In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution
[Display omitted] •1D CdS/2D Ti3C2 MXene Schottky heterojunction was successfully fabricated.•In situ constructed Schottky photocatalyst exhibits enhanced HER performance.•Ultrathin 2D MXene enhances light absorption and accelerates charge transport.•The specific Schottky interface is responsible fo...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 268; p. 118382 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.07.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•1D CdS/2D Ti3C2 MXene Schottky heterojunction was successfully fabricated.•In situ constructed Schottky photocatalyst exhibits enhanced HER performance.•Ultrathin 2D MXene enhances light absorption and accelerates charge transport.•The specific Schottky interface is responsible for the improved HER activity.
Benefiting from excellent metallic conductivity, full-spectrum solar energy absorption and rich active sites on the surface, atomically thin two-dimensional transition metal carbide (2D MXene) shows great promise in improving solar-to-hydrogen efficiency and has drawn intense interest in the field of photocatalysis. However, controllable construction of ultrathin 2D MXene-based heterojunction photocatalysts still remains a significant challenge. Herein, one-dimensional (1D) CdS nanorod/2D MXene nanosheet heterojunctions with well-defined nanostructures and strong interfacial coupling are fabricated by in situ assembling solvothermally-generated CdS nanorods on ultrathin Ti3C2 MXene nanosheets. Due to their specific interface characteristics, 1D/2D Schottky heterojunction is capable of providing accelerated charge separation and a lower Schottky barrier for solar-driven hydrogen evolution from water splitting. As expected, the Schottky-based photocatalyst is 7-fold more active in the illuminated hydrogen evolution reaction (HER) than pristine CdS nanorods, implying the synergistic effects between n-type semiconductor CdS and highly conductive 2D Ti3C2 MXene nanosheets. |
---|---|
AbstractList | [Display omitted]
•1D CdS/2D Ti3C2 MXene Schottky heterojunction was successfully fabricated.•In situ constructed Schottky photocatalyst exhibits enhanced HER performance.•Ultrathin 2D MXene enhances light absorption and accelerates charge transport.•The specific Schottky interface is responsible for the improved HER activity.
Benefiting from excellent metallic conductivity, full-spectrum solar energy absorption and rich active sites on the surface, atomically thin two-dimensional transition metal carbide (2D MXene) shows great promise in improving solar-to-hydrogen efficiency and has drawn intense interest in the field of photocatalysis. However, controllable construction of ultrathin 2D MXene-based heterojunction photocatalysts still remains a significant challenge. Herein, one-dimensional (1D) CdS nanorod/2D MXene nanosheet heterojunctions with well-defined nanostructures and strong interfacial coupling are fabricated by in situ assembling solvothermally-generated CdS nanorods on ultrathin Ti3C2 MXene nanosheets. Due to their specific interface characteristics, 1D/2D Schottky heterojunction is capable of providing accelerated charge separation and a lower Schottky barrier for solar-driven hydrogen evolution from water splitting. As expected, the Schottky-based photocatalyst is 7-fold more active in the illuminated hydrogen evolution reaction (HER) than pristine CdS nanorods, implying the synergistic effects between n-type semiconductor CdS and highly conductive 2D Ti3C2 MXene nanosheets. Benefiting from excellent metallic conductivity, full-spectrum solar energy absorption and rich active sites on the surface, atomically thin two-dimensional transition metal carbide (2D MXene) shows great promise in improving solar-to-hydrogen efficiency and has drawn intense interest in the field of photocatalysis. However, controllable construction of ultrathin 2D MXene-based heterojunction photocatalysts still remains a significant challenge. Herein, one-dimensional (1D) CdS nanorod/2D MXene nanosheet heterojunctions with well-defined nanostructures and strong interfacial coupling are fabricated by in situ assembling solvothermally-generated CdS nanorods on ultrathin Ti3C2 MXene nanosheets. Due to their specific interface characteristics, 1D/2D Schottky heterojunction is capable of providing accelerated charge separation and a lower Schottky barrier for solar-driven hydrogen evolution from water splitting. As expected, the Schottky-based photocatalyst is 7-fold more active in the illuminated hydrogen evolution reaction (HER) than pristine CdS nanorods, implying the synergistic effects between n-type semiconductor CdS and highly conductive 2D Ti3C2 MXene nanosheets. |
ArticleNumber | 118382 |
Author | Yang, Xiaofei Tian, Lin Liu, Qinqin Chen, Zupeng Xu, Haotian Tang, Hua Zou, Zhaoyong Xiao, Rong Zhao, Chengxiao Lin, Zixia |
Author_xml | – sequence: 1 givenname: Rong surname: Xiao fullname: Xiao, Rong organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China – sequence: 2 givenname: Chengxiao surname: Zhao fullname: Zhao, Chengxiao organization: College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, PR China – sequence: 3 givenname: Zhaoyong surname: Zou fullname: Zou, Zhaoyong organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 4 givenname: Zupeng orcidid: 0000-0002-7351-3240 surname: Chen fullname: Chen, Zupeng organization: Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland – sequence: 5 givenname: Lin surname: Tian fullname: Tian, Lin organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China – sequence: 6 givenname: Haotian surname: Xu fullname: Xu, Haotian organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China – sequence: 7 givenname: Hua surname: Tang fullname: Tang, Hua organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China – sequence: 8 givenname: Qinqin surname: Liu fullname: Liu, Qinqin email: qqliu@ujs.edu.cn organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China – sequence: 9 givenname: Zixia surname: Lin fullname: Lin, Zixia organization: Testing Center, Yangzhou University, Yangzhou 225009, PR China – sequence: 10 givenname: Xiaofei orcidid: 0000-0003-1972-4562 surname: Yang fullname: Yang, Xiaofei email: xiaofei.yang@njfu.edu.cn organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China |
BookMark | eNqFkM1u1DAURi1UJKalb9CFJdaZ-i-JwwIJTQutVMSirdSd5djXxGGwB9spmjfgsclMumIBK0vWd47lc4pOQgyA0AUla0poczmu9c7o0q8Zod2aUskle4VWVLa84lLyE7QiHWsqzlv-Bp3mPBJCGGdyhX7fBpx9mbDTffKzxMeAo8P0Cm_sPQ46xBTtJbvCD55vGP7yBAGO13kAKPjeDLGU73s8QIEUxymYo6LEXzpZDGHQwYDFu3kWZ73e7os3eNjbFL9BwPAct9OBeIteO73NcP5ynqHHT9cPm5vq7uvn283Hu8oIQkrlGuFaJqxmgjJNuGau7ZnQtJbC2l6KWve26aQgDembuqfMcdPSlnVOON05fobeLd5dij8nyEWNcUphflIxwet61tZsXr1fVibFnBM4ZXw5xilJ-62iRB3Kq1Et5dWhvFrKz7D4C94l_0On_f-wDwsG8_efPSSVjYdDPZ_AFGWj_7fgD8OgopU |
CitedBy_id | crossref_primary_10_1007_s10562_021_03758_7 crossref_primary_10_1016_j_ccr_2021_214335 crossref_primary_10_1007_s43207_021_00158_w crossref_primary_10_1016_j_bios_2020_112439 crossref_primary_10_1016_j_jallcom_2022_167430 crossref_primary_10_1021_acs_nanolett_3c04959 crossref_primary_10_1002_solr_202300691 crossref_primary_10_1016_j_jcis_2022_05_048 crossref_primary_10_1021_acs_langmuir_3c00223 crossref_primary_10_1002_smm2_1238 crossref_primary_10_1021_acsami_0c15780 crossref_primary_10_1016_j_jcis_2021_09_103 crossref_primary_10_1016_j_snb_2021_131087 crossref_primary_10_1002_smll_202207636 crossref_primary_10_1021_acsomega_4c10929 crossref_primary_10_1016_j_ccr_2024_216226 crossref_primary_10_1002_advs_202207174 crossref_primary_10_1016_j_apsusc_2023_156562 crossref_primary_10_1016_j_diamond_2023_110474 crossref_primary_10_1016_j_ijhydene_2023_03_031 crossref_primary_10_1016_j_cattod_2022_05_036 crossref_primary_10_1007_s11244_024_01993_x crossref_primary_10_1016_S1872_2067_21_63898_6 crossref_primary_10_1016_j_cej_2024_153960 crossref_primary_10_1039_D4SC03663H crossref_primary_10_1016_j_ceramint_2021_12_355 crossref_primary_10_1016_j_jhazmat_2021_127823 crossref_primary_10_1021_acsami_0c15686 crossref_primary_10_1016_j_chemosphere_2021_132923 crossref_primary_10_1016_j_jallcom_2022_167414 crossref_primary_10_1021_acs_inorgchem_2c00045 crossref_primary_10_1016_j_ceramint_2020_11_151 crossref_primary_10_1016_j_psep_2023_09_020 crossref_primary_10_1007_s12598_022_02011_3 crossref_primary_10_1007_s12209_020_00269_1 crossref_primary_10_1016_j_cej_2022_135640 crossref_primary_10_1016_j_jallcom_2024_174798 crossref_primary_10_1080_15435075_2023_2222166 crossref_primary_10_1016_j_jcis_2021_12_053 crossref_primary_10_1002_admi_202202172 crossref_primary_10_1021_acsomega_2c05030 crossref_primary_10_1039_D2NR05983E crossref_primary_10_1016_j_seppur_2025_131496 crossref_primary_10_1016_j_jcis_2024_10_044 crossref_primary_10_1111_jace_17427 crossref_primary_10_1016_j_ijhydene_2022_09_079 crossref_primary_10_1016_j_apcatb_2020_119153 crossref_primary_10_1016_j_mtcomm_2023_105991 crossref_primary_10_1039_D1MH00986A crossref_primary_10_1002_sstr_202100206 crossref_primary_10_1016_j_chemosphere_2022_136461 crossref_primary_10_1016_j_jcis_2022_04_137 crossref_primary_10_1002_tcr_202200097 crossref_primary_10_1016_j_jallcom_2023_170929 crossref_primary_10_1016_j_apsusc_2023_156632 crossref_primary_10_1016_j_cej_2021_130801 crossref_primary_10_1021_acs_langmuir_2c01818 crossref_primary_10_1002_ente_202301520 crossref_primary_10_1016_j_jallcom_2021_159691 crossref_primary_10_1039_D4TA01260G crossref_primary_10_1007_s11237_022_09733_6 crossref_primary_10_1007_s12598_022_02058_2 crossref_primary_10_1016_j_envpol_2024_123522 crossref_primary_10_1021_acssuschemeng_4c01726 crossref_primary_10_1039_D1CY00803J crossref_primary_10_1007_s10661_022_10811_4 crossref_primary_10_1039_D3DT00477E crossref_primary_10_3390_en17133316 crossref_primary_10_1016_j_matdes_2022_111004 crossref_primary_10_1016_j_jhazmat_2021_126944 crossref_primary_10_1016_j_cej_2021_129944 crossref_primary_10_1016_j_jcis_2022_03_124 crossref_primary_10_1016_j_ijhydene_2024_11_353 crossref_primary_10_1039_D2EN00792D crossref_primary_10_3390_catal12121634 crossref_primary_10_1002_ece2_60 crossref_primary_10_1007_s10853_021_06420_0 crossref_primary_10_1016_j_nanoen_2024_109315 crossref_primary_10_1016_j_mssp_2024_108919 crossref_primary_10_1016_j_cej_2021_129831 crossref_primary_10_1016_j_jcis_2020_10_123 crossref_primary_10_1016_j_ijhydene_2022_02_049 crossref_primary_10_1021_acsanm_3c05455 crossref_primary_10_1016_j_cej_2022_135685 crossref_primary_10_1007_s42765_023_00324_1 crossref_primary_10_1021_acs_analchem_1c02284 crossref_primary_10_1016_j_surfin_2021_101192 crossref_primary_10_1016_j_mtphys_2021_100479 crossref_primary_10_1016_j_apsusc_2021_151491 crossref_primary_10_1016_j_cej_2024_156179 crossref_primary_10_1021_acsanm_2c00446 crossref_primary_10_1007_s10562_021_03813_3 crossref_primary_10_1021_acsami_2c21049 crossref_primary_10_1016_j_apcatb_2022_122150 crossref_primary_10_1038_s41560_023_01348_y crossref_primary_10_1016_j_fuel_2024_131159 crossref_primary_10_1016_j_desal_2021_115475 crossref_primary_10_1016_j_jcis_2021_03_083 crossref_primary_10_1007_s10853_023_08849_x crossref_primary_10_1039_D4TA00038B crossref_primary_10_1002_smll_202005051 crossref_primary_10_1016_S1872_2067_21_63844_5 crossref_primary_10_1063_5_0121818 crossref_primary_10_1007_s11426_024_2358_3 crossref_primary_10_1016_j_ijhydene_2023_12_111 crossref_primary_10_3390_nano10040602 crossref_primary_10_1016_j_jcis_2023_06_080 crossref_primary_10_1007_s12598_022_02087_x crossref_primary_10_1016_j_jallcom_2023_172470 crossref_primary_10_1016_j_jcis_2024_07_051 crossref_primary_10_1016_j_ijhydene_2020_04_071 crossref_primary_10_1016_j_apsusc_2023_158104 crossref_primary_10_1016_j_colsurfa_2022_129844 crossref_primary_10_3390_chemistry4040104 crossref_primary_10_1016_j_apsusc_2021_150732 crossref_primary_10_1016_j_cej_2021_130170 crossref_primary_10_1016_j_jcis_2022_04_074 crossref_primary_10_1021_acsaem_1c02821 crossref_primary_10_3390_catal13060934 crossref_primary_10_1002_solr_202300188 crossref_primary_10_1016_j_ijhydene_2024_12_505 crossref_primary_10_1016_j_jhazmat_2023_131965 crossref_primary_10_1016_j_mattod_2024_05_003 crossref_primary_10_1016_j_seppur_2025_132091 crossref_primary_10_1016_j_jmat_2020_10_010 crossref_primary_10_1016_j_matchemphys_2023_127410 crossref_primary_10_1016_j_mtchem_2023_101475 crossref_primary_10_1002_smtd_202101395 crossref_primary_10_1016_j_ccr_2025_216498 crossref_primary_10_1016_j_memsci_2023_121537 crossref_primary_10_1016_j_ceramint_2021_04_197 crossref_primary_10_1039_D1CY00716E crossref_primary_10_1016_j_cej_2021_129072 crossref_primary_10_1002_adfm_202416768 crossref_primary_10_1016_j_cej_2024_152587 crossref_primary_10_3866_PKU_WHXB202306048 crossref_primary_10_1016_j_apcata_2024_119661 crossref_primary_10_1016_j_cej_2021_133348 crossref_primary_10_1016_j_apsusc_2021_150747 crossref_primary_10_1016_j_apcatb_2022_122004 crossref_primary_10_1016_j_susmat_2022_e00439 crossref_primary_10_3390_nano11092236 crossref_primary_10_1016_j_cej_2020_125785 crossref_primary_10_1016_j_cej_2023_144421 crossref_primary_10_1016_j_jece_2024_114483 crossref_primary_10_1016_j_cej_2023_142489 crossref_primary_10_1016_j_ijhydene_2024_07_058 crossref_primary_10_1016_j_rser_2023_113348 crossref_primary_10_1016_j_jpcs_2021_110381 crossref_primary_10_1016_j_ccr_2022_214544 crossref_primary_10_1016_j_surfin_2022_102308 crossref_primary_10_1016_j_apcatb_2023_122653 crossref_primary_10_1016_j_ijhydene_2024_06_130 crossref_primary_10_1016_j_jallcom_2024_174705 crossref_primary_10_1016_j_apcatb_2023_122537 crossref_primary_10_1557_s43578_021_00154_0 crossref_primary_10_1016_j_seppur_2022_120718 crossref_primary_10_1016_j_seppur_2022_121928 crossref_primary_10_1016_j_seppur_2023_124375 crossref_primary_10_1021_acsomega_0c03318 crossref_primary_10_1007_s10562_021_03756_9 crossref_primary_10_1039_D3LF00126A crossref_primary_10_1002_slct_202004735 crossref_primary_10_1016_j_rser_2022_113037 crossref_primary_10_1039_D2TC03946J crossref_primary_10_1016_j_surfin_2022_101787 crossref_primary_10_1016_j_nxmate_2024_100323 crossref_primary_10_1016_j_mtsust_2023_100568 crossref_primary_10_1002_smll_202407863 crossref_primary_10_1016_j_apcatb_2021_120285 crossref_primary_10_1002_adfm_202005223 crossref_primary_10_1016_j_colsurfa_2022_129881 crossref_primary_10_1016_j_jallcom_2023_173362 crossref_primary_10_1016_j_ijhydene_2022_10_024 crossref_primary_10_1088_2053_1583_ac9e66 crossref_primary_10_1016_j_apsusc_2023_157212 crossref_primary_10_1007_s43939_024_00081_x crossref_primary_10_1016_j_ccr_2024_216022 crossref_primary_10_1002_bkcs_12783 crossref_primary_10_1016_j_cej_2021_132381 crossref_primary_10_1016_j_ceramint_2021_04_192 crossref_primary_10_1002_solr_202300025 crossref_primary_10_1016_j_jcis_2020_09_090 crossref_primary_10_1016_j_jcis_2023_10_097 crossref_primary_10_1088_2399_1984_abacab crossref_primary_10_1016_j_apcatb_2023_122635 crossref_primary_10_1016_j_matchemphys_2024_130076 crossref_primary_10_1016_j_ijhydene_2022_03_206 crossref_primary_10_1016_j_jphotochem_2024_115728 crossref_primary_10_1016_j_jcis_2020_08_072 crossref_primary_10_1016_j_apt_2025_104789 crossref_primary_10_1016_j_ccr_2024_216176 crossref_primary_10_1007_s12274_022_4825_1 crossref_primary_10_1016_j_mssp_2022_107044 crossref_primary_10_1016_j_jcis_2021_07_113 crossref_primary_10_1016_j_apsusc_2021_150302 crossref_primary_10_1016_j_jcis_2023_02_137 crossref_primary_10_1016_j_apcatb_2022_121470 crossref_primary_10_1016_j_jallcom_2020_158546 crossref_primary_10_1016_j_carbon_2023_02_022 crossref_primary_10_1016_j_compositesb_2025_112235 crossref_primary_10_1016_j_jallcom_2024_173547 crossref_primary_10_2139_ssrn_4164964 crossref_primary_10_1016_j_surfin_2024_105240 crossref_primary_10_1021_acs_chemrev_2c00426 crossref_primary_10_1002_solr_202100183 crossref_primary_10_1016_j_jcis_2021_09_168 crossref_primary_10_1021_acs_langmuir_2c01887 crossref_primary_10_1016_j_cej_2022_135609 crossref_primary_10_1016_j_ijhydene_2022_03_232 crossref_primary_10_1039_D2TA08983A crossref_primary_10_1016_j_jcis_2021_01_099 crossref_primary_10_1002_advs_202310013 crossref_primary_10_1021_acsomega_2c01674 crossref_primary_10_1016_j_chemosphere_2023_137808 crossref_primary_10_1039_D1NR05799E crossref_primary_10_1016_j_ccr_2025_216460 crossref_primary_10_1016_j_jcis_2024_04_010 crossref_primary_10_1016_j_jallcom_2021_158614 crossref_primary_10_1016_j_jallcom_2023_171170 crossref_primary_10_1002_solr_202100051 crossref_primary_10_1016_j_jallcom_2024_175951 crossref_primary_10_1021_acs_energyfuels_1c00958 crossref_primary_10_1016_j_apsusc_2021_151525 crossref_primary_10_1016_j_jcis_2021_06_007 crossref_primary_10_1016_j_jcis_2023_11_031 crossref_primary_10_1016_j_mseb_2023_116413 crossref_primary_10_1007_s13738_021_02345_2 crossref_primary_10_1016_j_colsurfa_2022_129315 crossref_primary_10_1016_j_ijhydene_2021_11_027 crossref_primary_10_1039_D0CE01158D crossref_primary_10_1016_j_jmst_2021_10_029 crossref_primary_10_1016_j_solidstatesciences_2020_106350 crossref_primary_10_1016_j_ijhydene_2021_11_026 crossref_primary_10_1016_j_materresbull_2023_112536 crossref_primary_10_1021_acsaem_1c02775 crossref_primary_10_1016_j_cej_2022_137369 crossref_primary_10_1016_j_jphotochem_2024_116030 crossref_primary_10_1016_j_cej_2022_137488 crossref_primary_10_1002_admi_202200771 crossref_primary_10_1016_j_fuel_2022_123307 crossref_primary_10_1021_acsnano_2c04750 crossref_primary_10_1016_j_ijhydene_2022_12_239 crossref_primary_10_1002_admi_202201627 crossref_primary_10_1016_j_surfin_2024_105315 crossref_primary_10_1016_j_jwpe_2024_106229 crossref_primary_10_1016_j_jece_2025_115694 crossref_primary_10_1016_j_jallcom_2023_171309 crossref_primary_10_1002_aenm_202404963 crossref_primary_10_1002_smll_202201896 crossref_primary_10_1016_S1872_2067_20_63698_1 crossref_primary_10_1039_D2CS00698G crossref_primary_10_1016_j_ijhydene_2023_06_009 crossref_primary_10_1016_j_jcis_2022_10_079 crossref_primary_10_1016_j_mssp_2024_108288 crossref_primary_10_1016_j_seppur_2021_118516 crossref_primary_10_1016_j_chemosphere_2022_134862 crossref_primary_10_1016_j_colsurfa_2024_133143 crossref_primary_10_1016_j_jece_2023_111649 crossref_primary_10_1002_adfm_202005677 crossref_primary_10_1021_acsami_2c17366 crossref_primary_10_1039_D0TA06275H crossref_primary_10_1016_j_cej_2021_129344 crossref_primary_10_1016_j_mssp_2022_106539 crossref_primary_10_1016_j_jphotochem_2022_113792 crossref_primary_10_1016_j_jcis_2021_07_041 crossref_primary_10_1016_j_chemosphere_2021_130086 crossref_primary_10_1002_eom2_12097 crossref_primary_10_1016_j_ceramint_2022_01_224 crossref_primary_10_1016_j_jcis_2023_03_015 crossref_primary_10_1016_j_jallcom_2021_161035 crossref_primary_10_1016_j_jcat_2021_03_018 crossref_primary_10_1021_acsnano_2c12270 crossref_primary_10_1007_s10853_022_07980_5 crossref_primary_10_1007_s13762_025_06417_1 crossref_primary_10_1039_D4SE01207K crossref_primary_10_1016_j_cej_2021_130340 crossref_primary_10_1039_D4CY00882K crossref_primary_10_1002_smll_202405378 crossref_primary_10_1016_j_seppur_2024_128484 crossref_primary_10_1002_smll_202303318 crossref_primary_10_3389_fchem_2021_655583 crossref_primary_10_1016_j_jcis_2020_05_025 crossref_primary_10_1016_j_inoche_2024_112113 crossref_primary_10_2139_ssrn_4095300 crossref_primary_10_1063_5_0055711 crossref_primary_10_1016_j_snb_2024_135730 crossref_primary_10_1039_D2DT03813G crossref_primary_10_2139_ssrn_4108629 crossref_primary_10_2139_ssrn_4070126 crossref_primary_10_3390_nano12101697 crossref_primary_10_1016_j_apsusc_2024_159672 crossref_primary_10_1039_D1NJ05786C crossref_primary_10_1002_admt_202301213 crossref_primary_10_1016_j_cej_2024_154351 crossref_primary_10_1038_s41699_021_00239_8 crossref_primary_10_1016_j_envpol_2022_120436 crossref_primary_10_1016_j_flatc_2025_100825 crossref_primary_10_1039_D3CP01758C crossref_primary_10_1016_j_cej_2021_132401 crossref_primary_10_1016_j_surfin_2021_101312 crossref_primary_10_1016_j_jcat_2021_09_001 crossref_primary_10_3389_fchem_2021_736369 crossref_primary_10_1039_D1NR02224E crossref_primary_10_1016_j_cej_2020_128099 crossref_primary_10_1021_acs_energyfuels_3c03287 crossref_primary_10_1016_j_jhazmat_2021_127128 crossref_primary_10_1039_D1SE00670C crossref_primary_10_1016_j_apsusc_2024_160979 crossref_primary_10_1002_cctc_202401261 crossref_primary_10_1016_j_jcis_2021_06_049 crossref_primary_10_3390_ijms23179756 crossref_primary_10_1016_j_cej_2024_156762 crossref_primary_10_1016_j_apsusc_2020_147247 crossref_primary_10_1021_acsami_0c12905 crossref_primary_10_1016_j_pmatsci_2023_101105 crossref_primary_10_1021_acsami_2c13198 crossref_primary_10_1039_D0NR09177D crossref_primary_10_1016_j_dyepig_2020_108568 crossref_primary_10_1016_j_cej_2023_144490 crossref_primary_10_1016_j_ijleo_2023_171577 crossref_primary_10_1016_j_jcis_2021_07_097 crossref_primary_10_1021_acsmaterialslett_1c00673 crossref_primary_10_1016_j_jssc_2021_122750 crossref_primary_10_1016_j_fuel_2023_128460 crossref_primary_10_1016_j_jmst_2022_12_069 crossref_primary_10_1016_j_flatc_2024_100620 crossref_primary_10_1016_S1872_2067_20_63784_6 crossref_primary_10_1021_acs_inorgchem_3c03206 crossref_primary_10_1016_j_cej_2020_126961 crossref_primary_10_1016_j_mtcata_2024_100054 crossref_primary_10_1016_j_apcatb_2020_119867 crossref_primary_10_1016_j_jenvman_2023_117895 crossref_primary_10_1016_j_jece_2022_108010 crossref_primary_10_1007_s12209_021_00291_x crossref_primary_10_1016_j_aca_2023_341396 crossref_primary_10_1016_j_ijhydene_2023_09_199 crossref_primary_10_3390_nano12101761 crossref_primary_10_1007_s10853_021_06428_6 crossref_primary_10_1007_s11356_021_16942_4 crossref_primary_10_1016_j_fuel_2022_125905 crossref_primary_10_3390_nano14100896 crossref_primary_10_1002_anie_202306305 crossref_primary_10_1016_j_ijhydene_2022_05_204 crossref_primary_10_1016_j_jacomc_2024_100043 crossref_primary_10_1039_D2MA00191H crossref_primary_10_3866_PKU_WHXB202402016 crossref_primary_10_1016_j_inoche_2024_112317 crossref_primary_10_1016_j_jmst_2024_09_044 crossref_primary_10_1016_j_jallcom_2024_178399 crossref_primary_10_1016_j_pecs_2023_101097 crossref_primary_10_1016_j_seppur_2021_119863 crossref_primary_10_1016_j_cej_2020_125868 crossref_primary_10_1039_D1CE01468D crossref_primary_10_1016_j_ijhydene_2021_12_180 crossref_primary_10_1016_j_seppur_2024_127461 crossref_primary_10_1039_D2NR05718B crossref_primary_10_3390_nano12030542 crossref_primary_10_1016_j_jcis_2023_09_137 crossref_primary_10_1002_ange_202306305 crossref_primary_10_1016_S1872_2067_23_64542_5 crossref_primary_10_1016_j_jechem_2022_09_046 crossref_primary_10_1021_acsami_3c10022 crossref_primary_10_1021_acscatal_2c04632 crossref_primary_10_1016_j_apcatb_2023_123073 crossref_primary_10_1016_j_apsusc_2020_146748 crossref_primary_10_1016_j_est_2024_112038 crossref_primary_10_1007_s00216_021_03870_y crossref_primary_10_1007_s12274_021_3503_z crossref_primary_10_1021_acs_energyfuels_1c00204 crossref_primary_10_1088_1361_648X_ad172e crossref_primary_10_1016_j_apsusc_2022_156305 crossref_primary_10_1016_j_jmst_2023_07_010 crossref_primary_10_1016_j_cej_2021_130719 crossref_primary_10_1039_D4TA06164K crossref_primary_10_1002_adfm_202314150 crossref_primary_10_1016_j_seppur_2022_121221 crossref_primary_10_1016_S1872_2067_21_64030_5 crossref_primary_10_1007_s40843_020_1456_x crossref_primary_10_1016_j_apsusc_2022_154001 crossref_primary_10_1016_j_jece_2024_113813 crossref_primary_10_1016_j_renene_2021_12_065 crossref_primary_10_1016_j_snb_2021_130838 crossref_primary_10_1016_j_matlet_2024_135925 crossref_primary_10_1021_acscatal_1c02018 crossref_primary_10_1016_j_jallcom_2024_177753 crossref_primary_10_1039_C9TA12799B crossref_primary_10_1039_D0NA00848F crossref_primary_10_1016_j_scitotenv_2024_172816 crossref_primary_10_1016_j_surfin_2025_106187 crossref_primary_10_1016_j_jmst_2021_11_003 crossref_primary_10_1016_j_mcat_2023_113085 crossref_primary_10_1016_j_ceramint_2021_06_247 crossref_primary_10_1002_cctc_202000448 crossref_primary_10_1002_smll_202205767 crossref_primary_10_1016_j_jallcom_2021_160223 crossref_primary_10_1016_j_mtphys_2020_100261 crossref_primary_10_1016_j_seppur_2022_121254 crossref_primary_10_1016_j_ceramint_2021_06_249 crossref_primary_10_1016_j_ijhydene_2022_07_265 crossref_primary_10_1016_j_seppur_2024_129064 crossref_primary_10_1021_acsaem_1c02241 crossref_primary_10_1016_j_vacuum_2025_114016 crossref_primary_10_1016_j_mser_2024_100894 crossref_primary_10_1002_smll_202004980 crossref_primary_10_1016_j_jallcom_2021_162637 crossref_primary_10_1002_adsu_202100507 crossref_primary_10_1016_j_cej_2020_127177 crossref_primary_10_4028_p_e8Dsn5 crossref_primary_10_1021_acsanm_2c04681 crossref_primary_10_35848_1882_0786_ac23e7 crossref_primary_10_1002_slct_202303732 crossref_primary_10_1016_j_mssp_2025_109379 crossref_primary_10_1016_j_jece_2024_112748 crossref_primary_10_1039_D1CY00239B crossref_primary_10_1016_j_cej_2025_159946 crossref_primary_10_1039_D2TA06609B crossref_primary_10_6023_A22070304 crossref_primary_10_1016_j_dyepig_2021_109583 crossref_primary_10_1002_solr_202200587 crossref_primary_10_1016_j_mssp_2022_106835 crossref_primary_10_1016_j_nanoen_2023_108228 crossref_primary_10_1016_j_mtener_2020_100521 crossref_primary_10_1016_j_nanoms_2022_10_001 crossref_primary_10_1088_1674_4926_42_9_092601 crossref_primary_10_1016_j_cherd_2023_04_048 crossref_primary_10_1016_j_cej_2021_130767 crossref_primary_10_3390_nano11020320 crossref_primary_10_1016_j_cej_2021_128446 crossref_primary_10_1016_j_apsusc_2021_152033 crossref_primary_10_3390_molecules30030487 crossref_primary_10_1021_acsami_2c03940 crossref_primary_10_1021_acs_energyfuels_1c01340 crossref_primary_10_1016_j_apcatb_2020_119688 crossref_primary_10_1039_D3TC01762A crossref_primary_10_1002_adpr_202300224 crossref_primary_10_1016_j_mset_2023_10_002 crossref_primary_10_1039_D0MA00938E crossref_primary_10_1002_eem2_12414 crossref_primary_10_1002_smtd_202201013 crossref_primary_10_1002_smtd_202300627 crossref_primary_10_1016_j_jece_2022_109191 crossref_primary_10_1002_solr_202100863 crossref_primary_10_1016_j_crcon_2021_05_002 crossref_primary_10_1016_j_colsurfa_2023_131261 crossref_primary_10_1002_adsu_202400321 crossref_primary_10_1016_j_ijhydene_2022_09_014 crossref_primary_10_1039_D3QM00566F crossref_primary_10_1016_j_jallcom_2023_172721 crossref_primary_10_1016_j_cej_2022_138425 crossref_primary_10_1016_j_jallcom_2021_162329 crossref_primary_10_3390_chemistry5010036 crossref_primary_10_1039_D4DT01031K crossref_primary_10_1016_j_jece_2021_106942 crossref_primary_10_1021_acs_energyfuels_2c01137 crossref_primary_10_2139_ssrn_4176026 crossref_primary_10_1007_s12274_021_3878_x crossref_primary_10_1016_j_colsurfa_2021_126783 crossref_primary_10_1016_j_jcis_2020_10_088 crossref_primary_10_1016_j_ica_2022_121085 crossref_primary_10_1039_D1NR01401C crossref_primary_10_26599_POM_2023_9140030 crossref_primary_10_1021_acs_jpcc_1c00017 crossref_primary_10_1002_adma_202005922 crossref_primary_10_1016_j_ccr_2024_215753 crossref_primary_10_1002_solr_202100603 crossref_primary_10_1016_j_surfin_2024_104967 crossref_primary_10_1039_D0CY02212H crossref_primary_10_1016_S1872_2067_21_63883_4 crossref_primary_10_1016_j_apsusc_2020_148618 crossref_primary_10_1039_D3QM00216K crossref_primary_10_1021_acsanm_0c02481 crossref_primary_10_1016_j_cej_2022_138445 crossref_primary_10_1016_j_gee_2022_03_007 crossref_primary_10_1016_j_ijhydene_2023_01_372 crossref_primary_10_1007_s11270_024_06975_z crossref_primary_10_1080_10643389_2022_2101857 crossref_primary_10_1002_asia_202100729 crossref_primary_10_1016_j_chemosphere_2023_139550 crossref_primary_10_1016_j_cis_2023_103027 crossref_primary_10_1016_j_seppur_2023_123403 |
Cites_doi | 10.1021/acscatal.8b01830 10.1021/acsami.6b02765 10.1038/s41598-017-15233-8 10.1016/j.apcatb.2018.05.070 10.1016/j.cej.2018.03.155 10.1021/acs.chemmater.6b04830 10.1021/ja512820k 10.1016/j.apcatb.2018.08.053 10.1039/C8TA00671G 10.1002/aenm.201701503 10.1002/smll.201500926 10.1038/ncomms13907 10.1039/C7EE03640J 10.1002/adfm.201800136 10.1002/ange.201806862 10.1021/acs.jpclett.9b00736 10.1002/chem.201803621 10.1039/C4CS00126E 10.1002/adma.201304138 10.1007/s12274-017-1473-y 10.1016/S1872-2067(17)62972-3 10.1039/C8TA02706D 10.1002/admi.201700577 10.1021/acsnano.6b08415 10.1039/C6TA04628B 10.1016/j.cej.2018.05.148 10.1021/acs.chemmater.7b02847 10.1039/C7EN00063D 10.1016/j.apcatb.2018.10.019 10.1016/j.apcatb.2014.03.013 10.1016/j.apmt.2018.09.004 10.1039/c3ta14493c 10.1021/acsami.9b01421 10.1016/j.apcatb.2016.09.023 10.1039/C4TA04461D 10.1039/C8TA08374F 10.1002/adma.201601047 10.1002/adma.201702367 10.1073/pnas.1414215111 10.1002/adma.201703284 10.1016/j.apsusc.2018.11.010 10.1016/j.apcatb.2018.08.048 10.1016/j.apsusc.2018.12.071 10.1039/C7TA03557H 10.1021/acsami.5b11973 10.1002/anie.201609306 10.1016/j.apcatb.2018.03.014 10.1038/s41929-019-0242-6 10.1039/C7CP06568J 10.1016/j.chempr.2018.08.037 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Jul 5, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Jul 5, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2019.118382 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2019_118382 S0926337319311282 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-f64f724da2412a03a2f7b24a1584ddb845abd6984060b65b12f3c71729f4fa9f3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 08:17:36 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Tue Jul 01 04:35:01 EDT 2025 Sat Mar 02 16:00:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Schottky heterojunction CdS Photocatalytic hydrogen evolution MXene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-f64f724da2412a03a2f7b24a1584ddb845abd6984060b65b12f3c71729f4fa9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7351-3240 0000-0003-1972-4562 |
PQID | 2435541252 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2435541252 crossref_citationtrail_10_1016_j_apcatb_2019_118382 crossref_primary_10_1016_j_apcatb_2019_118382 elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118382 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-05 |
PublicationDateYYYYMMDD | 2020-07-05 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Fu, Yu, Jiang, Cheng (bib0045) 2018; 8 Yuan, Chen, Yu, Zou (bib0065) 2018; 6 Wang, Zhu, Liu, Zhang, Yu, Zhou (bib0095) 2019; 243 Cao, Shen, Tong, Fu, Yu (bib0130) 2018; 28 Wang, Zhao, Cao, Yan, Zhu, Tao, Chen, Zhang, Li, Phillips (bib0035) 2019; 11 Cheng, Xiang, Liao, Zhang (bib0070) 2018; 11 Liu, Zhang, Sun, Liu, Liu, Zhou, Yu (bib0150) 2017; 29 Li, Chen, Li, Xie, Dong, Kang, Bao, Lan (bib0110) 2016; 8 Peng, Yang, Li, Yu, Wang, Peng (bib0250) 2016; 8 Wang, Chai, Ma, Chen, Zheng, Huang (bib0235) 2017; 10 Zhang, Zhang, Li, Zhao, Wu, Zhou (bib0120) 2017; 5 Han, Liu, Zhang, Xu, Tang (bib0225) 2017; 202 Wang, Li, Xia, An, Zhao, Wong (bib0010) 2017; 4 Naguib, Mochalin, Barsoum, Gogotsi (bib0125) 2014; 26 Cai, Wang, Liu, Zhang, Dong, Chen, Yi, Yuan, Xia, Liu, Luo (bib0195) 2018; 239 Yu, Jin, Cheng, Jaroniec (bib0080) 2014; 2 Wei, Huang, Gu, Wang, Zeng, Chen, Liu (bib0025) 2018; 231 Feng, Chen, Hou, Li, Li, Xu, Sun, Zeng (bib0240) 2018; 345 Wang, Shen, Gao, Wang, Yu, Chen (bib0140) 2015; 137 Li, Han, Chen, Li, Xie, Mao, Bu, Cao, Dong, Feng, Lan (bib0105) 2016; 28 Ling, Ren, Zhao, Yang, Giammarco, Qiu, Barsoum, Gogotsi (bib0170) 2014; 111 Wang, Wu, Yuan, Zeng, Zhou, Wang, Chew (bib0210) 2018; 30 Cheng, Li, Zhang, Xiang (bib0205) 2019 Lin, Wang, Gao, Chen, Shi (bib0115) 2018; 30 Peng, Chen, Ong, Zhao, Li (bib0155) 2019; 5 Yu, Yu, Zhou, Xiao, Cheng (bib0085) 2014; 156 Zhu, Xie, Liu (bib0190) 2018; 6 Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (bib0230) 2017; 29 Di, Cheng, Ho, Yu, Tang (bib0245) 2019; 470 Zhai, Liu, Hu, Bao, Lan (bib0100) 2018; 24 Li, Zhang, Shi, Wang (bib0165) 2017; 11 Maleski, Mochalin, Gogotsi (bib0215) 2017; 29 Wang, Zhu, Cao, Tao, Li, Pan, Phillips, Zhang, Chen, Li, Li (bib0030) 2018; 29 Ding, Wei, Wang, Chen, Caro, Wang (bib0145) 2017; 56 Ran, Gao, Li, Ma, Du, Qiao (bib0185) 2017; 8 Hisatomi, Domen (bib0005) 2019; 2 Yuan, Cheng, Zhang, Wu, Lv, Chai, Guo, Zheng (bib0255) 2017; 4 Jin, Yu, Guo, Cui, Ho (bib0050) 2015; 11 Shahzad, Rasool, Nawaz, Miran, Jang, Moztahida, Mahmoud, Lee (bib0200) 2018; 349 Vamvasakis, Papadas, Tzanoudakis, Drivas, Choulis, Kennou, Armatas (bib0090) 2018; 8 Ju, Dai, Wei, Li, Liang, Huang (bib0075) 2018; 20 Sun, Jin, Sun, Meng, Gao, Dall’Agnese, Chen, Wang (bib0175) 2018; 6 Wang, Chen, Wang, Hou, Wang, Ao (bib0015) 2018; 239 Xie, Zhang, Tang, Anpo, Xu (bib0180) 2018; 237 Feng, Chen, Hou, Li, Li, Xu, Sun, Zeng (bib0220) 2018; 345 Zhang, Sheng, Yang, Sun, Tang, Lu, Dong, Shen, Liu, Lan (bib0060) 2018; 130 Li, Yu, Low, Fang, Xiao, Chen (bib0055) 2015; 3 Xiong, Wang, Yang, Liu, Zhang, Jin, Xu (bib0160) 2017; 7 Zhang, Yang, Zuo, Tang, Yang, Li (bib0135) 2016; 4 Chen, Wang, Chen, Wang, Ao (bib0020) 2019; 473 Wang, Zhang, Chen, Hu, Li, Wang, Liu, Wang (bib0040) 2014; 43 Li, Deng, Tian, Liang, Cui (bib0260) 2018; 13 Chen, Feng, Li, Sun, Hou, Li, Xu, Sun, Bu (bib0265) 2018; 39 Wei (10.1016/j.apcatb.2019.118382_bib0025) 2018; 231 Li (10.1016/j.apcatb.2019.118382_bib0110) 2016; 8 Cheng (10.1016/j.apcatb.2019.118382_bib0070) 2018; 11 Shahzad (10.1016/j.apcatb.2019.118382_bib0200) 2018; 349 Fu (10.1016/j.apcatb.2019.118382_bib0045) 2018; 8 Zhang (10.1016/j.apcatb.2019.118382_bib0120) 2017; 5 Wang (10.1016/j.apcatb.2019.118382_bib0210) 2018; 30 Peng (10.1016/j.apcatb.2019.118382_bib0250) 2016; 8 Ling (10.1016/j.apcatb.2019.118382_bib0170) 2014; 111 Wang (10.1016/j.apcatb.2019.118382_bib0140) 2015; 137 Jin (10.1016/j.apcatb.2019.118382_bib0050) 2015; 11 Yuan (10.1016/j.apcatb.2019.118382_bib0065) 2018; 6 Cai (10.1016/j.apcatb.2019.118382_bib0195) 2018; 239 Maleski (10.1016/j.apcatb.2019.118382_bib0215) 2017; 29 Peng (10.1016/j.apcatb.2019.118382_bib0155) 2019; 5 Xiong (10.1016/j.apcatb.2019.118382_bib0160) 2017; 7 Li (10.1016/j.apcatb.2019.118382_bib0260) 2018; 13 Zhang (10.1016/j.apcatb.2019.118382_bib0060) 2018; 130 Xie (10.1016/j.apcatb.2019.118382_bib0180) 2018; 237 Zhang (10.1016/j.apcatb.2019.118382_bib0135) 2016; 4 Feng (10.1016/j.apcatb.2019.118382_bib0240) 2018; 345 Feng (10.1016/j.apcatb.2019.118382_bib0220) 2018; 345 Ding (10.1016/j.apcatb.2019.118382_bib0145) 2017; 56 Cao (10.1016/j.apcatb.2019.118382_bib0130) 2018; 28 Yuan (10.1016/j.apcatb.2019.118382_bib0255) 2017; 4 Ran (10.1016/j.apcatb.2019.118382_bib0185) 2017; 8 Wang (10.1016/j.apcatb.2019.118382_bib0030) 2018; 29 Li (10.1016/j.apcatb.2019.118382_bib0165) 2017; 11 Naguib (10.1016/j.apcatb.2019.118382_bib0125) 2014; 26 Wang (10.1016/j.apcatb.2019.118382_bib0015) 2018; 239 Lin (10.1016/j.apcatb.2019.118382_bib0115) 2018; 30 Zhai (10.1016/j.apcatb.2019.118382_bib0100) 2018; 24 Wang (10.1016/j.apcatb.2019.118382_bib0010) 2017; 4 Di (10.1016/j.apcatb.2019.118382_bib0245) 2019; 470 Wang (10.1016/j.apcatb.2019.118382_bib0095) 2019; 243 Li (10.1016/j.apcatb.2019.118382_bib0105) 2016; 28 Yu (10.1016/j.apcatb.2019.118382_bib0080) 2014; 2 Wang (10.1016/j.apcatb.2019.118382_bib0040) 2014; 43 Sun (10.1016/j.apcatb.2019.118382_bib0175) 2018; 6 Zhu (10.1016/j.apcatb.2019.118382_bib0190) 2018; 6 Alhabeb (10.1016/j.apcatb.2019.118382_bib0230) 2017; 29 Wang (10.1016/j.apcatb.2019.118382_bib0035) 2019; 11 Li (10.1016/j.apcatb.2019.118382_bib0055) 2015; 3 Wang (10.1016/j.apcatb.2019.118382_bib0235) 2017; 10 Chen (10.1016/j.apcatb.2019.118382_bib0265) 2018; 39 Cheng (10.1016/j.apcatb.2019.118382_bib0205) 2019 Han (10.1016/j.apcatb.2019.118382_bib0225) 2017; 202 Vamvasakis (10.1016/j.apcatb.2019.118382_bib0090) 2018; 8 Liu (10.1016/j.apcatb.2019.118382_bib0150) 2017; 29 Chen (10.1016/j.apcatb.2019.118382_bib0020) 2019; 473 Ju (10.1016/j.apcatb.2019.118382_bib0075) 2018; 20 Hisatomi (10.1016/j.apcatb.2019.118382_bib0005) 2019; 2 Yu (10.1016/j.apcatb.2019.118382_bib0085) 2014; 156 |
References_xml | – volume: 231 start-page: 101 year: 2018 end-page: 107 ident: bib0025 article-title: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production publication-title: Appl Catal B-Environ – volume: 349 start-page: 748 year: 2018 end-page: 755 ident: bib0200 article-title: Heterostructural TiO publication-title: Chem Eng J – volume: 470 start-page: 196 year: 2019 end-page: 204 ident: bib0245 article-title: Hierarchically CdS–Ag publication-title: Appl Surf Sci – volume: 4 start-page: 782 year: 2017 end-page: 799 ident: bib0010 article-title: Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges publication-title: Environ Sci-Nano – volume: 10 start-page: 2699 year: 2017 end-page: 2711 ident: bib0235 article-title: Multidimensional CdS nanowire/CdIn publication-title: Nano Res – volume: 6 start-page: 11606 year: 2018 end-page: 11630 ident: bib0065 article-title: Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production publication-title: J Mater Chem A – volume: 11 start-page: 16527 year: 2019 end-page: 16537 ident: bib0035 article-title: Copper phosphide enhanced lower charge trapping occurrence in graphitic-C publication-title: ACS Appl Mater Interfaces – volume: 4 year: 2017 ident: bib0255 article-title: 2D-layered carbon/TiO publication-title: Adv Mater Interfaces – volume: 473 start-page: 11 year: 2019 end-page: 19 ident: bib0020 article-title: Synergetic effect of MoS publication-title: Appl Surf Sci – volume: 7 start-page: 15095 year: 2017 ident: bib0160 article-title: Functional group effects on the photoelectronic properties of MXene (Sc publication-title: Sci Rep – volume: 11 start-page: 3752 year: 2017 end-page: 3759 ident: bib0165 article-title: MXene Ti publication-title: ACS Nano – volume: 30 year: 2018 ident: bib0210 article-title: Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges publication-title: Adv Mater – volume: 39 start-page: 841 year: 2018 end-page: 848 ident: bib0265 article-title: Enhanced visible-light-driven photocatalytic activities of 0D/1D heterojunction carbon quantum dot modified CdS nanowires publication-title: Chinese J Catal – volume: 56 start-page: 1825 year: 2017 end-page: 1829 ident: bib0145 article-title: A two-dimensional lamellar membrane: MXene nanosheet stacks publication-title: Angew Chem Int Ed – volume: 8 start-page: 8726 year: 2018 end-page: 8738 ident: bib0090 article-title: Visible-light photocatalytic H publication-title: ACS Catal – volume: 11 start-page: 1362 year: 2018 end-page: 1391 ident: bib0070 article-title: CdS-based photocatalysts publication-title: Energy Environ Sci – volume: 137 start-page: 2715 year: 2015 end-page: 2721 ident: bib0140 article-title: Atomic-scale recognition of surface structure and intercalation mechanism of Ti publication-title: J Am Chem Soc – volume: 345 start-page: 404 year: 2018 end-page: 413 ident: bib0240 article-title: Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS publication-title: Chem Eng J – volume: 29 year: 2018 ident: bib0030 article-title: Edge‐enriched ultrathin MoS publication-title: Adv Funct Mater – volume: 43 start-page: 5234 year: 2014 end-page: 5244 ident: bib0040 article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances publication-title: Chem Soc Rev – volume: 6 start-page: 9124 year: 2018 end-page: 9131 ident: bib0175 article-title: g-C publication-title: J Mater Chem A – volume: 2 start-page: 3407 year: 2014 end-page: 3416 ident: bib0080 article-title: A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel publication-title: J Mater Chem A – volume: 8 year: 2018 ident: bib0045 article-title: g-C publication-title: Adv Energy Mater – volume: 29 start-page: 1632 year: 2017 end-page: 1640 ident: bib0215 article-title: Dispersions of two-dimensional titanium carbide MXene in organic solvents publication-title: Chem Mater – volume: 29 start-page: 7633 year: 2017 end-page: 7644 ident: bib0230 article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti publication-title: Chem Mater – volume: 29 year: 2017 ident: bib0150 article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding publication-title: Adv Mater – volume: 8 year: 2017 ident: bib0185 article-title: Ti publication-title: Nat Commun – volume: 2 start-page: 387 year: 2019 end-page: 399 ident: bib0005 article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts publication-title: Nat Catal – volume: 345 start-page: 404 year: 2018 end-page: 413 ident: bib0220 article-title: Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS publication-title: Chem Eng J – volume: 11 start-page: 5262 year: 2015 end-page: 5271 ident: bib0050 article-title: A hierarchical Z-Scheme CdS-WO publication-title: Small – volume: 239 start-page: 578 year: 2018 end-page: 585 ident: bib0015 article-title: Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C publication-title: Appl Catal B-Environ – volume: 243 start-page: 19 year: 2019 end-page: 26 ident: bib0095 article-title: Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H publication-title: Appl Catal B-Environ – volume: 8 start-page: 14535 year: 2016 end-page: 14541 ident: bib0110 article-title: Engineering Zn publication-title: ACS Appl Mater Interfaces – volume: 28 start-page: 8906 year: 2016 end-page: 8911 ident: bib0105 article-title: Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H publication-title: Adv Mater – volume: 5 start-page: 18 year: 2019 end-page: 50 ident: bib0155 article-title: Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis publication-title: Chem – volume: 8 start-page: 6051 year: 2016 end-page: 6060 ident: bib0250 article-title: Hybrids of two-dimensional Ti publication-title: ACS Appl Mater Interfaces – volume: 202 start-page: 298 year: 2017 end-page: 304 ident: bib0225 article-title: One-dimensional CdS@MoS publication-title: Appl Catal B-Environ – volume: 3 start-page: 2485 year: 2015 end-page: 2534 ident: bib0055 article-title: Engineering heterogeneous semiconductors for solar water splitting publication-title: J Mater Chem A – volume: 4 start-page: 12913 year: 2016 end-page: 12920 ident: bib0135 article-title: Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M publication-title: J Mater Chem A – volume: 24 start-page: 15930 year: 2018 end-page: 15936 ident: bib0100 article-title: Polyoxometalate-decorated g-C publication-title: Chem Eur J – volume: 111 start-page: 16676 year: 2014 end-page: 16681 ident: bib0170 article-title: Flexible and conductive MXene films and nanocomposites with high capacitance publication-title: Pro Natl Acad Sci USA – volume: 6 start-page: 21255 year: 2018 end-page: 21260 ident: bib0190 article-title: Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions publication-title: J Mater Chem A – start-page: 3488 year: 2019 end-page: 3494 ident: bib0205 article-title: Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation publication-title: J Phys Chem Lett – volume: 156 start-page: 184 year: 2014 end-page: 191 ident: bib0085 article-title: Morphology-dependent photocatalytic H publication-title: Appl Catal B-Environ – volume: 5 start-page: 12899 year: 2017 end-page: 12903 ident: bib0120 article-title: Ti publication-title: J Mater Chem A – volume: 30 year: 2018 ident: bib0115 article-title: Theranostic 2D tantalum carbide (MXene) publication-title: Adv Mater – volume: 130 start-page: 12282 year: 2018 end-page: 12286 ident: bib0060 article-title: Rational design MOF/COF hybrid materials for photocatalytic H publication-title: Angew Chem Int Ed – volume: 13 start-page: 217 year: 2018 end-page: 227 ident: bib0260 article-title: Ti publication-title: Appl Mater Today – volume: 239 start-page: 545 year: 2018 end-page: 554 ident: bib0195 article-title: Ag publication-title: Appl Catal B-Environ – volume: 26 start-page: 992 year: 2014 end-page: 1005 ident: bib0125 article-title: 25th anniversary article: MXenes: A new family of two-dimensional materials publication-title: Adv Mater – volume: 28 year: 2018 ident: bib0130 article-title: 2D/2D heterojunction of ultrathin MXene/Bi publication-title: Adv Funct Mater – volume: 20 start-page: 1904 year: 2018 end-page: 1913 ident: bib0075 article-title: One-dimensional cadmium sulphide nanotubes for photocatalytic water splitting publication-title: Phys Chem Chem Phys – volume: 237 start-page: 43 year: 2018 end-page: 49 ident: bib0180 article-title: Ti publication-title: Appl Catal B-Environ – volume: 8 start-page: 8726 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0090 article-title: Visible-light photocatalytic H2 production activity of beta-Ni(OH)2-modified CdS mesoporous nanoheterojunction networks publication-title: ACS Catal doi: 10.1021/acscatal.8b01830 – volume: 8 start-page: 14535 year: 2016 ident: 10.1016/j.apcatb.2019.118382_bib0110 article-title: Engineering Zn1-xCdxS/CdS heterostructures with enhanced photocatalytic activity publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b02765 – volume: 7 start-page: 15095 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0160 article-title: Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities publication-title: Sci Rep doi: 10.1038/s41598-017-15233-8 – volume: 237 start-page: 43 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0180 article-title: Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion publication-title: Appl Catal B-Environ doi: 10.1016/j.apcatb.2018.05.070 – volume: 345 start-page: 404 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0240 article-title: Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light publication-title: Chem Eng J doi: 10.1016/j.cej.2018.03.155 – volume: 29 start-page: 1632 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0215 article-title: Dispersions of two-dimensional titanium carbide MXene in organic solvents publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b04830 – volume: 137 start-page: 2715 year: 2015 ident: 10.1016/j.apcatb.2019.118382_bib0140 article-title: Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X publication-title: J Am Chem Soc doi: 10.1021/ja512820k – volume: 239 start-page: 545 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0195 article-title: Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance publication-title: Appl Catal B-Environ doi: 10.1016/j.apcatb.2018.08.053 – volume: 6 start-page: 11606 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0065 article-title: Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production publication-title: J Mater Chem A doi: 10.1039/C8TA00671G – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0045 article-title: g-C3N4-based heterostructured photocatalysts publication-title: Adv Energy Mater doi: 10.1002/aenm.201701503 – volume: 11 start-page: 5262 year: 2015 ident: 10.1016/j.apcatb.2019.118382_bib0050 article-title: A hierarchical Z-Scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity publication-title: Small doi: 10.1002/smll.201500926 – volume: 8 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0185 article-title: Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production publication-title: Nat Commun doi: 10.1038/ncomms13907 – volume: 11 start-page: 1362 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0070 article-title: CdS-based photocatalysts publication-title: Energy Environ Sci doi: 10.1039/C7EE03640J – volume: 28 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0130 article-title: 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction publication-title: Adv Funct Mater doi: 10.1002/adfm.201800136 – volume: 345 start-page: 404 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0220 article-title: Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light publication-title: Chem Eng J doi: 10.1016/j.cej.2018.03.155 – volume: 130 start-page: 12282 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0060 article-title: Rational design MOF/COF hybrid materials for photocatalytic H2 Evolution in the presence of sacrificial electron donors publication-title: Angew Chem Int Ed doi: 10.1002/ange.201806862 – start-page: 3488 year: 2019 ident: 10.1016/j.apcatb.2019.118382_bib0205 article-title: Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.9b00736 – volume: 24 start-page: 15930 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0100 article-title: Polyoxometalate-decorated g-C3N4-wrapping snowflake-like CdS nanocrystal for enhanced photocatalytic hydrogen evolution publication-title: Chem Eur J doi: 10.1002/chem.201803621 – volume: 43 start-page: 5234 year: 2014 ident: 10.1016/j.apcatb.2019.118382_bib0040 article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances publication-title: Chem Soc Rev doi: 10.1039/C4CS00126E – volume: 26 start-page: 992 year: 2014 ident: 10.1016/j.apcatb.2019.118382_bib0125 article-title: 25th anniversary article: MXenes: A new family of two-dimensional materials publication-title: Adv Mater doi: 10.1002/adma.201304138 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0210 article-title: Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges publication-title: Adv Mater – volume: 10 start-page: 2699 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0235 article-title: Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications publication-title: Nano Res doi: 10.1007/s12274-017-1473-y – volume: 39 start-page: 841 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0265 article-title: Enhanced visible-light-driven photocatalytic activities of 0D/1D heterojunction carbon quantum dot modified CdS nanowires publication-title: Chinese J Catal doi: 10.1016/S1872-2067(17)62972-3 – volume: 6 start-page: 9124 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0175 article-title: g-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution publication-title: J Mater Chem A doi: 10.1039/C8TA02706D – volume: 4 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0255 article-title: 2D-layered carbon/TiO2 hybrids derived from Ti3C2 MXenes for photocatalytic hydrogen Evolution under visible light irradiation publication-title: Adv Mater Interfaces doi: 10.1002/admi.201700577 – volume: 11 start-page: 3752 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0165 article-title: MXene Ti3C2: An effective 2D light-to-heat conversion material publication-title: ACS Nano doi: 10.1021/acsnano.6b08415 – volume: 4 start-page: 12913 year: 2016 ident: 10.1016/j.apcatb.2019.118382_bib0135 article-title: Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts publication-title: J Mater Chem A doi: 10.1039/C6TA04628B – volume: 349 start-page: 748 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0200 article-title: Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine publication-title: Chem Eng J doi: 10.1016/j.cej.2018.05.148 – volume: 29 start-page: 7633 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0230 article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene) publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b02847 – volume: 4 start-page: 782 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0010 article-title: Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges publication-title: Environ Sci-Nano doi: 10.1039/C7EN00063D – volume: 243 start-page: 19 year: 2019 ident: 10.1016/j.apcatb.2019.118382_bib0095 article-title: Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity publication-title: Appl Catal B-Environ doi: 10.1016/j.apcatb.2018.10.019 – volume: 156 start-page: 184 year: 2014 ident: 10.1016/j.apcatb.2019.118382_bib0085 article-title: Morphology-dependent photocatalytic H2-production activity of CdS publication-title: Appl Catal B-Environ doi: 10.1016/j.apcatb.2014.03.013 – volume: 13 start-page: 217 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0260 article-title: Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting publication-title: Appl Mater Today doi: 10.1016/j.apmt.2018.09.004 – volume: 2 start-page: 3407 year: 2014 ident: 10.1016/j.apcatb.2019.118382_bib0080 article-title: A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel publication-title: J Mater Chem A doi: 10.1039/c3ta14493c – volume: 11 start-page: 16527 year: 2019 ident: 10.1016/j.apcatb.2019.118382_bib0035 article-title: Copper phosphide enhanced lower charge trapping occurrence in graphitic-C3N4 for efficient noble-metal-free photocatalytic H2 evolution publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b01421 – volume: 202 start-page: 298 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0225 article-title: One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light publication-title: Appl Catal B-Environ doi: 10.1016/j.apcatb.2016.09.023 – volume: 3 start-page: 2485 year: 2015 ident: 10.1016/j.apcatb.2019.118382_bib0055 article-title: Engineering heterogeneous semiconductors for solar water splitting publication-title: J Mater Chem A doi: 10.1039/C4TA04461D – volume: 6 start-page: 21255 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0190 article-title: Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions publication-title: J Mater Chem A doi: 10.1039/C8TA08374F – volume: 28 start-page: 8906 year: 2016 ident: 10.1016/j.apcatb.2019.118382_bib0105 article-title: Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability publication-title: Adv Mater doi: 10.1002/adma.201601047 – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0150 article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding publication-title: Adv Mater doi: 10.1002/adma.201702367 – volume: 29 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0030 article-title: Edge‐enriched ultrathin MoS2 embedded yolk‐shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution publication-title: Adv Funct Mater – volume: 111 start-page: 16676 year: 2014 ident: 10.1016/j.apcatb.2019.118382_bib0170 article-title: Flexible and conductive MXene films and nanocomposites with high capacitance publication-title: Pro Natl Acad Sci USA doi: 10.1073/pnas.1414215111 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0115 article-title: Theranostic 2D tantalum carbide (MXene) publication-title: Adv Mater doi: 10.1002/adma.201703284 – volume: 470 start-page: 196 year: 2019 ident: 10.1016/j.apcatb.2019.118382_bib0245 article-title: Hierarchically CdS–Ag2S nanocomposites for efficient photocatalytic H2 production publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.11.010 – volume: 239 start-page: 578 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0015 article-title: Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet publication-title: Appl Catal B-Environ doi: 10.1016/j.apcatb.2018.08.048 – volume: 473 start-page: 11 year: 2019 ident: 10.1016/j.apcatb.2019.118382_bib0020 article-title: Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.12.071 – volume: 5 start-page: 12899 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0120 article-title: Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction publication-title: J Mater Chem A doi: 10.1039/C7TA03557H – volume: 8 start-page: 6051 year: 2016 ident: 10.1016/j.apcatb.2019.118382_bib0250 article-title: Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b11973 – volume: 56 start-page: 1825 year: 2017 ident: 10.1016/j.apcatb.2019.118382_bib0145 article-title: A two-dimensional lamellar membrane: MXene nanosheet stacks publication-title: Angew Chem Int Ed doi: 10.1002/anie.201609306 – volume: 231 start-page: 101 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0025 article-title: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production publication-title: Appl Catal B-Environ doi: 10.1016/j.apcatb.2018.03.014 – volume: 2 start-page: 387 year: 2019 ident: 10.1016/j.apcatb.2019.118382_bib0005 article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts publication-title: Nat Catal doi: 10.1038/s41929-019-0242-6 – volume: 20 start-page: 1904 year: 2018 ident: 10.1016/j.apcatb.2019.118382_bib0075 article-title: One-dimensional cadmium sulphide nanotubes for photocatalytic water splitting publication-title: Phys Chem Chem Phys doi: 10.1039/C7CP06568J – volume: 5 start-page: 18 year: 2019 ident: 10.1016/j.apcatb.2019.118382_bib0155 article-title: Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis publication-title: Chem doi: 10.1016/j.chempr.2018.08.037 |
SSID | ssj0002328 |
Score | 2.7057452 |
Snippet | [Display omitted]
•1D CdS/2D Ti3C2 MXene Schottky heterojunction was successfully fabricated.•In situ constructed Schottky photocatalyst exhibits enhanced HER... Benefiting from excellent metallic conductivity, full-spectrum solar energy absorption and rich active sites on the surface, atomically thin two-dimensional... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118382 |
SubjectTerms | CdS Energy absorption Evolution Fabrication Heterojunctions Hydrogen Hydrogen evolution reactions Metal carbides MXene MXenes N-type semiconductors Nanorods Nanosheets Nanostructure Photocatalysis Photocatalysts Photocatalytic hydrogen evolution Schottky heterojunction Solar energy Synergistic effect Transition metals Water splitting |
Title | In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution |
URI | https://dx.doi.org/10.1016/j.apcatb.2019.118382 https://www.proquest.com/docview/2435541252 |
Volume | 268 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1V5QAcECxUlJbKB65hE9tJnGOVttqC2ktbaW-WndjaLShZ7bqV9sKZz-7YcSggpEpcrbFlZWbePDszY4BPCmOWKDKd2NJUCefMoM-lOskzUbCSlSZvfIHzxWUxu-Ff5vl8B-qxFsanVUbsHzA9oHUcmcavOV0tl9OrtKIFw_WQgiBpEB6HOS-9lX_-8ZjmgYwhoDEKJ156LJ8LOV5q1SinfYJXhdghQju-f4env4A6RJ-z1_Aq0kZyPOzsDeyYbgLP6_G1tgm8_K2x4AT2Th_r13BadODNW_h53pHN0t0Rq_Q6XteR3pLshNTtFelU1yOiTukJuV6ympKLOWJhGN4sjHHEN-107tuWLHwaTX-LUTEs4UL2LTHdImQUkBWK9eFqaIs7Jottu-7RVIm5j6b-Dm7OTq_rWRIfY0gadHOX2ILbkvJWYcinKmWK2lJTrjJkMG2rBc-VbosKz4tFqotcZ9SyBs-KtLLcqsqyPdjt-s68B9JoJUrFciWU5k3KtPD_FpUWwjYmU-0-sFEHsomdyv2DGd_lmJJ2KwfNSa85OWhuH5Jfs1ZDp44n5MtRvfIPi5MYTJ6YeThag4wev5GUe-aGdJF--O-FD-AF9cd5f3ucH8KuW9-Zj8h5nD4KRn0Ez47Pv84uHwA_2wI8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELZQeWB7QFs3NDbG_LDXqIntJM4jCqB20L5QpL5ZdmKrZVNStQap_wF_NmfHYT-EhLRXy2dZubvvPjt3Z4S-S4hZPEtUZHJdRIxRDT4XqyhNeEZzmuu0cgXO01k2vmU_FuliD5V9LYxLqwzY32G6R-swMgpfc7RerUY3cUEyCusBBQHSwAGH9113qnSA9s8mV-PZMyADafCADPMjJ9BX0Pk0L7mupFUux6sA-OC-I9_LEeofrPYB6PIdOgzMEZ91m3uP9nQzRAdl_2DbEL39o7fgEB1d_C5hA7Hgw9sP6HHS4O3K3mMj1Sbc2OHW4OQcl_UNbmTTAqiOyDmer2hJ8HQBcOiHt0utLXZ9O639ucNLl0nT3kFg9EtYn4CLdbP0SQV4DdNafzu0gx3j5a7etGCtWD8Ea_-Ibi8v5uU4Cu8xRBV4uo1MxkxOWC0h6hMZU0lMrgiTCZCYulacpVLVWQFHxixWWaoSYmgFx0VSGGZkYegRGjRtoz8hXCnJc0lTyaViVUwVd78XpeLcVDqR9TGivQ5EFZqVuzczfok-K-1OdJoTTnOi09wxip6l1l2zjlfm5716xV9GJyCevCJ50luDCE6_FYQ58gaMkXz-74W_oYPxfHotriezqy_oDXGne3eZnJ6ggd3c669Agaw6DSb-BA3pBO0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+fabrication+of+1D+CdS+nanorod%2F2D+Ti3C2+MXene+nanosheet+Schottky+heterojunction+toward+enhanced+photocatalytic+hydrogen+evolution&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Xiao%2C+Rong&rft.au=Zhao%2C+Chengxiao&rft.au=Zou%2C+Zhaoyong&rft.au=Chen%2C+Zupeng&rft.date=2020-07-05&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=268&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118382&rft.externalDocID=S0926337319311282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |