Difucosylation of chitooligosaccharides by eukaryote and prokaryote α1,6-fucosyltransferases

The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1830; no. 10; pp. 4482 - 4490
Main Authors Ihara, Hideyuki, Hanashima, Shinya, Tsukamoto, Hiroki, Yamaguchi, Yoshiki, Taniguchi, Naoyuki, Ikeda, Yoshitaka
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases. The issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated. Both FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase. The sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases. The action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases. [Display omitted] •Difucosylated chitooligosaccharides (GNFF′) were synthesized via the action of FUT8 and NodZ.•GNFF′ are fucosylated at the reducing end and the third GlcNAc from the non-reducing end.•The GNFF′ were found to be resistant to the action of some exo- and endo-type glycosidases.
AbstractList BACKGROUND: The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases. METHODS: The issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated. RESULTS: Both FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase. CONCLUSIONS: The sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases. GENERAL SIGNIFICANCE: The action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases.
The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases.BACKGROUNDThe synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases.The issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated.METHODSThe issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated.Both FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase.RESULTSBoth FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase.The sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases.CONCLUSIONSThe sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases.The action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases.GENERAL SIGNIFICANCEThe action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases.
The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases.The issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated.Both FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase.The sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases.The action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases.
The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases. The issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated. Both FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase. The sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases. The action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases. [Display omitted] •Difucosylated chitooligosaccharides (GNFF′) were synthesized via the action of FUT8 and NodZ.•GNFF′ are fucosylated at the reducing end and the third GlcNAc from the non-reducing end.•The GNFF′ were found to be resistant to the action of some exo- and endo-type glycosidases.
The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases. The issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated. Both FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase. The sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases. The action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases.
Author Tsukamoto, Hiroki
Ihara, Hideyuki
Yamaguchi, Yoshiki
Ikeda, Yoshitaka
Hanashima, Shinya
Taniguchi, Naoyuki
Author_xml – sequence: 1
  givenname: Hideyuki
  surname: Ihara
  fullname: Ihara, Hideyuki
  organization: Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, 5-1-1 Nabeshima, Saga 849-8501, Japan
– sequence: 2
  givenname: Shinya
  surname: Hanashima
  fullname: Hanashima, Shinya
  organization: Structural Glycobiology Team, Systems Glycobiology Research Group, Chemical Biology Department, RIKEN, Advanced Science Institute, 2-1 Hirosawa Wako, Saitama 351-0198, Japan
– sequence: 3
  givenname: Hiroki
  surname: Tsukamoto
  fullname: Tsukamoto, Hiroki
  organization: Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, 5-1-1 Nabeshima, Saga 849-8501, Japan
– sequence: 4
  givenname: Yoshiki
  surname: Yamaguchi
  fullname: Yamaguchi, Yoshiki
  organization: Structural Glycobiology Team, Systems Glycobiology Research Group, Chemical Biology Department, RIKEN, Advanced Science Institute, 2-1 Hirosawa Wako, Saitama 351-0198, Japan
– sequence: 5
  givenname: Naoyuki
  surname: Taniguchi
  fullname: Taniguchi, Naoyuki
  organization: Disease Glycomics Team, Systems Glycobiology Research Group, Chemical Biology Department, RIKEN, Advanced Science Institute, 2-1 Hirosawa Wako, Saitama 351-0198, Japan
– sequence: 6
  givenname: Yoshitaka
  surname: Ikeda
  fullname: Ikeda, Yoshitaka
  email: yikeda@cc.saga-u.ac.jp
  organization: Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, 5-1-1 Nabeshima, Saga 849-8501, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23688399$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URKeFN0CQJQsSfE_CAgm13KRKLChLZPlyPPWQiVs7QZrH6ovwTHjIzIYF9eaXre8_x-c_Z-hkjCMg9JzghmAi32waY_QaxoZiwhosmiKP0Ip0La07jOUJWmGGec2JFKfoLOcNLkf04gk6pUx2Hev7FfpxGfxsY94NegpxrKKv7E2YYhzCOmZt7Y1OwUGuzK6C-adOuzhBpUdX3aZ4vP6-J69lfagzJT1mD0lnyE_RY6-HDM8Oeo6uP364vvhcX3399OXi_VVtOcZT7TtpSOcE0z0Y0rYGyoNnraC9dwQbLntBjOusYb4X2DKtZctdy7mn1Bl2jl4tZcuf7mbIk9qGbGEY9AhxzoruJ-96RvGDKOGkZxzLlhX0xQGdzRacuk1hWwZWx_AK8HYBbIo5J_DKhulvjCWDMCiC1X5TaqOWTan9phQWqkgx83_Mx_oP2F4uNq-j0usUsvr-rQByPyKVnBbi3UJACfxXgKSyDTBacCGBnZSL4f8t_gBy5Lmc
CitedBy_id crossref_primary_10_1016_j_bbagen_2020_129596
crossref_primary_10_1186_s40168_022_01391_z
crossref_primary_10_4052_tigg_2025_1E
crossref_primary_10_1039_D4OB00695J
crossref_primary_10_1016_j_mam_2020_100905
crossref_primary_10_1016_j_jbiotec_2016_12_017
crossref_primary_10_4052_tigg_2025_1J
crossref_primary_10_3390_biom6010012
crossref_primary_10_1098_rspb_2021_0812
crossref_primary_10_1002_mas_21530
Cites_doi 10.1016/S0304-4165(99)00181-6
10.1094/MPMI.2000.13.8.799
10.1021/ma980272a
10.1021/bm200970x
10.1016/S0021-9258(19)77143-9
10.1016/S0008-6215(00)81049-6
10.1021/jp212550z
10.1107/S0907444911053157
10.1146/annurev.bi.37.070168.002043
10.1073/pnas.94.9.4336
10.1016/0022-2836(91)90021-W
10.1093/glycob/cwl079
10.1093/glycob/cwh121
10.1073/pnas.89.18.8789
10.1093/glycob/12.6.79R
10.1016/S0022-2836(03)00307-3
10.1016/j.carres.2011.09.025
10.1093/glycob/cwj068
10.1093/glycob/11.3.209
10.1128/jb.179.16.5087-5093.1997
10.18388/abp.2007_3227
10.1271/bbb.66.1119
10.1016/j.tibs.2004.11.005
10.3390/md8051482
10.1006/jmbi.1994.1750
10.1093/glycob/9.4.323
10.1021/bi9513719
10.1093/glycob/cwq064
10.1021/bm800832u
10.1271/bbb.70.252
10.1016/0167-4838(91)90133-K
10.1016/S0304-4165(99)00166-X
10.1016/j.sbi.2006.08.011
10.1016/j.cbpa.2009.08.014
10.1016/S0006-291X(76)80218-5
10.1074/jbc.271.44.27810
10.1128/JB.183.24.7067-7075.2001
10.1038/scientificamerican1166-78
10.1016/0006-291X(71)90812-6
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright © 2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2013.05.013
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 4490
ExternalDocumentID 23688399
10_1016_j_bbagen_2013_05_013
US201600002642
S0304416513002092
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AKRWK
ANKPU
APXCP
BNPGV
FBQ
SSH
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c400t-f86b18d53a9eb177be86bf37529fd10b46951bd8cb3f950c3aa674d744f22db3
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Wed Jul 30 11:15:07 EDT 2025
Thu Jul 10 23:11:53 EDT 2025
Mon Jul 21 06:05:00 EDT 2025
Tue Jul 01 00:22:01 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
Mon May 19 05:25:22 EDT 2025
Fri Feb 23 02:34:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords GNFF
MS
MALDI
GN2
TOCSY
TOF
Fucosyltransferase
GN1
GN4
GN3
COSY
GN6
GN5
GDP
NMR
Fuc
Chitooligosaccharide
Fucosylation
Glycosidase
HSQC
GNF
HPLC
Lysozyme
N,N′,N″,N‴,N‴′-pentaacetyl chitopentaose
difucosylated chitooligosaccharide
hetero-nuclear single quantum coherence
N,N′,N″-triacetyl chitotriose
guanine nucleotide diphosphate
N,N′,N″,N‴,N‴′,N‴″-hexaacetyl chitohexaose
mass spectrometry
correlation spectroscopy
N,N′,N″,N‴-tetraacetyl chitotetraose
fucose
time of flight
FUT8-monofucosylated chitooligosaccharide
GlcNAc or N-acetylglucosamine
nuclear magnetic resonance
high performance liquid chromatography
N,N′-diacetyl chitobiose
NodZ-monofucosylated chitooligosaccharide
matrix-assisted laser desorption/ionization
total correlation spectroscopy
Language English
License Copyright © 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-f86b18d53a9eb177be86bf37529fd10b46951bd8cb3f950c3aa674d744f22db3
Notes http://dx.doi.org/10.1016/j.bbagen.2013.05.013
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23688399
PQID 1419340673
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000089320
proquest_miscellaneous_1419340673
pubmed_primary_23688399
crossref_citationtrail_10_1016_j_bbagen_2013_05_013
crossref_primary_10_1016_j_bbagen_2013_05_013
fao_agris_US201600002642
elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_05_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-Oct
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-Oct
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Song, Inaka, Maenaka, Matsushima (bb0140) 1994; 244
Taniguchi, Miyoshi, Gu, Honke, Matsumoto (bb0030) 2006; 16
Kabir, Hirowatari, Watanabe, Koga (bb0105) 2006; 70
Li, Wu, Gao, Cheng (bb0185) 2011; 12
Strand, Issa, Christensen, Vårum, Artursson (bb0180) 2008; 9
Wang, Huang (bb0195) 2009; 13
Miyoshi, Noda, Yamaguchi, Inoue, Ikeda, Wang, Ko, Uozumi, Li, Taniguchi (bb0025) 1999; 1473
Qasba, Ramakrishnan, Boeggeman (bb0075) 2005; 30
Hattori, Sakabe, Ogata, Michishita, Dohra, Kawagishi, Totani, Nikaido, Nakamura, Koshino, Usui (bb0190) 2012; 347
Staudacher, Altmann, Wilson, März (bb0010) 1999; 1473
Longmore, Schachter (bb0020) 1982; 100
Stubbs, Lih, Gustafson, Rice (bb0160) 1996; 35
Aminoff, Furukawa (bb0155) 1970; 245
Brzezinski, Stepkowski, Panjikar, Bujacz, Jaskolski (bb0060) 2007; 54
Quinto, Wijfjes, Bloemberg, Blok-Tip, López-Lara, Lugtenberg, Thomas-Oates, Spaink (bb0050) 1997; 94
Ovtsyna, Schultze, Tikhonovich, Spaink, Kondorosi, Kondorosi, Staehelin (bb0120) 2000; 13
Legler, Lüllau, Kappes, Kastenholz (bb0145) 1991; 1080
Wiederschain, Rosenfeld (bb0150) 1971; 44
Phillips (bb0125) 1966; 215
Brzezinski, Dauter, Jaskolski (bb0065) 2012; 68
Natunen, Aitio, Helin, Maaheimo, Niemelä, Heikkinen, Renkonen (bb0110) 2001; 11
Boer, Munck, Natunen, Wohlfahrt, Söderlund, Renkonen, Koivula (bb0115) 2004; 14
Aam, Heggset, Norberg, Sørlie, Vårum, Eijsink (bb0170) 2010; 8
Chazalet, Uehara, Geremia, Breton (bb0090) 2001; 183
Uozumi, Yanagidani, Miyoshi, Ihara, Sakuma, Gao, Teshima, Fujii, Shiba, Taniguchi (bb0095) 1996; 271
Nishima, Miyashita, Yamaguchi, Sugita, Re (bb0165) 2012; 116
Coutinho, Deleury, Davies, Henrissat (bb0070) 2003; 328
Koshland, Neet (bb0130) 1968; 37
Abdel-Banat, Zhou, Karasuda, Koga (bb0100) 2002; 66
Strynadka, James (bb0135) 1991; 220
Wilson, Williams, Schachter (bb0015) 1976; 72
Oriol, Mollicone, Cailleau, Balanzino, Breton (bb0005) 1999; 9
Ihara, Ikeda, Taniguchi (bb0085) 2006; 16
Sanjuan, Carlson, Spaink, Bhat, Barbour, Glushka, Stacey (bb0035) 1992; 89
Ihara, Hanashima, Okada, Ito, Yamaguchi, Taniguchi, Ikeda (bb0080) 2010; 20
Ihara, Ikeda, Toma, Wang, Suzuki, Gu, Miyoshi, Tsukihara, Honke, Matsumoto, Nakagawa, Taniguchi (bb0055) 2007; 17
Quesada-Vincens, Fellay, Nasim, Viprey, Burger, Prome, Broughton, Jabbouri (bb0045) 1997; 179
Kurita, Shimada, Nishiyama, Shimojoh, Nishimura (bb0175) 1998; 31
D'Haeze, Holsters (bb0040) 2002; 12
Uozumi (10.1016/j.bbagen.2013.05.013_bb0095) 1996; 271
Brzezinski (10.1016/j.bbagen.2013.05.013_bb0060) 2007; 54
Phillips (10.1016/j.bbagen.2013.05.013_bb0125) 1966; 215
Legler (10.1016/j.bbagen.2013.05.013_bb0145) 1991; 1080
Qasba (10.1016/j.bbagen.2013.05.013_bb0075) 2005; 30
Koshland (10.1016/j.bbagen.2013.05.013_bb0130) 1968; 37
Quinto (10.1016/j.bbagen.2013.05.013_bb0050) 1997; 94
Li (10.1016/j.bbagen.2013.05.013_bb0185) 2011; 12
Longmore (10.1016/j.bbagen.2013.05.013_bb0020) 1982; 100
Oriol (10.1016/j.bbagen.2013.05.013_bb0005) 1999; 9
Taniguchi (10.1016/j.bbagen.2013.05.013_bb0030) 2006; 16
Chazalet (10.1016/j.bbagen.2013.05.013_bb0090) 2001; 183
Wiederschain (10.1016/j.bbagen.2013.05.013_bb0150) 1971; 44
Ihara (10.1016/j.bbagen.2013.05.013_bb0055) 2007; 17
Sanjuan (10.1016/j.bbagen.2013.05.013_bb0035) 1992; 89
Natunen (10.1016/j.bbagen.2013.05.013_bb0110) 2001; 11
Strand (10.1016/j.bbagen.2013.05.013_bb0180) 2008; 9
Kabir (10.1016/j.bbagen.2013.05.013_bb0105) 2006; 70
Wang (10.1016/j.bbagen.2013.05.013_bb0195) 2009; 13
Song (10.1016/j.bbagen.2013.05.013_bb0140) 1994; 244
D'Haeze (10.1016/j.bbagen.2013.05.013_bb0040) 2002; 12
Abdel-Banat (10.1016/j.bbagen.2013.05.013_bb0100) 2002; 66
Coutinho (10.1016/j.bbagen.2013.05.013_bb0070) 2003; 328
Quesada-Vincens (10.1016/j.bbagen.2013.05.013_bb0045) 1997; 179
Ovtsyna (10.1016/j.bbagen.2013.05.013_bb0120) 2000; 13
Aminoff (10.1016/j.bbagen.2013.05.013_bb0155) 1970; 245
Nishima (10.1016/j.bbagen.2013.05.013_bb0165) 2012; 116
Wilson (10.1016/j.bbagen.2013.05.013_bb0015) 1976; 72
Staudacher (10.1016/j.bbagen.2013.05.013_bb0010) 1999; 1473
Boer (10.1016/j.bbagen.2013.05.013_bb0115) 2004; 14
Ihara (10.1016/j.bbagen.2013.05.013_bb0080) 2010; 20
Hattori (10.1016/j.bbagen.2013.05.013_bb0190) 2012; 347
Aam (10.1016/j.bbagen.2013.05.013_bb0170) 2010; 8
Stubbs (10.1016/j.bbagen.2013.05.013_bb0160) 1996; 35
Kurita (10.1016/j.bbagen.2013.05.013_bb0175) 1998; 31
Ihara (10.1016/j.bbagen.2013.05.013_bb0085) 2006; 16
Brzezinski (10.1016/j.bbagen.2013.05.013_bb0065) 2012; 68
Miyoshi (10.1016/j.bbagen.2013.05.013_bb0025) 1999; 1473
Strynadka (10.1016/j.bbagen.2013.05.013_bb0135) 1991; 220
References_xml – volume: 12
  start-page: 79R
  year: 2002
  end-page: 105R
  ident: bb0040
  article-title: Nod factor structures, responses, and perception during initiation of nodule development
  publication-title: Glycobiology
– volume: 20
  start-page: 1021
  year: 2010
  end-page: 1033
  ident: bb0080
  article-title: Fucosylation of chitooligosaccharides by human α1,6-fucosyltransferase requires a non-reducing terminal chitotriose unit as a minimal structure
  publication-title: Glycobiology
– volume: 31
  start-page: 4764
  year: 1998
  end-page: 4769
  ident: bb0175
  article-title: Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having α-mannoside branches
  publication-title: Macromolecules
– volume: 1473
  start-page: 216
  year: 1999
  end-page: 236
  ident: bb0010
  article-title: Fucose in
  publication-title: Biochim. Biophys. Acta
– volume: 215
  start-page: 78
  year: 1966
  end-page: 90
  ident: bb0125
  article-title: The three-dimensional structure of an enzyme molecule
  publication-title: Sci. Am.
– volume: 14
  start-page: 1303
  year: 2004
  end-page: 1313
  ident: bb0115
  article-title: Differential recognition of animal type β4-galactosylated and α3-fucosylated chito-oligosaccharides by two family 18 chitinases from
  publication-title: Glycobiology
– volume: 37
  start-page: 359
  year: 1968
  end-page: 410
  ident: bb0130
  article-title: The catalytic and regulatory properties of enzymes
  publication-title: Annu. Rev. Biochem.
– volume: 89
  start-page: 8789
  year: 1992
  end-page: 8793
  ident: bb0035
  article-title: A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1080
  start-page: 89
  year: 1991
  end-page: 95
  ident: bb0145
  article-title: Bovine
  publication-title: Biochim. Biophys. Acta
– volume: 54
  start-page: 537
  year: 2007
  end-page: 549
  ident: bb0060
  article-title: High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor
  publication-title: Acta Biochim. Pol.
– volume: 100
  start-page: 365
  year: 1982
  end-page: 392
  ident: bb0020
  article-title: Product-identification and substrate-specificity studies of the GDP-
  publication-title: Carbohydr. Res.
– volume: 12
  start-page: 3962
  year: 2011
  end-page: 3969
  ident: bb0185
  article-title: Carbohydrate-functionalized chitosan fiber for influenza virus capture
  publication-title: Biomacromolecules
– volume: 244
  start-page: 522
  year: 1994
  end-page: 540
  ident: bb0140
  article-title: Structural changes of active site cleft and different saccharide binding modes in human lysozyme co-crystallized with hexa-
  publication-title: J. Mol. Biol.
– volume: 16
  start-page: 561
  year: 2006
  end-page: 566
  ident: bb0030
  article-title: Decoding sugar functions by identifying target glycoproteins
  publication-title: Curr. Opin. Struct. Biol.
– volume: 116
  start-page: 8504
  year: 2012
  end-page: 8512
  ident: bb0165
  article-title: Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type
  publication-title: J. Phys. Chem. B
– volume: 66
  start-page: 1119
  year: 2002
  end-page: 1122
  ident: bb0100
  article-title: Analysis of hydrolytic activity of a 65-kDa chitinase from the silkworm,
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 35
  start-page: 937
  year: 1996
  end-page: 947
  ident: bb0160
  article-title: Influence of core fucosylation on the flexibility of a biantennary N-linked oligosaccharide
  publication-title: Biochemistry
– volume: 328
  start-page: 307
  year: 2003
  end-page: 317
  ident: bb0070
  article-title: An evolving hierarchical family classification for glycosyltransferases
  publication-title: J. Mol. Biol.
– volume: 9
  start-page: 3268
  year: 2008
  end-page: 3276
  ident: bb0180
  article-title: Tailoring of chitosans for gene delivery: novel self-branched glycosylated chitosan oligomers with improved functional properties
  publication-title: Biomacromolecules
– volume: 179
  start-page: 5087
  year: 1997
  end-page: 5093
  ident: bb0045
  article-title: sp. strain NGR234 NodZ protein is a fucosyltransferase
  publication-title: J. Bacteriol.
– volume: 11
  start-page: 209
  year: 2001
  end-page: 216
  ident: bb0110
  article-title: Human α3-fucosyltransferases convert chitin oligosaccharides to products containing a GlcNAcβ1–4(Fucα1–3)GlcNAcβ1–4R determinant at the nonreducing terminus
  publication-title: Glycobiology
– volume: 30
  start-page: 53
  year: 2005
  end-page: 62
  ident: bb0075
  article-title: Substrate-induced conformational changes in glycosyltransferases
  publication-title: Trends Biochem. Sci.
– volume: 94
  start-page: 4336
  year: 1997
  end-page: 4341
  ident: bb0050
  article-title: Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 17
  start-page: 455
  year: 2007
  end-page: 466
  ident: bb0055
  article-title: Crystal structure of mammalian α1,6-fucosyltransferase, FUT8
  publication-title: Glycobiology
– volume: 16
  start-page: 333
  year: 2006
  end-page: 342
  ident: bb0085
  article-title: Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase—a large-scale preparation and characterization of recombinant human FUT8
  publication-title: Glycobiology
– volume: 44
  start-page: 1008
  year: 1971
  end-page: 1014
  ident: bb0150
  article-title: Two forms of α-
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 245
  start-page: 1659
  year: 1970
  end-page: 1669
  ident: bb0155
  article-title: Enzymes that destroy blood group specificity. I. Purification and properties of α-
  publication-title: J. Biol. Chem.
– volume: 183
  start-page: 7067
  year: 2001
  end-page: 7075
  ident: bb0090
  article-title: Identification of essential amino acids in the
  publication-title: J. Bacteriol.
– volume: 220
  start-page: 401
  year: 1991
  end-page: 424
  ident: bb0135
  article-title: Lysozyme revisited: crystallographic evidence for distortion of an
  publication-title: J. Mol. Biol.
– volume: 9
  start-page: 324
  year: 1999
  end-page: 334
  ident: bb0005
  article-title: Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria
  publication-title: Glycobiology
– volume: 70
  start-page: 252
  year: 2006
  end-page: 262
  ident: bb0105
  article-title: Purification and characterization of a novel isozyme of chitinase from
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 271
  start-page: 27810
  year: 1996
  end-page: 27817
  ident: bb0095
  article-title: Purification and cDNA cloning of porcine brain GDP-
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 799
  year: 2000
  end-page: 807
  ident: bb0120
  article-title: Nod factors of
  publication-title: Mol. Plant Microbe Interact.
– volume: 347
  start-page: 16
  year: 2012
  end-page: 22
  ident: bb0190
  article-title: Enzymatic synthesis of an α-chitin-like substance via lysozyme-mediated transglycosylation
  publication-title: Carbohydr. Res.
– volume: 13
  start-page: 592
  year: 2009
  end-page: 600
  ident: bb0195
  article-title: Enzymatic transglycosylation for glycoconjugate synthesis
  publication-title: Curr. Opin. Chem. Biol.
– volume: 1473
  start-page: 9
  year: 1999
  end-page: 20
  ident: bb0025
  article-title: The α1–6-fucosyltransferase gene and its biological significance
  publication-title: Biochim. Biophys. Acta
– volume: 68
  start-page: 160
  year: 2012
  end-page: 168
  ident: bb0065
  article-title: Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose
  publication-title: Acta Crystallogr. D: Biol. Crystallogr.
– volume: 72
  start-page: 909
  year: 1976
  end-page: 916
  ident: bb0015
  article-title: The control of glycoprotein synthesis:
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 8
  start-page: 1482
  year: 2010
  end-page: 1517
  ident: bb0170
  article-title: Production of chitooligosaccharides and their potential applications in medicine
  publication-title: Mar. Drugs
– volume: 1473
  start-page: 216
  year: 1999
  ident: 10.1016/j.bbagen.2013.05.013_bb0010
  article-title: Fucose in N-glycans: from plant to man
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(99)00181-6
– volume: 13
  start-page: 799
  year: 2000
  ident: 10.1016/j.bbagen.2013.05.013_bb0120
  article-title: Nod factors of Rhizobium leguminosarum bv. viciae and their fucosylated derivatives stimulate a nod factor cleaving activity in pea roots and are hydrolyzed in vitro by plant chitinases at different rates
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI.2000.13.8.799
– volume: 31
  start-page: 4764
  year: 1998
  ident: 10.1016/j.bbagen.2013.05.013_bb0175
  article-title: Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having α-mannoside branches
  publication-title: Macromolecules
  doi: 10.1021/ma980272a
– volume: 12
  start-page: 3962
  year: 2011
  ident: 10.1016/j.bbagen.2013.05.013_bb0185
  article-title: Carbohydrate-functionalized chitosan fiber for influenza virus capture
  publication-title: Biomacromolecules
  doi: 10.1021/bm200970x
– volume: 245
  start-page: 1659
  year: 1970
  ident: 10.1016/j.bbagen.2013.05.013_bb0155
  article-title: Enzymes that destroy blood group specificity. I. Purification and properties of α-l-fucosidase from Clostridium perfringens
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)77143-9
– volume: 100
  start-page: 365
  year: 1982
  ident: 10.1016/j.bbagen.2013.05.013_bb0020
  article-title: Product-identification and substrate-specificity studies of the GDP-l-fucose:2-acetamido-2-deoxy-β-d-glucoside (FUC goes to Asn-linked GlcNAc) 6-α-l-fucosyltransferase in a Golgi-rich fraction from porcine liver
  publication-title: Carbohydr. Res.
  doi: 10.1016/S0008-6215(00)81049-6
– volume: 116
  start-page: 8504
  year: 2012
  ident: 10.1016/j.bbagen.2013.05.013_bb0165
  article-title: Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp212550z
– volume: 68
  start-page: 160
  year: 2012
  ident: 10.1016/j.bbagen.2013.05.013_bb0065
  article-title: Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose
  publication-title: Acta Crystallogr. D: Biol. Crystallogr.
  doi: 10.1107/S0907444911053157
– volume: 37
  start-page: 359
  year: 1968
  ident: 10.1016/j.bbagen.2013.05.013_bb0130
  article-title: The catalytic and regulatory properties of enzymes
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.37.070168.002043
– volume: 94
  start-page: 4336
  year: 1997
  ident: 10.1016/j.bbagen.2013.05.013_bb0050
  article-title: Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.94.9.4336
– volume: 220
  start-page: 401
  year: 1991
  ident: 10.1016/j.bbagen.2013.05.013_bb0135
  article-title: Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(91)90021-W
– volume: 17
  start-page: 455
  year: 2007
  ident: 10.1016/j.bbagen.2013.05.013_bb0055
  article-title: Crystal structure of mammalian α1,6-fucosyltransferase, FUT8
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwl079
– volume: 14
  start-page: 1303
  year: 2004
  ident: 10.1016/j.bbagen.2013.05.013_bb0115
  article-title: Differential recognition of animal type β4-galactosylated and α3-fucosylated chito-oligosaccharides by two family 18 chitinases from Trichoderma harzianum
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwh121
– volume: 89
  start-page: 8789
  year: 1992
  ident: 10.1016/j.bbagen.2013.05.013_bb0035
  article-title: A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.18.8789
– volume: 12
  start-page: 79R
  year: 2002
  ident: 10.1016/j.bbagen.2013.05.013_bb0040
  article-title: Nod factor structures, responses, and perception during initiation of nodule development
  publication-title: Glycobiology
  doi: 10.1093/glycob/12.6.79R
– volume: 328
  start-page: 307
  year: 2003
  ident: 10.1016/j.bbagen.2013.05.013_bb0070
  article-title: An evolving hierarchical family classification for glycosyltransferases
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00307-3
– volume: 347
  start-page: 16
  year: 2012
  ident: 10.1016/j.bbagen.2013.05.013_bb0190
  article-title: Enzymatic synthesis of an α-chitin-like substance via lysozyme-mediated transglycosylation
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2011.09.025
– volume: 16
  start-page: 333
  year: 2006
  ident: 10.1016/j.bbagen.2013.05.013_bb0085
  article-title: Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase—a large-scale preparation and characterization of recombinant human FUT8
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwj068
– volume: 11
  start-page: 209
  year: 2001
  ident: 10.1016/j.bbagen.2013.05.013_bb0110
  article-title: Human α3-fucosyltransferases convert chitin oligosaccharides to products containing a GlcNAcβ1–4(Fucα1–3)GlcNAcβ1–4R determinant at the nonreducing terminus
  publication-title: Glycobiology
  doi: 10.1093/glycob/11.3.209
– volume: 179
  start-page: 5087
  year: 1997
  ident: 10.1016/j.bbagen.2013.05.013_bb0045
  article-title: Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.179.16.5087-5093.1997
– volume: 54
  start-page: 537
  year: 2007
  ident: 10.1016/j.bbagen.2013.05.013_bb0060
  article-title: High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor
  publication-title: Acta Biochim. Pol.
  doi: 10.18388/abp.2007_3227
– volume: 66
  start-page: 1119
  year: 2002
  ident: 10.1016/j.bbagen.2013.05.013_bb0100
  article-title: Analysis of hydrolytic activity of a 65-kDa chitinase from the silkworm, Bombyx mori
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.66.1119
– volume: 30
  start-page: 53
  year: 2005
  ident: 10.1016/j.bbagen.2013.05.013_bb0075
  article-title: Substrate-induced conformational changes in glycosyltransferases
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2004.11.005
– volume: 8
  start-page: 1482
  year: 2010
  ident: 10.1016/j.bbagen.2013.05.013_bb0170
  article-title: Production of chitooligosaccharides and their potential applications in medicine
  publication-title: Mar. Drugs
  doi: 10.3390/md8051482
– volume: 244
  start-page: 522
  year: 1994
  ident: 10.1016/j.bbagen.2013.05.013_bb0140
  article-title: Structural changes of active site cleft and different saccharide binding modes in human lysozyme co-crystallized with hexa-N-acetyl-chitohexaose at pH4.0
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.1750
– volume: 9
  start-page: 324
  year: 1999
  ident: 10.1016/j.bbagen.2013.05.013_bb0005
  article-title: Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria
  publication-title: Glycobiology
  doi: 10.1093/glycob/9.4.323
– volume: 35
  start-page: 937
  year: 1996
  ident: 10.1016/j.bbagen.2013.05.013_bb0160
  article-title: Influence of core fucosylation on the flexibility of a biantennary N-linked oligosaccharide
  publication-title: Biochemistry
  doi: 10.1021/bi9513719
– volume: 20
  start-page: 1021
  year: 2010
  ident: 10.1016/j.bbagen.2013.05.013_bb0080
  article-title: Fucosylation of chitooligosaccharides by human α1,6-fucosyltransferase requires a non-reducing terminal chitotriose unit as a minimal structure
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwq064
– volume: 9
  start-page: 3268
  year: 2008
  ident: 10.1016/j.bbagen.2013.05.013_bb0180
  article-title: Tailoring of chitosans for gene delivery: novel self-branched glycosylated chitosan oligomers with improved functional properties
  publication-title: Biomacromolecules
  doi: 10.1021/bm800832u
– volume: 70
  start-page: 252
  year: 2006
  ident: 10.1016/j.bbagen.2013.05.013_bb0105
  article-title: Purification and characterization of a novel isozyme of chitinase from Bombyx mori
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.70.252
– volume: 1080
  start-page: 89
  year: 1991
  ident: 10.1016/j.bbagen.2013.05.013_bb0145
  article-title: Bovine N-acetyl-β-d-glucosaminidase: affinity purification and characterization of its active site with nitrogen containing analogs of N-acetylglucosamine
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4838(91)90133-K
– volume: 1473
  start-page: 9
  year: 1999
  ident: 10.1016/j.bbagen.2013.05.013_bb0025
  article-title: The α1–6-fucosyltransferase gene and its biological significance
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(99)00166-X
– volume: 16
  start-page: 561
  year: 2006
  ident: 10.1016/j.bbagen.2013.05.013_bb0030
  article-title: Decoding sugar functions by identifying target glycoproteins
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2006.08.011
– volume: 13
  start-page: 592
  year: 2009
  ident: 10.1016/j.bbagen.2013.05.013_bb0195
  article-title: Enzymatic transglycosylation for glycoconjugate synthesis
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2009.08.014
– volume: 72
  start-page: 909
  year: 1976
  ident: 10.1016/j.bbagen.2013.05.013_bb0015
  article-title: The control of glycoprotein synthesis: N-acetylglucosamine linkage to a mannose residue as a signal for the attachment of l-fucose to the asparagine-linked N-acetylglucosamine residue of glycopeptide from alpha1-acid glycoprotein
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(76)80218-5
– volume: 271
  start-page: 27810
  year: 1996
  ident: 10.1016/j.bbagen.2013.05.013_bb0095
  article-title: Purification and cDNA cloning of porcine brain GDP-l-Fuc:N-acetyl-β-d-glucosaminide α1→6fucosyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.44.27810
– volume: 183
  start-page: 7067
  year: 2001
  ident: 10.1016/j.bbagen.2013.05.013_bb0090
  article-title: Identification of essential amino acids in the Azorhizobium caulinodans fucosyltransferase NodZ
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.183.24.7067-7075.2001
– volume: 215
  start-page: 78
  year: 1966
  ident: 10.1016/j.bbagen.2013.05.013_bb0125
  article-title: The three-dimensional structure of an enzyme molecule
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1166-78
– volume: 44
  start-page: 1008
  year: 1971
  ident: 10.1016/j.bbagen.2013.05.013_bb0150
  article-title: Two forms of α-l-fucosidase from pig kidney and their action on natural oligosaccharides
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(71)90812-6
SSID ssj0000595
ssj0025309
Score 2.1030874
Snippet The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic...
BACKGROUND: The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4482
SubjectTerms Base Sequence
Carbohydrate Sequence
Chitin - metabolism
Chitooligosaccharide
chitooligosaccharides
DNA Primers
eukaryotic cells
Fucose - metabolism
Fucosylation
Fucosyltransferase
Fucosyltransferases - metabolism
Glycosidase
high performance liquid chromatography
hydrolysis
Lysozyme
Magnetic Resonance Spectroscopy
Mass Spectrometry
Molecular Sequence Data
nuclear magnetic resonance spectroscopy
Oligosaccharides - chemistry
Oligosaccharides - metabolism
prokaryotic cells
Title Difucosylation of chitooligosaccharides by eukaryote and prokaryote α1,6-fucosyltransferases
URI https://dx.doi.org/10.1016/j.bbagen.2013.05.013
https://www.ncbi.nlm.nih.gov/pubmed/23688399
https://www.proquest.com/docview/1419340673
https://www.proquest.com/docview/2000089320
Volume 1830
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILggLt8qiCxBGzie08fKwWqoUVPdBW9IIsP6tAlVS72cNe-E_8EX4TM3FSxGFViZNly46cGXvmG814hpA3oOWq1AdLmSxTKnyAO2dMSZ1jxmSidN6jofj5pJifi08X-cUOmY1vYTCscpD9Uab30noYmQ7UnF7X9fQUnXoAJ3J0yLBUohwWosRT_u7n3zAPgA959CQIirPH53N9jJcxcGkxC2rGY_5Ovk093Qm63Q5Ce2V0_Ig8HFBkchQ3-pjs-GaP3It1JTd75P5sLOP2hHx7XweMSt_EoLekDQm6Dtr2qr5sV9ris6va-VViNolf_9DLTdv5RDcugV2M3d-_srcFHb7T9VjXL0H_rZ6Ss-MPZ7M5HWoqUAu3taOhKkxWuZxr6THzlPEwEHiZMxlclhqwlvPMuMoaHmSeWq51UQpXChEYc4Y_I7tN2_gDklgWUl3IMrNSCOEqybQ23HPPrOPMiQnhIyWVHfKNY9mLKzUGln1Xkf4K6a_SXEEzIfRm1XXMt3HL_HJkkvrn3ChQCbesPACeKn0JwlSdnzJMtYf6AQyyCXk9MloBt9CFohvfrldgKAHgFVjcZ_sc1uNwwMXphOzHU3LzK4wXFUBS-fy_t_2CPMBejCd8SXa75dq_AlzUmcP-4B-Su0cfF_MTbBdfvi7-AKmPDXs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FEN3Gbbu0XQvD9hxRmxJfuhYZCvStc2lKdDLIEiWVLgr7CJxDvlZ-yP9TSP96LBDUGAnw7ZkyKRIfgQpEuALWrk8cr4ImcyiUDiPMmdMFlrLjIlFZp0jR_F8ns4uxY-r5GoHpsNZGEqr7HV_p9Nbbd0_mfTUnNyV5eSCgnoIJxIKyLBIoh7epepUyQh2j05OZ_O_Cjlpm6_Q-JAmDCfo2jQvY1BuqRBqzLsSnnybhXridb0dh7b26PgFPO-BZHDUrfUl7LhqH552rSU3-7A3HTq5vYKf30pPiembLu8tqH1A0YO6vi2v65Uu6ORVad0qMJvArX_p5aZuXKArG-Aqhtv73_HXNOy_07Rw1y3RBK5ew-L4-2I6C_u2CmGBAtuEPk9NnNuEa-mo-JRx-MDzLGHS2zgy6DAnsbF5YbiXSVRwrdNM2EwIz5g1_A2MqrpyBxAUzEc6lVlcSCGEzSXT2nDHHSssZ1aMgQ-UVEVfcpw6X9yqIbfsRnX0V0R_FSUKL2MIH2bddSU3HhmfDUxS_2wdhVbhkZkHyFOlr1GfqssLRtX2yESgTzaGzwOjFXKLoii6cvV6hb4SYl5B_X22j2EtFEdoHI3hbbdLHn6F8TRHVCoP_3vZn2Bvtjg_U2cn89N38IzedOmF72HULNfuA8KkxnzsxeAPa4MOiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Difucosylation+of+chitooligosaccharides+by+eukaryote+and+prokaryote+%CE%B11%2C6-fucosyltransferases&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Ihara%2C+Hideyuki&rft.au=Hanashima%2C+Shinya&rft.au=Tsukamoto%2C+Hiroki&rft.au=Yamaguchi%2C+Yoshiki&rft.date=2013-10-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.volume=1830&rft.issue=10&rft.spage=4482&rft.epage=4490&rft_id=info:doi/10.1016%2Fj.bbagen.2013.05.013&rft.externalDocID=US201600002642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon