In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution

[Display omitted] •1D CdS/2D Ti3C2 MXene Schottky heterojunction was successfully fabricated.•In situ constructed Schottky photocatalyst exhibits enhanced HER performance.•Ultrathin 2D MXene enhances light absorption and accelerates charge transport.•The specific Schottky interface is responsible fo...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 268; p. 118382
Main Authors Xiao, Rong, Zhao, Chengxiao, Zou, Zhaoyong, Chen, Zupeng, Tian, Lin, Xu, Haotian, Tang, Hua, Liu, Qinqin, Lin, Zixia, Yang, Xiaofei
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.07.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •1D CdS/2D Ti3C2 MXene Schottky heterojunction was successfully fabricated.•In situ constructed Schottky photocatalyst exhibits enhanced HER performance.•Ultrathin 2D MXene enhances light absorption and accelerates charge transport.•The specific Schottky interface is responsible for the improved HER activity. Benefiting from excellent metallic conductivity, full-spectrum solar energy absorption and rich active sites on the surface, atomically thin two-dimensional transition metal carbide (2D MXene) shows great promise in improving solar-to-hydrogen efficiency and has drawn intense interest in the field of photocatalysis. However, controllable construction of ultrathin 2D MXene-based heterojunction photocatalysts still remains a significant challenge. Herein, one-dimensional (1D) CdS nanorod/2D MXene nanosheet heterojunctions with well-defined nanostructures and strong interfacial coupling are fabricated by in situ assembling solvothermally-generated CdS nanorods on ultrathin Ti3C2 MXene nanosheets. Due to their specific interface characteristics, 1D/2D Schottky heterojunction is capable of providing accelerated charge separation and a lower Schottky barrier for solar-driven hydrogen evolution from water splitting. As expected, the Schottky-based photocatalyst is 7-fold more active in the illuminated hydrogen evolution reaction (HER) than pristine CdS nanorods, implying the synergistic effects between n-type semiconductor CdS and highly conductive 2D Ti3C2 MXene nanosheets.
AbstractList [Display omitted] •1D CdS/2D Ti3C2 MXene Schottky heterojunction was successfully fabricated.•In situ constructed Schottky photocatalyst exhibits enhanced HER performance.•Ultrathin 2D MXene enhances light absorption and accelerates charge transport.•The specific Schottky interface is responsible for the improved HER activity. Benefiting from excellent metallic conductivity, full-spectrum solar energy absorption and rich active sites on the surface, atomically thin two-dimensional transition metal carbide (2D MXene) shows great promise in improving solar-to-hydrogen efficiency and has drawn intense interest in the field of photocatalysis. However, controllable construction of ultrathin 2D MXene-based heterojunction photocatalysts still remains a significant challenge. Herein, one-dimensional (1D) CdS nanorod/2D MXene nanosheet heterojunctions with well-defined nanostructures and strong interfacial coupling are fabricated by in situ assembling solvothermally-generated CdS nanorods on ultrathin Ti3C2 MXene nanosheets. Due to their specific interface characteristics, 1D/2D Schottky heterojunction is capable of providing accelerated charge separation and a lower Schottky barrier for solar-driven hydrogen evolution from water splitting. As expected, the Schottky-based photocatalyst is 7-fold more active in the illuminated hydrogen evolution reaction (HER) than pristine CdS nanorods, implying the synergistic effects between n-type semiconductor CdS and highly conductive 2D Ti3C2 MXene nanosheets.
Benefiting from excellent metallic conductivity, full-spectrum solar energy absorption and rich active sites on the surface, atomically thin two-dimensional transition metal carbide (2D MXene) shows great promise in improving solar-to-hydrogen efficiency and has drawn intense interest in the field of photocatalysis. However, controllable construction of ultrathin 2D MXene-based heterojunction photocatalysts still remains a significant challenge. Herein, one-dimensional (1D) CdS nanorod/2D MXene nanosheet heterojunctions with well-defined nanostructures and strong interfacial coupling are fabricated by in situ assembling solvothermally-generated CdS nanorods on ultrathin Ti3C2 MXene nanosheets. Due to their specific interface characteristics, 1D/2D Schottky heterojunction is capable of providing accelerated charge separation and a lower Schottky barrier for solar-driven hydrogen evolution from water splitting. As expected, the Schottky-based photocatalyst is 7-fold more active in the illuminated hydrogen evolution reaction (HER) than pristine CdS nanorods, implying the synergistic effects between n-type semiconductor CdS and highly conductive 2D Ti3C2 MXene nanosheets.
ArticleNumber 118382
Author Yang, Xiaofei
Tian, Lin
Liu, Qinqin
Chen, Zupeng
Xu, Haotian
Tang, Hua
Zou, Zhaoyong
Xiao, Rong
Zhao, Chengxiao
Lin, Zixia
Author_xml – sequence: 1
  givenname: Rong
  surname: Xiao
  fullname: Xiao, Rong
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
– sequence: 2
  givenname: Chengxiao
  surname: Zhao
  fullname: Zhao, Chengxiao
  organization: College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, PR China
– sequence: 3
  givenname: Zhaoyong
  surname: Zou
  fullname: Zou, Zhaoyong
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 4
  givenname: Zupeng
  orcidid: 0000-0002-7351-3240
  surname: Chen
  fullname: Chen, Zupeng
  organization: Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
– sequence: 5
  givenname: Lin
  surname: Tian
  fullname: Tian, Lin
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
– sequence: 6
  givenname: Haotian
  surname: Xu
  fullname: Xu, Haotian
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
– sequence: 7
  givenname: Hua
  surname: Tang
  fullname: Tang, Hua
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
– sequence: 8
  givenname: Qinqin
  surname: Liu
  fullname: Liu, Qinqin
  email: qqliu@ujs.edu.cn
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
– sequence: 9
  givenname: Zixia
  surname: Lin
  fullname: Lin, Zixia
  organization: Testing Center, Yangzhou University, Yangzhou 225009, PR China
– sequence: 10
  givenname: Xiaofei
  orcidid: 0000-0003-1972-4562
  surname: Yang
  fullname: Yang, Xiaofei
  email: xiaofei.yang@njfu.edu.cn
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
BookMark eNqFkM1u1DAURi1UJKalb9CFJdaZ-i-JwwIJTQutVMSirdSd5djXxGGwB9spmjfgsclMumIBK0vWd47lc4pOQgyA0AUla0poczmu9c7o0q8Zod2aUskle4VWVLa84lLyE7QiHWsqzlv-Bp3mPBJCGGdyhX7fBpx9mbDTffKzxMeAo8P0Cm_sPQ46xBTtJbvCD55vGP7yBAGO13kAKPjeDLGU73s8QIEUxymYo6LEXzpZDGHQwYDFu3kWZ73e7os3eNjbFL9BwPAct9OBeIteO73NcP5ynqHHT9cPm5vq7uvn283Hu8oIQkrlGuFaJqxmgjJNuGau7ZnQtJbC2l6KWve26aQgDembuqfMcdPSlnVOON05fobeLd5dij8nyEWNcUphflIxwet61tZsXr1fVibFnBM4ZXw5xilJ-62iRB3Kq1Et5dWhvFrKz7D4C94l_0On_f-wDwsG8_efPSSVjYdDPZ_AFGWj_7fgD8OgopU
CitedBy_id crossref_primary_10_1007_s10562_021_03758_7
crossref_primary_10_1016_j_ccr_2021_214335
crossref_primary_10_1007_s43207_021_00158_w
crossref_primary_10_1016_j_bios_2020_112439
crossref_primary_10_1016_j_jallcom_2022_167430
crossref_primary_10_1021_acs_nanolett_3c04959
crossref_primary_10_1002_solr_202300691
crossref_primary_10_1016_j_jcis_2022_05_048
crossref_primary_10_1021_acs_langmuir_3c00223
crossref_primary_10_1002_smm2_1238
crossref_primary_10_1021_acsami_0c15780
crossref_primary_10_1016_j_jcis_2021_09_103
crossref_primary_10_1016_j_snb_2021_131087
crossref_primary_10_1002_smll_202207636
crossref_primary_10_1021_acsomega_4c10929
crossref_primary_10_1016_j_ccr_2024_216226
crossref_primary_10_1002_advs_202207174
crossref_primary_10_1016_j_apsusc_2023_156562
crossref_primary_10_1016_j_diamond_2023_110474
crossref_primary_10_1016_j_ijhydene_2023_03_031
crossref_primary_10_1016_j_cattod_2022_05_036
crossref_primary_10_1007_s11244_024_01993_x
crossref_primary_10_1016_S1872_2067_21_63898_6
crossref_primary_10_1016_j_cej_2024_153960
crossref_primary_10_1039_D4SC03663H
crossref_primary_10_1016_j_ceramint_2021_12_355
crossref_primary_10_1016_j_jhazmat_2021_127823
crossref_primary_10_1021_acsami_0c15686
crossref_primary_10_1016_j_chemosphere_2021_132923
crossref_primary_10_1016_j_jallcom_2022_167414
crossref_primary_10_1021_acs_inorgchem_2c00045
crossref_primary_10_1016_j_ceramint_2020_11_151
crossref_primary_10_1016_j_psep_2023_09_020
crossref_primary_10_1007_s12598_022_02011_3
crossref_primary_10_1007_s12209_020_00269_1
crossref_primary_10_1016_j_cej_2022_135640
crossref_primary_10_1016_j_jallcom_2024_174798
crossref_primary_10_1080_15435075_2023_2222166
crossref_primary_10_1016_j_jcis_2021_12_053
crossref_primary_10_1002_admi_202202172
crossref_primary_10_1021_acsomega_2c05030
crossref_primary_10_1039_D2NR05983E
crossref_primary_10_1016_j_seppur_2025_131496
crossref_primary_10_1016_j_jcis_2024_10_044
crossref_primary_10_1111_jace_17427
crossref_primary_10_1016_j_ijhydene_2022_09_079
crossref_primary_10_1016_j_apcatb_2020_119153
crossref_primary_10_1016_j_mtcomm_2023_105991
crossref_primary_10_1039_D1MH00986A
crossref_primary_10_1002_sstr_202100206
crossref_primary_10_1016_j_chemosphere_2022_136461
crossref_primary_10_1016_j_jcis_2022_04_137
crossref_primary_10_1002_tcr_202200097
crossref_primary_10_1016_j_jallcom_2023_170929
crossref_primary_10_1016_j_apsusc_2023_156632
crossref_primary_10_1016_j_cej_2021_130801
crossref_primary_10_1021_acs_langmuir_2c01818
crossref_primary_10_1002_ente_202301520
crossref_primary_10_1016_j_jallcom_2021_159691
crossref_primary_10_1039_D4TA01260G
crossref_primary_10_1007_s11237_022_09733_6
crossref_primary_10_1007_s12598_022_02058_2
crossref_primary_10_1016_j_envpol_2024_123522
crossref_primary_10_1021_acssuschemeng_4c01726
crossref_primary_10_1039_D1CY00803J
crossref_primary_10_1007_s10661_022_10811_4
crossref_primary_10_1039_D3DT00477E
crossref_primary_10_3390_en17133316
crossref_primary_10_1016_j_matdes_2022_111004
crossref_primary_10_1016_j_jhazmat_2021_126944
crossref_primary_10_1016_j_cej_2021_129944
crossref_primary_10_1016_j_jcis_2022_03_124
crossref_primary_10_1016_j_ijhydene_2024_11_353
crossref_primary_10_1039_D2EN00792D
crossref_primary_10_3390_catal12121634
crossref_primary_10_1002_ece2_60
crossref_primary_10_1007_s10853_021_06420_0
crossref_primary_10_1016_j_nanoen_2024_109315
crossref_primary_10_1016_j_mssp_2024_108919
crossref_primary_10_1016_j_cej_2021_129831
crossref_primary_10_1016_j_jcis_2020_10_123
crossref_primary_10_1016_j_ijhydene_2022_02_049
crossref_primary_10_1021_acsanm_3c05455
crossref_primary_10_1016_j_cej_2022_135685
crossref_primary_10_1007_s42765_023_00324_1
crossref_primary_10_1021_acs_analchem_1c02284
crossref_primary_10_1016_j_surfin_2021_101192
crossref_primary_10_1016_j_mtphys_2021_100479
crossref_primary_10_1016_j_apsusc_2021_151491
crossref_primary_10_1016_j_cej_2024_156179
crossref_primary_10_1021_acsanm_2c00446
crossref_primary_10_1007_s10562_021_03813_3
crossref_primary_10_1021_acsami_2c21049
crossref_primary_10_1016_j_apcatb_2022_122150
crossref_primary_10_1038_s41560_023_01348_y
crossref_primary_10_1016_j_fuel_2024_131159
crossref_primary_10_1016_j_desal_2021_115475
crossref_primary_10_1016_j_jcis_2021_03_083
crossref_primary_10_1007_s10853_023_08849_x
crossref_primary_10_1039_D4TA00038B
crossref_primary_10_1002_smll_202005051
crossref_primary_10_1016_S1872_2067_21_63844_5
crossref_primary_10_1063_5_0121818
crossref_primary_10_1007_s11426_024_2358_3
crossref_primary_10_1016_j_ijhydene_2023_12_111
crossref_primary_10_3390_nano10040602
crossref_primary_10_1016_j_jcis_2023_06_080
crossref_primary_10_1007_s12598_022_02087_x
crossref_primary_10_1016_j_jallcom_2023_172470
crossref_primary_10_1016_j_jcis_2024_07_051
crossref_primary_10_1016_j_ijhydene_2020_04_071
crossref_primary_10_1016_j_apsusc_2023_158104
crossref_primary_10_1016_j_colsurfa_2022_129844
crossref_primary_10_3390_chemistry4040104
crossref_primary_10_1016_j_apsusc_2021_150732
crossref_primary_10_1016_j_cej_2021_130170
crossref_primary_10_1016_j_jcis_2022_04_074
crossref_primary_10_1021_acsaem_1c02821
crossref_primary_10_3390_catal13060934
crossref_primary_10_1002_solr_202300188
crossref_primary_10_1016_j_ijhydene_2024_12_505
crossref_primary_10_1016_j_jhazmat_2023_131965
crossref_primary_10_1016_j_mattod_2024_05_003
crossref_primary_10_1016_j_seppur_2025_132091
crossref_primary_10_1016_j_jmat_2020_10_010
crossref_primary_10_1016_j_matchemphys_2023_127410
crossref_primary_10_1016_j_mtchem_2023_101475
crossref_primary_10_1002_smtd_202101395
crossref_primary_10_1016_j_ccr_2025_216498
crossref_primary_10_1016_j_memsci_2023_121537
crossref_primary_10_1016_j_ceramint_2021_04_197
crossref_primary_10_1039_D1CY00716E
crossref_primary_10_1016_j_cej_2021_129072
crossref_primary_10_1002_adfm_202416768
crossref_primary_10_1016_j_cej_2024_152587
crossref_primary_10_3866_PKU_WHXB202306048
crossref_primary_10_1016_j_apcata_2024_119661
crossref_primary_10_1016_j_cej_2021_133348
crossref_primary_10_1016_j_apsusc_2021_150747
crossref_primary_10_1016_j_apcatb_2022_122004
crossref_primary_10_1016_j_susmat_2022_e00439
crossref_primary_10_3390_nano11092236
crossref_primary_10_1016_j_cej_2020_125785
crossref_primary_10_1016_j_cej_2023_144421
crossref_primary_10_1016_j_jece_2024_114483
crossref_primary_10_1016_j_cej_2023_142489
crossref_primary_10_1016_j_ijhydene_2024_07_058
crossref_primary_10_1016_j_rser_2023_113348
crossref_primary_10_1016_j_jpcs_2021_110381
crossref_primary_10_1016_j_ccr_2022_214544
crossref_primary_10_1016_j_surfin_2022_102308
crossref_primary_10_1016_j_apcatb_2023_122653
crossref_primary_10_1016_j_ijhydene_2024_06_130
crossref_primary_10_1016_j_jallcom_2024_174705
crossref_primary_10_1016_j_apcatb_2023_122537
crossref_primary_10_1557_s43578_021_00154_0
crossref_primary_10_1016_j_seppur_2022_120718
crossref_primary_10_1016_j_seppur_2022_121928
crossref_primary_10_1016_j_seppur_2023_124375
crossref_primary_10_1021_acsomega_0c03318
crossref_primary_10_1007_s10562_021_03756_9
crossref_primary_10_1039_D3LF00126A
crossref_primary_10_1002_slct_202004735
crossref_primary_10_1016_j_rser_2022_113037
crossref_primary_10_1039_D2TC03946J
crossref_primary_10_1016_j_surfin_2022_101787
crossref_primary_10_1016_j_nxmate_2024_100323
crossref_primary_10_1016_j_mtsust_2023_100568
crossref_primary_10_1002_smll_202407863
crossref_primary_10_1016_j_apcatb_2021_120285
crossref_primary_10_1002_adfm_202005223
crossref_primary_10_1016_j_colsurfa_2022_129881
crossref_primary_10_1016_j_jallcom_2023_173362
crossref_primary_10_1016_j_ijhydene_2022_10_024
crossref_primary_10_1088_2053_1583_ac9e66
crossref_primary_10_1016_j_apsusc_2023_157212
crossref_primary_10_1007_s43939_024_00081_x
crossref_primary_10_1016_j_ccr_2024_216022
crossref_primary_10_1002_bkcs_12783
crossref_primary_10_1016_j_cej_2021_132381
crossref_primary_10_1016_j_ceramint_2021_04_192
crossref_primary_10_1002_solr_202300025
crossref_primary_10_1016_j_jcis_2020_09_090
crossref_primary_10_1016_j_jcis_2023_10_097
crossref_primary_10_1088_2399_1984_abacab
crossref_primary_10_1016_j_apcatb_2023_122635
crossref_primary_10_1016_j_matchemphys_2024_130076
crossref_primary_10_1016_j_ijhydene_2022_03_206
crossref_primary_10_1016_j_jphotochem_2024_115728
crossref_primary_10_1016_j_jcis_2020_08_072
crossref_primary_10_1016_j_apt_2025_104789
crossref_primary_10_1016_j_ccr_2024_216176
crossref_primary_10_1007_s12274_022_4825_1
crossref_primary_10_1016_j_mssp_2022_107044
crossref_primary_10_1016_j_jcis_2021_07_113
crossref_primary_10_1016_j_apsusc_2021_150302
crossref_primary_10_1016_j_jcis_2023_02_137
crossref_primary_10_1016_j_apcatb_2022_121470
crossref_primary_10_1016_j_jallcom_2020_158546
crossref_primary_10_1016_j_carbon_2023_02_022
crossref_primary_10_1016_j_compositesb_2025_112235
crossref_primary_10_1016_j_jallcom_2024_173547
crossref_primary_10_2139_ssrn_4164964
crossref_primary_10_1016_j_surfin_2024_105240
crossref_primary_10_1021_acs_chemrev_2c00426
crossref_primary_10_1002_solr_202100183
crossref_primary_10_1016_j_jcis_2021_09_168
crossref_primary_10_1021_acs_langmuir_2c01887
crossref_primary_10_1016_j_cej_2022_135609
crossref_primary_10_1016_j_ijhydene_2022_03_232
crossref_primary_10_1039_D2TA08983A
crossref_primary_10_1016_j_jcis_2021_01_099
crossref_primary_10_1002_advs_202310013
crossref_primary_10_1021_acsomega_2c01674
crossref_primary_10_1016_j_chemosphere_2023_137808
crossref_primary_10_1039_D1NR05799E
crossref_primary_10_1016_j_ccr_2025_216460
crossref_primary_10_1016_j_jcis_2024_04_010
crossref_primary_10_1016_j_jallcom_2021_158614
crossref_primary_10_1016_j_jallcom_2023_171170
crossref_primary_10_1002_solr_202100051
crossref_primary_10_1016_j_jallcom_2024_175951
crossref_primary_10_1021_acs_energyfuels_1c00958
crossref_primary_10_1016_j_apsusc_2021_151525
crossref_primary_10_1016_j_jcis_2021_06_007
crossref_primary_10_1016_j_jcis_2023_11_031
crossref_primary_10_1016_j_mseb_2023_116413
crossref_primary_10_1007_s13738_021_02345_2
crossref_primary_10_1016_j_colsurfa_2022_129315
crossref_primary_10_1016_j_ijhydene_2021_11_027
crossref_primary_10_1039_D0CE01158D
crossref_primary_10_1016_j_jmst_2021_10_029
crossref_primary_10_1016_j_solidstatesciences_2020_106350
crossref_primary_10_1016_j_ijhydene_2021_11_026
crossref_primary_10_1016_j_materresbull_2023_112536
crossref_primary_10_1021_acsaem_1c02775
crossref_primary_10_1016_j_cej_2022_137369
crossref_primary_10_1016_j_jphotochem_2024_116030
crossref_primary_10_1016_j_cej_2022_137488
crossref_primary_10_1002_admi_202200771
crossref_primary_10_1016_j_fuel_2022_123307
crossref_primary_10_1021_acsnano_2c04750
crossref_primary_10_1016_j_ijhydene_2022_12_239
crossref_primary_10_1002_admi_202201627
crossref_primary_10_1016_j_surfin_2024_105315
crossref_primary_10_1016_j_jwpe_2024_106229
crossref_primary_10_1016_j_jece_2025_115694
crossref_primary_10_1016_j_jallcom_2023_171309
crossref_primary_10_1002_aenm_202404963
crossref_primary_10_1002_smll_202201896
crossref_primary_10_1016_S1872_2067_20_63698_1
crossref_primary_10_1039_D2CS00698G
crossref_primary_10_1016_j_ijhydene_2023_06_009
crossref_primary_10_1016_j_jcis_2022_10_079
crossref_primary_10_1016_j_mssp_2024_108288
crossref_primary_10_1016_j_seppur_2021_118516
crossref_primary_10_1016_j_chemosphere_2022_134862
crossref_primary_10_1016_j_colsurfa_2024_133143
crossref_primary_10_1016_j_jece_2023_111649
crossref_primary_10_1002_adfm_202005677
crossref_primary_10_1021_acsami_2c17366
crossref_primary_10_1039_D0TA06275H
crossref_primary_10_1016_j_cej_2021_129344
crossref_primary_10_1016_j_mssp_2022_106539
crossref_primary_10_1016_j_jphotochem_2022_113792
crossref_primary_10_1016_j_jcis_2021_07_041
crossref_primary_10_1016_j_chemosphere_2021_130086
crossref_primary_10_1002_eom2_12097
crossref_primary_10_1016_j_ceramint_2022_01_224
crossref_primary_10_1016_j_jcis_2023_03_015
crossref_primary_10_1016_j_jallcom_2021_161035
crossref_primary_10_1016_j_jcat_2021_03_018
crossref_primary_10_1021_acsnano_2c12270
crossref_primary_10_1007_s10853_022_07980_5
crossref_primary_10_1007_s13762_025_06417_1
crossref_primary_10_1039_D4SE01207K
crossref_primary_10_1016_j_cej_2021_130340
crossref_primary_10_1039_D4CY00882K
crossref_primary_10_1002_smll_202405378
crossref_primary_10_1016_j_seppur_2024_128484
crossref_primary_10_1002_smll_202303318
crossref_primary_10_3389_fchem_2021_655583
crossref_primary_10_1016_j_jcis_2020_05_025
crossref_primary_10_1016_j_inoche_2024_112113
crossref_primary_10_2139_ssrn_4095300
crossref_primary_10_1063_5_0055711
crossref_primary_10_1016_j_snb_2024_135730
crossref_primary_10_1039_D2DT03813G
crossref_primary_10_2139_ssrn_4108629
crossref_primary_10_2139_ssrn_4070126
crossref_primary_10_3390_nano12101697
crossref_primary_10_1016_j_apsusc_2024_159672
crossref_primary_10_1039_D1NJ05786C
crossref_primary_10_1002_admt_202301213
crossref_primary_10_1016_j_cej_2024_154351
crossref_primary_10_1038_s41699_021_00239_8
crossref_primary_10_1016_j_envpol_2022_120436
crossref_primary_10_1016_j_flatc_2025_100825
crossref_primary_10_1039_D3CP01758C
crossref_primary_10_1016_j_cej_2021_132401
crossref_primary_10_1016_j_surfin_2021_101312
crossref_primary_10_1016_j_jcat_2021_09_001
crossref_primary_10_3389_fchem_2021_736369
crossref_primary_10_1039_D1NR02224E
crossref_primary_10_1016_j_cej_2020_128099
crossref_primary_10_1021_acs_energyfuels_3c03287
crossref_primary_10_1016_j_jhazmat_2021_127128
crossref_primary_10_1039_D1SE00670C
crossref_primary_10_1016_j_apsusc_2024_160979
crossref_primary_10_1002_cctc_202401261
crossref_primary_10_1016_j_jcis_2021_06_049
crossref_primary_10_3390_ijms23179756
crossref_primary_10_1016_j_cej_2024_156762
crossref_primary_10_1016_j_apsusc_2020_147247
crossref_primary_10_1021_acsami_0c12905
crossref_primary_10_1016_j_pmatsci_2023_101105
crossref_primary_10_1021_acsami_2c13198
crossref_primary_10_1039_D0NR09177D
crossref_primary_10_1016_j_dyepig_2020_108568
crossref_primary_10_1016_j_cej_2023_144490
crossref_primary_10_1016_j_ijleo_2023_171577
crossref_primary_10_1016_j_jcis_2021_07_097
crossref_primary_10_1021_acsmaterialslett_1c00673
crossref_primary_10_1016_j_jssc_2021_122750
crossref_primary_10_1016_j_fuel_2023_128460
crossref_primary_10_1016_j_jmst_2022_12_069
crossref_primary_10_1016_j_flatc_2024_100620
crossref_primary_10_1016_S1872_2067_20_63784_6
crossref_primary_10_1021_acs_inorgchem_3c03206
crossref_primary_10_1016_j_cej_2020_126961
crossref_primary_10_1016_j_mtcata_2024_100054
crossref_primary_10_1016_j_apcatb_2020_119867
crossref_primary_10_1016_j_jenvman_2023_117895
crossref_primary_10_1016_j_jece_2022_108010
crossref_primary_10_1007_s12209_021_00291_x
crossref_primary_10_1016_j_aca_2023_341396
crossref_primary_10_1016_j_ijhydene_2023_09_199
crossref_primary_10_3390_nano12101761
crossref_primary_10_1007_s10853_021_06428_6
crossref_primary_10_1007_s11356_021_16942_4
crossref_primary_10_1016_j_fuel_2022_125905
crossref_primary_10_3390_nano14100896
crossref_primary_10_1002_anie_202306305
crossref_primary_10_1016_j_ijhydene_2022_05_204
crossref_primary_10_1016_j_jacomc_2024_100043
crossref_primary_10_1039_D2MA00191H
crossref_primary_10_3866_PKU_WHXB202402016
crossref_primary_10_1016_j_inoche_2024_112317
crossref_primary_10_1016_j_jmst_2024_09_044
crossref_primary_10_1016_j_jallcom_2024_178399
crossref_primary_10_1016_j_pecs_2023_101097
crossref_primary_10_1016_j_seppur_2021_119863
crossref_primary_10_1016_j_cej_2020_125868
crossref_primary_10_1039_D1CE01468D
crossref_primary_10_1016_j_ijhydene_2021_12_180
crossref_primary_10_1016_j_seppur_2024_127461
crossref_primary_10_1039_D2NR05718B
crossref_primary_10_3390_nano12030542
crossref_primary_10_1016_j_jcis_2023_09_137
crossref_primary_10_1002_ange_202306305
crossref_primary_10_1016_S1872_2067_23_64542_5
crossref_primary_10_1016_j_jechem_2022_09_046
crossref_primary_10_1021_acsami_3c10022
crossref_primary_10_1021_acscatal_2c04632
crossref_primary_10_1016_j_apcatb_2023_123073
crossref_primary_10_1016_j_apsusc_2020_146748
crossref_primary_10_1016_j_est_2024_112038
crossref_primary_10_1007_s00216_021_03870_y
crossref_primary_10_1007_s12274_021_3503_z
crossref_primary_10_1021_acs_energyfuels_1c00204
crossref_primary_10_1088_1361_648X_ad172e
crossref_primary_10_1016_j_apsusc_2022_156305
crossref_primary_10_1016_j_jmst_2023_07_010
crossref_primary_10_1016_j_cej_2021_130719
crossref_primary_10_1039_D4TA06164K
crossref_primary_10_1002_adfm_202314150
crossref_primary_10_1016_j_seppur_2022_121221
crossref_primary_10_1016_S1872_2067_21_64030_5
crossref_primary_10_1007_s40843_020_1456_x
crossref_primary_10_1016_j_apsusc_2022_154001
crossref_primary_10_1016_j_jece_2024_113813
crossref_primary_10_1016_j_renene_2021_12_065
crossref_primary_10_1016_j_snb_2021_130838
crossref_primary_10_1016_j_matlet_2024_135925
crossref_primary_10_1021_acscatal_1c02018
crossref_primary_10_1016_j_jallcom_2024_177753
crossref_primary_10_1039_C9TA12799B
crossref_primary_10_1039_D0NA00848F
crossref_primary_10_1016_j_scitotenv_2024_172816
crossref_primary_10_1016_j_surfin_2025_106187
crossref_primary_10_1016_j_jmst_2021_11_003
crossref_primary_10_1016_j_mcat_2023_113085
crossref_primary_10_1016_j_ceramint_2021_06_247
crossref_primary_10_1002_cctc_202000448
crossref_primary_10_1002_smll_202205767
crossref_primary_10_1016_j_jallcom_2021_160223
crossref_primary_10_1016_j_mtphys_2020_100261
crossref_primary_10_1016_j_seppur_2022_121254
crossref_primary_10_1016_j_ceramint_2021_06_249
crossref_primary_10_1016_j_ijhydene_2022_07_265
crossref_primary_10_1016_j_seppur_2024_129064
crossref_primary_10_1021_acsaem_1c02241
crossref_primary_10_1016_j_vacuum_2025_114016
crossref_primary_10_1016_j_mser_2024_100894
crossref_primary_10_1002_smll_202004980
crossref_primary_10_1016_j_jallcom_2021_162637
crossref_primary_10_1002_adsu_202100507
crossref_primary_10_1016_j_cej_2020_127177
crossref_primary_10_4028_p_e8Dsn5
crossref_primary_10_1021_acsanm_2c04681
crossref_primary_10_35848_1882_0786_ac23e7
crossref_primary_10_1002_slct_202303732
crossref_primary_10_1016_j_mssp_2025_109379
crossref_primary_10_1016_j_jece_2024_112748
crossref_primary_10_1039_D1CY00239B
crossref_primary_10_1016_j_cej_2025_159946
crossref_primary_10_1039_D2TA06609B
crossref_primary_10_6023_A22070304
crossref_primary_10_1016_j_dyepig_2021_109583
crossref_primary_10_1002_solr_202200587
crossref_primary_10_1016_j_mssp_2022_106835
crossref_primary_10_1016_j_nanoen_2023_108228
crossref_primary_10_1016_j_mtener_2020_100521
crossref_primary_10_1016_j_nanoms_2022_10_001
crossref_primary_10_1088_1674_4926_42_9_092601
crossref_primary_10_1016_j_cherd_2023_04_048
crossref_primary_10_1016_j_cej_2021_130767
crossref_primary_10_3390_nano11020320
crossref_primary_10_1016_j_cej_2021_128446
crossref_primary_10_1016_j_apsusc_2021_152033
crossref_primary_10_3390_molecules30030487
crossref_primary_10_1021_acsami_2c03940
crossref_primary_10_1021_acs_energyfuels_1c01340
crossref_primary_10_1016_j_apcatb_2020_119688
crossref_primary_10_1039_D3TC01762A
crossref_primary_10_1002_adpr_202300224
crossref_primary_10_1016_j_mset_2023_10_002
crossref_primary_10_1039_D0MA00938E
crossref_primary_10_1002_eem2_12414
crossref_primary_10_1002_smtd_202201013
crossref_primary_10_1002_smtd_202300627
crossref_primary_10_1016_j_jece_2022_109191
crossref_primary_10_1002_solr_202100863
crossref_primary_10_1016_j_crcon_2021_05_002
crossref_primary_10_1016_j_colsurfa_2023_131261
crossref_primary_10_1002_adsu_202400321
crossref_primary_10_1016_j_ijhydene_2022_09_014
crossref_primary_10_1039_D3QM00566F
crossref_primary_10_1016_j_jallcom_2023_172721
crossref_primary_10_1016_j_cej_2022_138425
crossref_primary_10_1016_j_jallcom_2021_162329
crossref_primary_10_3390_chemistry5010036
crossref_primary_10_1039_D4DT01031K
crossref_primary_10_1016_j_jece_2021_106942
crossref_primary_10_1021_acs_energyfuels_2c01137
crossref_primary_10_2139_ssrn_4176026
crossref_primary_10_1007_s12274_021_3878_x
crossref_primary_10_1016_j_colsurfa_2021_126783
crossref_primary_10_1016_j_jcis_2020_10_088
crossref_primary_10_1016_j_ica_2022_121085
crossref_primary_10_1039_D1NR01401C
crossref_primary_10_26599_POM_2023_9140030
crossref_primary_10_1021_acs_jpcc_1c00017
crossref_primary_10_1002_adma_202005922
crossref_primary_10_1016_j_ccr_2024_215753
crossref_primary_10_1002_solr_202100603
crossref_primary_10_1016_j_surfin_2024_104967
crossref_primary_10_1039_D0CY02212H
crossref_primary_10_1016_S1872_2067_21_63883_4
crossref_primary_10_1016_j_apsusc_2020_148618
crossref_primary_10_1039_D3QM00216K
crossref_primary_10_1021_acsanm_0c02481
crossref_primary_10_1016_j_cej_2022_138445
crossref_primary_10_1016_j_gee_2022_03_007
crossref_primary_10_1016_j_ijhydene_2023_01_372
crossref_primary_10_1007_s11270_024_06975_z
crossref_primary_10_1080_10643389_2022_2101857
crossref_primary_10_1002_asia_202100729
crossref_primary_10_1016_j_chemosphere_2023_139550
crossref_primary_10_1016_j_cis_2023_103027
crossref_primary_10_1016_j_seppur_2023_123403
Cites_doi 10.1021/acscatal.8b01830
10.1021/acsami.6b02765
10.1038/s41598-017-15233-8
10.1016/j.apcatb.2018.05.070
10.1016/j.cej.2018.03.155
10.1021/acs.chemmater.6b04830
10.1021/ja512820k
10.1016/j.apcatb.2018.08.053
10.1039/C8TA00671G
10.1002/aenm.201701503
10.1002/smll.201500926
10.1038/ncomms13907
10.1039/C7EE03640J
10.1002/adfm.201800136
10.1002/ange.201806862
10.1021/acs.jpclett.9b00736
10.1002/chem.201803621
10.1039/C4CS00126E
10.1002/adma.201304138
10.1007/s12274-017-1473-y
10.1016/S1872-2067(17)62972-3
10.1039/C8TA02706D
10.1002/admi.201700577
10.1021/acsnano.6b08415
10.1039/C6TA04628B
10.1016/j.cej.2018.05.148
10.1021/acs.chemmater.7b02847
10.1039/C7EN00063D
10.1016/j.apcatb.2018.10.019
10.1016/j.apcatb.2014.03.013
10.1016/j.apmt.2018.09.004
10.1039/c3ta14493c
10.1021/acsami.9b01421
10.1016/j.apcatb.2016.09.023
10.1039/C4TA04461D
10.1039/C8TA08374F
10.1002/adma.201601047
10.1002/adma.201702367
10.1073/pnas.1414215111
10.1002/adma.201703284
10.1016/j.apsusc.2018.11.010
10.1016/j.apcatb.2018.08.048
10.1016/j.apsusc.2018.12.071
10.1039/C7TA03557H
10.1021/acsami.5b11973
10.1002/anie.201609306
10.1016/j.apcatb.2018.03.014
10.1038/s41929-019-0242-6
10.1039/C7CP06568J
10.1016/j.chempr.2018.08.037
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Jul 5, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 5, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2019.118382
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2019_118382
S0926337319311282
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-f64f724da2412a03a2f7b24a1584ddb845abd6984060b65b12f3c71729f4fa9f3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 08:17:36 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Tue Jul 01 04:35:01 EDT 2025
Sat Mar 02 16:00:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Schottky heterojunction
CdS
Photocatalytic hydrogen evolution
MXene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-f64f724da2412a03a2f7b24a1584ddb845abd6984060b65b12f3c71729f4fa9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7351-3240
0000-0003-1972-4562
PQID 2435541252
PQPubID 2045281
ParticipantIDs proquest_journals_2435541252
crossref_citationtrail_10_1016_j_apcatb_2019_118382
crossref_primary_10_1016_j_apcatb_2019_118382
elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118382
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-05
PublicationDateYYYYMMDD 2020-07-05
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Fu, Yu, Jiang, Cheng (bib0045) 2018; 8
Yuan, Chen, Yu, Zou (bib0065) 2018; 6
Wang, Zhu, Liu, Zhang, Yu, Zhou (bib0095) 2019; 243
Cao, Shen, Tong, Fu, Yu (bib0130) 2018; 28
Wang, Zhao, Cao, Yan, Zhu, Tao, Chen, Zhang, Li, Phillips (bib0035) 2019; 11
Cheng, Xiang, Liao, Zhang (bib0070) 2018; 11
Liu, Zhang, Sun, Liu, Liu, Zhou, Yu (bib0150) 2017; 29
Li, Chen, Li, Xie, Dong, Kang, Bao, Lan (bib0110) 2016; 8
Peng, Yang, Li, Yu, Wang, Peng (bib0250) 2016; 8
Wang, Chai, Ma, Chen, Zheng, Huang (bib0235) 2017; 10
Zhang, Zhang, Li, Zhao, Wu, Zhou (bib0120) 2017; 5
Han, Liu, Zhang, Xu, Tang (bib0225) 2017; 202
Wang, Li, Xia, An, Zhao, Wong (bib0010) 2017; 4
Naguib, Mochalin, Barsoum, Gogotsi (bib0125) 2014; 26
Cai, Wang, Liu, Zhang, Dong, Chen, Yi, Yuan, Xia, Liu, Luo (bib0195) 2018; 239
Yu, Jin, Cheng, Jaroniec (bib0080) 2014; 2
Wei, Huang, Gu, Wang, Zeng, Chen, Liu (bib0025) 2018; 231
Feng, Chen, Hou, Li, Li, Xu, Sun, Zeng (bib0240) 2018; 345
Wang, Shen, Gao, Wang, Yu, Chen (bib0140) 2015; 137
Li, Han, Chen, Li, Xie, Mao, Bu, Cao, Dong, Feng, Lan (bib0105) 2016; 28
Ling, Ren, Zhao, Yang, Giammarco, Qiu, Barsoum, Gogotsi (bib0170) 2014; 111
Wang, Wu, Yuan, Zeng, Zhou, Wang, Chew (bib0210) 2018; 30
Cheng, Li, Zhang, Xiang (bib0205) 2019
Lin, Wang, Gao, Chen, Shi (bib0115) 2018; 30
Peng, Chen, Ong, Zhao, Li (bib0155) 2019; 5
Yu, Yu, Zhou, Xiao, Cheng (bib0085) 2014; 156
Zhu, Xie, Liu (bib0190) 2018; 6
Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (bib0230) 2017; 29
Di, Cheng, Ho, Yu, Tang (bib0245) 2019; 470
Zhai, Liu, Hu, Bao, Lan (bib0100) 2018; 24
Li, Zhang, Shi, Wang (bib0165) 2017; 11
Maleski, Mochalin, Gogotsi (bib0215) 2017; 29
Wang, Zhu, Cao, Tao, Li, Pan, Phillips, Zhang, Chen, Li, Li (bib0030) 2018; 29
Ding, Wei, Wang, Chen, Caro, Wang (bib0145) 2017; 56
Ran, Gao, Li, Ma, Du, Qiao (bib0185) 2017; 8
Hisatomi, Domen (bib0005) 2019; 2
Yuan, Cheng, Zhang, Wu, Lv, Chai, Guo, Zheng (bib0255) 2017; 4
Jin, Yu, Guo, Cui, Ho (bib0050) 2015; 11
Shahzad, Rasool, Nawaz, Miran, Jang, Moztahida, Mahmoud, Lee (bib0200) 2018; 349
Vamvasakis, Papadas, Tzanoudakis, Drivas, Choulis, Kennou, Armatas (bib0090) 2018; 8
Ju, Dai, Wei, Li, Liang, Huang (bib0075) 2018; 20
Sun, Jin, Sun, Meng, Gao, Dall’Agnese, Chen, Wang (bib0175) 2018; 6
Wang, Chen, Wang, Hou, Wang, Ao (bib0015) 2018; 239
Xie, Zhang, Tang, Anpo, Xu (bib0180) 2018; 237
Feng, Chen, Hou, Li, Li, Xu, Sun, Zeng (bib0220) 2018; 345
Zhang, Sheng, Yang, Sun, Tang, Lu, Dong, Shen, Liu, Lan (bib0060) 2018; 130
Li, Yu, Low, Fang, Xiao, Chen (bib0055) 2015; 3
Xiong, Wang, Yang, Liu, Zhang, Jin, Xu (bib0160) 2017; 7
Zhang, Yang, Zuo, Tang, Yang, Li (bib0135) 2016; 4
Chen, Wang, Chen, Wang, Ao (bib0020) 2019; 473
Wang, Zhang, Chen, Hu, Li, Wang, Liu, Wang (bib0040) 2014; 43
Li, Deng, Tian, Liang, Cui (bib0260) 2018; 13
Chen, Feng, Li, Sun, Hou, Li, Xu, Sun, Bu (bib0265) 2018; 39
Wei (10.1016/j.apcatb.2019.118382_bib0025) 2018; 231
Li (10.1016/j.apcatb.2019.118382_bib0110) 2016; 8
Cheng (10.1016/j.apcatb.2019.118382_bib0070) 2018; 11
Shahzad (10.1016/j.apcatb.2019.118382_bib0200) 2018; 349
Fu (10.1016/j.apcatb.2019.118382_bib0045) 2018; 8
Zhang (10.1016/j.apcatb.2019.118382_bib0120) 2017; 5
Wang (10.1016/j.apcatb.2019.118382_bib0210) 2018; 30
Peng (10.1016/j.apcatb.2019.118382_bib0250) 2016; 8
Ling (10.1016/j.apcatb.2019.118382_bib0170) 2014; 111
Wang (10.1016/j.apcatb.2019.118382_bib0140) 2015; 137
Jin (10.1016/j.apcatb.2019.118382_bib0050) 2015; 11
Yuan (10.1016/j.apcatb.2019.118382_bib0065) 2018; 6
Cai (10.1016/j.apcatb.2019.118382_bib0195) 2018; 239
Maleski (10.1016/j.apcatb.2019.118382_bib0215) 2017; 29
Peng (10.1016/j.apcatb.2019.118382_bib0155) 2019; 5
Xiong (10.1016/j.apcatb.2019.118382_bib0160) 2017; 7
Li (10.1016/j.apcatb.2019.118382_bib0260) 2018; 13
Zhang (10.1016/j.apcatb.2019.118382_bib0060) 2018; 130
Xie (10.1016/j.apcatb.2019.118382_bib0180) 2018; 237
Zhang (10.1016/j.apcatb.2019.118382_bib0135) 2016; 4
Feng (10.1016/j.apcatb.2019.118382_bib0240) 2018; 345
Feng (10.1016/j.apcatb.2019.118382_bib0220) 2018; 345
Ding (10.1016/j.apcatb.2019.118382_bib0145) 2017; 56
Cao (10.1016/j.apcatb.2019.118382_bib0130) 2018; 28
Yuan (10.1016/j.apcatb.2019.118382_bib0255) 2017; 4
Ran (10.1016/j.apcatb.2019.118382_bib0185) 2017; 8
Wang (10.1016/j.apcatb.2019.118382_bib0030) 2018; 29
Li (10.1016/j.apcatb.2019.118382_bib0165) 2017; 11
Naguib (10.1016/j.apcatb.2019.118382_bib0125) 2014; 26
Wang (10.1016/j.apcatb.2019.118382_bib0015) 2018; 239
Lin (10.1016/j.apcatb.2019.118382_bib0115) 2018; 30
Zhai (10.1016/j.apcatb.2019.118382_bib0100) 2018; 24
Wang (10.1016/j.apcatb.2019.118382_bib0010) 2017; 4
Di (10.1016/j.apcatb.2019.118382_bib0245) 2019; 470
Wang (10.1016/j.apcatb.2019.118382_bib0095) 2019; 243
Li (10.1016/j.apcatb.2019.118382_bib0105) 2016; 28
Yu (10.1016/j.apcatb.2019.118382_bib0080) 2014; 2
Wang (10.1016/j.apcatb.2019.118382_bib0040) 2014; 43
Sun (10.1016/j.apcatb.2019.118382_bib0175) 2018; 6
Zhu (10.1016/j.apcatb.2019.118382_bib0190) 2018; 6
Alhabeb (10.1016/j.apcatb.2019.118382_bib0230) 2017; 29
Wang (10.1016/j.apcatb.2019.118382_bib0035) 2019; 11
Li (10.1016/j.apcatb.2019.118382_bib0055) 2015; 3
Wang (10.1016/j.apcatb.2019.118382_bib0235) 2017; 10
Chen (10.1016/j.apcatb.2019.118382_bib0265) 2018; 39
Cheng (10.1016/j.apcatb.2019.118382_bib0205) 2019
Han (10.1016/j.apcatb.2019.118382_bib0225) 2017; 202
Vamvasakis (10.1016/j.apcatb.2019.118382_bib0090) 2018; 8
Liu (10.1016/j.apcatb.2019.118382_bib0150) 2017; 29
Chen (10.1016/j.apcatb.2019.118382_bib0020) 2019; 473
Ju (10.1016/j.apcatb.2019.118382_bib0075) 2018; 20
Hisatomi (10.1016/j.apcatb.2019.118382_bib0005) 2019; 2
Yu (10.1016/j.apcatb.2019.118382_bib0085) 2014; 156
References_xml – volume: 231
  start-page: 101
  year: 2018
  end-page: 107
  ident: bib0025
  article-title: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production
  publication-title: Appl Catal B-Environ
– volume: 349
  start-page: 748
  year: 2018
  end-page: 755
  ident: bib0200
  article-title: Heterostructural TiO
  publication-title: Chem Eng J
– volume: 470
  start-page: 196
  year: 2019
  end-page: 204
  ident: bib0245
  article-title: Hierarchically CdS–Ag
  publication-title: Appl Surf Sci
– volume: 4
  start-page: 782
  year: 2017
  end-page: 799
  ident: bib0010
  article-title: Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges
  publication-title: Environ Sci-Nano
– volume: 10
  start-page: 2699
  year: 2017
  end-page: 2711
  ident: bib0235
  article-title: Multidimensional CdS nanowire/CdIn
  publication-title: Nano Res
– volume: 6
  start-page: 11606
  year: 2018
  end-page: 11630
  ident: bib0065
  article-title: Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production
  publication-title: J Mater Chem A
– volume: 11
  start-page: 16527
  year: 2019
  end-page: 16537
  ident: bib0035
  article-title: Copper phosphide enhanced lower charge trapping occurrence in graphitic-C
  publication-title: ACS Appl Mater Interfaces
– volume: 4
  year: 2017
  ident: bib0255
  article-title: 2D-layered carbon/TiO
  publication-title: Adv Mater Interfaces
– volume: 473
  start-page: 11
  year: 2019
  end-page: 19
  ident: bib0020
  article-title: Synergetic effect of MoS
  publication-title: Appl Surf Sci
– volume: 7
  start-page: 15095
  year: 2017
  ident: bib0160
  article-title: Functional group effects on the photoelectronic properties of MXene (Sc
  publication-title: Sci Rep
– volume: 11
  start-page: 3752
  year: 2017
  end-page: 3759
  ident: bib0165
  article-title: MXene Ti
  publication-title: ACS Nano
– volume: 30
  year: 2018
  ident: bib0210
  article-title: Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges
  publication-title: Adv Mater
– volume: 39
  start-page: 841
  year: 2018
  end-page: 848
  ident: bib0265
  article-title: Enhanced visible-light-driven photocatalytic activities of 0D/1D heterojunction carbon quantum dot modified CdS nanowires
  publication-title: Chinese J Catal
– volume: 56
  start-page: 1825
  year: 2017
  end-page: 1829
  ident: bib0145
  article-title: A two-dimensional lamellar membrane: MXene nanosheet stacks
  publication-title: Angew Chem Int Ed
– volume: 8
  start-page: 8726
  year: 2018
  end-page: 8738
  ident: bib0090
  article-title: Visible-light photocatalytic H
  publication-title: ACS Catal
– volume: 11
  start-page: 1362
  year: 2018
  end-page: 1391
  ident: bib0070
  article-title: CdS-based photocatalysts
  publication-title: Energy Environ Sci
– volume: 137
  start-page: 2715
  year: 2015
  end-page: 2721
  ident: bib0140
  article-title: Atomic-scale recognition of surface structure and intercalation mechanism of Ti
  publication-title: J Am Chem Soc
– volume: 345
  start-page: 404
  year: 2018
  end-page: 413
  ident: bib0240
  article-title: Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS
  publication-title: Chem Eng J
– volume: 29
  year: 2018
  ident: bib0030
  article-title: Edge‐enriched ultrathin MoS
  publication-title: Adv Funct Mater
– volume: 43
  start-page: 5234
  year: 2014
  end-page: 5244
  ident: bib0040
  article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances
  publication-title: Chem Soc Rev
– volume: 6
  start-page: 9124
  year: 2018
  end-page: 9131
  ident: bib0175
  article-title: g-C
  publication-title: J Mater Chem A
– volume: 2
  start-page: 3407
  year: 2014
  end-page: 3416
  ident: bib0080
  article-title: A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel
  publication-title: J Mater Chem A
– volume: 8
  year: 2018
  ident: bib0045
  article-title: g-C
  publication-title: Adv Energy Mater
– volume: 29
  start-page: 1632
  year: 2017
  end-page: 1640
  ident: bib0215
  article-title: Dispersions of two-dimensional titanium carbide MXene in organic solvents
  publication-title: Chem Mater
– volume: 29
  start-page: 7633
  year: 2017
  end-page: 7644
  ident: bib0230
  article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti
  publication-title: Chem Mater
– volume: 29
  year: 2017
  ident: bib0150
  article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding
  publication-title: Adv Mater
– volume: 8
  year: 2017
  ident: bib0185
  article-title: Ti
  publication-title: Nat Commun
– volume: 2
  start-page: 387
  year: 2019
  end-page: 399
  ident: bib0005
  article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts
  publication-title: Nat Catal
– volume: 345
  start-page: 404
  year: 2018
  end-page: 413
  ident: bib0220
  article-title: Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS
  publication-title: Chem Eng J
– volume: 11
  start-page: 5262
  year: 2015
  end-page: 5271
  ident: bib0050
  article-title: A hierarchical Z-Scheme CdS-WO
  publication-title: Small
– volume: 239
  start-page: 578
  year: 2018
  end-page: 585
  ident: bib0015
  article-title: Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C
  publication-title: Appl Catal B-Environ
– volume: 243
  start-page: 19
  year: 2019
  end-page: 26
  ident: bib0095
  article-title: Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H
  publication-title: Appl Catal B-Environ
– volume: 8
  start-page: 14535
  year: 2016
  end-page: 14541
  ident: bib0110
  article-title: Engineering Zn
  publication-title: ACS Appl Mater Interfaces
– volume: 28
  start-page: 8906
  year: 2016
  end-page: 8911
  ident: bib0105
  article-title: Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H
  publication-title: Adv Mater
– volume: 5
  start-page: 18
  year: 2019
  end-page: 50
  ident: bib0155
  article-title: Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis
  publication-title: Chem
– volume: 8
  start-page: 6051
  year: 2016
  end-page: 6060
  ident: bib0250
  article-title: Hybrids of two-dimensional Ti
  publication-title: ACS Appl Mater Interfaces
– volume: 202
  start-page: 298
  year: 2017
  end-page: 304
  ident: bib0225
  article-title: One-dimensional CdS@MoS
  publication-title: Appl Catal B-Environ
– volume: 3
  start-page: 2485
  year: 2015
  end-page: 2534
  ident: bib0055
  article-title: Engineering heterogeneous semiconductors for solar water splitting
  publication-title: J Mater Chem A
– volume: 4
  start-page: 12913
  year: 2016
  end-page: 12920
  ident: bib0135
  article-title: Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M
  publication-title: J Mater Chem A
– volume: 24
  start-page: 15930
  year: 2018
  end-page: 15936
  ident: bib0100
  article-title: Polyoxometalate-decorated g-C
  publication-title: Chem Eur J
– volume: 111
  start-page: 16676
  year: 2014
  end-page: 16681
  ident: bib0170
  article-title: Flexible and conductive MXene films and nanocomposites with high capacitance
  publication-title: Pro Natl Acad Sci USA
– volume: 6
  start-page: 21255
  year: 2018
  end-page: 21260
  ident: bib0190
  article-title: Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions
  publication-title: J Mater Chem A
– start-page: 3488
  year: 2019
  end-page: 3494
  ident: bib0205
  article-title: Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation
  publication-title: J Phys Chem Lett
– volume: 156
  start-page: 184
  year: 2014
  end-page: 191
  ident: bib0085
  article-title: Morphology-dependent photocatalytic H
  publication-title: Appl Catal B-Environ
– volume: 5
  start-page: 12899
  year: 2017
  end-page: 12903
  ident: bib0120
  article-title: Ti
  publication-title: J Mater Chem A
– volume: 30
  year: 2018
  ident: bib0115
  article-title: Theranostic 2D tantalum carbide (MXene)
  publication-title: Adv Mater
– volume: 130
  start-page: 12282
  year: 2018
  end-page: 12286
  ident: bib0060
  article-title: Rational design MOF/COF hybrid materials for photocatalytic H
  publication-title: Angew Chem Int Ed
– volume: 13
  start-page: 217
  year: 2018
  end-page: 227
  ident: bib0260
  article-title: Ti
  publication-title: Appl Mater Today
– volume: 239
  start-page: 545
  year: 2018
  end-page: 554
  ident: bib0195
  article-title: Ag
  publication-title: Appl Catal B-Environ
– volume: 26
  start-page: 992
  year: 2014
  end-page: 1005
  ident: bib0125
  article-title: 25th anniversary article: MXenes: A new family of two-dimensional materials
  publication-title: Adv Mater
– volume: 28
  year: 2018
  ident: bib0130
  article-title: 2D/2D heterojunction of ultrathin MXene/Bi
  publication-title: Adv Funct Mater
– volume: 20
  start-page: 1904
  year: 2018
  end-page: 1913
  ident: bib0075
  article-title: One-dimensional cadmium sulphide nanotubes for photocatalytic water splitting
  publication-title: Phys Chem Chem Phys
– volume: 237
  start-page: 43
  year: 2018
  end-page: 49
  ident: bib0180
  article-title: Ti
  publication-title: Appl Catal B-Environ
– volume: 8
  start-page: 8726
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0090
  article-title: Visible-light photocatalytic H2 production activity of beta-Ni(OH)2-modified CdS mesoporous nanoheterojunction networks
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b01830
– volume: 8
  start-page: 14535
  year: 2016
  ident: 10.1016/j.apcatb.2019.118382_bib0110
  article-title: Engineering Zn1-xCdxS/CdS heterostructures with enhanced photocatalytic activity
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b02765
– volume: 7
  start-page: 15095
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0160
  article-title: Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-15233-8
– volume: 237
  start-page: 43
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0180
  article-title: Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion
  publication-title: Appl Catal B-Environ
  doi: 10.1016/j.apcatb.2018.05.070
– volume: 345
  start-page: 404
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0240
  article-title: Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.03.155
– volume: 29
  start-page: 1632
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0215
  article-title: Dispersions of two-dimensional titanium carbide MXene in organic solvents
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.6b04830
– volume: 137
  start-page: 2715
  year: 2015
  ident: 10.1016/j.apcatb.2019.118382_bib0140
  article-title: Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X
  publication-title: J Am Chem Soc
  doi: 10.1021/ja512820k
– volume: 239
  start-page: 545
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0195
  article-title: Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance
  publication-title: Appl Catal B-Environ
  doi: 10.1016/j.apcatb.2018.08.053
– volume: 6
  start-page: 11606
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0065
  article-title: Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA00671G
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0045
  article-title: g-C3N4-based heterostructured photocatalysts
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201701503
– volume: 11
  start-page: 5262
  year: 2015
  ident: 10.1016/j.apcatb.2019.118382_bib0050
  article-title: A hierarchical Z-Scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity
  publication-title: Small
  doi: 10.1002/smll.201500926
– volume: 8
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0185
  article-title: Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production
  publication-title: Nat Commun
  doi: 10.1038/ncomms13907
– volume: 11
  start-page: 1362
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0070
  article-title: CdS-based photocatalysts
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE03640J
– volume: 28
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0130
  article-title: 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201800136
– volume: 345
  start-page: 404
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0220
  article-title: Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.03.155
– volume: 130
  start-page: 12282
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0060
  article-title: Rational design MOF/COF hybrid materials for photocatalytic H2 Evolution in the presence of sacrificial electron donors
  publication-title: Angew Chem Int Ed
  doi: 10.1002/ange.201806862
– start-page: 3488
  year: 2019
  ident: 10.1016/j.apcatb.2019.118382_bib0205
  article-title: Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.9b00736
– volume: 24
  start-page: 15930
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0100
  article-title: Polyoxometalate-decorated g-C3N4-wrapping snowflake-like CdS nanocrystal for enhanced photocatalytic hydrogen evolution
  publication-title: Chem Eur J
  doi: 10.1002/chem.201803621
– volume: 43
  start-page: 5234
  year: 2014
  ident: 10.1016/j.apcatb.2019.118382_bib0040
  article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances
  publication-title: Chem Soc Rev
  doi: 10.1039/C4CS00126E
– volume: 26
  start-page: 992
  year: 2014
  ident: 10.1016/j.apcatb.2019.118382_bib0125
  article-title: 25th anniversary article: MXenes: A new family of two-dimensional materials
  publication-title: Adv Mater
  doi: 10.1002/adma.201304138
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0210
  article-title: Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges
  publication-title: Adv Mater
– volume: 10
  start-page: 2699
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0235
  article-title: Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1473-y
– volume: 39
  start-page: 841
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0265
  article-title: Enhanced visible-light-driven photocatalytic activities of 0D/1D heterojunction carbon quantum dot modified CdS nanowires
  publication-title: Chinese J Catal
  doi: 10.1016/S1872-2067(17)62972-3
– volume: 6
  start-page: 9124
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0175
  article-title: g-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA02706D
– volume: 4
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0255
  article-title: 2D-layered carbon/TiO2 hybrids derived from Ti3C2 MXenes for photocatalytic hydrogen Evolution under visible light irradiation
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201700577
– volume: 11
  start-page: 3752
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0165
  article-title: MXene Ti3C2: An effective 2D light-to-heat conversion material
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08415
– volume: 4
  start-page: 12913
  year: 2016
  ident: 10.1016/j.apcatb.2019.118382_bib0135
  article-title: Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA04628B
– volume: 349
  start-page: 748
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0200
  article-title: Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.05.148
– volume: 29
  start-page: 7633
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0230
  article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene)
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b02847
– volume: 4
  start-page: 782
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0010
  article-title: Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges
  publication-title: Environ Sci-Nano
  doi: 10.1039/C7EN00063D
– volume: 243
  start-page: 19
  year: 2019
  ident: 10.1016/j.apcatb.2019.118382_bib0095
  article-title: Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity
  publication-title: Appl Catal B-Environ
  doi: 10.1016/j.apcatb.2018.10.019
– volume: 156
  start-page: 184
  year: 2014
  ident: 10.1016/j.apcatb.2019.118382_bib0085
  article-title: Morphology-dependent photocatalytic H2-production activity of CdS
  publication-title: Appl Catal B-Environ
  doi: 10.1016/j.apcatb.2014.03.013
– volume: 13
  start-page: 217
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0260
  article-title: Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2018.09.004
– volume: 2
  start-page: 3407
  year: 2014
  ident: 10.1016/j.apcatb.2019.118382_bib0080
  article-title: A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta14493c
– volume: 11
  start-page: 16527
  year: 2019
  ident: 10.1016/j.apcatb.2019.118382_bib0035
  article-title: Copper phosphide enhanced lower charge trapping occurrence in graphitic-C3N4 for efficient noble-metal-free photocatalytic H2 evolution
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b01421
– volume: 202
  start-page: 298
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0225
  article-title: One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light
  publication-title: Appl Catal B-Environ
  doi: 10.1016/j.apcatb.2016.09.023
– volume: 3
  start-page: 2485
  year: 2015
  ident: 10.1016/j.apcatb.2019.118382_bib0055
  article-title: Engineering heterogeneous semiconductors for solar water splitting
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA04461D
– volume: 6
  start-page: 21255
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0190
  article-title: Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA08374F
– volume: 28
  start-page: 8906
  year: 2016
  ident: 10.1016/j.apcatb.2019.118382_bib0105
  article-title: Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability
  publication-title: Adv Mater
  doi: 10.1002/adma.201601047
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0150
  article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding
  publication-title: Adv Mater
  doi: 10.1002/adma.201702367
– volume: 29
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0030
  article-title: Edge‐enriched ultrathin MoS2 embedded yolk‐shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution
  publication-title: Adv Funct Mater
– volume: 111
  start-page: 16676
  year: 2014
  ident: 10.1016/j.apcatb.2019.118382_bib0170
  article-title: Flexible and conductive MXene films and nanocomposites with high capacitance
  publication-title: Pro Natl Acad Sci USA
  doi: 10.1073/pnas.1414215111
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0115
  article-title: Theranostic 2D tantalum carbide (MXene)
  publication-title: Adv Mater
  doi: 10.1002/adma.201703284
– volume: 470
  start-page: 196
  year: 2019
  ident: 10.1016/j.apcatb.2019.118382_bib0245
  article-title: Hierarchically CdS–Ag2S nanocomposites for efficient photocatalytic H2 production
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.11.010
– volume: 239
  start-page: 578
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0015
  article-title: Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet
  publication-title: Appl Catal B-Environ
  doi: 10.1016/j.apcatb.2018.08.048
– volume: 473
  start-page: 11
  year: 2019
  ident: 10.1016/j.apcatb.2019.118382_bib0020
  article-title: Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.12.071
– volume: 5
  start-page: 12899
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0120
  article-title: Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA03557H
– volume: 8
  start-page: 6051
  year: 2016
  ident: 10.1016/j.apcatb.2019.118382_bib0250
  article-title: Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b11973
– volume: 56
  start-page: 1825
  year: 2017
  ident: 10.1016/j.apcatb.2019.118382_bib0145
  article-title: A two-dimensional lamellar membrane: MXene nanosheet stacks
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201609306
– volume: 231
  start-page: 101
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0025
  article-title: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production
  publication-title: Appl Catal B-Environ
  doi: 10.1016/j.apcatb.2018.03.014
– volume: 2
  start-page: 387
  year: 2019
  ident: 10.1016/j.apcatb.2019.118382_bib0005
  article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0242-6
– volume: 20
  start-page: 1904
  year: 2018
  ident: 10.1016/j.apcatb.2019.118382_bib0075
  article-title: One-dimensional cadmium sulphide nanotubes for photocatalytic water splitting
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C7CP06568J
– volume: 5
  start-page: 18
  year: 2019
  ident: 10.1016/j.apcatb.2019.118382_bib0155
  article-title: Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.08.037
SSID ssj0002328
Score 2.7057452
Snippet [Display omitted] •1D CdS/2D Ti3C2 MXene Schottky heterojunction was successfully fabricated.•In situ constructed Schottky photocatalyst exhibits enhanced HER...
Benefiting from excellent metallic conductivity, full-spectrum solar energy absorption and rich active sites on the surface, atomically thin two-dimensional...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118382
SubjectTerms CdS
Energy absorption
Evolution
Fabrication
Heterojunctions
Hydrogen
Hydrogen evolution reactions
Metal carbides
MXene
MXenes
N-type semiconductors
Nanorods
Nanosheets
Nanostructure
Photocatalysis
Photocatalysts
Photocatalytic hydrogen evolution
Schottky heterojunction
Solar energy
Synergistic effect
Transition metals
Water splitting
Title In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution
URI https://dx.doi.org/10.1016/j.apcatb.2019.118382
https://www.proquest.com/docview/2435541252
Volume 268
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1V5QAcECxUlJbKB65hE9tJnGOVttqC2ktbaW-WndjaLShZ7bqV9sKZz-7YcSggpEpcrbFlZWbePDszY4BPCmOWKDKd2NJUCefMoM-lOskzUbCSlSZvfIHzxWUxu-Ff5vl8B-qxFsanVUbsHzA9oHUcmcavOV0tl9OrtKIFw_WQgiBpEB6HOS-9lX_-8ZjmgYwhoDEKJ156LJ8LOV5q1SinfYJXhdghQju-f4env4A6RJ-z1_Aq0kZyPOzsDeyYbgLP6_G1tgm8_K2x4AT2Th_r13BadODNW_h53pHN0t0Rq_Q6XteR3pLshNTtFelU1yOiTukJuV6ympKLOWJhGN4sjHHEN-107tuWLHwaTX-LUTEs4UL2LTHdImQUkBWK9eFqaIs7Jottu-7RVIm5j6b-Dm7OTq_rWRIfY0gadHOX2ILbkvJWYcinKmWK2lJTrjJkMG2rBc-VbosKz4tFqotcZ9SyBs-KtLLcqsqyPdjt-s68B9JoJUrFciWU5k3KtPD_FpUWwjYmU-0-sFEHsomdyv2DGd_lmJJ2KwfNSa85OWhuH5Jfs1ZDp44n5MtRvfIPi5MYTJ6YeThag4wev5GUe-aGdJF--O-FD-AF9cd5f3ucH8KuW9-Zj8h5nD4KRn0Ez47Pv84uHwA_2wI8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELZQeWB7QFs3NDbG_LDXqIntJM4jCqB20L5QpL5ZdmKrZVNStQap_wF_NmfHYT-EhLRXy2dZubvvPjt3Z4S-S4hZPEtUZHJdRIxRDT4XqyhNeEZzmuu0cgXO01k2vmU_FuliD5V9LYxLqwzY32G6R-swMgpfc7RerUY3cUEyCusBBQHSwAGH9113qnSA9s8mV-PZMyADafCADPMjJ9BX0Pk0L7mupFUux6sA-OC-I9_LEeofrPYB6PIdOgzMEZ91m3uP9nQzRAdl_2DbEL39o7fgEB1d_C5hA7Hgw9sP6HHS4O3K3mMj1Sbc2OHW4OQcl_UNbmTTAqiOyDmer2hJ8HQBcOiHt0utLXZ9O639ucNLl0nT3kFg9EtYn4CLdbP0SQV4DdNafzu0gx3j5a7etGCtWD8Ea_-Ibi8v5uU4Cu8xRBV4uo1MxkxOWC0h6hMZU0lMrgiTCZCYulacpVLVWQFHxixWWaoSYmgFx0VSGGZkYegRGjRtoz8hXCnJc0lTyaViVUwVd78XpeLcVDqR9TGivQ5EFZqVuzczfok-K-1OdJoTTnOi09wxip6l1l2zjlfm5716xV9GJyCevCJ50luDCE6_FYQ58gaMkXz-74W_oYPxfHotriezqy_oDXGne3eZnJ6ggd3c669Agaw6DSb-BA3pBO0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+fabrication+of+1D+CdS+nanorod%2F2D+Ti3C2+MXene+nanosheet+Schottky+heterojunction+toward+enhanced+photocatalytic+hydrogen+evolution&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Xiao%2C+Rong&rft.au=Zhao%2C+Chengxiao&rft.au=Zou%2C+Zhaoyong&rft.au=Chen%2C+Zupeng&rft.date=2020-07-05&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=268&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118382&rft.externalDocID=S0926337319311282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon