv_2025_100195 crossref_primary_10_1039_D3CP04588A crossref_primary_10_1016_j_seppur_2022_120592 crossref_primary_10_1016_j_jmrt_2020_06_050 crossref_primary_10_1021_acs_iecr_2c04517 crossref_primary_10_1016_j_jtice_2024_105366 crossref_primary_10_1016_j_enss_2024_10_001 crossref_primary_10_1002_adma_202300936 crossref_primary_10_1016_j_jece_2025_116109 crossref_primary_10_1039_D1CC02991F crossref_primary_10_1021_acsenergylett_3c02340 crossref_primary_10_1021_acsenergylett_4c02851 crossref_primary_10_1021_acs_chemmater_0c00183 crossref_primary_10_1007_s10450_023_00435_6 crossref_primary_10_1016_j_jece_2021_105317 |
Cites_doi | 10.1039/ft9959102935 10.1016/j.carbon.2013.11.005 10.1016/S0304-3894(02)00358-8 10.1038/ncomms12640 10.1016/j.micromeso.2019.01.009 10.1016/j.cej.2018.11.100 10.1016/j.carbon.2017.10.023 10.1016/j.cherd.2012.03.010 10.1021/acs.energyfuels.6b01797 10.1016/j.memsci.2014.10.045 10.1002/aic.690440709 10.1016/S0196-8904(96)00253-1 10.1002/aic.12771 10.1016/S0376-7388(03)00178-9 10.1016/j.micromeso.2008.05.009 10.1021/ef9001204 10.1002/cssc.201000059 10.1016/j.ijggc.2009.06.003 10.1063/1.1750631 10.1021/es0306415 10.1016/j.ijggc.2018.04.012 10.1080/01496399108050482 10.1016/j.jngse.2015.09.029 10.1002/1521-4125(200204)25:4<381::AID-CEAT381>3.0.CO;2-0 10.1016/j.buildenv.2015.04.028 10.1021/ed061p494 10.1016/j.seppur.2018.04.009 10.1021/es050338z 10.1016/j.cej.2016.12.004 10.1007/s10450-018-9938-1 10.1021/ie300691c 10.1039/c2ee22647b 10.1039/b822107n 10.1021/ie801186g 10.1023/A:1021304828010 10.1002/anie.201506952 10.1016/j.ces.2009.10.005 10.1080/01496395.2014.915854 10.1016/j.ijggc.2015.07.014 10.1021/ba-1974-0133.ch047 10.1016/j.micromeso.2014.02.045 10.1002/aic.13870 10.1021/ie502009n 10.1021/jp409414t 10.1016/j.jcis.2005.12.052 10.1016/S1387-1811(03)00388-3 10.1016/j.egypro.2009.01.160 10.1039/c2ee21153j 10.1002/cssc.200900036 10.1039/C6RA01792D 10.1515/zpch-1907-5723 10.4209/aaqr.2012.05.0132 10.1021/ie060774+ 10.1016/j.ces.2013.09.011 10.1021/ja02268a002 10.1061/(ASCE)0733-9372(2004)130:3(242) 10.1016/j.icheatmasstransfer.2007.02.006 10.1021/ie2000709 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2019.04.029 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
EndPage | 117 |
ExternalDocumentID | 10_1016_j_cej_2019_04_029 S1385894719308071 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION FEDTE FGOYB HVGLF HZ~ R2- SEW SSH ZY4 |
ID | FETCH-LOGICAL-c400t-ff36fd0f0d3414245c65a4fb9dac48ec1a90b879fb040c31022cd14cb8e350913 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 03:52:16 EDT 2025 Thu Apr 24 23:09:02 EDT 2025 Fri Feb 23 02:34:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Zeolite CO2 capture PEI Electrical swing adsorption Heatable hollow fiber |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-ff36fd0f0d3414245c65a4fb9dac48ec1a90b879fb040c31022cd14cb8e350913 |
ORCID | 0000-0001-8469-4289 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2019_04_029 crossref_primary_10_1016_j_cej_2019_04_029 elsevier_sciencedirect_doi_10_1016_j_cej_2019_04_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sevanthi, Irin, Parviza, Jackson, Green (b0115) 2016; 6 Keller, Ohs, Lenhart, Abduly, Blanke, Wessling (b0180) 2018; 126 Moskal, Nastaj (b0055) 2007; 34 Grande, Ribeiro, Oliveira, Rodrigues (b0325) 2009; 1 Regufe, Ferreira, Loureiro, Shi, Rodrigues, Ribeiro (b0105) 2018; 24 Kulkarni, Sholl (b0220) 2012; 51 An, Feng (b0075) 2010; 4 Harlick, Sayari (b0150) 2007; 46 Yu, Huang, Tan (b0080) 2012; 12 Monazam, Shadle, Miller, Pennline, Fauth, Hoffman, Gray (b0230) 2012; 59 Monazam, Shadle, Miller, Pennline, Fauth, Hoffman, Gray (b0260) 2013; 59 Sullivan, Rood, Grevillot, Wander, Hay (b0070) 2004; 38 Masson-Delmotte, Zhai, Pörtner, Roberts, Skea, Shukla, Pirani, Moufouma-Okia, Péan, Pidcock, Connors, Matthews, Chen, Zhou, Gomis, Lonnoy, Tignor, Waterfield (b0030) 2018 de Wit, Kappert, Lohaus, Wessling, Nijmeijer, Benes (b0190) 2015; 475 Petkovska, Tondeur, Grevillot, Granger, Mitrović (b0050) 1991; 26 Ohs, Krödel, Wessling (b0250) 2018; 204 Özacar, engil (b0305) 2003; 98 Hashisho, Rood, Botich (b0065) 2005; 39 Avramescu, Girones, Borneman, Wessling (b0170) 2003; 218 Keller, Ohs, Abduly, Wessling (b0185) 2019; 359 Zhang, Ma, Wang, Song, Wang (b0130) 2012; 58 Orr (b0215) 2009; 2 Keller, Anderson, Yon, Rousseau (b0160) 1987 Ribeiro, Grande, Rodrigues (b0330) 2013; 104 Burchell, Judkins (b0085) 1997; 38 Gray, Hoffman, Hreha, Fauth, Hedges, Champagne, Pennline (b0135) 2009; 23 Bathen, Breitbach (b0005) 2001 Moon, Shim (b0090) 2006; 298 Young, Finlayson (b0210) 1974; 133 Abdollahi Govar, Ebner, Ritter (b0125) 2016; 30 Xu, Song, Andrésen, Miller, Scaroni (b0195) 2003; 62 Liu, Huang, Yoo, Okonkwo, Tao, Jones, Dai (b0225) 2017; 314 R. Lively, R.R. Chance, W.J. Koros, H. Deckman, B.T. Kelley, Sorbent fiber compositions and methods of temperature swing adsorption, 2012. US Patent 8,133,308. Su, Lu (b0025) 2012; 5 Lillia, Bonalumi, Grande, Manzolini (b0335) 2018; 74 Laidler (b0320) 1984; 61 Feng, Pan, McMinis, Ivory, Gosh (b0165) 1998; 44 Ribeiro, Grande, Rodrigues (b0100) 2012; 90 Liu, Shi, Zheng, Tao, He, Shi (b0235) 2014; 53 Ho, Porter, McKay (b0270) 2002; 141 Choudhary, Mayadevi, Singh (b0295) 1995; 91 Choi, Drese, Jones (b0155) 2009; 2 ESRL Global Monitoring Division – Global Greenhouse Gas Reference Network, accessed on April 4, 2018. Ribeiro, Grande, Rodrigues (b0040) 2014; 49 Drage, Arenillas, Smith, Snape (b0205) 2008; 116 Gendel, David, Wessling (b0200) 2014; 68 Yang (b0275) 2003 Hojniak, Khan, Hollóczki, Kirchner, Vankelecom, Dehaen, Binnemans (b0120) 2013; 117 Veneman, Frigka, Zhao, Li, Kersten, Brilman (b0140) 2015; 41 Avrami (b0255) 1940; 8 Cavalcante (b0045) 2000; 30 Serna-Guerrero, Da’na, Sayari (b0280) 2008; 47 Grande, Ribeiro, Rodrigues (b0010) 2010; 3 Ebner, Gray, Chisholm, Black, Mumford, Nicholson, Ritter (b0240) 2011; 50 Kumar, Madden, Lusi, Chen, Daniels, Curtin, Perry, Zaworotko (b0290) 2015; 54 Hsu, Lu, Su, Zeng, Chen (b0315) 2009; 65 Yu, Luo, Grevillot (b0095) 2004; 130 Maurin, Llewellyn, Bell (b0310) 2005; 109 Songolzadeh, Soleimani, Takht Ravanchi (b0245) 2015; 27 Lee, Cho, Chi (b0015) 2015; 92 Langmuir (b0300) 1916; 38 Freundlich (b0265) 1907; 57U Salvador, Martin-Sanchez, Sanchez-Hernandez, Sanchez-Montero, Izquierdo (b0035) 2015; 202 Akhtar, Liu, Hedin, Bergström (b0145) 2012; 5 Regufe, Ferreira, Loureiro, Rodrigues, Ribeiro (b0110) 2019; 278 Choi, Min, Kim, Ko, Jeon, Seo, Park, Choi (b0020) 2016; 7 Reuß, Bathen, Schmidt-Traub (b0060) 2002; 25 Burchell (10.1016/j.cej.2019.04.029_b0085) 1997; 38 Ohs (10.1016/j.cej.2019.04.029_b0250) 2018; 204 Bathen (10.1016/j.cej.2019.04.029_b0005) 2001 Keller (10.1016/j.cej.2019.04.029_b0180) 2018; 126 10.1016/j.cej.2019.04.029_b0285 Veneman (10.1016/j.cej.2019.04.029_b0140) 2015; 41 An (10.1016/j.cej.2019.04.029_b0075) 2010; 4 Hashisho (10.1016/j.cej.2019.04.029_b0065) 2005; 39 Yu (10.1016/j.cej.2019.04.029_b0095) 2004; 130 Moon (10.1016/j.cej.2019.04.029_b0090) 2006; 298 Young (10.1016/j.cej.2019.04.029_b0210) 1974; 133 Ho (10.1016/j.cej.2019.04.029_b0270) 2002; 141 de Wit (10.1016/j.cej.2019.04.029_b0190) 2015; 475 Kumar (10.1016/j.cej.2019.04.029_b0290) 2015; 54 Laidler (10.1016/j.cej.2019.04.029_b0320) 1984; 61 Serna-Guerrero (10.1016/j.cej.2019.04.029_b0280) 2008; 47 Masson-Delmotte (10.1016/j.cej.2019.04.029_b0030) 2018 Abdollahi Govar (10.1016/j.cej.2019.04.029_b0125) 2016; 30 Akhtar (10.1016/j.cej.2019.04.029_b0145) 2012; 5 Harlick (10.1016/j.cej.2019.04.029_b0150) 2007; 46 Lee (10.1016/j.cej.2019.04.029_b0015) 2015; 92 Regufe (10.1016/j.cej.2019.04.029_b0110) 2019; 278 Orr (10.1016/j.cej.2019.04.029_b0215) 2009; 2 Monazam (10.1016/j.cej.2019.04.029_b0230) 2012; 59 Avrami (10.1016/j.cej.2019.04.029_b0255) 1940; 8 Lillia (10.1016/j.cej.2019.04.029_b0335) 2018; 74 Hojniak (10.1016/j.cej.2019.04.029_b0120) 2013; 117 Keller (10.1016/j.cej.2019.04.029_b0160) 1987 Petkovska (10.1016/j.cej.2019.04.029_b0050) 1991; 26 Gray (10.1016/j.cej.2019.04.029_b0135) 2009; 23 Ebner (10.1016/j.cej.2019.04.029_b0240) 2011; 50 Hsu (10.1016/j.cej.2019.04.029_b0315) 2009; 65 Su (10.1016/j.cej.2019.04.029_b0025) 2012; 5 Ribeiro (10.1016/j.cej.2019.04.029_b0040) 2014; 49 Choudhary (10.1016/j.cej.2019.04.029_b0295) 1995; 91 Moskal (10.1016/j.cej.2019.04.029_b0055) 2007; 34 Liu (10.1016/j.cej.2019.04.029_b0235) 2014; 53 Avramescu (10.1016/j.cej.2019.04.029_b0170) 2003; 218 Maurin (10.1016/j.cej.2019.04.029_b0310) 2005; 109 Gendel (10.1016/j.cej.2019.04.029_b0200) 2014; 68 Kulkarni (10.1016/j.cej.2019.04.029_b0220) 2012; 51 Grande (10.1016/j.cej.2019.04.029_b0325) 2009; 1 Reuß (10.1016/j.cej.2019.04.029_b0060) 2002; 25 Zhang (10.1016/j.cej.2019.04.029_b0130) 2012; 58 Feng (10.1016/j.cej.2019.04.029_b0165) 1998; 44 Langmuir (10.1016/j.cej.2019.04.029_b0300) 1916; 38 Özacar (10.1016/j.cej.2019.04.029_b0305) 2003; 98 Ribeiro (10.1016/j.cej.2019.04.029_b0330) 2013; 104 Choi (10.1016/j.cej.2019.04.029_b0020) 2016; 7 Songolzadeh (10.1016/j.cej.2019.04.029_b0245) 2015; 27 Yu (10.1016/j.cej.2019.04.029_b0080) 2012; 12 Drage (10.1016/j.cej.2019.04.029_b0205) 2008; 116 Ribeiro (10.1016/j.cej.2019.04.029_b0100) 2012; 90 Xu (10.1016/j.cej.2019.04.029_b0195) 2003; 62 Regufe (10.1016/j.cej.2019.04.029_b0105) 2018; 24 Monazam (10.1016/j.cej.2019.04.029_b0260) 2013; 59 10.1016/j.cej.2019.04.029_b0175 Salvador (10.1016/j.cej.2019.04.029_b0035) 2015; 202 Sullivan (10.1016/j.cej.2019.04.029_b0070) 2004; 38 Liu (10.1016/j.cej.2019.04.029_b0225) 2017; 314 Grande (10.1016/j.cej.2019.04.029_b0010) 2010; 3 Cavalcante (10.1016/j.cej.2019.04.029_b0045) 2000; 30 Choi (10.1016/j.cej.2019.04.029_b0155) 2009; 2 Yang (10.1016/j.cej.2019.04.029_b0275) 2003 Freundlich (10.1016/j.cej.2019.04.029_b0265) 1907; 57U Sevanthi (10.1016/j.cej.2019.04.029_b0115) 2016; 6 Keller (10.1016/j.cej.2019.04.029_b0185) 2019; 359 |
References_xml | – volume: 7 start-page: 12640 year: 2016 ident: b0020 article-title: Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption publication-title: Nat. Commun. – volume: 38 start-page: 4865 year: 2004 end-page: 4877 ident: b0070 article-title: Activated carbon fiber cloth electrothermal swing adsorption system publication-title: Environ. Sci. Technol. – volume: 4 start-page: 57 year: 2010 end-page: 63 ident: b0075 article-title: Desorption of CO publication-title: Int. J. Greenhouse Gas Control – volume: 278 start-page: 403 year: 2019 end-page: 413 ident: b0110 article-title: Electrical conductive 3d-printed monolith adsorbent for CO publication-title: Microporous Mesoporous Mater. – volume: 59 start-page: 923 year: 2013 end-page: 935 ident: b0260 article-title: Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica publication-title: AIChE J. – volume: 6 start-page: 43401 year: 2016 end-page: 43407 ident: b0115 article-title: Electrical current stimulated desorption of carbon dioxide adsorbed on graphene based structures publication-title: RSC Adv. – volume: 65 start-page: 1354 year: 2009 end-page: 1361 ident: b0315 article-title: Thermodynamics and regeneration studies of CO publication-title: Chem. Eng. Sci. – volume: 141 start-page: 1 year: 2002 end-page: 33 ident: b0270 article-title: Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems publication-title: Water, Air, Soil Pollut. – volume: 90 start-page: 2013 year: 2012 end-page: 2022 ident: b0100 article-title: Electrothermal performance of an activated carbon honeycomb monolith publication-title: Chem. Eng. Res. Des. – volume: 44 start-page: 1555 year: 1998 end-page: 1562 ident: b0165 article-title: Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption publication-title: AIChE J. – volume: 3 start-page: 892 year: 2010 end-page: 898 ident: b0010 article-title: Challenges of electric swing adsorption for CO publication-title: ChemSusChem – volume: 23 start-page: 4840 year: 2009 end-page: 4844 ident: b0135 article-title: Parametric study of solid amine sorbents for the capture of carbon dioxide publication-title: Energy Fuels – volume: 41 start-page: 268 year: 2015 end-page: 275 ident: b0140 article-title: Adsorption of H publication-title: Int. J. Greenhouse Gas Control – volume: 47 start-page: 9406 year: 2008 end-page: 9412 ident: b0280 article-title: New insights into the interactions of CO publication-title: Ind. Eng. Chem. Res. – volume: 26 start-page: 425 year: 1991 end-page: 444 ident: b0050 article-title: Temperature-swing gas separation with electrothermal desorption step publication-title: Sep. Sci. Technol. – volume: 298 start-page: 523 year: 2006 end-page: 528 ident: b0090 article-title: A novel process for CO publication-title: J. Colloid Interface Sci. – volume: 5 start-page: 9021 year: 2012 end-page: 9027 ident: b0025 article-title: CO publication-title: Energy Environ. Sci. – year: 1987 ident: b0160 article-title: Handbook of Separation Process Technology – year: 2003 ident: b0275 article-title: Adsorbents: Fundamentals and Applications – volume: 74 start-page: 155 year: 2018 end-page: 173 ident: b0335 article-title: A comprehensive modeling of the hybrid temperature electric swing adsorption process for CO publication-title: Int. J. Greenhouse Gas Control – reference: R. Lively, R.R. Chance, W.J. Koros, H. Deckman, B.T. Kelley, Sorbent fiber compositions and methods of temperature swing adsorption, 2012. US Patent 8,133,308. – year: 2001 ident: b0005 article-title: Adsorptionstechnik – volume: 61 start-page: 494 year: 1984 ident: b0320 article-title: The development of the Arrhenius equation publication-title: J. Chem. Educ. – volume: 24 start-page: 249 year: 2018 end-page: 265 ident: b0105 article-title: New hybrid composite honeycomb monolith with 13× zeolite and activated carbon for CO publication-title: Adsorption – volume: 34 start-page: 579 year: 2007 end-page: 586 ident: b0055 article-title: Internal heat source capacity at inductive heating in desorption step of ETSA process publication-title: Int. Commun. Heat Mass Transfer – volume: 1 start-page: 1219 year: 2009 end-page: 1225 ident: b0325 article-title: Electric swing adsorption as emerging CO publication-title: Energy Procedia – volume: 126 start-page: 338 year: 2018 end-page: 345 ident: b0180 article-title: High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO publication-title: Carbon – volume: 2 start-page: 449 year: 2009 end-page: 458 ident: b0215 article-title: CO publication-title: Energy Environ. Sci. – volume: 59 start-page: 923 year: 2012 end-page: 935 ident: b0230 article-title: Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica publication-title: Am. Inst. Chem. Eng. – volume: 92 start-page: 209 year: 2015 end-page: 221 ident: b0015 article-title: Carbon dioxide removal using carbon monolith as electric swing adsorption to improve indoor air quality publication-title: Build. Environ. – volume: 130 start-page: 242 year: 2004 end-page: 248 ident: b0095 article-title: Electrothermal desorption using joule effect on an activated carbon monolith publication-title: J. Environ. Eng. – volume: 12 start-page: 745 year: 2012 end-page: 769 ident: b0080 article-title: A review of CO publication-title: Aerosol Air Qual. Res. – volume: 5 start-page: 7664 year: 2012 end-page: 7673 ident: b0145 article-title: Strong and binder free structured zeolite sorbents with very high CO publication-title: Energy Environ. Sci. – volume: 50 start-page: 5634 year: 2011 end-page: 5641 ident: b0240 article-title: Suitability of a solid amine sorbent for CO publication-title: Ind. Eng. Chem. Res. – volume: 57U year: 1907 ident: b0265 article-title: Über die adsorption in Lösungen publication-title: Zeitschrift für Physikalische Chemie – volume: 109 start-page: 1608 year: 2005 end-page: 1609 ident: b0310 article-title: Thermodynamics and regeneration studies of CO publication-title: J. Phys. Chem. B – volume: 46 start-page: 446 year: 2007 end-page: 458 ident: b0150 article-title: Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO publication-title: Ind. Eng. Chem. Res. – volume: 204 start-page: 13 year: 2018 end-page: 20 ident: b0250 article-title: Adsorption of carbon dioxide on solid amine-functionalized sorbents: a dual kinetic model publication-title: Sep. Purif. Technol. – volume: 30 start-page: 357 year: 2000 end-page: 364 ident: b0045 article-title: Industrial adsorption separation processes: fundamentals, modeling and applications publication-title: Latin Am. Appl. Res. – volume: 27 start-page: 831 year: 2015 end-page: 841 ident: b0245 article-title: Using modified Avrami kinetic and two component isotherm equation for modeling of CO publication-title: J. Nat. Gas Sci. Eng. – volume: 38 start-page: 2221 year: 1916 end-page: 2295 ident: b0300 article-title: The constitution and fundamental properties of solids and liquids. Part I. Solids publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 2935 year: 1995 ident: b0295 article-title: Sorption isotherms of methane, ethane, ethene and carbon dioxide on NaX, NaY and Na-mordenite zeolites publication-title: J. Chem. Soc., Faraday Trans. – volume: 39 start-page: 6851 year: 2005 end-page: 6859 ident: b0065 article-title: Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth publication-title: Environ. Sci. Technol. – volume: 104 start-page: 304 year: 2013 end-page: 318 ident: b0330 article-title: Activated carbon honeycomb monolith – zeolite 13× hybrid system to capture CO publication-title: Chem. Eng. Sci. – volume: 314 start-page: 466 year: 2017 end-page: 476 ident: b0225 article-title: Facilely synthesized meso-macroporous polymer as support of poly(ethyleneimine) for highly efficient and selective capture of CO publication-title: Chem. Eng. J. – volume: 359 start-page: 476 year: 2019 end-page: 484 ident: b0185 article-title: Carbon nanotube silica composite hollow fibers impregnated with polyethylenimine for CO publication-title: Chem. Eng. J. – volume: 218 start-page: 219 year: 2003 end-page: 233 ident: b0170 article-title: Preparation of mixed matrix adsorber membranes for protein recovery publication-title: J. Membr. Sci. – volume: 202 start-page: 259 year: 2015 end-page: 276 ident: b0035 article-title: Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration publication-title: Microporous Mesoporous Mater. – volume: 2 start-page: 796 year: 2009 end-page: 854 ident: b0155 article-title: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources publication-title: ChemSusChem – year: 2018 ident: b0030 article-title: IPCC Summary for Policymakers – volume: 133 start-page: 629 year: 1974 end-page: 643 ident: b0210 article-title: Mathematical modeling of the monolith converter publication-title: Adv. Chem. Ser. – volume: 51 start-page: 8631 year: 2012 end-page: 8645 ident: b0220 article-title: Analysis of equilibrium-based TSA processes for direct capture of CO publication-title: Ind. Eng. Chem. Res. – volume: 25 start-page: 381 year: 2002 end-page: 384 ident: b0060 article-title: Desorption by microwaves: mechanisms of multicomponent mixtures publication-title: Chem. Eng. Technol. – volume: 54 start-page: 14372 year: 2015 end-page: 14377 ident: b0290 article-title: Direct air capture of CO publication-title: Angewandte Chemie – International Edition – volume: 68 start-page: 818 year: 2014 end-page: 820 ident: b0200 article-title: Microtubes made of carbon nanotubes publication-title: Carbon – volume: 62 start-page: 29 year: 2003 end-page: 45 ident: b0195 article-title: Preparation and characterization of novel CO publication-title: Microporous Mesoporous Mater. – volume: 117 start-page: 15131 year: 2013 end-page: 15140 ident: b0120 article-title: Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (silms): influence of the cation charge of the ionic liquid publication-title: J. Phys. Chem. B – volume: 8 start-page: 212 year: 1940 end-page: 224 ident: b0255 article-title: Kinetics of phase change. II Transformation-time relations for random distribution of nuclei publication-title: J. Chem. Phys. – volume: 58 start-page: 2495 year: 2012 end-page: 2502 ident: b0130 article-title: Development of silica-gel-supported polyethylenimine sorbents for CO publication-title: AIChE J. – volume: 98 start-page: 211 year: 2003 end-page: 224 ident: b0305 article-title: Adsorption of reactive dyes on calcined alunite from aqueous solutions publication-title: J. Hazardous Mater. – reference: , ESRL Global Monitoring Division – Global Greenhouse Gas Reference Network, accessed on April 4, 2018. – volume: 30 start-page: 10653 year: 2016 end-page: 10660 ident: b0125 article-title: Effect of H publication-title: Energy Fuels – volume: 38 start-page: S99 year: 1997 end-page: S104 ident: b0085 article-title: A novel carbon fiber based material and separation technology publication-title: Energy Convers. Manage. – volume: 53 start-page: 11677 year: 2014 end-page: 11683 ident: b0235 article-title: Kinetics studies of CO publication-title: Ind. Eng. Chem. Res. – volume: 116 start-page: 504 year: 2008 end-page: 512 ident: b0205 article-title: Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies publication-title: Microporous Mesoporous Mater. – volume: 49 start-page: 1985 year: 2014 end-page: 2002 ident: b0040 article-title: Electric swing adsorption for gas separation and purification: a review publication-title: Sep. Sci. Technol. – volume: 475 start-page: 480 year: 2015 end-page: 487 ident: b0190 article-title: Highly permeable and mechanically robust silicon carbide hollow fiber membranes publication-title: J. Membr. Sci. – volume: 91 start-page: 2935 year: 1995 ident: 10.1016/j.cej.2019.04.029_b0295 article-title: Sorption isotherms of methane, ethane, ethene and carbon dioxide on NaX, NaY and Na-mordenite zeolites publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/ft9959102935 – volume: 68 start-page: 818 year: 2014 ident: 10.1016/j.cej.2019.04.029_b0200 article-title: Microtubes made of carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2013.11.005 – volume: 98 start-page: 211 year: 2003 ident: 10.1016/j.cej.2019.04.029_b0305 article-title: Adsorption of reactive dyes on calcined alunite from aqueous solutions publication-title: J. Hazardous Mater. doi: 10.1016/S0304-3894(02)00358-8 – volume: 7 start-page: 12640 year: 2016 ident: 10.1016/j.cej.2019.04.029_b0020 article-title: Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption publication-title: Nat. Commun. doi: 10.1038/ncomms12640 – volume: 278 start-page: 403 year: 2019 ident: 10.1016/j.cej.2019.04.029_b0110 article-title: Electrical conductive 3d-printed monolith adsorbent for CO2 capture publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.01.009 – volume: 359 start-page: 476 year: 2019 ident: 10.1016/j.cej.2019.04.029_b0185 article-title: Carbon nanotube silica composite hollow fibers impregnated with polyethylenimine for CO2 capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.100 – volume: 126 start-page: 338 year: 2018 ident: 10.1016/j.cej.2019.04.029_b0180 article-title: High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture publication-title: Carbon doi: 10.1016/j.carbon.2017.10.023 – volume: 90 start-page: 2013 year: 2012 ident: 10.1016/j.cej.2019.04.029_b0100 article-title: Electrothermal performance of an activated carbon honeycomb monolith publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2012.03.010 – volume: 30 start-page: 357 year: 2000 ident: 10.1016/j.cej.2019.04.029_b0045 article-title: Industrial adsorption separation processes: fundamentals, modeling and applications publication-title: Latin Am. Appl. Res. – ident: 10.1016/j.cej.2019.04.029_b0175 – volume: 30 start-page: 10653 year: 2016 ident: 10.1016/j.cej.2019.04.029_b0125 article-title: Effect of H2O vapor on the adsorption and desorption behavior of CO2 in a solid amine sorbent publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b01797 – volume: 475 start-page: 480 year: 2015 ident: 10.1016/j.cej.2019.04.029_b0190 article-title: Highly permeable and mechanically robust silicon carbide hollow fiber membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.10.045 – volume: 44 start-page: 1555 year: 1998 ident: 10.1016/j.cej.2019.04.029_b0165 article-title: Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption publication-title: AIChE J. doi: 10.1002/aic.690440709 – volume: 38 start-page: S99 year: 1997 ident: 10.1016/j.cej.2019.04.029_b0085 article-title: A novel carbon fiber based material and separation technology publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(96)00253-1 – volume: 58 start-page: 2495 year: 2012 ident: 10.1016/j.cej.2019.04.029_b0130 article-title: Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas publication-title: AIChE J. doi: 10.1002/aic.12771 – volume: 109 start-page: 1608 year: 2005 ident: 10.1016/j.cej.2019.04.029_b0310 article-title: Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes publication-title: J. Phys. Chem. B – volume: 218 start-page: 219 year: 2003 ident: 10.1016/j.cej.2019.04.029_b0170 article-title: Preparation of mixed matrix adsorber membranes for protein recovery publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(03)00178-9 – volume: 116 start-page: 504 year: 2008 ident: 10.1016/j.cej.2019.04.029_b0205 article-title: Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.05.009 – volume: 23 start-page: 4840 year: 2009 ident: 10.1016/j.cej.2019.04.029_b0135 article-title: Parametric study of solid amine sorbents for the capture of carbon dioxide publication-title: Energy Fuels doi: 10.1021/ef9001204 – volume: 3 start-page: 892 year: 2010 ident: 10.1016/j.cej.2019.04.029_b0010 article-title: Challenges of electric swing adsorption for CO2 capture publication-title: ChemSusChem doi: 10.1002/cssc.201000059 – volume: 4 start-page: 57 year: 2010 ident: 10.1016/j.cej.2019.04.029_b0075 article-title: Desorption of CO2 from activated carbon fibre-phenolic resin composite by electrothermal effect publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2009.06.003 – year: 2001 ident: 10.1016/j.cej.2019.04.029_b0005 – volume: 8 start-page: 212 year: 1940 ident: 10.1016/j.cej.2019.04.029_b0255 article-title: Kinetics of phase change. II Transformation-time relations for random distribution of nuclei publication-title: J. Chem. Phys. doi: 10.1063/1.1750631 – volume: 38 start-page: 4865 year: 2004 ident: 10.1016/j.cej.2019.04.029_b0070 article-title: Activated carbon fiber cloth electrothermal swing adsorption system publication-title: Environ. Sci. Technol. doi: 10.1021/es0306415 – volume: 74 start-page: 155 year: 2018 ident: 10.1016/j.cej.2019.04.029_b0335 article-title: A comprehensive modeling of the hybrid temperature electric swing adsorption process for CO2 capture publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2018.04.012 – volume: 26 start-page: 425 year: 1991 ident: 10.1016/j.cej.2019.04.029_b0050 article-title: Temperature-swing gas separation with electrothermal desorption step publication-title: Sep. Sci. Technol. doi: 10.1080/01496399108050482 – year: 2003 ident: 10.1016/j.cej.2019.04.029_b0275 – volume: 27 start-page: 831 year: 2015 ident: 10.1016/j.cej.2019.04.029_b0245 article-title: Using modified Avrami kinetic and two component isotherm equation for modeling of CO2/N2 adsorption over a 13X zeolite bed publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.09.029 – volume: 25 start-page: 381 year: 2002 ident: 10.1016/j.cej.2019.04.029_b0060 article-title: Desorption by microwaves: mechanisms of multicomponent mixtures publication-title: Chem. Eng. Technol. doi: 10.1002/1521-4125(200204)25:4<381::AID-CEAT381>3.0.CO;2-0 – volume: 92 start-page: 209 year: 2015 ident: 10.1016/j.cej.2019.04.029_b0015 article-title: Carbon dioxide removal using carbon monolith as electric swing adsorption to improve indoor air quality publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.04.028 – volume: 61 start-page: 494 year: 1984 ident: 10.1016/j.cej.2019.04.029_b0320 article-title: The development of the Arrhenius equation publication-title: J. Chem. Educ. doi: 10.1021/ed061p494 – volume: 204 start-page: 13 year: 2018 ident: 10.1016/j.cej.2019.04.029_b0250 article-title: Adsorption of carbon dioxide on solid amine-functionalized sorbents: a dual kinetic model publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.04.009 – year: 2018 ident: 10.1016/j.cej.2019.04.029_b0030 – volume: 39 start-page: 6851 year: 2005 ident: 10.1016/j.cej.2019.04.029_b0065 article-title: Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth publication-title: Environ. Sci. Technol. doi: 10.1021/es050338z – volume: 314 start-page: 466 year: 2017 ident: 10.1016/j.cej.2019.04.029_b0225 article-title: Facilely synthesized meso-macroporous polymer as support of poly(ethyleneimine) for highly efficient and selective capture of CO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.004 – volume: 24 start-page: 249 year: 2018 ident: 10.1016/j.cej.2019.04.029_b0105 article-title: New hybrid composite honeycomb monolith with 13× zeolite and activated carbon for CO2 capture publication-title: Adsorption doi: 10.1007/s10450-018-9938-1 – year: 1987 ident: 10.1016/j.cej.2019.04.029_b0160 – volume: 51 start-page: 8631 year: 2012 ident: 10.1016/j.cej.2019.04.029_b0220 article-title: Analysis of equilibrium-based TSA processes for direct capture of CO2 from air publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300691c – volume: 5 start-page: 9021 year: 2012 ident: 10.1016/j.cej.2019.04.029_b0025 article-title: CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22647b – volume: 2 start-page: 449 year: 2009 ident: 10.1016/j.cej.2019.04.029_b0215 article-title: CO2 capture and storage: are we ready? publication-title: Energy Environ. Sci. doi: 10.1039/b822107n – volume: 47 start-page: 9406 year: 2008 ident: 10.1016/j.cej.2019.04.029_b0280 article-title: New insights into the interactions of CO2 with amine-functionalized silica publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie801186g – volume: 141 start-page: 1 year: 2002 ident: 10.1016/j.cej.2019.04.029_b0270 article-title: Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems publication-title: Water, Air, Soil Pollut. doi: 10.1023/A:1021304828010 – volume: 54 start-page: 14372 year: 2015 ident: 10.1016/j.cej.2019.04.029_b0290 article-title: Direct air capture of CO2 by physisorbent materials publication-title: Angewandte Chemie – International Edition doi: 10.1002/anie.201506952 – volume: 65 start-page: 1354 year: 2009 ident: 10.1016/j.cej.2019.04.029_b0315 article-title: Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.10.005 – volume: 49 start-page: 1985 year: 2014 ident: 10.1016/j.cej.2019.04.029_b0040 article-title: Electric swing adsorption for gas separation and purification: a review publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2014.915854 – volume: 41 start-page: 268 year: 2015 ident: 10.1016/j.cej.2019.04.029_b0140 article-title: Adsorption of H2O and CO2 on supported amine sorbents publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2015.07.014 – volume: 133 start-page: 629 year: 1974 ident: 10.1016/j.cej.2019.04.029_b0210 article-title: Mathematical modeling of the monolith converter publication-title: Adv. Chem. Ser. doi: 10.1021/ba-1974-0133.ch047 – volume: 202 start-page: 259 year: 2015 ident: 10.1016/j.cej.2019.04.029_b0035 article-title: Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2014.02.045 – volume: 59 start-page: 923 year: 2012 ident: 10.1016/j.cej.2019.04.029_b0230 article-title: Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica publication-title: Am. Inst. Chem. Eng. doi: 10.1002/aic.13870 – volume: 53 start-page: 11677 year: 2014 ident: 10.1016/j.cej.2019.04.029_b0235 article-title: Kinetics studies of CO2 adsorption/desorption on amine-functionalized multiwalled carbon nanotubes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie502009n – volume: 117 start-page: 15131 year: 2013 ident: 10.1016/j.cej.2019.04.029_b0120 article-title: Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (silms): influence of the cation charge of the ionic liquid publication-title: J. Phys. Chem. B doi: 10.1021/jp409414t – volume: 298 start-page: 523 year: 2006 ident: 10.1016/j.cej.2019.04.029_b0090 article-title: A novel process for CO2/CH4 gas separation on activated carbon fibers – electric swing adsorption publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.12.052 – volume: 62 start-page: 29 year: 2003 ident: 10.1016/j.cej.2019.04.029_b0195 article-title: Preparation and characterization of novel CO2 molecular basket adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(03)00388-3 – volume: 1 start-page: 1219 issue: 1 year: 2009 ident: 10.1016/j.cej.2019.04.029_b0325 article-title: Electric swing adsorption as emerging CO2 capture technique publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.01.160 – volume: 5 start-page: 7664 year: 2012 ident: 10.1016/j.cej.2019.04.029_b0145 article-title: Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21153j – volume: 2 start-page: 796 year: 2009 ident: 10.1016/j.cej.2019.04.029_b0155 article-title: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources publication-title: ChemSusChem doi: 10.1002/cssc.200900036 – volume: 6 start-page: 43401 year: 2016 ident: 10.1016/j.cej.2019.04.029_b0115 article-title: Electrical current stimulated desorption of carbon dioxide adsorbed on graphene based structures publication-title: RSC Adv. doi: 10.1039/C6RA01792D – volume: 59 start-page: 923 year: 2013 ident: 10.1016/j.cej.2019.04.029_b0260 article-title: Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica publication-title: AIChE J. doi: 10.1002/aic.13870 – volume: 57U year: 1907 ident: 10.1016/j.cej.2019.04.029_b0265 article-title: Über die adsorption in Lösungen publication-title: Zeitschrift für Physikalische Chemie doi: 10.1515/zpch-1907-5723 – volume: 12 start-page: 745 year: 2012 ident: 10.1016/j.cej.2019.04.029_b0080 article-title: A review of CO2 capture by absorption and adsorption publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2012.05.0132 – volume: 46 start-page: 446 year: 2007 ident: 10.1016/j.cej.2019.04.029_b0150 article-title: Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060774+ – ident: 10.1016/j.cej.2019.04.029_b0285 – volume: 104 start-page: 304 year: 2013 ident: 10.1016/j.cej.2019.04.029_b0330 article-title: Activated carbon honeycomb monolith – zeolite 13× hybrid system to capture CO2 from flue gases employing electric swing adsorption publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.09.011 – volume: 38 start-page: 2221 year: 1916 ident: 10.1016/j.cej.2019.04.029_b0300 article-title: The constitution and fundamental properties of solids and liquids. Part I. Solids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02268a002 – volume: 130 start-page: 242 year: 2004 ident: 10.1016/j.cej.2019.04.029_b0095 article-title: Electrothermal desorption using joule effect on an activated carbon monolith publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(2004)130:3(242) – volume: 34 start-page: 579 year: 2007 ident: 10.1016/j.cej.2019.04.029_b0055 article-title: Internal heat source capacity at inductive heating in desorption step of ETSA process publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2007.02.006 – volume: 50 start-page: 5634 year: 2011 ident: 10.1016/j.cej.2019.04.029_b0240 article-title: Suitability of a solid amine sorbent for CO2 capture by pressure swing adsorption publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2000709 |
SSID | ssj0006919 |
Score | 2.4728072 |
Snippet | [Display omitted]
•Preparing two different highly absorptive hollow fibers with Joule heating properties.•Proof-of-concept module yields promising CO2... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107 |
SubjectTerms | CO2 capture Electrical swing adsorption Heatable hollow fiber PEI Zeolite |
Title | Electrical swing adsorption on functionalized hollow fibers |
URI | https://dx.doi.org/10.1016/j.cej.2019.04.029 |
Volume | 371 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-yh48CWt33ewjeCqlpVrsQS32FvKEltKWtlLw4G93JrurFdSDsLBsSGD5knwzSb7MEHIpwKdPY2P8wBgLCxSmfRYo4TMZigj4D0we7kM-9JPugN4P42GFtMq7MCirLLg_53TH1kVJo0CzMR-NGk8hnmkxIFcWgdvj7pFTmuIov37_knkkzCX3wMo-1i5PNp3GS5kxqruYi3bqvMwfbNOGvenskd3CUfSa-b_sk4qZHpCdjfCBh-S27XLYIMzecg1FntDL2cKRgAcP2qx8q2_0ZrQHPDeZrT2LGpHlERl02s-trl8kQ_AVTLOVb22UWB3YQIPdweNKlcSCWsm0UDQzKhQskFnKrIRpqSJcyCkdUiUzE6FTEB2T6nQ2NSfEY9AjTGrNbEypUSJLbCxToBsdi0TcpDUSlDBwVUQKx4QVE15KwsYckOOIHA8oB-Rq5OqzyTwPk_FXZVpiy7_1NQca_73Z6f-anZFt_Mp1Yeekulq8mgtwJFay7kZKnWw173rdPr57jy-9D2A4yOg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HNSD-MT63INehNik2SRdxIOopWrrxRZ6W_cJLaUVWyl68E_5B53NwweoB0HIaZMNm2-Hb2Z3v8wA7AuM6ZPIGM83xuIChWmP-Up4TAYiRP5Dl-f2IZs3cb1NrzpRZwpei39hnKwy5_6M01O2zlvKOZrl-263fBu4My2G5MpCDHuSIFdWXpunCa7bRieX5zjJB5VK7aJ1Vvfy0gKeQqMde9aGsdW-9TWyuDv8U3EkqJVMC0WrRgWC-bKaMCvRyFXolkVKB1TJqgmdiw3xvdMwS5EuXNmEo5cPXUnM0moibnSeG15xlJqKypTpOTkZS9OrpmHtN87wk4OrLcFiHpmS0-zjl2HKDFZg4VO-wlU4vkiL5rh5JaMJNhGhR8OHlHUIXs5JZnuL3WejCRJrfzgh1olSRmvQ_heI1mFmMByYDSAMTYBJrZmNKDVKVGMbyQT5TUciFpWkBH4BA1d5anJXIaPPCw1ajyNy3CHHfcoRuRIcvne5z_Jy_PYwLbDlX4yLo9_4udvm37rtwVy91WzwxuXN9RbMuzuZKG0bZsYPj2YHo5ix3E2thsDdf5vpG8fuAtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+swing+adsorption+on+functionalized+hollow+fibers&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Keller%2C+Laura&rft.au=Lohaus%2C+Theresa&rft.au=Abduly%2C+Lorenz&rft.au=Hadler%2C+Greta&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=371&rft.spage=107&rft.epage=117&rft_id=info:doi/10.1016%2Fj.cej.2019.04.029&rft.externalDocID=S1385894719308071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |