Single-Cell RNA Sequencing Analysis Reveals Sequential Cell Fate Transition during Human Spermatogenesis
Spermatogenesis generates mature male gametes and is critical for the proper transmission of genetic information between generations. However, the developmental landscapes of human spermatogenesis remain unknown. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis for 2,854 testicular...
Saved in:
Published in | Cell stem cell Vol. 23; no. 4; pp. 599 - 614.e4 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spermatogenesis generates mature male gametes and is critical for the proper transmission of genetic information between generations. However, the developmental landscapes of human spermatogenesis remain unknown. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis for 2,854 testicular cells from donors with normal spermatogenesis and 174 testicular cells from one nonobstructive azoospermia (NOA) donor. A hierarchical model was established, which was characterized by the sequential and stepwise development of three spermatogonia subtypes, seven spermatocyte subtypes, and four spermatid subtypes. Further analysis identified several stage-specific marker genes of human germ cells, such as HMGA1, PIWIL4, TEX29, SCML1, and CCDC112. Moreover, we identified altered gene expression patterns in the testicular somatic cells of one NOA patient via scRNA-seq analysis, paving the way for further diagnosis of male infertility. Our work allows for the reconstruction of transcriptional programs inherent to sequential cell fate transition during human spermatogenesis and has implications for deciphering male-related reproductive disorders.
[Display omitted]
•High-quality single-cell RNA-seq of human testicular cells reveals 17 cell clusters•Key signature genes and developmental trajectory of male germ cells were revealed•FGF and BMP pathways may play important roles for human spermatogonial stem cells•Single-cell RNA-seq analysis revealed molecular basis of the defects of a NOA patient
Single-cell RNA sequencing of 2,854 testicular cells reveals critical biological features of the sequential and stepwise development of spermatogonia, spermatocytes, and spermatids during human spermatogenesis. Moreover, altered transcriptional patterns were identified in a NOA patient, supporting the value of scRNA-seq for diagnosis and dissecting the underlying mechanisms of male infertility. |
---|---|
AbstractList | Spermatogenesis generates mature male gametes and is critical for the proper transmission of genetic information between generations. However, the developmental landscapes of human spermatogenesis remain unknown. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis for 2,854 testicular cells from donors with normal spermatogenesis and 174 testicular cells from one nonobstructive azoospermia (NOA) donor. A hierarchical model was established, which was characterized by the sequential and stepwise development of three spermatogonia subtypes, seven spermatocyte subtypes, and four spermatid subtypes. Further analysis identified several stage-specific marker genes of human germ cells, such as HMGA1, PIWIL4, TEX29, SCML1, and CCDC112. Moreover, we identified altered gene expression patterns in the testicular somatic cells of one NOA patient via scRNA-seq analysis, paving the way for further diagnosis of male infertility. Our work allows for the reconstruction of transcriptional programs inherent to sequential cell fate transition during human spermatogenesis and has implications for deciphering male-related reproductive disorders.
[Display omitted]
•High-quality single-cell RNA-seq of human testicular cells reveals 17 cell clusters•Key signature genes and developmental trajectory of male germ cells were revealed•FGF and BMP pathways may play important roles for human spermatogonial stem cells•Single-cell RNA-seq analysis revealed molecular basis of the defects of a NOA patient
Single-cell RNA sequencing of 2,854 testicular cells reveals critical biological features of the sequential and stepwise development of spermatogonia, spermatocytes, and spermatids during human spermatogenesis. Moreover, altered transcriptional patterns were identified in a NOA patient, supporting the value of scRNA-seq for diagnosis and dissecting the underlying mechanisms of male infertility. Spermatogenesis generates mature male gametes and is critical for the proper transmission of genetic information between generations. However, the developmental landscapes of human spermatogenesis remain unknown. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis for 2,854 testicular cells from donors with normal spermatogenesis and 174 testicular cells from one nonobstructive azoospermia (NOA) donor. A hierarchical model was established, which was characterized by the sequential and stepwise development of three spermatogonia subtypes, seven spermatocyte subtypes, and four spermatid subtypes. Further analysis identified several stage-specific marker genes of human germ cells, such as HMGA1, PIWIL4, TEX29, SCML1, and CCDC112. Moreover, we identified altered gene expression patterns in the testicular somatic cells of one NOA patient via scRNA-seq analysis, paving the way for further diagnosis of male infertility. Our work allows for the reconstruction of transcriptional programs inherent to sequential cell fate transition during human spermatogenesis and has implications for deciphering male-related reproductive disorders. Spermatogenesis generates mature male gametes and is critical for the proper transmission of genetic information between generations. However, the developmental landscapes of human spermatogenesis remain unknown. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis for 2,854 testicular cells from donors with normal spermatogenesis and 174 testicular cells from one nonobstructive azoospermia (NOA) donor. A hierarchical model was established, which was characterized by the sequential and stepwise development of three spermatogonia subtypes, seven spermatocyte subtypes, and four spermatid subtypes. Further analysis identified several stage-specific marker genes of human germ cells, such as HMGA1, PIWIL4, TEX29, SCML1, and CCDC112. Moreover, we identified altered gene expression patterns in the testicular somatic cells of one NOA patient via scRNA-seq analysis, paving the way for further diagnosis of male infertility. Our work allows for the reconstruction of transcriptional programs inherent to sequential cell fate transition during human spermatogenesis and has implications for deciphering male-related reproductive disorders.Spermatogenesis generates mature male gametes and is critical for the proper transmission of genetic information between generations. However, the developmental landscapes of human spermatogenesis remain unknown. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis for 2,854 testicular cells from donors with normal spermatogenesis and 174 testicular cells from one nonobstructive azoospermia (NOA) donor. A hierarchical model was established, which was characterized by the sequential and stepwise development of three spermatogonia subtypes, seven spermatocyte subtypes, and four spermatid subtypes. Further analysis identified several stage-specific marker genes of human germ cells, such as HMGA1, PIWIL4, TEX29, SCML1, and CCDC112. Moreover, we identified altered gene expression patterns in the testicular somatic cells of one NOA patient via scRNA-seq analysis, paving the way for further diagnosis of male infertility. Our work allows for the reconstruction of transcriptional programs inherent to sequential cell fate transition during human spermatogenesis and has implications for deciphering male-related reproductive disorders. |
Author | Xu, Yanwen Bian, Shuhui Lian, Ying Liu, Xixi Yan, Liying Chen, Yuhan Hu, Boqiang Chen, Yidong Zhu, Xiaohui Ren, Xiulian Liu, Zhaoting Lu, Jiahao Cui, Yueli Wang, Luyu Gao, Shuai Yao, Zhaokai Tang, Fuchou Chang, Gang Zhao, Lianming Qiao, Jie Fan, Xiaoying Song, Ke An, Geng Tang, Wenhao Zhao, Xiao-Yang Fan, Yong Wang, Yapeng Dong, Ji Wang, Rui Hou, Yu Hu, Yuqiong Yuan, Renpei Wang, Mei Liu, Jianqiao Gao, Yun Shi, Yujia |
Author_xml | – sequence: 1 givenname: Mei surname: Wang fullname: Wang, Mei organization: Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PRC – sequence: 2 givenname: Xixi surname: Liu fullname: Liu, Xixi organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 3 givenname: Gang surname: Chang fullname: Chang, Gang organization: Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, PRC – sequence: 4 givenname: Yidong surname: Chen fullname: Chen, Yidong organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 5 givenname: Geng surname: An fullname: An, Geng organization: Reproductive Medicine Center of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, PRC – sequence: 6 givenname: Liying surname: Yan fullname: Yan, Liying organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 7 givenname: Shuai surname: Gao fullname: Gao, Shuai organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 8 givenname: Yanwen surname: Xu fullname: Xu, Yanwen organization: Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PRC – sequence: 9 givenname: Yueli surname: Cui fullname: Cui, Yueli organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 10 givenname: Ji surname: Dong fullname: Dong, Ji organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 11 givenname: Yuhan surname: Chen fullname: Chen, Yuhan organization: Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PRC – sequence: 12 givenname: Xiaoying surname: Fan fullname: Fan, Xiaoying organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 13 givenname: Yuqiong surname: Hu fullname: Hu, Yuqiong organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 14 givenname: Ke surname: Song fullname: Song, Ke organization: Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PRC – sequence: 15 givenname: Xiaohui surname: Zhu fullname: Zhu, Xiaohui organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 16 givenname: Yun surname: Gao fullname: Gao, Yun organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 17 givenname: Zhaokai surname: Yao fullname: Yao, Zhaokai organization: Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PRC – sequence: 18 givenname: Shuhui surname: Bian fullname: Bian, Shuhui organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 19 givenname: Yu surname: Hou fullname: Hou, Yu organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 20 givenname: Jiahao surname: Lu fullname: Lu, Jiahao organization: Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PRC – sequence: 21 givenname: Rui surname: Wang fullname: Wang, Rui organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 22 givenname: Yong surname: Fan fullname: Fan, Yong organization: Reproductive Medicine Center of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, PRC – sequence: 23 givenname: Ying surname: Lian fullname: Lian, Ying organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 24 givenname: Wenhao surname: Tang fullname: Tang, Wenhao organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 25 givenname: Yapeng surname: Wang fullname: Wang, Yapeng organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 26 givenname: Jianqiao surname: Liu fullname: Liu, Jianqiao organization: Reproductive Medicine Center of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, PRC – sequence: 27 givenname: Lianming surname: Zhao fullname: Zhao, Lianming organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 28 givenname: Luyu surname: Wang fullname: Wang, Luyu organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 29 givenname: Zhaoting surname: Liu fullname: Liu, Zhaoting organization: Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PRC – sequence: 30 givenname: Renpei surname: Yuan fullname: Yuan, Renpei organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 31 givenname: Yujia surname: Shi fullname: Shi, Yujia organization: Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PRC – sequence: 32 givenname: Boqiang surname: Hu fullname: Hu, Boqiang organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 33 givenname: Xiulian surname: Ren fullname: Ren, Xiulian organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 34 givenname: Fuchou surname: Tang fullname: Tang, Fuchou email: tangfuchou@pku.edu.cn organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC – sequence: 35 givenname: Xiao-Yang orcidid: 0000-0003-2544-8293 surname: Zhao fullname: Zhao, Xiao-Yang email: zhaoxiaoyang@smu.edu.cn organization: Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PRC – sequence: 36 givenname: Jie surname: Qiao fullname: Qiao, Jie email: jie.qiao@263.net organization: Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, PRC |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30174296$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAUhYMovv-AC-nSTcfbNmkacDMMvkAUHF2HNL3VDG06Jqngvzd1xo0L4ZKE5HyHm3uOyK4dLBJylsEsg6y8XM18wH6WQ1bNIBbwHXKYVZylgnO-G8-ioCkTIA7IkfcrAMYz4PvkoICM01yUh-R9aexbh-kCuy55fpwnS_wY0ep4m8yt6r688ckzfqLq_PYtGNUlP_obFTB5ccp6E8xgk2Z0E3c39somyzW6XoXhDS1GkxOy10YPPN3ux-T15vplcZc-PN3eL-YPqaYAIW2FElXZVkLlJa0ptLSuea65RtQ0LoKCKFnVFojYAtdN2QArq4LVDJuWFcUxudj4rt0Qu_VB9sbr2K2yOIxe5iAE0LwsWJSeb6Vj3WMj1870yn3J3-lEQbURaDd477CV2gQ1fTU4ZTqZgZyCkCs5BSGnICTEAh7R_A_66_4vdLWBMA7o06CTXpsYBjbGoQ6yGcx_-DfIT6Mx |
CitedBy_id | crossref_primary_10_3390_ijms24097982 crossref_primary_10_1016_j_devcel_2022_03_006 crossref_primary_10_1080_19396368_2023_2241600 crossref_primary_10_3389_fendo_2025_1539063 crossref_primary_10_1016_j_biopha_2023_115231 crossref_primary_10_7554_eLife_72374 crossref_primary_10_1266_ggs_21_00065 crossref_primary_10_1111_cpr_13347 crossref_primary_10_1126_sciadv_abm3976 crossref_primary_10_18632_aging_202559 crossref_primary_10_3390_ijms22041998 crossref_primary_10_1093_molehr_gaac002 crossref_primary_10_1016_j_molcel_2019_08_025 crossref_primary_10_3390_ijms22031151 crossref_primary_10_1016_j_theriogenology_2023_12_015 crossref_primary_10_1093_humrep_dez063 crossref_primary_10_1016_j_androl_2021_04_002 crossref_primary_10_1016_j_isci_2022_105733 crossref_primary_10_1093_molehr_gaac009 crossref_primary_10_1186_s13048_024_01510_4 crossref_primary_10_3390_ijms21186614 crossref_primary_10_1007_s11427_021_2236_4 crossref_primary_10_1016_j_celrep_2021_109418 crossref_primary_10_1093_abbs_gmab148 crossref_primary_10_1089_genbio_2022_0014 crossref_primary_10_1093_molehr_gaab020 crossref_primary_10_3389_ftox_2022_821116 crossref_primary_10_1111_and_13814 crossref_primary_10_1093_humrep_dead243 crossref_primary_10_1002_rmb2_12502 crossref_primary_10_1111_are_15882 crossref_primary_10_1093_hropen_hoaa016 crossref_primary_10_1016_j_fertnstert_2022_10_032 crossref_primary_10_1038_s41422_018_0099_2 crossref_primary_10_1093_bib_bbab366 crossref_primary_10_1093_bioinformatics_btad596 crossref_primary_10_1002_advs_202400692 crossref_primary_10_3389_fonc_2022_871489 crossref_primary_10_26508_lsa_202201633 crossref_primary_10_1096_fj_202200152R crossref_primary_10_1590_1984_3143_ar2022_0004 crossref_primary_10_1016_j_ceb_2020_07_005 crossref_primary_10_1038_s41419_019_1398_3 crossref_primary_10_3389_fcell_2021_637779 crossref_primary_10_1002_jcp_29954 crossref_primary_10_1038_s41392_022_01197_3 crossref_primary_10_1038_s41467_019_09182_1 crossref_primary_10_1016_j_intimp_2025_114407 crossref_primary_10_1038_s41467_021_27132_8 crossref_primary_10_1371_journal_pgen_1011081 crossref_primary_10_1093_molehr_gaz017 crossref_primary_10_1093_molbev_msae003 crossref_primary_10_1016_j_ijbiomac_2024_131811 crossref_primary_10_1038_s42003_024_07055_y crossref_primary_10_1093_humupd_dmaa003 crossref_primary_10_3389_fcell_2021_736864 crossref_primary_10_1016_j_gendis_2020_09_004 crossref_primary_10_1056_NEJMoa2028973 crossref_primary_10_1111_1749_4877_12849 crossref_primary_10_1111_andr_13408 crossref_primary_10_1128_JVI_01145_20 crossref_primary_10_1360_TB_2023_1188 crossref_primary_10_1038_s41422_021_00592_9 crossref_primary_10_1186_s13578_019_0314_y crossref_primary_10_1093_molehr_gaaa033 crossref_primary_10_1016_j_tjog_2023_03_015 crossref_primary_10_3389_fcell_2021_673642 crossref_primary_10_1093_humrep_dead224 crossref_primary_10_1038_s41598_024_65629_6 crossref_primary_10_3390_ijms25115935 crossref_primary_10_1073_pnas_2025421118 crossref_primary_10_1096_fj_202301674RR crossref_primary_10_1073_pnas_2000362117 crossref_primary_10_3390_cells9030745 crossref_primary_10_3390_ijms22020823 crossref_primary_10_59717_j_xinn_med_2025_100115 crossref_primary_10_1093_humupd_dmaa021 crossref_primary_10_1016_j_fertnstert_2020_01_001 crossref_primary_10_3389_fgene_2022_983668 crossref_primary_10_1111_andr_13774 crossref_primary_10_1111_cpr_13551 crossref_primary_10_3390_ijms20225773 crossref_primary_10_1016_j_gene_2022_146405 crossref_primary_10_1155_2023_3610466 crossref_primary_10_3390_cells13090742 crossref_primary_10_34133_research_0544 crossref_primary_10_1007_s00018_024_05457_z crossref_primary_10_1097_JBR_0000000000000109 crossref_primary_10_1186_s12610_022_00160_0 crossref_primary_10_1093_biolre_ioac065 crossref_primary_10_1007_s00018_024_05496_6 crossref_primary_10_1186_s12967_023_04722_2 crossref_primary_10_3389_fcell_2023_1204017 crossref_primary_10_1186_s12915_024_01950_w crossref_primary_10_3390_ijms25136925 crossref_primary_10_7554_eLife_85380_3 crossref_primary_10_3389_fcell_2022_944325 crossref_primary_10_3389_fphys_2019_01155 crossref_primary_10_1016_j_stem_2019_01_010 crossref_primary_10_1093_humupd_dmad017 crossref_primary_10_3724_abbs_2023126 crossref_primary_10_1002_advs_202206852 crossref_primary_10_3389_fendo_2019_00772 crossref_primary_10_1038_s41467_021_25544_0 crossref_primary_10_1371_journal_pgen_1011337 crossref_primary_10_3390_ijms24087617 crossref_primary_10_1016_j_cell_2019_12_015 crossref_primary_10_1007_s11154_022_09783_0 crossref_primary_10_1016_j_stem_2020_12_004 crossref_primary_10_3390_ijms23147642 crossref_primary_10_1038_s41594_020_0487_4 crossref_primary_10_1080_15592294_2020_1738026 crossref_primary_10_1093_biolre_ioz088 crossref_primary_10_1111_cts_70027 crossref_primary_10_1007_s10815_023_02892_y crossref_primary_10_1016_j_crfs_2024_100783 crossref_primary_10_3390_cells10030666 crossref_primary_10_3389_fgene_2022_1002458 crossref_primary_10_3389_fendo_2023_1133222 crossref_primary_10_3389_fbioe_2020_00781 crossref_primary_10_1002_advs_202400009 crossref_primary_10_1111_dgd_12574 crossref_primary_10_1016_j_celrep_2024_114777 crossref_primary_10_1016_j_omtn_2024_102158 crossref_primary_10_1093_nar_gkab638 crossref_primary_10_1007_s12033_021_00352_5 crossref_primary_10_1093_nar_gkab997 crossref_primary_10_1038_s41467_021_27172_0 crossref_primary_10_1007_s43032_021_00595_2 crossref_primary_10_1101_gr_264333_120 crossref_primary_10_1111_rda_14493 crossref_primary_10_15252_embr_202154298 crossref_primary_10_3390_ijms20215390 crossref_primary_10_1002_ctm2_789 crossref_primary_10_1016_j_gpb_2022_04_002 crossref_primary_10_1016_j_theriogenology_2023_03_021 crossref_primary_10_1016_j_gpb_2022_04_003 crossref_primary_10_1016_j_ygeno_2021_04_022 crossref_primary_10_1002_dvdy_744 crossref_primary_10_1186_s12864_025_11266_w crossref_primary_10_4103_aja202330 crossref_primary_10_1126_sciadv_abq3173 crossref_primary_10_7554_eLife_85380 crossref_primary_10_1093_biolre_ioad067 crossref_primary_10_3389_fendo_2024_1394812 crossref_primary_10_1093_bib_bbae619 crossref_primary_10_1016_j_scib_2021_11_013 crossref_primary_10_1038_s41556_023_01232_7 crossref_primary_10_1038_s41467_022_34990_3 crossref_primary_10_2144_btn_2020_0047 crossref_primary_10_1016_j_gene_2022_146281 crossref_primary_10_1128_spectrum_00028_22 crossref_primary_10_1002_ctm2_1463 crossref_primary_10_1038_s41467_020_19350_3 crossref_primary_10_1093_nar_gkz804 crossref_primary_10_1016_j_jia_2023_04_036 crossref_primary_10_1016_j_repbio_2024_100972 crossref_primary_10_1111_rda_70019 crossref_primary_10_3389_fvets_2022_892815 crossref_primary_10_1186_s12864_023_09583_z crossref_primary_10_1186_s12610_021_00124_w crossref_primary_10_3390_ani15010040 crossref_primary_10_1073_pnas_1919800117 crossref_primary_10_1016_j_isci_2024_109024 crossref_primary_10_1128_spectrum_01423_22 crossref_primary_10_1016_j_ecoenv_2023_114971 crossref_primary_10_3390_ijms22010057 crossref_primary_10_3390_biology11020289 crossref_primary_10_1093_humupd_dmab036 crossref_primary_10_3389_fcell_2022_824596 crossref_primary_10_1093_humupd_dmac002 crossref_primary_10_1186_s13578_023_01034_2 crossref_primary_10_3390_biom14070840 crossref_primary_10_1038_s41585_023_00837_9 crossref_primary_10_3389_fcell_2021_763267 crossref_primary_10_3390_ijms21218269 crossref_primary_10_59717_j_xinn_med_2023_100041 crossref_primary_10_1038_s41421_021_00327_5 crossref_primary_10_1080_19396368_2023_2176268 crossref_primary_10_1136_gutjnl_2020_323593 crossref_primary_10_1016_j_celrep_2024_114323 crossref_primary_10_1186_s12958_023_01079_5 crossref_primary_10_1016_j_aca_2024_342217 crossref_primary_10_3390_ani13182815 crossref_primary_10_1016_j_semcdb_2022_11_003 crossref_primary_10_1016_j_devcel_2024_01_006 crossref_primary_10_3390_nu14061293 crossref_primary_10_2139_ssrn_3611046 crossref_primary_10_1016_j_celrep_2019_01_045 crossref_primary_10_1071_RD22178 crossref_primary_10_3390_toxics11120952 crossref_primary_10_1016_j_jbc_2022_102327 crossref_primary_10_1242_dev_201430 crossref_primary_10_3389_fphys_2022_948965 crossref_primary_10_1007_s10815_020_01716_7 crossref_primary_10_1007_s11255_023_03601_5 crossref_primary_10_1146_annurev_genet_080320_040045 crossref_primary_10_1111_jog_14828 crossref_primary_10_1016_j_tig_2019_08_005 crossref_primary_10_1007_s11427_019_1572_7 crossref_primary_10_1146_annurev_genom_120121_114415 crossref_primary_10_1093_nar_gkae825 crossref_primary_10_1038_s41467_023_38199_w crossref_primary_10_1007_s11010_023_04840_x crossref_primary_10_1101_gr_238733_118 crossref_primary_10_3390_ijms24054755 crossref_primary_10_1186_s13148_021_01144_z crossref_primary_10_1016_j_anireprosci_2023_107306 crossref_primary_10_1093_bioinformatics_btac673 crossref_primary_10_7554_eLife_48767 crossref_primary_10_1080_19396368_2021_1922537 crossref_primary_10_3389_fvets_2022_971515 crossref_primary_10_1016_j_stem_2019_12_005 crossref_primary_10_1111_andr_12710 crossref_primary_10_1016_j_ajhg_2019_04_015 crossref_primary_10_3389_fcell_2021_755670 crossref_primary_10_4103_aja202254 crossref_primary_10_1038_s41586_020_2157_4 crossref_primary_10_1111_rda_13920 crossref_primary_10_1038_s41594_020_0488_3 crossref_primary_10_1016_j_csbj_2022_03_040 crossref_primary_10_1093_pnasnexus_pgac060 crossref_primary_10_1016_j_ijbiomac_2023_126831 crossref_primary_10_1016_j_isci_2023_107354 crossref_primary_10_1007_s00018_019_03022_7 crossref_primary_10_3389_abp_2025_13922 crossref_primary_10_3390_jcm9010224 crossref_primary_10_1093_biolre_ioac109 crossref_primary_10_1016_j_stemcr_2025_102449 crossref_primary_10_1038_s41586_022_05508_0 crossref_primary_10_1136_gutjnl_2020_320992 crossref_primary_10_15212_CVIA_2023_0023 crossref_primary_10_1136_gutjnl_2020_323347 crossref_primary_10_3390_cells11101711 crossref_primary_10_1016_j_gpb_2021_08_010 crossref_primary_10_1111_rda_14203 crossref_primary_10_1016_j_jare_2022_12_007 crossref_primary_10_3389_fendo_2022_825904 crossref_primary_10_3390_cells11244064 crossref_primary_10_1016_j_stemcr_2022_02_017 crossref_primary_10_1371_journal_pbio_3001618 crossref_primary_10_3389_fmicb_2022_1020628 crossref_primary_10_1016_j_scib_2021_03_004 crossref_primary_10_1093_molehr_gaac042 crossref_primary_10_1007_s11248_020_00225_8 crossref_primary_10_1371_journal_pgen_1009773 crossref_primary_10_1038_s41419_021_03755_z crossref_primary_10_3389_fimmu_2023_1114870 crossref_primary_10_1093_nar_gkae1013 crossref_primary_10_1038_s41467_020_19414_4 crossref_primary_10_1093_gpbjnl_qzad004 crossref_primary_10_1111_rda_14753 crossref_primary_10_1016_j_devcel_2024_04_002 crossref_primary_10_3389_fgene_2022_988047 crossref_primary_10_1016_j_ijbiomac_2023_127942 crossref_primary_10_1093_biolre_ioae109 crossref_primary_10_2139_ssrn_3348346 crossref_primary_10_1242_dev_183251 crossref_primary_10_1093_abbs_gmz056 crossref_primary_10_1007_s00439_020_02116_8 crossref_primary_10_3389_fphar_2021_593953 crossref_primary_10_1002_path_6343 crossref_primary_10_1242_dev_202046 crossref_primary_10_1093_pnasnexus_pgae419 crossref_primary_10_1016_j_ajhg_2022_09_002 crossref_primary_10_1093_humrep_deac245 crossref_primary_10_1242_dev_202608 crossref_primary_10_1016_j_tice_2019_04_003 crossref_primary_10_1097_MOU_0000000000001252 crossref_primary_10_1111_cpr_13098 crossref_primary_10_1093_biolre_ioac134 crossref_primary_10_1093_biolre_ioab168 crossref_primary_10_1111_aji_13892 crossref_primary_10_1016_j_reprotox_2023_108340 crossref_primary_10_1016_j_canlet_2023_216225 crossref_primary_10_1111_and_14295 crossref_primary_10_1093_molehr_gaae002 crossref_primary_10_3389_fnut_2021_802352 crossref_primary_10_1007_s12015_023_10598_y crossref_primary_10_1007_s00441_021_03550_4 crossref_primary_10_1016_j_celrep_2021_109915 crossref_primary_10_1080_15384101_2021_1889187 crossref_primary_10_1080_19396368_2020_1855271 crossref_primary_10_3389_fcell_2021_626020 crossref_primary_10_1016_j_devcel_2024_10_013 crossref_primary_10_3389_fcell_2023_1258574 crossref_primary_10_1016_j_molcel_2018_11_019 crossref_primary_10_7554_eLife_75624 crossref_primary_10_1038_s42003_024_07163_9 crossref_primary_10_1007_s44337_025_00199_8 crossref_primary_10_1016_j_xfss_2024_02_002 crossref_primary_10_1038_s41598_021_98267_3 crossref_primary_10_1038_s41422_025_01080_0 crossref_primary_10_1111_cpr_13755 crossref_primary_10_1016_j_ijbiomac_2024_136062 crossref_primary_10_1016_j_biopha_2021_112449 crossref_primary_10_1093_bioinformatics_btab036 crossref_primary_10_1159_000518272 crossref_primary_10_1111_jcmm_15541 crossref_primary_10_1016_j_mce_2022_111815 crossref_primary_10_1002_adma_202210458 crossref_primary_10_1242_dev_169854 crossref_primary_10_1093_humupd_dmz006 crossref_primary_10_1242_dev_199922 crossref_primary_10_1007_s11427_020_1705_0 crossref_primary_10_1038_s41421_021_00260_7 crossref_primary_10_3390_biom14101290 crossref_primary_10_1093_gpbjnl_qzae005 crossref_primary_10_1016_j_xcrm_2021_100395 crossref_primary_10_1111_andr_13298 crossref_primary_10_1002_1878_0261_12900 |
Cites_doi | 10.1016/j.semcdb.2016.03.002 10.1093/bioinformatics/btu638 10.15252/embj.201695895 10.1073/pnas.0701669104 10.1242/dev.113.3.779 10.1016/j.semcdb.2016.02.025 10.1023/A:1014565320998 10.1073/pnas.1505683112 10.1038/nrg2723 10.1007/s00439-003-0974-9 10.1038/nprot.2013.047 10.1016/j.stem.2016.01.017 10.1101/gad.329705 10.1016/j.stem.2017.03.007 10.1093/humrep/deu124 10.1002/(SICI)1097-0177(200003)217:3<293::AID-DVDY7>3.0.CO;2-P 10.1016/j.cell.2017.04.034 10.1093/molehr/gaq099 10.1242/dev.146928 10.1093/bioinformatics/btw216 10.1038/nbt.3192 10.1016/j.stem.2017.09.003 10.1007/s00418-012-0991-7 10.1095/biolreprod.111.096610 10.1530/REP-11-0385 10.1371/journal.pgen.1006904 10.1038/nature20104 10.1210/en.2014-1406 10.1016/j.cub.2006.01.066 10.1093/bioinformatics/btp120 10.1016/j.devcel.2010.09.010 10.1074/jbc.M101760200 10.1159/000381080 10.1111/and.12599 10.1146/annurev.cellbio.13.1.261 10.1016/j.jri.2013.01.001 10.1530/REP-11-0290 10.1242/dev.113.2.689 10.1046/j.1365-2443.2001.00484.x 10.1007/978-1-61779-436-0_4 10.1038/nbt.2859 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.stem.2018.08.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 614.e4 |
ExternalDocumentID | 30174296 10_1016_j_stem_2018_08_007 S1934590918303928 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 WQ6 ZA5 ZBA 5VS AAEDT AAIKJ AAMRU AAQFI AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT NPM 7X8 |
ID | FETCH-LOGICAL-c400t-f9a986f89a264b40f4bb72c7ceec4cee9409658f3eeef07cd6d056835b5edf533 |
IEDL.DBID | IXB |
ISSN | 1934-5909 1875-9777 |
IngestDate | Fri Jul 11 06:33:12 EDT 2025 Thu Apr 03 07:26:20 EDT 2025 Tue Jul 01 01:08:30 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Fri Feb 23 02:30:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | single-cell RNA sequencing human spermatogenesis |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-f9a986f89a264b40f4bb72c7ceec4cee9409658f3eeef07cd6d056835b5edf533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2544-8293 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1934590918303928 |
PMID | 30174296 |
PQID | 2099042635 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2099042635 pubmed_primary_30174296 crossref_citationtrail_10_1016_j_stem_2018_08_007 crossref_primary_10_1016_j_stem_2018_08_007 elsevier_sciencedirect_doi_10_1016_j_stem_2018_08_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-04 |
PublicationDateYYYYMMDD | 2018-10-04 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Crichton, Playfoot, MacLennan, Read, Cooke, Adams (bib5) 2017; 13 Sadek, Damdimopoulos, Pelto-Huikko, Gustafsson, Spyrou, Miranda-Vizuete (bib29) 2001; 6 von Kopylow, Staege, Spiess, Schulze, Will, Primig, Kirchhoff (bib36) 2012; 143 Lachmann, Giorgi, Lopez, Califano (bib20) 2016; 32 Namekawa, Park, Zhang, Shima, McCarrey, Griswold, Lee (bib26) 2006; 16 Yoshinaga, Nishikawa, Ogawa, Hayashi, Kunisada, Fujimoto, Nishikawa (bib40) 1991; 113 Zhou, Wang, Yuan, Wang, Fu, Wan, Xie, Liu, Guo, Zheng (bib42) 2016; 18 Zheng, Stratton, Morozumi, Jin, Yanagimachi, Yan (bib41) 2007; 104 Handel, Schimenti (bib16) 2010; 11 von Kopylow, Staege, Schulze, Will, Kirchhoff (bib35) 2012; 138 Frohnert, Schweizer, Hoyer-Fender (bib11) 2011; 17 Miranda-Vizuete, Ljung, Damdimopoulos, Gustafsson, Oko, Pelto-Huikko, Spyrou (bib24) 2001; 276 Grasso, Fuso, Dovere, de Rooij, Stefanini, Boitani, Vicini (bib13) 2012; 143 Yang, Xia, Gu, Yuan, Chen, Yang, Ying, Xie, Mao (bib39) 2002; 40 Griswold, Hogarth, Bowles, Koopman (bib14) 2012; 86 Escalier, Gallo, Albert, Meduri, Bermudez, David, Schrevel (bib9) 1991; 113 Fraune, Alsheimer, Redolfi, Brochier-Armanet, Benavente (bib10) 2014; 144 Argunhan, Leung, Afshar, Terentyev, Subramanian, Murayama, Hochwagen, Iwasaki, Tsubouchi, Tsubouchi (bib2) 2017; 36 de Vries, de Boer, van den Bosch, Baarends, Ooms, Yuan, Liu, van Zeeland, Heyting, Pastink (bib7) 2005; 19 Hikabe, Hamazaki, Nagamatsu, Obata, Hirao, Hamada, Shimamoto, Imamura, Nakashima, Saitou, Hayashi (bib19) 2016; 539 Lottrup, Nielsen, Maroun, Møller, Yassin, Leffers, Skakkebæk, Rajpert-De Meyts (bib22) 2014; 29 Winnall, Hedger (bib37) 2013; 97 Robert, Vrielynck, Mézard, de Massy, Grelon (bib28) 2016; 54 Schlegel (bib31) 2009; 61 Taniguchi, Katano, Nishida, Yao, Morimoto, Matsuda, Ito (bib32) 2017; 49 de Santa Barbara, Moniot, Poulat, Berta (bib6) 2000; 217 Guo, Grow, Yi, Mlcochova, Maher, Lindskog, Murphy, Wike, Carrell, Goriely (bib15) 2017; 21 Matson, Murphy, Griswold, Yoshida, Bardwell, Zarkower (bib23) 2010; 19 Trapnell, Cacchiarelli, Grimsby, Pokharel, Li, Morse, Lennon, Livak, Mikkelsen, Rinn (bib33) 2014; 32 Anders, Pyl, Huber (bib1) 2015; 31 Helsel, Yang, Oatley, Lord, Sablitzky, Oatley (bib18) 2017; 144 Olesen, Silber, Eiberg, Ernst, Petersen, Lindenberg, Tommerup (bib27) 2003; 113 Endo, Romer, Anderson, Baltus, de Rooij, Page (bib8) 2015; 112 Gou, Kang, Dai, Wang, Li, Zhao, Zhang, Hua, Lu, Zhu (bib12) 2017; 169 Li, Dong, Yan, Yong, Liu, Hu, Fan, Wu, Guo, Wang (bib21) 2017; 20 Trapnell, Pachter, Salzberg (bib34) 2009; 25 Morgan (bib25) 1997; 13 Boitani, Di Persio, Esposito, Vicini (bib3) 2016; 59 Chen, Brown, Willis, Eddy (bib4) 2014; 155 He, Kokkinaki, Jiang, Zeng, Dobrinski, Dym (bib17) 2012; 825 Woods, Tilly (bib38) 2013; 8 Satija, Farrell, Gennert, Schier, Regev (bib30) 2015; 33 Crichton (10.1016/j.stem.2018.08.007_bib5) 2017; 13 Robert (10.1016/j.stem.2018.08.007_bib28) 2016; 54 Zhou (10.1016/j.stem.2018.08.007_bib42) 2016; 18 Woods (10.1016/j.stem.2018.08.007_bib38) 2013; 8 Lottrup (10.1016/j.stem.2018.08.007_bib22) 2014; 29 Yang (10.1016/j.stem.2018.08.007_bib39) 2002; 40 de Santa Barbara (10.1016/j.stem.2018.08.007_bib6) 2000; 217 Fraune (10.1016/j.stem.2018.08.007_bib10) 2014; 144 Li (10.1016/j.stem.2018.08.007_bib21) 2017; 20 Escalier (10.1016/j.stem.2018.08.007_bib9) 1991; 113 Frohnert (10.1016/j.stem.2018.08.007_bib11) 2011; 17 Anders (10.1016/j.stem.2018.08.007_bib1) 2015; 31 von Kopylow (10.1016/j.stem.2018.08.007_bib35) 2012; 138 Gou (10.1016/j.stem.2018.08.007_bib12) 2017; 169 Satija (10.1016/j.stem.2018.08.007_bib30) 2015; 33 Boitani (10.1016/j.stem.2018.08.007_bib3) 2016; 59 Grasso (10.1016/j.stem.2018.08.007_bib13) 2012; 143 Namekawa (10.1016/j.stem.2018.08.007_bib26) 2006; 16 Chen (10.1016/j.stem.2018.08.007_bib4) 2014; 155 Handel (10.1016/j.stem.2018.08.007_bib16) 2010; 11 Helsel (10.1016/j.stem.2018.08.007_bib18) 2017; 144 Argunhan (10.1016/j.stem.2018.08.007_bib2) 2017; 36 Lachmann (10.1016/j.stem.2018.08.007_bib20) 2016; 32 Hikabe (10.1016/j.stem.2018.08.007_bib19) 2016; 539 He (10.1016/j.stem.2018.08.007_bib17) 2012; 825 Taniguchi (10.1016/j.stem.2018.08.007_bib32) 2017; 49 Yoshinaga (10.1016/j.stem.2018.08.007_bib40) 1991; 113 Schlegel (10.1016/j.stem.2018.08.007_bib31) 2009; 61 Griswold (10.1016/j.stem.2018.08.007_bib14) 2012; 86 de Vries (10.1016/j.stem.2018.08.007_bib7) 2005; 19 Olesen (10.1016/j.stem.2018.08.007_bib27) 2003; 113 Guo (10.1016/j.stem.2018.08.007_bib15) 2017; 21 Morgan (10.1016/j.stem.2018.08.007_bib25) 1997; 13 Sadek (10.1016/j.stem.2018.08.007_bib29) 2001; 6 Matson (10.1016/j.stem.2018.08.007_bib23) 2010; 19 Winnall (10.1016/j.stem.2018.08.007_bib37) 2013; 97 Endo (10.1016/j.stem.2018.08.007_bib8) 2015; 112 Miranda-Vizuete (10.1016/j.stem.2018.08.007_bib24) 2001; 276 Zheng (10.1016/j.stem.2018.08.007_bib41) 2007; 104 Trapnell (10.1016/j.stem.2018.08.007_bib33) 2014; 32 von Kopylow (10.1016/j.stem.2018.08.007_bib36) 2012; 143 Trapnell (10.1016/j.stem.2018.08.007_bib34) 2009; 25 |
References_xml | – volume: 143 start-page: 325 year: 2012 end-page: 332 ident: bib13 article-title: Distribution of GFRA1-expressing spermatogonia in adult mouse testis publication-title: Reproduction – volume: 113 start-page: 195 year: 2003 end-page: 201 ident: bib27 article-title: Mutational analysis of the human FATE gene in 144 infertile men publication-title: Hum. Genet. – volume: 113 start-page: 689 year: 1991 end-page: 699 ident: bib40 article-title: Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function publication-title: Development – volume: 217 start-page: 293 year: 2000 end-page: 298 ident: bib6 article-title: Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development publication-title: Dev. Dyn. – volume: 18 start-page: 330 year: 2016 end-page: 340 ident: bib42 article-title: Complete meiosis from embryonic stem cell-derived germ cells in vitro publication-title: Cell Stem Cell – volume: 8 start-page: 966 year: 2013 end-page: 988 ident: bib38 article-title: Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries publication-title: Nat. Protoc. – volume: 144 start-page: 299 year: 2014 end-page: 305 ident: bib10 article-title: Protein SYCP2 is an ancient component of the metazoan synaptonemal complex publication-title: Cytogenet. Genome Res. – volume: 21 start-page: 533 year: 2017 end-page: 546.e6 ident: bib15 article-title: Chromatin and single-cell RNA-seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development publication-title: Cell Stem Cell – volume: 155 start-page: 4964 year: 2014 end-page: 4974 ident: bib4 article-title: Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance publication-title: Endocrinology – volume: 20 start-page: 858 year: 2017 end-page: 873.e4 ident: bib21 article-title: Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions publication-title: Cell Stem Cell – volume: 13 start-page: 261 year: 1997 end-page: 291 ident: bib25 article-title: Cyclin-dependent kinases: engines, clocks, and microprocessors publication-title: Annu. Rev. Cell Dev. Biol. – volume: 36 start-page: 2488 year: 2017 end-page: 2509 ident: bib2 article-title: Fundamental cell cycle kinases collaborate to ensure timely destruction of the synaptonemal complex during meiosis publication-title: EMBO J. – volume: 29 start-page: 1637 year: 2014 end-page: 1650 ident: bib22 article-title: Expression patterns of DLK1 and INSL3 identify stages of Leydig cell differentiation during normal development and in testicular pathologies, including testicular cancer and Klinefelter syndrome publication-title: Hum. Reprod. – volume: 16 start-page: 660 year: 2006 end-page: 667 ident: bib26 article-title: Postmeiotic sex chromatin in the male germline of mice publication-title: Curr. Biol. – volume: 11 start-page: 124 year: 2010 end-page: 136 ident: bib16 article-title: Genetics of mammalian meiosis: regulation, dynamics and impact on fertility publication-title: Nat. Rev. Genet. – volume: 17 start-page: 207 year: 2011 end-page: 218 ident: bib11 article-title: SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome publication-title: Mol. Hum. Reprod. – volume: 61 start-page: 261 year: 2009 end-page: 283 ident: bib31 article-title: Evaluation of male infertility publication-title: Minerva Ginecol. – volume: 13 start-page: e1006904 year: 2017 ident: bib5 article-title: Tex19.1 promotes Spo11-dependent meiotic recombination in mouse spermatocytes publication-title: PLoS Genet. – volume: 25 start-page: 1105 year: 2009 end-page: 1111 ident: bib34 article-title: TopHat: discovering splice junctions with RNA-seq publication-title: Bioinformatics – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: bib1 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics – volume: 104 start-page: 6852 year: 2007 end-page: 6857 ident: bib41 article-title: Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility publication-title: Proc. Natl. Acad. Sci. USA – volume: 143 start-page: 45 year: 2012 end-page: 57 ident: bib36 article-title: Differential marker protein expression specifies rarefaction zone-containing human Adark spermatogonia publication-title: Reproduction – volume: 86 start-page: 35 year: 2012 ident: bib14 article-title: Initiating meiosis: the case for retinoic acid publication-title: Biol. Reprod. – volume: 33 start-page: 495 year: 2015 end-page: 502 ident: bib30 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat. Biotechnol. – volume: 539 start-page: 299 year: 2016 end-page: 303 ident: bib19 article-title: Reconstitution in vitro of the entire cycle of the mouse female germ line publication-title: Nature – volume: 144 start-page: 624 year: 2017 end-page: 634 ident: bib18 article-title: ID4 levels dictate the stem cell state in mouse spermatogonia publication-title: Development – volume: 276 start-page: 31567 year: 2001 end-page: 31574 ident: bib24 article-title: Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa publication-title: J. Biol. Chem. – volume: 112 start-page: E2347 year: 2015 end-page: E2356 ident: bib8 article-title: Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 825 start-page: 45 year: 2012 end-page: 57 ident: bib17 article-title: Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting publication-title: Methods Mol. Biol. – volume: 19 start-page: 612 year: 2010 end-page: 624 ident: bib23 article-title: The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells publication-title: Dev. Cell – volume: 113 start-page: 779 year: 1991 end-page: 788 ident: bib9 article-title: Human acrosome biogenesis: immunodetection of proacrosin in primary spermatocytes and of its partitioning pattern during meiosis publication-title: Development – volume: 49 start-page: e12599 year: 2017 ident: bib32 article-title: Expression of hOvol2 in the XY body of human spermatocytes publication-title: Andrologia – volume: 97 start-page: 147 year: 2013 end-page: 158 ident: bib37 article-title: Phenotypic and functional heterogeneity of the testicular macrophage population: a new regulatory model publication-title: J. Reprod. Immunol. – volume: 138 start-page: 759 year: 2012 end-page: 772 ident: bib35 article-title: Fibroblast growth factor receptor 3 is highly expressed in rarely dividing human type A spermatogonia publication-title: Histochem. Cell Biol. – volume: 19 start-page: 1376 year: 2005 end-page: 1389 ident: bib7 article-title: Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation publication-title: Genes Dev. – volume: 32 start-page: 381 year: 2014 end-page: 386 ident: bib33 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. – volume: 40 start-page: 1 year: 2002 end-page: 12 ident: bib39 article-title: Cloning and expression pattern of a spermatogenesis-related gene, BEX1, mapped to chromosome Xq22 publication-title: Biochem. Genet. – volume: 169 start-page: 1090 year: 2017 end-page: 1104.e13 ident: bib12 article-title: Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis publication-title: Cell – volume: 6 start-page: 1077 year: 2001 end-page: 1090 ident: bib29 article-title: Sptrx-2, a fusion protein composed of one thioredoxin and three tandemly repeated NDP-kinase domains is expressed in human testis germ cells publication-title: Genes Cells – volume: 32 start-page: 2233 year: 2016 end-page: 2235 ident: bib20 article-title: ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information publication-title: Bioinformatics – volume: 59 start-page: 79 year: 2016 end-page: 88 ident: bib3 article-title: Spermatogonial cells: mouse, monkey and man comparison publication-title: Semin. Cell Dev. Biol. – volume: 54 start-page: 165 year: 2016 end-page: 176 ident: bib28 article-title: A new light on the meiotic DSB catalytic complex publication-title: Semin. Cell Dev. Biol. – volume: 59 start-page: 79 year: 2016 ident: 10.1016/j.stem.2018.08.007_bib3 article-title: Spermatogonial cells: mouse, monkey and man comparison publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2016.03.002 – volume: 31 start-page: 166 year: 2015 ident: 10.1016/j.stem.2018.08.007_bib1 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 36 start-page: 2488 year: 2017 ident: 10.1016/j.stem.2018.08.007_bib2 article-title: Fundamental cell cycle kinases collaborate to ensure timely destruction of the synaptonemal complex during meiosis publication-title: EMBO J. doi: 10.15252/embj.201695895 – volume: 104 start-page: 6852 year: 2007 ident: 10.1016/j.stem.2018.08.007_bib41 article-title: Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0701669104 – volume: 113 start-page: 779 year: 1991 ident: 10.1016/j.stem.2018.08.007_bib9 article-title: Human acrosome biogenesis: immunodetection of proacrosin in primary spermatocytes and of its partitioning pattern during meiosis publication-title: Development doi: 10.1242/dev.113.3.779 – volume: 54 start-page: 165 year: 2016 ident: 10.1016/j.stem.2018.08.007_bib28 article-title: A new light on the meiotic DSB catalytic complex publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2016.02.025 – volume: 40 start-page: 1 year: 2002 ident: 10.1016/j.stem.2018.08.007_bib39 article-title: Cloning and expression pattern of a spermatogenesis-related gene, BEX1, mapped to chromosome Xq22 publication-title: Biochem. Genet. doi: 10.1023/A:1014565320998 – volume: 112 start-page: E2347 year: 2015 ident: 10.1016/j.stem.2018.08.007_bib8 article-title: Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1505683112 – volume: 11 start-page: 124 year: 2010 ident: 10.1016/j.stem.2018.08.007_bib16 article-title: Genetics of mammalian meiosis: regulation, dynamics and impact on fertility publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2723 – volume: 113 start-page: 195 year: 2003 ident: 10.1016/j.stem.2018.08.007_bib27 article-title: Mutational analysis of the human FATE gene in 144 infertile men publication-title: Hum. Genet. doi: 10.1007/s00439-003-0974-9 – volume: 8 start-page: 966 year: 2013 ident: 10.1016/j.stem.2018.08.007_bib38 article-title: Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.047 – volume: 18 start-page: 330 year: 2016 ident: 10.1016/j.stem.2018.08.007_bib42 article-title: Complete meiosis from embryonic stem cell-derived germ cells in vitro publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.01.017 – volume: 19 start-page: 1376 year: 2005 ident: 10.1016/j.stem.2018.08.007_bib7 article-title: Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation publication-title: Genes Dev. doi: 10.1101/gad.329705 – volume: 20 start-page: 858 year: 2017 ident: 10.1016/j.stem.2018.08.007_bib21 article-title: Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.03.007 – volume: 29 start-page: 1637 year: 2014 ident: 10.1016/j.stem.2018.08.007_bib22 article-title: Expression patterns of DLK1 and INSL3 identify stages of Leydig cell differentiation during normal development and in testicular pathologies, including testicular cancer and Klinefelter syndrome publication-title: Hum. Reprod. doi: 10.1093/humrep/deu124 – volume: 217 start-page: 293 year: 2000 ident: 10.1016/j.stem.2018.08.007_bib6 article-title: Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development publication-title: Dev. Dyn. doi: 10.1002/(SICI)1097-0177(200003)217:3<293::AID-DVDY7>3.0.CO;2-P – volume: 169 start-page: 1090 year: 2017 ident: 10.1016/j.stem.2018.08.007_bib12 article-title: Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis publication-title: Cell doi: 10.1016/j.cell.2017.04.034 – volume: 17 start-page: 207 year: 2011 ident: 10.1016/j.stem.2018.08.007_bib11 article-title: SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome publication-title: Mol. Hum. Reprod. doi: 10.1093/molehr/gaq099 – volume: 144 start-page: 624 year: 2017 ident: 10.1016/j.stem.2018.08.007_bib18 article-title: ID4 levels dictate the stem cell state in mouse spermatogonia publication-title: Development doi: 10.1242/dev.146928 – volume: 32 start-page: 2233 year: 2016 ident: 10.1016/j.stem.2018.08.007_bib20 article-title: ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw216 – volume: 33 start-page: 495 year: 2015 ident: 10.1016/j.stem.2018.08.007_bib30 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3192 – volume: 21 start-page: 533 year: 2017 ident: 10.1016/j.stem.2018.08.007_bib15 article-title: Chromatin and single-cell RNA-seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.09.003 – volume: 138 start-page: 759 year: 2012 ident: 10.1016/j.stem.2018.08.007_bib35 article-title: Fibroblast growth factor receptor 3 is highly expressed in rarely dividing human type A spermatogonia publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-012-0991-7 – volume: 86 start-page: 35 year: 2012 ident: 10.1016/j.stem.2018.08.007_bib14 article-title: Initiating meiosis: the case for retinoic acid publication-title: Biol. Reprod. doi: 10.1095/biolreprod.111.096610 – volume: 143 start-page: 325 year: 2012 ident: 10.1016/j.stem.2018.08.007_bib13 article-title: Distribution of GFRA1-expressing spermatogonia in adult mouse testis publication-title: Reproduction doi: 10.1530/REP-11-0385 – volume: 13 start-page: e1006904 year: 2017 ident: 10.1016/j.stem.2018.08.007_bib5 article-title: Tex19.1 promotes Spo11-dependent meiotic recombination in mouse spermatocytes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006904 – volume: 539 start-page: 299 year: 2016 ident: 10.1016/j.stem.2018.08.007_bib19 article-title: Reconstitution in vitro of the entire cycle of the mouse female germ line publication-title: Nature doi: 10.1038/nature20104 – volume: 155 start-page: 4964 year: 2014 ident: 10.1016/j.stem.2018.08.007_bib4 article-title: Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance publication-title: Endocrinology doi: 10.1210/en.2014-1406 – volume: 16 start-page: 660 year: 2006 ident: 10.1016/j.stem.2018.08.007_bib26 article-title: Postmeiotic sex chromatin in the male germline of mice publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.01.066 – volume: 25 start-page: 1105 year: 2009 ident: 10.1016/j.stem.2018.08.007_bib34 article-title: TopHat: discovering splice junctions with RNA-seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 19 start-page: 612 year: 2010 ident: 10.1016/j.stem.2018.08.007_bib23 article-title: The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.09.010 – volume: 276 start-page: 31567 year: 2001 ident: 10.1016/j.stem.2018.08.007_bib24 article-title: Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa publication-title: J. Biol. Chem. doi: 10.1074/jbc.M101760200 – volume: 144 start-page: 299 year: 2014 ident: 10.1016/j.stem.2018.08.007_bib10 article-title: Protein SYCP2 is an ancient component of the metazoan synaptonemal complex publication-title: Cytogenet. Genome Res. doi: 10.1159/000381080 – volume: 49 start-page: e12599 year: 2017 ident: 10.1016/j.stem.2018.08.007_bib32 article-title: Expression of hOvol2 in the XY body of human spermatocytes publication-title: Andrologia doi: 10.1111/and.12599 – volume: 13 start-page: 261 year: 1997 ident: 10.1016/j.stem.2018.08.007_bib25 article-title: Cyclin-dependent kinases: engines, clocks, and microprocessors publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.13.1.261 – volume: 61 start-page: 261 year: 2009 ident: 10.1016/j.stem.2018.08.007_bib31 article-title: Evaluation of male infertility publication-title: Minerva Ginecol. – volume: 97 start-page: 147 year: 2013 ident: 10.1016/j.stem.2018.08.007_bib37 article-title: Phenotypic and functional heterogeneity of the testicular macrophage population: a new regulatory model publication-title: J. Reprod. Immunol. doi: 10.1016/j.jri.2013.01.001 – volume: 143 start-page: 45 year: 2012 ident: 10.1016/j.stem.2018.08.007_bib36 article-title: Differential marker protein expression specifies rarefaction zone-containing human Adark spermatogonia publication-title: Reproduction doi: 10.1530/REP-11-0290 – volume: 113 start-page: 689 year: 1991 ident: 10.1016/j.stem.2018.08.007_bib40 article-title: Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function publication-title: Development doi: 10.1242/dev.113.2.689 – volume: 6 start-page: 1077 year: 2001 ident: 10.1016/j.stem.2018.08.007_bib29 article-title: Sptrx-2, a fusion protein composed of one thioredoxin and three tandemly repeated NDP-kinase domains is expressed in human testis germ cells publication-title: Genes Cells doi: 10.1046/j.1365-2443.2001.00484.x – volume: 825 start-page: 45 year: 2012 ident: 10.1016/j.stem.2018.08.007_bib17 article-title: Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-436-0_4 – volume: 32 start-page: 381 year: 2014 ident: 10.1016/j.stem.2018.08.007_bib33 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 |
SSID | ssj0057107 |
Score | 2.6637704 |
Snippet | Spermatogenesis generates mature male gametes and is critical for the proper transmission of genetic information between generations. However, the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 599 |
SubjectTerms | human spermatogenesis single-cell RNA sequencing |
Title | Single-Cell RNA Sequencing Analysis Reveals Sequential Cell Fate Transition during Human Spermatogenesis |
URI | https://dx.doi.org/10.1016/j.stem.2018.08.007 https://www.ncbi.nlm.nih.gov/pubmed/30174296 https://www.proquest.com/docview/2099042635 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jIPgi3p03IvgmYVub9PI4h2MI7mFzsLfQXKqT0g23Cf57z0nagaA--FJom9BwTnK-L825EHIbGJsFygrGhdGMR0GXZV0TM57b1AiVdIzCjeLTKBpO-eNMzBqkX8fCoFtlZfu9TXfWunrSrqTZXs7n7QlQDy5SwLsEzHAaYMBvyBMXxDe7r62xAASN_ckyZ9i6CpzxPl6YKxnduxKXxhNLyv4MTr-RTwdCg32yV7FH2vMDPCANWx6SHV9P8vOIvE4AiArL-rYo6HjUoxPvKA1PaZ19hI7tB5DDVfUOFnhBXfsBsE7qoMt5cVEfwEjdX346WaIFXy9e0DTOV8dkOnh47g9ZVUqBaVika5anWZpEeZJmQIAU7-RcqTjQMUCk5nBJucsCk4fW2rwTaxMZYEbAzpSwJgdKeEKa5aK0Z4SaIAGtw8YwAyaCp4KB7nKbAnXItAoz0SLdWoZSV3nGsdxFIWuHsjeJcpcod4k1MDtxi9xt-yx9lo0_W4taNfLbXJEAA3_2u6n1KGER4clIVtrFZiUxfhg3kyGM_tQreDsOsIAxgHZ0_s-vXpBdvHMOgPySNNfvG3sFRGatrt1M_QLnnvGY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aEb2Ib-szgjcJ7W6TfRxrsbQ-enAVegubTVYrS1tsK_jvnUl2BUE9eNlDNmFDJjPfl808CLnwtUl9ZQTjQmeMB77HUk-HjOcm1kJFTa3woHg_CHpP_GYohkukU8XCoFtlafudTbfWumxplKvZmI5GjQSoBxcx4F0EZjj2o2WyAmwgRO3sD68qcywAQkN3tcwZdi8jZ5yTFyZLRv-uyObxxJqyP6PTb-zTolB3k2yU9JG23Qy3yJIZb5NVV1DyY4e8JIBEhWEdUxT0YdCmifOUhlZapR-hD-Yd2OGsfAcaXlDbvwu0k1rssm5c1EUwUvubnyZTNOHzyTPaxtFslzx1rx87PVbWUmAZaOmc5XEaR0EexSkwIMWbOVcq9LMQMDLj8Ii5TQOTt4wxeTPMdKCBGgE9U8LoHDjhHqmNJ2NzQKj2IxA7nAxToCJ4LehnHjcxcIc0U61U1IlXraHMykTjWO-ikJVH2avEdZe47hKLYDbDOrn8GjN1aTb-7C0q0chvm0UCDvw57rySowQtwquRdGwmi5nEAGI8TbZg9vtOwF_zABMYAmoHh__86hlZ6z3e38m7_uD2iKzjG-sNyI9Jbf62MCfAaubq1O7aTxR79Lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Cell+RNA+Sequencing+Analysis+Reveals+Sequential+Cell+Fate+Transition+during+Human+Spermatogenesis&rft.jtitle=Cell+stem+cell&rft.au=Wang%2C+Mei&rft.au=Liu%2C+Xixi&rft.au=Chang%2C+Gang&rft.au=Chen%2C+Yidong&rft.date=2018-10-04&rft.pub=Elsevier+Inc&rft.issn=1934-5909&rft.eissn=1875-9777&rft.volume=23&rft.issue=4&rft.spage=599&rft.epage=614.e4&rft_id=info:doi/10.1016%2Fj.stem.2018.08.007&rft.externalDocID=S1934590918303928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |