Modulating the oxidative active species by regulating the valence of palladium cocatalyst in photocatalytic degradation of ciprofloxacin

Nano-structured metal cocatalysts are easy to be oxidized and form mixed valences and interfaces which would facilitate the catalytic performance in previous studies. Herein, as an example in photocatalysis, three kinds of Pd cocatalysts with various valence distributions (PdO70-Pd30/CN, PdO50-Pd50/...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 306; p. 121092
Main Authors Guo, Fa, Zhang, Hao, Li, Hui, Shen, Zhurui
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.06.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nano-structured metal cocatalysts are easy to be oxidized and form mixed valences and interfaces which would facilitate the catalytic performance in previous studies. Herein, as an example in photocatalysis, three kinds of Pd cocatalysts with various valence distributions (PdO70-Pd30/CN, PdO50-Pd50/CN and PdO30-Pd70/CN) were loaded on g-C3N4 nanosheets with the close loading amounts (~1 wt%) and uniform sizes (2–3 nm). Then, the results of the photocatalytic degradation of ciprofloxacin showed that the generated oxidative active species are highly related to the distribution of palladium valence. Pd2+ (PdO) benefits the production of·O2-, while Pd0 benefits the production of h+. The theoretical simulations revealed that surface states e.g., electron distribution and the adsorption ability of O2 on different Pd species determined the production of·O2- and h+. Besides, PdO50-Pd50/CN showed the best performance for degrading ciprofloxacin, due to the joint action of·O2- and h+ in the CIP degradation. [Display omitted] •The correlation is studied between the valence of Pd cocatalyst and active species in photocatalysis.•The distribution of active species is semi-quantitative correlated with the ratios of Pd2+/Pd0.•Amongst, Pd2+ (PdO) benefits the production of·O2-, while Pd0 benefits the production of h+.•The surface states of Pd are crucial, e.g., the adsorption ability of O2 and electrons distribution.•The nearly equal ratios of·O2- and h+ resulted in the best degradation efficiency of ciprofloxacin.
AbstractList Nano-structured metal cocatalysts are easy to be oxidized and form mixed valences and interfaces which would facilitate the catalytic performance in previous studies. Herein, as an example in photocatalysis, three kinds of Pd cocatalysts with various valence distributions (PdO70-Pd30/CN, PdO50-Pd50/CN and PdO30-Pd70/CN) were loaded on g-C3N4 nanosheets with the close loading amounts (~1 wt%) and uniform sizes (2–3 nm). Then, the results of the photocatalytic degradation of ciprofloxacin showed that the generated oxidative active species are highly related to the distribution of palladium valence. Pd2+ (PdO) benefits the production of·O2-, while Pd0 benefits the production of h+. The theoretical simulations revealed that surface states e.g., electron distribution and the adsorption ability of O2 on different Pd species determined the production of·O2- and h+. Besides, PdO50-Pd50/CN showed the best performance for degrading ciprofloxacin, due to the joint action of·O2- and h+ in the CIP degradation. [Display omitted] •The correlation is studied between the valence of Pd cocatalyst and active species in photocatalysis.•The distribution of active species is semi-quantitative correlated with the ratios of Pd2+/Pd0.•Amongst, Pd2+ (PdO) benefits the production of·O2-, while Pd0 benefits the production of h+.•The surface states of Pd are crucial, e.g., the adsorption ability of O2 and electrons distribution.•The nearly equal ratios of·O2- and h+ resulted in the best degradation efficiency of ciprofloxacin.
Nano-structured metal cocatalysts are easy to be oxidized and form mixed valences and interfaces which would facilitate the catalytic performance in previous studies. Herein, as an example in photocatalysis, three kinds of Pd cocatalysts with various valence distributions (PdO70-Pd30/CN, PdO50-Pd50/CN and PdO30-Pd70/CN) were loaded on g-C3N4 nanosheets with the close loading amounts (~1 wt%) and uniform sizes (2–3 nm). Then, the results of the photocatalytic degradation of ciprofloxacin showed that the generated oxidative active species are highly related to the distribution of palladium valence. Pd2+ (PdO) benefits the production of·O2-, while Pd0 benefits the production of h+. The theoretical simulations revealed that surface states e.g., electron distribution and the adsorption ability of O2 on different Pd species determined the production of·O2- and h+. Besides, PdO50-Pd50/CN showed the best performance for degrading ciprofloxacin, due to the joint action of·O2- and h+ in the CIP degradation.
ArticleNumber 121092
Author Li, Hui
Guo, Fa
Shen, Zhurui
Zhang, Hao
Author_xml – sequence: 1
  givenname: Fa
  surname: Guo
  fullname: Guo, Fa
– sequence: 2
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
– sequence: 3
  givenname: Hui
  surname: Li
  fullname: Li, Hui
– sequence: 4
  givenname: Zhurui
  surname: Shen
  fullname: Shen, Zhurui
  email: shenzhurui@nankai.edu.cn
BookMark eNqFkM9qGzEQh0VJoI6TN8hB0PM6-rNea3sohJCkhZRekrMYSbO2zHq1lWQTv0Efu3I2h9JDexo0zPeb0XdBzoYwICHXnC04483NdgGjhWwWggmx4IKzVnwgM65WspJKyTMyK52mknIlP5KLlLaMMSGFmpFf34Pb95D9sKZ5gzS8eldeB6Rg30oa0XpM1BxpxPWfowfocbAF6egIfQ_O73fUhnII9MeUqR_ouAn5vZG9pQ7XEU7xYThR1o8xdH14BeuHS3LeQZ_w6r3OycvD_fPd1-rpx-O3u9unytaM5apbstqqmnUrwY1TtVHWoeuwW9bALOPADRpjaoOgEF1bg1oxoYS0y9a1xcWcfJpyy-6fe0xZb8M-DmWlFo1sG9Uw2ZSpz9OUjSGliJ22Pr8dniP4XnOmT-b1Vk_m9cm8nswXuP4LHqPfQTz-D_syYVi-f_AYdSrmi2HnI9qsXfD_DvgNX-ylqw
CitedBy_id crossref_primary_10_1016_j_jtice_2024_105856
crossref_primary_10_1021_acsestengg_2c00442
crossref_primary_10_1016_j_envpol_2025_125945
crossref_primary_10_1016_j_jallcom_2022_165459
crossref_primary_10_1016_j_scitotenv_2024_170191
crossref_primary_10_1021_acs_langmuir_4c00155
crossref_primary_10_1016_j_jece_2023_110355
crossref_primary_10_1016_j_jece_2023_111569
crossref_primary_10_1007_s10853_024_10045_4
crossref_primary_10_1002_jccs_202400289
crossref_primary_10_1016_j_jece_2022_108557
crossref_primary_10_1016_j_apcatb_2022_122220
crossref_primary_10_1016_j_apcatb_2023_123557
crossref_primary_10_1016_j_apcatb_2024_124920
crossref_primary_10_1021_jacs_4c03083
crossref_primary_10_1016_j_jallcom_2024_176910
crossref_primary_10_1016_j_cej_2024_157737
crossref_primary_10_1021_acsami_4c03530
crossref_primary_10_3390_catal13030621
crossref_primary_10_1016_j_cej_2022_137609
crossref_primary_10_1016_j_matlet_2022_133153
crossref_primary_10_1016_j_seppur_2024_128108
crossref_primary_10_1016_j_surfin_2024_105463
crossref_primary_10_1039_D4EN00177J
crossref_primary_10_1016_j_envres_2024_118519
crossref_primary_10_1016_j_cej_2023_146544
crossref_primary_10_1016_j_jcis_2022_08_029
crossref_primary_10_1016_j_seppur_2022_121781
crossref_primary_10_1016_j_watres_2023_119744
crossref_primary_10_1016_j_cej_2024_151950
crossref_primary_10_1016_j_jallcom_2022_164294
crossref_primary_10_1016_j_jwpe_2023_103534
crossref_primary_10_1021_acs_inorgchem_4c00394
crossref_primary_10_1007_s13369_024_09604_3
crossref_primary_10_1016_j_apsusc_2024_160943
crossref_primary_10_1016_j_cej_2024_153168
crossref_primary_10_1016_j_jcat_2023_04_009
crossref_primary_10_1016_j_cej_2022_137857
crossref_primary_10_1021_acsanm_2c02442
crossref_primary_10_1016_j_apcatb_2023_123680
crossref_primary_10_1016_j_seppur_2023_125960
crossref_primary_10_1016_j_ijbiomac_2025_141049
crossref_primary_10_1016_j_ceramint_2022_11_316
crossref_primary_10_1021_acsanm_4c04459
crossref_primary_10_1016_j_cej_2023_142533
crossref_primary_10_1016_j_mtsust_2023_100340
crossref_primary_10_1021_acscatal_4c05009
crossref_primary_10_1007_s11431_023_2429_8
crossref_primary_10_1039_D2NJ04564H
crossref_primary_10_1016_j_vacuum_2024_113041
crossref_primary_10_1007_s13762_023_05020_6
crossref_primary_10_3389_fchem_2023_1130682
crossref_primary_10_1016_j_psep_2024_10_041
crossref_primary_10_1002_cctc_202400759
crossref_primary_10_1016_j_jhazmat_2023_132228
crossref_primary_10_1016_j_apcatb_2025_125034
crossref_primary_10_1016_j_surfin_2024_104033
crossref_primary_10_1039_D4NR03755C
crossref_primary_10_1016_j_cej_2023_142562
crossref_primary_10_1016_j_seppur_2022_121124
crossref_primary_10_1016_j_cej_2024_151218
crossref_primary_10_1039_D3RA07390D
crossref_primary_10_1016_j_cjsc_2025_100560
crossref_primary_10_1016_j_apcatb_2022_121978
crossref_primary_10_1016_j_cej_2023_146448
crossref_primary_10_1016_j_colsurfa_2023_131088
crossref_primary_10_1016_j_mtphys_2023_101121
crossref_primary_10_53941_see_2024_100003
crossref_primary_10_1016_j_apsusc_2024_161259
crossref_primary_10_1021_acsanm_3c01760
crossref_primary_10_3390_molecules28010333
crossref_primary_10_1016_j_ceramint_2024_09_041
crossref_primary_10_1021_acs_est_3c08579
crossref_primary_10_1007_s11051_023_05887_z
crossref_primary_10_1016_j_apcatb_2023_122857
crossref_primary_10_1016_j_mtchem_2022_101028
crossref_primary_10_1016_j_cej_2025_161423
crossref_primary_10_1016_j_chemosphere_2023_138027
crossref_primary_10_1016_j_arabjc_2024_105615
crossref_primary_10_1016_j_fuel_2024_134020
crossref_primary_10_1016_j_jcis_2022_05_054
crossref_primary_10_1016_j_seppur_2024_129768
Cites_doi 10.1016/j.apcatb.2021.120156
10.1021/acs.chemrev.7b00161
10.1021/cr100454n
10.1016/j.jhazmat.2021.127177
10.1002/adma.201704649
10.1021/acs.est.8b05827
10.1021/acsaem.8b00526
10.1016/j.apcatb.2019.118236
10.1002/adma.201500033
10.1016/j.fuel.2021.121745
10.1016/j.apcatb.2018.01.024
10.1016/j.cej.2020.124532
10.1080/10643389.2013.763581
10.1002/cssc.202001398
10.1002/adma.201600305
10.1021/jacs.6b07272
10.1016/j.apcatb.2019.118149
10.1021/acsami.7b07226
10.1021/acscatal.1c00839
10.3390/app11146659
10.1021/acs.est.8b06351
10.1039/D1NR02464G
10.1039/C6TA10919E
10.1039/C9TA02045D
10.1016/j.apcatb.2016.07.021
10.1039/C5NR02345A
10.1016/j.apcatb.2009.12.002
10.1016/j.jhazmat.2020.122877
10.1016/j.apcatb.2020.119579
10.1002/adma.201807660
10.1016/j.apcatb.2020.119298
10.1016/j.apcatb.2012.08.015
10.1016/j.chemosphere.2011.06.082
10.1021/acsnano.1c03961
10.1016/j.cej.2018.11.111
10.1016/j.nanoen.2020.105671
10.1016/j.watres.2018.12.001
10.1016/j.watres.2020.116286
10.1016/j.cej.2020.124047
10.1002/clen.201300989
10.1016/j.apcatb.2021.120904
10.1016/j.chemosphere.2020.126351
10.1016/j.jhazmat.2020.122599
10.1021/acs.chemrev.6b00075
10.1016/j.cej.2021.128668
10.1021/acs.est.7b04215
10.1016/j.watres.2012.11.027
ContentType Journal Article
Copyright 2022
Copyright Elsevier BV Jun 5, 2022
Copyright_xml – notice: 2022
– notice: Copyright Elsevier BV Jun 5, 2022
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2022.121092
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2022_121092
S0926337322000327
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-f504c840f721bd84b8cdedfef54a0c01a1bebbb4bea8eed94a8702823c59d9883
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 05:55:51 EDT 2025
Thu Apr 24 23:13:20 EDT 2025
Tue Jul 01 04:35:18 EDT 2025
Sat Mar 02 16:01:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxidative active species
Metal cocatalyst
Valence regulation
Contribution modulating
Surface states
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-f504c840f721bd84b8cdedfef54a0c01a1bebbb4bea8eed94a8702823c59d9883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2639686036
PQPubID 2045281
ParticipantIDs proquest_journals_2639686036
crossref_citationtrail_10_1016_j_apcatb_2022_121092
crossref_primary_10_1016_j_apcatb_2022_121092
elsevier_sciencedirect_doi_10_1016_j_apcatb_2022_121092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-05
PublicationDateYYYYMMDD 2022-06-05
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Shang, Huang, Li, Li, Zhao, Wang, Ai, Zhang (bib31) 2020; 386
Li, Kang, Dong, Zhang, Luo, Han, Huang, Feng, Chen, Xu, Peng, Wang (bib35) 2021; 81
Gothwal, Shashidhar (bib16) 2015; 43
Ren, Hu, Jin, Wu, Wang, Liu, Liu, Wu, Li, Tendeloo, Su (bib10) 2017; 9
Lei, Wang, Zhu, Nie, Tang (bib40) 2020; 261
Xia, Hong Chuong Nguyen, Cuong Nguyen, Young Kim, Nguyen, Raizada, Singh, Nguyen, Chien Nguyen, Chinh Hoang, Van Le (bib2) 2022; 307
Xiong, Zhang, Zhang, Lai, Yao (bib22) 2019; 359
Li, Huang, Du, Liu, Hu (bib18) 2020; 185
Nosaka, Nosaka (bib27) 2017; 117
Ong, Tan, Ng, Yong, Chai (bib13) 2016; 116
Soni, Xia, Cheng, Nguyen, Nguyen, Bajpai, Kim, Le, Khan, Singh, Raizada (bib3) 2021; 24
Mansouri, Chouchene, Roche, Ksibi (bib21) 2021; 11
Kubacka, Fernandez-Garcia, Colon (bib26) 2012; 112
Bao, Ye, Fang, Zhao (bib47) 2017; 5
Chen, Yang, Li, Zeng, Wang, Niu, Zhao, An, Xie, Deng (bib36) 2017; 200
Li, Fu, Zhu (bib52) 2020; 260
Long, Li, Wei, Zhang, Ren (bib29) 2020; 395
Wang, Wang, Hu, Lu, Sun, Shi, Liu, Lei, Jiang (bib38) 2018; 1
Meng, Liu, Ouyang, Xu, Wang, Zhao, Ye (bib1) 2016; 28
Liu, Li, Liu, Jiang, Zhang, Liang (bib32) 2019; 150
Michael, Rizzo, McArdell, Manaia, Merlin, Schwartz, Dagot, Fatta-Kassinos (bib19) 2013; 47
Gong, Mei, Liu, Huang, Zhang, Li, Zhong, Lu (bib8) 2021; 292
Chen, Blaney, Cagnetta, Huang, Wang, Wang, Deng, Yu (bib48) 2019; 53
Bai, Wu, Wang, Chen, Tan, Wang, Qiao, Wong (bib46) 2020; 192
Yu, Dong, Chen, Geng, Wang, Li, Zhou, Dong (bib6) 2021; 15
Meng, Zhang, Cheng, Yu (bib9) 2019; 31
Yin, Han, Hu, Feng, Liu, Du, Zhang (bib41) 2020; 390
Ghatak (bib23) 2014; 44
Kovalakova, Cizmas, McDonald, Marsalek, Feng, Sharma (bib17) 2020; 251
Wang, Feng, Chen, Wang, Su, Zhang, Zeng, Xie, Liu, Liu, Lv, Liu (bib20) 2018; 227
Coha, Farinelli, Tiraferri, Minella, Vione (bib25) 2021; 414
Lv, Wu, Tian, Ye, Liu, Liang (bib12) 2019; 7
Chen, Li, You, Guo, Wang, Li, Yuan, Zhu, Gao, Zhang, Yang, Wang (bib11) 2021; 11
Fatta-Kassinos, Vasquez, Kummerer (bib15) 2011; 85
Wu, He, Liu, Shao, Liang, Pan, Huang, Peng, Liu, Zhao, Yuan, Tang, Gong (bib50) 2022; 424
Xiao, Han, Xie, Yang, Su, Chen, Cao (bib30) 2017; 51
Ji, Cheng, Wu, Xiang, He, Xu, Xu, Qi, Li, Zhang, Yang (bib49) 2021; 282
Wei, Liu, Wang, Zong, Yao, Wang, Zhu (bib42) 2015; 7
Ran, Jaroniec, Qiao (bib7) 2018; 30
Chen, Blaney, Cagnetta, Huang, Wang, Wang, Deng, Yu (bib14) 2019; 53
Luo, Zhang, Wang, Yun, Xiang (bib28) 2020; 13
Zhao, Xu (bib4) 2021; 13
An, Yang, Li, Song, Cooper, Nie (bib24) 2010; 94
Wang, Zhu, Zuo, Guo, Xiao, Dai, Kong, Xu, Zhou, Xie, Sun, Xian (bib45) 2020; 278
Li, Zhang, Zhou (bib5) 2018; 30
Zhang, Qin, Zhou, Qin, Wang, Wang, Yang, Zeng (bib44) 2022; 303
Liu, Yue, Wang, Tan, Xia, Wang, Qiao, Wong (bib43) 2020; 397
Mu, Zhan, Huang, Wang, Ai, Zou, Luo, Zhang (bib33) 2019; 53
Xu, Yan, Xu, Song, Li, Xia, Huang, Wan (bib39) 2013; 129
Cao, Low, Yu, Jaroniec (bib34) 2015; 27
Wang, Feng, Chen, Wang, Su, Zhang, Zeng, Xie, Liu, Liu, Lv, Liu (bib51) 2018; 227
Li, Ouyang, Xu, Wang, Bi, Zhang, Ye (bib37) 2016; 138
Ren (10.1016/j.apcatb.2022.121092_bib10) 2017; 9
Zhao (10.1016/j.apcatb.2022.121092_bib4) 2021; 13
Mu (10.1016/j.apcatb.2022.121092_bib33) 2019; 53
Li (10.1016/j.apcatb.2022.121092_bib35) 2021; 81
Meng (10.1016/j.apcatb.2022.121092_bib1) 2016; 28
Luo (10.1016/j.apcatb.2022.121092_bib28) 2020; 13
Lei (10.1016/j.apcatb.2022.121092_bib40) 2020; 261
Liu (10.1016/j.apcatb.2022.121092_bib43) 2020; 397
Coha (10.1016/j.apcatb.2022.121092_bib25) 2021; 414
Fatta-Kassinos (10.1016/j.apcatb.2022.121092_bib15) 2011; 85
Chen (10.1016/j.apcatb.2022.121092_bib11) 2021; 11
Wang (10.1016/j.apcatb.2022.121092_bib51) 2018; 227
Wei (10.1016/j.apcatb.2022.121092_bib42) 2015; 7
Chen (10.1016/j.apcatb.2022.121092_bib14) 2019; 53
Zhang (10.1016/j.apcatb.2022.121092_bib44) 2022; 303
Wang (10.1016/j.apcatb.2022.121092_bib38) 2018; 1
Ghatak (10.1016/j.apcatb.2022.121092_bib23) 2014; 44
Cao (10.1016/j.apcatb.2022.121092_bib34) 2015; 27
Xia (10.1016/j.apcatb.2022.121092_bib2) 2022; 307
Ran (10.1016/j.apcatb.2022.121092_bib7) 2018; 30
Yu (10.1016/j.apcatb.2022.121092_bib6) 2021; 15
Li (10.1016/j.apcatb.2022.121092_bib18) 2020; 185
Xiao (10.1016/j.apcatb.2022.121092_bib30) 2017; 51
Wang (10.1016/j.apcatb.2022.121092_bib20) 2018; 227
Yin (10.1016/j.apcatb.2022.121092_bib41) 2020; 390
Wang (10.1016/j.apcatb.2022.121092_bib45) 2020; 278
Soni (10.1016/j.apcatb.2022.121092_bib3) 2021; 24
Xiong (10.1016/j.apcatb.2022.121092_bib22) 2019; 359
Li (10.1016/j.apcatb.2022.121092_bib37) 2016; 138
Gong (10.1016/j.apcatb.2022.121092_bib8) 2021; 292
Long (10.1016/j.apcatb.2022.121092_bib29) 2020; 395
Ong (10.1016/j.apcatb.2022.121092_bib13) 2016; 116
Shang (10.1016/j.apcatb.2022.121092_bib31) 2020; 386
Meng (10.1016/j.apcatb.2022.121092_bib9) 2019; 31
Lv (10.1016/j.apcatb.2022.121092_bib12) 2019; 7
Xu (10.1016/j.apcatb.2022.121092_bib39) 2013; 129
Chen (10.1016/j.apcatb.2022.121092_bib36) 2017; 200
Bao (10.1016/j.apcatb.2022.121092_bib47) 2017; 5
Gothwal (10.1016/j.apcatb.2022.121092_bib16) 2015; 43
Bai (10.1016/j.apcatb.2022.121092_bib46) 2020; 192
Li (10.1016/j.apcatb.2022.121092_bib5) 2018; 30
Ji (10.1016/j.apcatb.2022.121092_bib49) 2021; 282
Michael (10.1016/j.apcatb.2022.121092_bib19) 2013; 47
Nosaka (10.1016/j.apcatb.2022.121092_bib27) 2017; 117
An (10.1016/j.apcatb.2022.121092_bib24) 2010; 94
Wu (10.1016/j.apcatb.2022.121092_bib50) 2022; 424
Liu (10.1016/j.apcatb.2022.121092_bib32) 2019; 150
Kubacka (10.1016/j.apcatb.2022.121092_bib26) 2012; 112
Li (10.1016/j.apcatb.2022.121092_bib52) 2020; 260
Kovalakova (10.1016/j.apcatb.2022.121092_bib17) 2020; 251
Chen (10.1016/j.apcatb.2022.121092_bib48) 2019; 53
Mansouri (10.1016/j.apcatb.2022.121092_bib21) 2021; 11
References_xml – volume: 116
  start-page: 7159
  year: 2016
  end-page: 7329
  ident: bib13
  article-title: Graphitic carbon nitride (g-C
  publication-title: Chem. Rev.
– volume: 129
  start-page: 182
  year: 2013
  end-page: 193
  ident: bib39
  article-title: Novel visible-light-driven AgX/graphite-like C
  publication-title: Appl. Catal. B Environ.
– volume: 414
  year: 2021
  ident: bib25
  article-title: Advanced oxidation processes in the removal of organic substances from produced water: potential, configurations, and research needs
  publication-title: Chem. Eng. J.
– volume: 307
  year: 2022
  ident: bib2
  article-title: Emerging cocatalysts in TiO
  publication-title: Fuel
– volume: 24
  year: 2021
  ident: bib3
  article-title: Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion
  publication-title: Appl. Mater. Today
– volume: 251
  year: 2020
  ident: bib17
  article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review
  publication-title: Chemosphere
– volume: 150
  start-page: 431
  year: 2019
  end-page: 441
  ident: bib32
  article-title: Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C
  publication-title: Water Res
– volume: 7
  start-page: 12627
  year: 2019
  end-page: 12634
  ident: bib12
  article-title: Construction of PdO–Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 2150
  year: 2015
  end-page: 2176
  ident: bib34
  article-title: Polymeric photocatalysts based on graphitic carbon nitride
  publication-title: Adv. Mater.
– volume: 227
  start-page: 114
  year: 2018
  end-page: 122
  ident: bib51
  article-title: Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C
  publication-title: Appl. Catal. B Environ.
– volume: 30
  year: 2018
  ident: bib5
  article-title: Metal-organic-framework-based catalysts for photoreduction of CO
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6781
  year: 2016
  end-page: 6803
  ident: bib1
  article-title: Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis
  publication-title: Adv. Mater.
– volume: 138
  start-page: 13289
  year: 2016
  end-page: 13297
  ident: bib37
  article-title: Constructing solid-gas-interfacial fenton reaction over alkalinized-C
  publication-title: J. Am. Chem. Soc.
– volume: 282
  year: 2021
  ident: bib49
  article-title: Visible light absorption by perylene diimide for synergistic persulfate activation towards efficient photodegradation of bisphenol A
  publication-title: Appl. Catal. B Environ.
– volume: 260
  year: 2020
  ident: bib52
  article-title: Green synthesis of 3D tripyramid TiO
  publication-title: Appl. Catal. B Environ.
– volume: 185
  year: 2020
  ident: bib18
  article-title: Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: Experimental and theoretical evidences
  publication-title: Water Res.
– volume: 15
  start-page: 14453
  year: 2021
  end-page: 14464
  ident: bib6
  article-title: Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO
  publication-title: ACS Nano
– volume: 227
  start-page: 114
  year: 2018
  end-page: 122
  ident: bib20
  article-title: Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C
  publication-title: Appl. Catal. B Environ.
– volume: 303
  year: 2022
  ident: bib44
  article-title: Dual optimization approach to Mo single atom dispersed g-C
  publication-title: Appl. Catal. B Environ.
– volume: 53
  start-page: 1564
  year: 2019
  end-page: 1575
  ident: bib48
  article-title: Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis
  publication-title: Environ. Sci. Technol.
– volume: 30
  year: 2018
  ident: bib7
  article-title: Cocatalysts in semiconductor-based photocatalytic CO
  publication-title: Adv. Mater.
– volume: 397
  year: 2020
  ident: bib43
  article-title: Facile one-step synthesis of 3D hierarchical flower-like magnesium peroxide for efficient and fast removal of tetracycline from aqueous solution
  publication-title: J. Hazard Mater.
– volume: 261
  year: 2020
  ident: bib40
  article-title: Complete debromination of 2,2′,4,4′-tetrabromodiphenyl ether by visible-light photocatalysis on g-C
  publication-title: Appl. Catal. B Environ.
– volume: 53
  start-page: 3208
  year: 2019
  end-page: 3216
  ident: bib33
  article-title: Dechlorination-hydroxylation of atrazine to hydroxyatrazine with thiosulfate: a detoxification strategy in seconds
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 6664
  year: 2017
  end-page: 6676
  ident: bib47
  article-title: Synthesis of Fe
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 957
  year: 2013
  end-page: 995
  ident: bib19
  article-title: Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review
  publication-title: Water Res.
– volume: 11
  start-page: 5666
  year: 2021
  end-page: 5677
  ident: bib11
  article-title: Elucidation of active sites for CH
  publication-title: ACS Catal.
– volume: 1
  start-page: 2866
  year: 2018
  end-page: 2873
  ident: bib38
  article-title: Design of palladium-doped g-C
  publication-title: ACS Appl. Energy Mater.
– volume: 31
  year: 2019
  ident: bib9
  article-title: Dual cocatalysts in TiO
  publication-title: Adv. Mater.
– volume: 44
  start-page: 1167
  year: 2014
  end-page: 1219
  ident: bib23
  article-title: Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 278
  year: 2020
  ident: bib45
  article-title: 0D/2D Co
  publication-title: Appl. Catal. B Environ.
– volume: 53
  start-page: 1564
  year: 2019
  end-page: 1575
  ident: bib14
  article-title: Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis
  publication-title: Environ. Sci. Technol.
– volume: 390
  year: 2020
  ident: bib41
  article-title: Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C
  publication-title: Chem. Eng. J.
– volume: 81
  year: 2021
  ident: bib35
  article-title: Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies
  publication-title: Nano Energy
– volume: 359
  start-page: 13
  year: 2019
  end-page: 31
  ident: bib22
  article-title: Removal of nitrophenols and their derivatives by chemical redox: a review
  publication-title: Chem. Eng. J.
– volume: 94
  start-page: 288
  year: 2010
  end-page: 294
  ident: bib24
  article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water
  publication-title: Appl. Catal. B Environ.
– volume: 11
  year: 2021
  ident: bib21
  article-title: Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: state of the art and trends
  publication-title: Appl. Sci.
– volume: 117
  start-page: 11302
  year: 2017
  end-page: 11336
  ident: bib27
  article-title: Generation and detection of reactive oxygen species in photocatalysis
  publication-title: Chem. Rev.
– volume: 112
  start-page: 1555
  year: 2012
  end-page: 1614
  ident: bib26
  article-title: Advanced nanoarchitectures for solar photocatalytic applications
  publication-title: Chem. Rev.
– volume: 292
  year: 2021
  ident: bib8
  article-title: Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis
  publication-title: Appl. Catal. B Environ.
– volume: 192
  year: 2020
  ident: bib46
  article-title: Dramatically enhanced degradation of recalcitrant organic contaminants in MgO
  publication-title: Environ. Res.
– volume: 7
  start-page: 13943
  year: 2015
  end-page: 13950
  ident: bib42
  article-title: Controlled synthesis of a highly dispersed BiPO
  publication-title: Nanoscale
– volume: 13
  start-page: 10649
  year: 2021
  end-page: 10667
  ident: bib4
  article-title: Cocatalysts from types, preparation to applications in the field of photocatalysis
  publication-title: Nanoscale
– volume: 395
  year: 2020
  ident: bib29
  article-title: Historical development and prospects of photocatalysts for pollutant removal in water
  publication-title: J. Hazard Mater.
– volume: 386
  year: 2020
  ident: bib31
  article-title: Dual-site activation enhanced photocatalytic removal of no with Au/CeO
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 29687
  year: 2017
  end-page: 29698
  ident: bib10
  article-title: Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 200
  start-page: 330
  year: 2017
  end-page: 342
  ident: bib36
  article-title: Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation
  publication-title: Appl. Catal. B Environ.
– volume: 85
  start-page: 693
  year: 2011
  end-page: 709
  ident: bib15
  article-title: Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes-degradation, elucidation of byproducts and assessment of their biological potency
  publication-title: Chemosphere
– volume: 43
  start-page: 479
  year: 2015
  end-page: 489
  ident: bib16
  article-title: Antibiotic pollution in the environment: a review
  publication-title: CLEAN - Soil, Air, Water
– volume: 51
  start-page: 13380
  year: 2017
  end-page: 13387
  ident: bib30
  article-title: Is C
  publication-title: Environ. Sci. Technol.
– volume: 424
  year: 2022
  ident: bib50
  article-title: Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C
  publication-title: J. Hazard Mater.
– volume: 13
  start-page: 5173
  year: 2020
  end-page: 5184
  ident: bib28
  article-title: Recent advances in heterogeneous photo-driven oxidation of organic molecules by reactive oxygen species
  publication-title: ChemSusChem
– volume: 292
  year: 2021
  ident: 10.1016/j.apcatb.2022.121092_bib8
  article-title: Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120156
– volume: 117
  start-page: 11302
  year: 2017
  ident: 10.1016/j.apcatb.2022.121092_bib27
  article-title: Generation and detection of reactive oxygen species in photocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00161
– volume: 112
  start-page: 1555
  year: 2012
  ident: 10.1016/j.apcatb.2022.121092_bib26
  article-title: Advanced nanoarchitectures for solar photocatalytic applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr100454n
– volume: 424
  year: 2022
  ident: 10.1016/j.apcatb.2022.121092_bib50
  article-title: Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C3N4
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.127177
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2022.121092_bib7
  article-title: Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704649
– volume: 53
  start-page: 1564
  year: 2019
  ident: 10.1016/j.apcatb.2022.121092_bib48
  article-title: Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05827
– volume: 1
  start-page: 2866
  year: 2018
  ident: 10.1016/j.apcatb.2022.121092_bib38
  article-title: Design of palladium-doped g-C3N4 for enhanced photocatalytic activity toward hydrogen evolution reaction
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00526
– volume: 261
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib40
  article-title: Complete debromination of 2,2′,4,4′-tetrabromodiphenyl ether by visible-light photocatalysis on g-C3N4 supported Pd
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118236
– volume: 27
  start-page: 2150
  year: 2015
  ident: 10.1016/j.apcatb.2022.121092_bib34
  article-title: Polymeric photocatalysts based on graphitic carbon nitride
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500033
– volume: 307
  year: 2022
  ident: 10.1016/j.apcatb.2022.121092_bib2
  article-title: Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: progress and perspectives
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121745
– volume: 227
  start-page: 114
  year: 2018
  ident: 10.1016/j.apcatb.2022.121092_bib51
  article-title: Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.01.024
– volume: 390
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib41
  article-title: Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C3N4 catalysts: the role of sulfate radicals and hydroxyl radicals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124532
– volume: 44
  start-page: 1167
  year: 2014
  ident: 10.1016/j.apcatb.2022.121092_bib23
  article-title: Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2013.763581
– volume: 13
  start-page: 5173
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib28
  article-title: Recent advances in heterogeneous photo-driven oxidation of organic molecules by reactive oxygen species
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001398
– volume: 28
  start-page: 6781
  year: 2016
  ident: 10.1016/j.apcatb.2022.121092_bib1
  article-title: Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600305
– volume: 138
  start-page: 13289
  year: 2016
  ident: 10.1016/j.apcatb.2022.121092_bib37
  article-title: Constructing solid-gas-interfacial fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07272
– volume: 260
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib52
  article-title: Green synthesis of 3D tripyramid TiO2 architectures with assistance of aloe extracts for highly efficient photocatalytic degradation of antibiotic ciprofloxacin
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118149
– volume: 9
  start-page: 29687
  year: 2017
  ident: 10.1016/j.apcatb.2022.121092_bib10
  article-title: Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07226
– volume: 11
  start-page: 5666
  year: 2021
  ident: 10.1016/j.apcatb.2022.121092_bib11
  article-title: Elucidation of active sites for CH4 catalytic oxidation over Pd/CeO2 via tailoring metal–support interactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c00839
– volume: 11
  year: 2021
  ident: 10.1016/j.apcatb.2022.121092_bib21
  article-title: Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: state of the art and trends
  publication-title: Appl. Sci.
  doi: 10.3390/app11146659
– volume: 53
  start-page: 3208
  year: 2019
  ident: 10.1016/j.apcatb.2022.121092_bib33
  article-title: Dechlorination-hydroxylation of atrazine to hydroxyatrazine with thiosulfate: a detoxification strategy in seconds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b06351
– volume: 13
  start-page: 10649
  year: 2021
  ident: 10.1016/j.apcatb.2022.121092_bib4
  article-title: Cocatalysts from types, preparation to applications in the field of photocatalysis
  publication-title: Nanoscale
  doi: 10.1039/D1NR02464G
– volume: 5
  start-page: 6664
  year: 2017
  ident: 10.1016/j.apcatb.2022.121092_bib47
  article-title: Synthesis of Fe0.32Co0.68/γ-Al2O3@C nanocomposite for depth treatment of dye sewage based on adsorption and advanced catalytic oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10919E
– volume: 7
  start-page: 12627
  year: 2019
  ident: 10.1016/j.apcatb.2022.121092_bib12
  article-title: Construction of PdO–Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02045D
– volume: 200
  start-page: 330
  year: 2017
  ident: 10.1016/j.apcatb.2022.121092_bib36
  article-title: Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.07.021
– volume: 7
  start-page: 13943
  year: 2015
  ident: 10.1016/j.apcatb.2022.121092_bib42
  article-title: Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies
  publication-title: Nanoscale
  doi: 10.1039/C5NR02345A
– volume: 94
  start-page: 288
  year: 2010
  ident: 10.1016/j.apcatb.2022.121092_bib24
  article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2009.12.002
– volume: 397
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib43
  article-title: Facile one-step synthesis of 3D hierarchical flower-like magnesium peroxide for efficient and fast removal of tetracycline from aqueous solution
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122877
– volume: 282
  year: 2021
  ident: 10.1016/j.apcatb.2022.121092_bib49
  article-title: Visible light absorption by perylene diimide for synergistic persulfate activation towards efficient photodegradation of bisphenol A
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119579
– volume: 31
  year: 2019
  ident: 10.1016/j.apcatb.2022.121092_bib9
  article-title: Dual cocatalysts in TiO2 photocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807660
– volume: 278
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib45
  article-title: 0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119298
– volume: 129
  start-page: 182
  year: 2013
  ident: 10.1016/j.apcatb.2022.121092_bib39
  article-title: Novel visible-light-driven AgX/graphite-like C3N4 (XBr, I) hybrid materials with synergistic photocatalytic activity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2012.08.015
– volume: 85
  start-page: 693
  year: 2011
  ident: 10.1016/j.apcatb.2022.121092_bib15
  article-title: Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes-degradation, elucidation of byproducts and assessment of their biological potency
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.06.082
– volume: 15
  start-page: 14453
  year: 2021
  ident: 10.1016/j.apcatb.2022.121092_bib6
  article-title: Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c03961
– volume: 359
  start-page: 13
  year: 2019
  ident: 10.1016/j.apcatb.2022.121092_bib22
  article-title: Removal of nitrophenols and their derivatives by chemical redox: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.111
– volume: 227
  start-page: 114
  year: 2018
  ident: 10.1016/j.apcatb.2022.121092_bib20
  article-title: Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: kinetics, mechanism, and antibacterial activity elimination
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.01.024
– volume: 53
  start-page: 1564
  year: 2019
  ident: 10.1016/j.apcatb.2022.121092_bib14
  article-title: Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05827
– volume: 192
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib46
  article-title: Dramatically enhanced degradation of recalcitrant organic contaminants in MgO2/Fe(III) Fenton-like system by organic chelating agents
  publication-title: Environ. Res.
– volume: 81
  year: 2021
  ident: 10.1016/j.apcatb.2022.121092_bib35
  article-title: Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105671
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2022.121092_bib5
  article-title: Metal-organic-framework-based catalysts for photoreduction of CO2
  publication-title: Adv. Mater.
– volume: 150
  start-page: 431
  year: 2019
  ident: 10.1016/j.apcatb.2022.121092_bib32
  article-title: Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: mechanisms, degradation pathway and DFT calculation
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.12.001
– volume: 185
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib18
  article-title: Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: Experimental and theoretical evidences
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116286
– volume: 386
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib31
  article-title: Dual-site activation enhanced photocatalytic removal of no with Au/CeO2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124047
– volume: 24
  year: 2021
  ident: 10.1016/j.apcatb.2022.121092_bib3
  article-title: Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion
  publication-title: Appl. Mater. Today
– volume: 43
  start-page: 479
  year: 2015
  ident: 10.1016/j.apcatb.2022.121092_bib16
  article-title: Antibiotic pollution in the environment: a review
  publication-title: CLEAN - Soil, Air, Water
  doi: 10.1002/clen.201300989
– volume: 303
  year: 2022
  ident: 10.1016/j.apcatb.2022.121092_bib44
  article-title: Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: Morphology and defect evolution
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120904
– volume: 251
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib17
  article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126351
– volume: 395
  year: 2020
  ident: 10.1016/j.apcatb.2022.121092_bib29
  article-title: Historical development and prospects of photocatalysts for pollutant removal in water
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122599
– volume: 116
  start-page: 7159
  year: 2016
  ident: 10.1016/j.apcatb.2022.121092_bib13
  article-title: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00075
– volume: 414
  year: 2021
  ident: 10.1016/j.apcatb.2022.121092_bib25
  article-title: Advanced oxidation processes in the removal of organic substances from produced water: potential, configurations, and research needs
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128668
– volume: 51
  start-page: 13380
  year: 2017
  ident: 10.1016/j.apcatb.2022.121092_bib30
  article-title: Is C3N4 chemically stable toward reactive oxygen species in sunlight-driven water treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04215
– volume: 47
  start-page: 957
  year: 2013
  ident: 10.1016/j.apcatb.2022.121092_bib19
  article-title: Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.11.027
SSID ssj0002328
Score 2.6394517
Snippet Nano-structured metal cocatalysts are easy to be oxidized and form mixed valences and interfaces which would facilitate the catalytic performance in previous...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121092
SubjectTerms Carbon nitride
Ciprofloxacin
Contribution modulating
Electron distribution
Geographical distribution
Hydrogen
Interfaces
Metal cocatalyst
Oxidative active species
Palladium
Performance degradation
Photocatalysis
Photodegradation
Species
Surface states
Valence regulation
Title Modulating the oxidative active species by regulating the valence of palladium cocatalyst in photocatalytic degradation of ciprofloxacin
URI https://dx.doi.org/10.1016/j.apcatb.2022.121092
https://www.proquest.com/docview/2639686036
Volume 306
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxUxEG8IHtSDkadEEEkPXuvb1-1-9EheIE8MXJSEWzNtd3UN7m54SwIXz_zZzHS7oiaEhOM2M02zM_3NTDMfjH1EEwwazYRwclELBd4JyECJChKQOVoYlVKh8MlpvjpTx-fZ-QZbTrUwlFYZsX_E9IDWcWUe_-a8b5r510TLPE0L1Ehy7CVVlCtVkJZ_-n2f5oEeQ0BjJBZEPZXPhRwv6B0MFqNEKanNQqLlQ-bpP6AO1ufoNXsV3UZ-MJ5si21U7Yw9X07T2mbs5V-NBWds-_C-fg3Z4gVev2G3J50PA7va7xxdP95dNz60_uYQgI9T5SUGz9ze8MtxTP1EiipJm_Cu5j29vvvm6hdHOKX3n5v1wJuW9z-6IS7gObmnRhTjzCbicg0NCL_orsE17Vt2dnT4bbkScRiDcHjNB1FniXIYDdYYMlpfKls6X_m6qjMFiUsWsLCVtVbZCkq0u1oBIgHGc6nLtNdlmW6zzbZrq3eMF6Uvau09PWGpTIJOUl9oSLWXCWQLt8PSSQbGxU7lNDDjwkwpaT_NKDlDkjOj5HaY-MPVj506HqEvJvGafzTOoDF5hHNv0gYTb_zaoC7qvMzRIdh98sbv2Qv6Cplo2R7bHC6vqg_o8wx2Pyj1Pnt28PnL6vQO2k4EiA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcUFmoKLTgAxzDZh3n4QMH1Ie2tNsLrdSb8SttUEmibiq6F878H_4gY8dpCxKqhNSrE1uWZ_x9M9Y8AN4iBUuONBFpOikjJo2OZCpZZGUsaYYMwxKXKDw7zKbH7NNJerIEv4ZcGBdWGbC_x3SP1mFkHE5z3FbV-HPMaZYkOWqkM-xpHiIr9-3iO_pt8w972yjkd5Tu7hxtTaPQWiDSqLRdVKYx0-jblOgAKVMwVWhjTWnLlMlYxxM5UVYpxZSVBbIIZxL1Gr2TRKfc8KJIcN0H8JAhXLi2Ce9_3MSVoIni4R93F7ntDfl6PqhMtlp2Ct1SSl1dh5jTf_HhX8zg6W53FZ4EO5V87I_iKSzZegQrW0N7uBE8vlXJcARrOzcJczgtIMb8GfycNcZ3CKtPCdqapLmqjK81TqRHWuJSPdFbJ2pBLuzp7V_xDrhFSFOS1j33m-ryG0H8dg9Oi3lHqpq0Z00XBnCfxLjKF32TKDdLV64j-XlzJXVVP4fjexHRGizXTW1fAMkLk5fcGPdmxlIqeZyYnMuEGxrLdKLXIRlkIHQoje46dJyLIQbuq-glJ5zkRC-5dYiuZ7V9aZA7_s8H8Yo_VFwge90xc2PQBhEgZi5Q-XlWZGiBvPzvhd_AyvRodiAO9g73X8Ej98WHwaUbsNxdXNpNNLg69dorOIEv932jfgNY8UIc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+oxidative+active+species+by+regulating+the+valence+of+palladium+cocatalyst+in+photocatalytic+degradation+of+ciprofloxacin&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Guo%2C+Fa&rft.au=Zhang%2C+Hao&rft.au=Li%2C+Hui&rft.au=Shen%2C+Zhurui&rft.date=2022-06-05&rft.issn=0926-3373&rft.volume=306&rft.spage=121092&rft_id=info:doi/10.1016%2Fj.apcatb.2022.121092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2022_121092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon