Modulating the oxidative active species by regulating the valence of palladium cocatalyst in photocatalytic degradation of ciprofloxacin
Nano-structured metal cocatalysts are easy to be oxidized and form mixed valences and interfaces which would facilitate the catalytic performance in previous studies. Herein, as an example in photocatalysis, three kinds of Pd cocatalysts with various valence distributions (PdO70-Pd30/CN, PdO50-Pd50/...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 306; p. 121092 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.06.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nano-structured metal cocatalysts are easy to be oxidized and form mixed valences and interfaces which would facilitate the catalytic performance in previous studies. Herein, as an example in photocatalysis, three kinds of Pd cocatalysts with various valence distributions (PdO70-Pd30/CN, PdO50-Pd50/CN and PdO30-Pd70/CN) were loaded on g-C3N4 nanosheets with the close loading amounts (~1 wt%) and uniform sizes (2–3 nm). Then, the results of the photocatalytic degradation of ciprofloxacin showed that the generated oxidative active species are highly related to the distribution of palladium valence. Pd2+ (PdO) benefits the production of·O2-, while Pd0 benefits the production of h+. The theoretical simulations revealed that surface states e.g., electron distribution and the adsorption ability of O2 on different Pd species determined the production of·O2- and h+. Besides, PdO50-Pd50/CN showed the best performance for degrading ciprofloxacin, due to the joint action of·O2- and h+ in the CIP degradation.
[Display omitted]
•The correlation is studied between the valence of Pd cocatalyst and active species in photocatalysis.•The distribution of active species is semi-quantitative correlated with the ratios of Pd2+/Pd0.•Amongst, Pd2+ (PdO) benefits the production of·O2-, while Pd0 benefits the production of h+.•The surface states of Pd are crucial, e.g., the adsorption ability of O2 and electrons distribution.•The nearly equal ratios of·O2- and h+ resulted in the best degradation efficiency of ciprofloxacin. |
---|---|
AbstractList | Nano-structured metal cocatalysts are easy to be oxidized and form mixed valences and interfaces which would facilitate the catalytic performance in previous studies. Herein, as an example in photocatalysis, three kinds of Pd cocatalysts with various valence distributions (PdO70-Pd30/CN, PdO50-Pd50/CN and PdO30-Pd70/CN) were loaded on g-C3N4 nanosheets with the close loading amounts (~1 wt%) and uniform sizes (2–3 nm). Then, the results of the photocatalytic degradation of ciprofloxacin showed that the generated oxidative active species are highly related to the distribution of palladium valence. Pd2+ (PdO) benefits the production of·O2-, while Pd0 benefits the production of h+. The theoretical simulations revealed that surface states e.g., electron distribution and the adsorption ability of O2 on different Pd species determined the production of·O2- and h+. Besides, PdO50-Pd50/CN showed the best performance for degrading ciprofloxacin, due to the joint action of·O2- and h+ in the CIP degradation.
[Display omitted]
•The correlation is studied between the valence of Pd cocatalyst and active species in photocatalysis.•The distribution of active species is semi-quantitative correlated with the ratios of Pd2+/Pd0.•Amongst, Pd2+ (PdO) benefits the production of·O2-, while Pd0 benefits the production of h+.•The surface states of Pd are crucial, e.g., the adsorption ability of O2 and electrons distribution.•The nearly equal ratios of·O2- and h+ resulted in the best degradation efficiency of ciprofloxacin. Nano-structured metal cocatalysts are easy to be oxidized and form mixed valences and interfaces which would facilitate the catalytic performance in previous studies. Herein, as an example in photocatalysis, three kinds of Pd cocatalysts with various valence distributions (PdO70-Pd30/CN, PdO50-Pd50/CN and PdO30-Pd70/CN) were loaded on g-C3N4 nanosheets with the close loading amounts (~1 wt%) and uniform sizes (2–3 nm). Then, the results of the photocatalytic degradation of ciprofloxacin showed that the generated oxidative active species are highly related to the distribution of palladium valence. Pd2+ (PdO) benefits the production of·O2-, while Pd0 benefits the production of h+. The theoretical simulations revealed that surface states e.g., electron distribution and the adsorption ability of O2 on different Pd species determined the production of·O2- and h+. Besides, PdO50-Pd50/CN showed the best performance for degrading ciprofloxacin, due to the joint action of·O2- and h+ in the CIP degradation. |
ArticleNumber | 121092 |
Author | Li, Hui Guo, Fa Shen, Zhurui Zhang, Hao |
Author_xml | – sequence: 1 givenname: Fa surname: Guo fullname: Guo, Fa – sequence: 2 givenname: Hao surname: Zhang fullname: Zhang, Hao – sequence: 3 givenname: Hui surname: Li fullname: Li, Hui – sequence: 4 givenname: Zhurui surname: Shen fullname: Shen, Zhurui email: shenzhurui@nankai.edu.cn |
BookMark | eNqFkM9qGzEQh0VJoI6TN8hB0PM6-rNea3sohJCkhZRekrMYSbO2zHq1lWQTv0Efu3I2h9JDexo0zPeb0XdBzoYwICHXnC04483NdgGjhWwWggmx4IKzVnwgM65WspJKyTMyK52mknIlP5KLlLaMMSGFmpFf34Pb95D9sKZ5gzS8eldeB6Rg30oa0XpM1BxpxPWfowfocbAF6egIfQ_O73fUhnII9MeUqR_ouAn5vZG9pQ7XEU7xYThR1o8xdH14BeuHS3LeQZ_w6r3OycvD_fPd1-rpx-O3u9unytaM5apbstqqmnUrwY1TtVHWoeuwW9bALOPADRpjaoOgEF1bg1oxoYS0y9a1xcWcfJpyy-6fe0xZb8M-DmWlFo1sG9Uw2ZSpz9OUjSGliJ22Pr8dniP4XnOmT-b1Vk_m9cm8nswXuP4LHqPfQTz-D_syYVi-f_AYdSrmi2HnI9qsXfD_DvgNX-ylqw |
CitedBy_id | crossref_primary_10_1016_j_jtice_2024_105856 crossref_primary_10_1021_acsestengg_2c00442 crossref_primary_10_1016_j_envpol_2025_125945 crossref_primary_10_1016_j_jallcom_2022_165459 crossref_primary_10_1016_j_scitotenv_2024_170191 crossref_primary_10_1021_acs_langmuir_4c00155 crossref_primary_10_1016_j_jece_2023_110355 crossref_primary_10_1016_j_jece_2023_111569 crossref_primary_10_1007_s10853_024_10045_4 crossref_primary_10_1002_jccs_202400289 crossref_primary_10_1016_j_jece_2022_108557 crossref_primary_10_1016_j_apcatb_2022_122220 crossref_primary_10_1016_j_apcatb_2023_123557 crossref_primary_10_1016_j_apcatb_2024_124920 crossref_primary_10_1021_jacs_4c03083 crossref_primary_10_1016_j_jallcom_2024_176910 crossref_primary_10_1016_j_cej_2024_157737 crossref_primary_10_1021_acsami_4c03530 crossref_primary_10_3390_catal13030621 crossref_primary_10_1016_j_cej_2022_137609 crossref_primary_10_1016_j_matlet_2022_133153 crossref_primary_10_1016_j_seppur_2024_128108 crossref_primary_10_1016_j_surfin_2024_105463 crossref_primary_10_1039_D4EN00177J crossref_primary_10_1016_j_envres_2024_118519 crossref_primary_10_1016_j_cej_2023_146544 crossref_primary_10_1016_j_jcis_2022_08_029 crossref_primary_10_1016_j_seppur_2022_121781 crossref_primary_10_1016_j_watres_2023_119744 crossref_primary_10_1016_j_cej_2024_151950 crossref_primary_10_1016_j_jallcom_2022_164294 crossref_primary_10_1016_j_jwpe_2023_103534 crossref_primary_10_1021_acs_inorgchem_4c00394 crossref_primary_10_1007_s13369_024_09604_3 crossref_primary_10_1016_j_apsusc_2024_160943 crossref_primary_10_1016_j_cej_2024_153168 crossref_primary_10_1016_j_jcat_2023_04_009 crossref_primary_10_1016_j_cej_2022_137857 crossref_primary_10_1021_acsanm_2c02442 crossref_primary_10_1016_j_apcatb_2023_123680 crossref_primary_10_1016_j_seppur_2023_125960 crossref_primary_10_1016_j_ijbiomac_2025_141049 crossref_primary_10_1016_j_ceramint_2022_11_316 crossref_primary_10_1021_acsanm_4c04459 crossref_primary_10_1016_j_cej_2023_142533 crossref_primary_10_1016_j_mtsust_2023_100340 crossref_primary_10_1021_acscatal_4c05009 crossref_primary_10_1007_s11431_023_2429_8 crossref_primary_10_1039_D2NJ04564H crossref_primary_10_1016_j_vacuum_2024_113041 crossref_primary_10_1007_s13762_023_05020_6 crossref_primary_10_3389_fchem_2023_1130682 crossref_primary_10_1016_j_psep_2024_10_041 crossref_primary_10_1002_cctc_202400759 crossref_primary_10_1016_j_jhazmat_2023_132228 crossref_primary_10_1016_j_apcatb_2025_125034 crossref_primary_10_1016_j_surfin_2024_104033 crossref_primary_10_1039_D4NR03755C crossref_primary_10_1016_j_cej_2023_142562 crossref_primary_10_1016_j_seppur_2022_121124 crossref_primary_10_1016_j_cej_2024_151218 crossref_primary_10_1039_D3RA07390D crossref_primary_10_1016_j_cjsc_2025_100560 crossref_primary_10_1016_j_apcatb_2022_121978 crossref_primary_10_1016_j_cej_2023_146448 crossref_primary_10_1016_j_colsurfa_2023_131088 crossref_primary_10_1016_j_mtphys_2023_101121 crossref_primary_10_53941_see_2024_100003 crossref_primary_10_1016_j_apsusc_2024_161259 crossref_primary_10_1021_acsanm_3c01760 crossref_primary_10_3390_molecules28010333 crossref_primary_10_1016_j_ceramint_2024_09_041 crossref_primary_10_1021_acs_est_3c08579 crossref_primary_10_1007_s11051_023_05887_z crossref_primary_10_1016_j_apcatb_2023_122857 crossref_primary_10_1016_j_mtchem_2022_101028 crossref_primary_10_1016_j_cej_2025_161423 crossref_primary_10_1016_j_chemosphere_2023_138027 crossref_primary_10_1016_j_arabjc_2024_105615 crossref_primary_10_1016_j_fuel_2024_134020 crossref_primary_10_1016_j_jcis_2022_05_054 crossref_primary_10_1016_j_seppur_2024_129768 |
Cites_doi | 10.1016/j.apcatb.2021.120156 10.1021/acs.chemrev.7b00161 10.1021/cr100454n 10.1016/j.jhazmat.2021.127177 10.1002/adma.201704649 10.1021/acs.est.8b05827 10.1021/acsaem.8b00526 10.1016/j.apcatb.2019.118236 10.1002/adma.201500033 10.1016/j.fuel.2021.121745 10.1016/j.apcatb.2018.01.024 10.1016/j.cej.2020.124532 10.1080/10643389.2013.763581 10.1002/cssc.202001398 10.1002/adma.201600305 10.1021/jacs.6b07272 10.1016/j.apcatb.2019.118149 10.1021/acsami.7b07226 10.1021/acscatal.1c00839 10.3390/app11146659 10.1021/acs.est.8b06351 10.1039/D1NR02464G 10.1039/C6TA10919E 10.1039/C9TA02045D 10.1016/j.apcatb.2016.07.021 10.1039/C5NR02345A 10.1016/j.apcatb.2009.12.002 10.1016/j.jhazmat.2020.122877 10.1016/j.apcatb.2020.119579 10.1002/adma.201807660 10.1016/j.apcatb.2020.119298 10.1016/j.apcatb.2012.08.015 10.1016/j.chemosphere.2011.06.082 10.1021/acsnano.1c03961 10.1016/j.cej.2018.11.111 10.1016/j.nanoen.2020.105671 10.1016/j.watres.2018.12.001 10.1016/j.watres.2020.116286 10.1016/j.cej.2020.124047 10.1002/clen.201300989 10.1016/j.apcatb.2021.120904 10.1016/j.chemosphere.2020.126351 10.1016/j.jhazmat.2020.122599 10.1021/acs.chemrev.6b00075 10.1016/j.cej.2021.128668 10.1021/acs.est.7b04215 10.1016/j.watres.2012.11.027 |
ContentType | Journal Article |
Copyright | 2022 Copyright Elsevier BV Jun 5, 2022 |
Copyright_xml | – notice: 2022 – notice: Copyright Elsevier BV Jun 5, 2022 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2022.121092 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2022_121092 S0926337322000327 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-f504c840f721bd84b8cdedfef54a0c01a1bebbb4bea8eed94a8702823c59d9883 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 05:55:51 EDT 2025 Thu Apr 24 23:13:20 EDT 2025 Tue Jul 01 04:35:18 EDT 2025 Sat Mar 02 16:01:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidative active species Metal cocatalyst Valence regulation Contribution modulating Surface states |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-f504c840f721bd84b8cdedfef54a0c01a1bebbb4bea8eed94a8702823c59d9883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2639686036 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2639686036 crossref_citationtrail_10_1016_j_apcatb_2022_121092 crossref_primary_10_1016_j_apcatb_2022_121092 elsevier_sciencedirect_doi_10_1016_j_apcatb_2022_121092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-05 |
PublicationDateYYYYMMDD | 2022-06-05 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Shang, Huang, Li, Li, Zhao, Wang, Ai, Zhang (bib31) 2020; 386 Li, Kang, Dong, Zhang, Luo, Han, Huang, Feng, Chen, Xu, Peng, Wang (bib35) 2021; 81 Gothwal, Shashidhar (bib16) 2015; 43 Ren, Hu, Jin, Wu, Wang, Liu, Liu, Wu, Li, Tendeloo, Su (bib10) 2017; 9 Lei, Wang, Zhu, Nie, Tang (bib40) 2020; 261 Xia, Hong Chuong Nguyen, Cuong Nguyen, Young Kim, Nguyen, Raizada, Singh, Nguyen, Chien Nguyen, Chinh Hoang, Van Le (bib2) 2022; 307 Xiong, Zhang, Zhang, Lai, Yao (bib22) 2019; 359 Li, Huang, Du, Liu, Hu (bib18) 2020; 185 Nosaka, Nosaka (bib27) 2017; 117 Ong, Tan, Ng, Yong, Chai (bib13) 2016; 116 Soni, Xia, Cheng, Nguyen, Nguyen, Bajpai, Kim, Le, Khan, Singh, Raizada (bib3) 2021; 24 Mansouri, Chouchene, Roche, Ksibi (bib21) 2021; 11 Kubacka, Fernandez-Garcia, Colon (bib26) 2012; 112 Bao, Ye, Fang, Zhao (bib47) 2017; 5 Chen, Yang, Li, Zeng, Wang, Niu, Zhao, An, Xie, Deng (bib36) 2017; 200 Li, Fu, Zhu (bib52) 2020; 260 Long, Li, Wei, Zhang, Ren (bib29) 2020; 395 Wang, Wang, Hu, Lu, Sun, Shi, Liu, Lei, Jiang (bib38) 2018; 1 Meng, Liu, Ouyang, Xu, Wang, Zhao, Ye (bib1) 2016; 28 Liu, Li, Liu, Jiang, Zhang, Liang (bib32) 2019; 150 Michael, Rizzo, McArdell, Manaia, Merlin, Schwartz, Dagot, Fatta-Kassinos (bib19) 2013; 47 Gong, Mei, Liu, Huang, Zhang, Li, Zhong, Lu (bib8) 2021; 292 Chen, Blaney, Cagnetta, Huang, Wang, Wang, Deng, Yu (bib48) 2019; 53 Bai, Wu, Wang, Chen, Tan, Wang, Qiao, Wong (bib46) 2020; 192 Yu, Dong, Chen, Geng, Wang, Li, Zhou, Dong (bib6) 2021; 15 Meng, Zhang, Cheng, Yu (bib9) 2019; 31 Yin, Han, Hu, Feng, Liu, Du, Zhang (bib41) 2020; 390 Ghatak (bib23) 2014; 44 Kovalakova, Cizmas, McDonald, Marsalek, Feng, Sharma (bib17) 2020; 251 Wang, Feng, Chen, Wang, Su, Zhang, Zeng, Xie, Liu, Liu, Lv, Liu (bib20) 2018; 227 Coha, Farinelli, Tiraferri, Minella, Vione (bib25) 2021; 414 Lv, Wu, Tian, Ye, Liu, Liang (bib12) 2019; 7 Chen, Li, You, Guo, Wang, Li, Yuan, Zhu, Gao, Zhang, Yang, Wang (bib11) 2021; 11 Fatta-Kassinos, Vasquez, Kummerer (bib15) 2011; 85 Wu, He, Liu, Shao, Liang, Pan, Huang, Peng, Liu, Zhao, Yuan, Tang, Gong (bib50) 2022; 424 Xiao, Han, Xie, Yang, Su, Chen, Cao (bib30) 2017; 51 Ji, Cheng, Wu, Xiang, He, Xu, Xu, Qi, Li, Zhang, Yang (bib49) 2021; 282 Wei, Liu, Wang, Zong, Yao, Wang, Zhu (bib42) 2015; 7 Ran, Jaroniec, Qiao (bib7) 2018; 30 Chen, Blaney, Cagnetta, Huang, Wang, Wang, Deng, Yu (bib14) 2019; 53 Luo, Zhang, Wang, Yun, Xiang (bib28) 2020; 13 Zhao, Xu (bib4) 2021; 13 An, Yang, Li, Song, Cooper, Nie (bib24) 2010; 94 Wang, Zhu, Zuo, Guo, Xiao, Dai, Kong, Xu, Zhou, Xie, Sun, Xian (bib45) 2020; 278 Li, Zhang, Zhou (bib5) 2018; 30 Zhang, Qin, Zhou, Qin, Wang, Wang, Yang, Zeng (bib44) 2022; 303 Liu, Yue, Wang, Tan, Xia, Wang, Qiao, Wong (bib43) 2020; 397 Mu, Zhan, Huang, Wang, Ai, Zou, Luo, Zhang (bib33) 2019; 53 Xu, Yan, Xu, Song, Li, Xia, Huang, Wan (bib39) 2013; 129 Cao, Low, Yu, Jaroniec (bib34) 2015; 27 Wang, Feng, Chen, Wang, Su, Zhang, Zeng, Xie, Liu, Liu, Lv, Liu (bib51) 2018; 227 Li, Ouyang, Xu, Wang, Bi, Zhang, Ye (bib37) 2016; 138 Ren (10.1016/j.apcatb.2022.121092_bib10) 2017; 9 Zhao (10.1016/j.apcatb.2022.121092_bib4) 2021; 13 Mu (10.1016/j.apcatb.2022.121092_bib33) 2019; 53 Li (10.1016/j.apcatb.2022.121092_bib35) 2021; 81 Meng (10.1016/j.apcatb.2022.121092_bib1) 2016; 28 Luo (10.1016/j.apcatb.2022.121092_bib28) 2020; 13 Lei (10.1016/j.apcatb.2022.121092_bib40) 2020; 261 Liu (10.1016/j.apcatb.2022.121092_bib43) 2020; 397 Coha (10.1016/j.apcatb.2022.121092_bib25) 2021; 414 Fatta-Kassinos (10.1016/j.apcatb.2022.121092_bib15) 2011; 85 Chen (10.1016/j.apcatb.2022.121092_bib11) 2021; 11 Wang (10.1016/j.apcatb.2022.121092_bib51) 2018; 227 Wei (10.1016/j.apcatb.2022.121092_bib42) 2015; 7 Chen (10.1016/j.apcatb.2022.121092_bib14) 2019; 53 Zhang (10.1016/j.apcatb.2022.121092_bib44) 2022; 303 Wang (10.1016/j.apcatb.2022.121092_bib38) 2018; 1 Ghatak (10.1016/j.apcatb.2022.121092_bib23) 2014; 44 Cao (10.1016/j.apcatb.2022.121092_bib34) 2015; 27 Xia (10.1016/j.apcatb.2022.121092_bib2) 2022; 307 Ran (10.1016/j.apcatb.2022.121092_bib7) 2018; 30 Yu (10.1016/j.apcatb.2022.121092_bib6) 2021; 15 Li (10.1016/j.apcatb.2022.121092_bib18) 2020; 185 Xiao (10.1016/j.apcatb.2022.121092_bib30) 2017; 51 Wang (10.1016/j.apcatb.2022.121092_bib20) 2018; 227 Yin (10.1016/j.apcatb.2022.121092_bib41) 2020; 390 Wang (10.1016/j.apcatb.2022.121092_bib45) 2020; 278 Soni (10.1016/j.apcatb.2022.121092_bib3) 2021; 24 Xiong (10.1016/j.apcatb.2022.121092_bib22) 2019; 359 Li (10.1016/j.apcatb.2022.121092_bib37) 2016; 138 Gong (10.1016/j.apcatb.2022.121092_bib8) 2021; 292 Long (10.1016/j.apcatb.2022.121092_bib29) 2020; 395 Ong (10.1016/j.apcatb.2022.121092_bib13) 2016; 116 Shang (10.1016/j.apcatb.2022.121092_bib31) 2020; 386 Meng (10.1016/j.apcatb.2022.121092_bib9) 2019; 31 Lv (10.1016/j.apcatb.2022.121092_bib12) 2019; 7 Xu (10.1016/j.apcatb.2022.121092_bib39) 2013; 129 Chen (10.1016/j.apcatb.2022.121092_bib36) 2017; 200 Bao (10.1016/j.apcatb.2022.121092_bib47) 2017; 5 Gothwal (10.1016/j.apcatb.2022.121092_bib16) 2015; 43 Bai (10.1016/j.apcatb.2022.121092_bib46) 2020; 192 Li (10.1016/j.apcatb.2022.121092_bib5) 2018; 30 Ji (10.1016/j.apcatb.2022.121092_bib49) 2021; 282 Michael (10.1016/j.apcatb.2022.121092_bib19) 2013; 47 Nosaka (10.1016/j.apcatb.2022.121092_bib27) 2017; 117 An (10.1016/j.apcatb.2022.121092_bib24) 2010; 94 Wu (10.1016/j.apcatb.2022.121092_bib50) 2022; 424 Liu (10.1016/j.apcatb.2022.121092_bib32) 2019; 150 Kubacka (10.1016/j.apcatb.2022.121092_bib26) 2012; 112 Li (10.1016/j.apcatb.2022.121092_bib52) 2020; 260 Kovalakova (10.1016/j.apcatb.2022.121092_bib17) 2020; 251 Chen (10.1016/j.apcatb.2022.121092_bib48) 2019; 53 Mansouri (10.1016/j.apcatb.2022.121092_bib21) 2021; 11 |
References_xml | – volume: 116 start-page: 7159 year: 2016 end-page: 7329 ident: bib13 article-title: Graphitic carbon nitride (g-C publication-title: Chem. Rev. – volume: 129 start-page: 182 year: 2013 end-page: 193 ident: bib39 article-title: Novel visible-light-driven AgX/graphite-like C publication-title: Appl. Catal. B Environ. – volume: 414 year: 2021 ident: bib25 article-title: Advanced oxidation processes in the removal of organic substances from produced water: potential, configurations, and research needs publication-title: Chem. Eng. J. – volume: 307 year: 2022 ident: bib2 article-title: Emerging cocatalysts in TiO publication-title: Fuel – volume: 24 year: 2021 ident: bib3 article-title: Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion publication-title: Appl. Mater. Today – volume: 251 year: 2020 ident: bib17 article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review publication-title: Chemosphere – volume: 150 start-page: 431 year: 2019 end-page: 441 ident: bib32 article-title: Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C publication-title: Water Res – volume: 7 start-page: 12627 year: 2019 end-page: 12634 ident: bib12 article-title: Construction of PdO–Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N publication-title: J. Mater. Chem. A – volume: 27 start-page: 2150 year: 2015 end-page: 2176 ident: bib34 article-title: Polymeric photocatalysts based on graphitic carbon nitride publication-title: Adv. Mater. – volume: 227 start-page: 114 year: 2018 end-page: 122 ident: bib51 article-title: Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C publication-title: Appl. Catal. B Environ. – volume: 30 year: 2018 ident: bib5 article-title: Metal-organic-framework-based catalysts for photoreduction of CO publication-title: Adv. Mater. – volume: 28 start-page: 6781 year: 2016 end-page: 6803 ident: bib1 article-title: Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis publication-title: Adv. Mater. – volume: 138 start-page: 13289 year: 2016 end-page: 13297 ident: bib37 article-title: Constructing solid-gas-interfacial fenton reaction over alkalinized-C publication-title: J. Am. Chem. Soc. – volume: 282 year: 2021 ident: bib49 article-title: Visible light absorption by perylene diimide for synergistic persulfate activation towards efficient photodegradation of bisphenol A publication-title: Appl. Catal. B Environ. – volume: 260 year: 2020 ident: bib52 article-title: Green synthesis of 3D tripyramid TiO publication-title: Appl. Catal. B Environ. – volume: 185 year: 2020 ident: bib18 article-title: Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: Experimental and theoretical evidences publication-title: Water Res. – volume: 15 start-page: 14453 year: 2021 end-page: 14464 ident: bib6 article-title: Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO publication-title: ACS Nano – volume: 227 start-page: 114 year: 2018 end-page: 122 ident: bib20 article-title: Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C publication-title: Appl. Catal. B Environ. – volume: 303 year: 2022 ident: bib44 article-title: Dual optimization approach to Mo single atom dispersed g-C publication-title: Appl. Catal. B Environ. – volume: 53 start-page: 1564 year: 2019 end-page: 1575 ident: bib48 article-title: Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis publication-title: Environ. Sci. Technol. – volume: 30 year: 2018 ident: bib7 article-title: Cocatalysts in semiconductor-based photocatalytic CO publication-title: Adv. Mater. – volume: 397 year: 2020 ident: bib43 article-title: Facile one-step synthesis of 3D hierarchical flower-like magnesium peroxide for efficient and fast removal of tetracycline from aqueous solution publication-title: J. Hazard Mater. – volume: 261 year: 2020 ident: bib40 article-title: Complete debromination of 2,2′,4,4′-tetrabromodiphenyl ether by visible-light photocatalysis on g-C publication-title: Appl. Catal. B Environ. – volume: 53 start-page: 3208 year: 2019 end-page: 3216 ident: bib33 article-title: Dechlorination-hydroxylation of atrazine to hydroxyatrazine with thiosulfate: a detoxification strategy in seconds publication-title: Environ. Sci. Technol. – volume: 5 start-page: 6664 year: 2017 end-page: 6676 ident: bib47 article-title: Synthesis of Fe publication-title: J. Mater. Chem. A – volume: 47 start-page: 957 year: 2013 end-page: 995 ident: bib19 article-title: Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review publication-title: Water Res. – volume: 11 start-page: 5666 year: 2021 end-page: 5677 ident: bib11 article-title: Elucidation of active sites for CH publication-title: ACS Catal. – volume: 1 start-page: 2866 year: 2018 end-page: 2873 ident: bib38 article-title: Design of palladium-doped g-C publication-title: ACS Appl. Energy Mater. – volume: 31 year: 2019 ident: bib9 article-title: Dual cocatalysts in TiO publication-title: Adv. Mater. – volume: 44 start-page: 1167 year: 2014 end-page: 1219 ident: bib23 article-title: Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 278 year: 2020 ident: bib45 article-title: 0D/2D Co publication-title: Appl. Catal. B Environ. – volume: 53 start-page: 1564 year: 2019 end-page: 1575 ident: bib14 article-title: Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis publication-title: Environ. Sci. Technol. – volume: 390 year: 2020 ident: bib41 article-title: Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C publication-title: Chem. Eng. J. – volume: 81 year: 2021 ident: bib35 article-title: Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies publication-title: Nano Energy – volume: 359 start-page: 13 year: 2019 end-page: 31 ident: bib22 article-title: Removal of nitrophenols and their derivatives by chemical redox: a review publication-title: Chem. Eng. J. – volume: 94 start-page: 288 year: 2010 end-page: 294 ident: bib24 article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water publication-title: Appl. Catal. B Environ. – volume: 11 year: 2021 ident: bib21 article-title: Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: state of the art and trends publication-title: Appl. Sci. – volume: 117 start-page: 11302 year: 2017 end-page: 11336 ident: bib27 article-title: Generation and detection of reactive oxygen species in photocatalysis publication-title: Chem. Rev. – volume: 112 start-page: 1555 year: 2012 end-page: 1614 ident: bib26 article-title: Advanced nanoarchitectures for solar photocatalytic applications publication-title: Chem. Rev. – volume: 292 year: 2021 ident: bib8 article-title: Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis publication-title: Appl. Catal. B Environ. – volume: 192 year: 2020 ident: bib46 article-title: Dramatically enhanced degradation of recalcitrant organic contaminants in MgO publication-title: Environ. Res. – volume: 7 start-page: 13943 year: 2015 end-page: 13950 ident: bib42 article-title: Controlled synthesis of a highly dispersed BiPO publication-title: Nanoscale – volume: 13 start-page: 10649 year: 2021 end-page: 10667 ident: bib4 article-title: Cocatalysts from types, preparation to applications in the field of photocatalysis publication-title: Nanoscale – volume: 395 year: 2020 ident: bib29 article-title: Historical development and prospects of photocatalysts for pollutant removal in water publication-title: J. Hazard Mater. – volume: 386 year: 2020 ident: bib31 article-title: Dual-site activation enhanced photocatalytic removal of no with Au/CeO publication-title: Chem. Eng. J. – volume: 9 start-page: 29687 year: 2017 end-page: 29698 ident: bib10 article-title: Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO publication-title: ACS Appl. Mater. Interfaces – volume: 200 start-page: 330 year: 2017 end-page: 342 ident: bib36 article-title: Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation publication-title: Appl. Catal. B Environ. – volume: 85 start-page: 693 year: 2011 end-page: 709 ident: bib15 article-title: Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes-degradation, elucidation of byproducts and assessment of their biological potency publication-title: Chemosphere – volume: 43 start-page: 479 year: 2015 end-page: 489 ident: bib16 article-title: Antibiotic pollution in the environment: a review publication-title: CLEAN - Soil, Air, Water – volume: 51 start-page: 13380 year: 2017 end-page: 13387 ident: bib30 article-title: Is C publication-title: Environ. Sci. Technol. – volume: 424 year: 2022 ident: bib50 article-title: Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C publication-title: J. Hazard Mater. – volume: 13 start-page: 5173 year: 2020 end-page: 5184 ident: bib28 article-title: Recent advances in heterogeneous photo-driven oxidation of organic molecules by reactive oxygen species publication-title: ChemSusChem – volume: 292 year: 2021 ident: 10.1016/j.apcatb.2022.121092_bib8 article-title: Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120156 – volume: 117 start-page: 11302 year: 2017 ident: 10.1016/j.apcatb.2022.121092_bib27 article-title: Generation and detection of reactive oxygen species in photocatalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00161 – volume: 112 start-page: 1555 year: 2012 ident: 10.1016/j.apcatb.2022.121092_bib26 article-title: Advanced nanoarchitectures for solar photocatalytic applications publication-title: Chem. Rev. doi: 10.1021/cr100454n – volume: 424 year: 2022 ident: 10.1016/j.apcatb.2022.121092_bib50 article-title: Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C3N4 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.127177 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2022.121092_bib7 article-title: Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities publication-title: Adv. Mater. doi: 10.1002/adma.201704649 – volume: 53 start-page: 1564 year: 2019 ident: 10.1016/j.apcatb.2022.121092_bib48 article-title: Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05827 – volume: 1 start-page: 2866 year: 2018 ident: 10.1016/j.apcatb.2022.121092_bib38 article-title: Design of palladium-doped g-C3N4 for enhanced photocatalytic activity toward hydrogen evolution reaction publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00526 – volume: 261 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib40 article-title: Complete debromination of 2,2′,4,4′-tetrabromodiphenyl ether by visible-light photocatalysis on g-C3N4 supported Pd publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118236 – volume: 27 start-page: 2150 year: 2015 ident: 10.1016/j.apcatb.2022.121092_bib34 article-title: Polymeric photocatalysts based on graphitic carbon nitride publication-title: Adv. Mater. doi: 10.1002/adma.201500033 – volume: 307 year: 2022 ident: 10.1016/j.apcatb.2022.121092_bib2 article-title: Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: progress and perspectives publication-title: Fuel doi: 10.1016/j.fuel.2021.121745 – volume: 227 start-page: 114 year: 2018 ident: 10.1016/j.apcatb.2022.121092_bib51 article-title: Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.01.024 – volume: 390 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib41 article-title: Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C3N4 catalysts: the role of sulfate radicals and hydroxyl radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124532 – volume: 44 start-page: 1167 year: 2014 ident: 10.1016/j.apcatb.2022.121092_bib23 article-title: Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2013.763581 – volume: 13 start-page: 5173 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib28 article-title: Recent advances in heterogeneous photo-driven oxidation of organic molecules by reactive oxygen species publication-title: ChemSusChem doi: 10.1002/cssc.202001398 – volume: 28 start-page: 6781 year: 2016 ident: 10.1016/j.apcatb.2022.121092_bib1 article-title: Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201600305 – volume: 138 start-page: 13289 year: 2016 ident: 10.1016/j.apcatb.2022.121092_bib37 article-title: Constructing solid-gas-interfacial fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07272 – volume: 260 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib52 article-title: Green synthesis of 3D tripyramid TiO2 architectures with assistance of aloe extracts for highly efficient photocatalytic degradation of antibiotic ciprofloxacin publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118149 – volume: 9 start-page: 29687 year: 2017 ident: 10.1016/j.apcatb.2022.121092_bib10 article-title: Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07226 – volume: 11 start-page: 5666 year: 2021 ident: 10.1016/j.apcatb.2022.121092_bib11 article-title: Elucidation of active sites for CH4 catalytic oxidation over Pd/CeO2 via tailoring metal–support interactions publication-title: ACS Catal. doi: 10.1021/acscatal.1c00839 – volume: 11 year: 2021 ident: 10.1016/j.apcatb.2022.121092_bib21 article-title: Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: state of the art and trends publication-title: Appl. Sci. doi: 10.3390/app11146659 – volume: 53 start-page: 3208 year: 2019 ident: 10.1016/j.apcatb.2022.121092_bib33 article-title: Dechlorination-hydroxylation of atrazine to hydroxyatrazine with thiosulfate: a detoxification strategy in seconds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b06351 – volume: 13 start-page: 10649 year: 2021 ident: 10.1016/j.apcatb.2022.121092_bib4 article-title: Cocatalysts from types, preparation to applications in the field of photocatalysis publication-title: Nanoscale doi: 10.1039/D1NR02464G – volume: 5 start-page: 6664 year: 2017 ident: 10.1016/j.apcatb.2022.121092_bib47 article-title: Synthesis of Fe0.32Co0.68/γ-Al2O3@C nanocomposite for depth treatment of dye sewage based on adsorption and advanced catalytic oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10919E – volume: 7 start-page: 12627 year: 2019 ident: 10.1016/j.apcatb.2022.121092_bib12 article-title: Construction of PdO–Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02045D – volume: 200 start-page: 330 year: 2017 ident: 10.1016/j.apcatb.2022.121092_bib36 article-title: Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.07.021 – volume: 7 start-page: 13943 year: 2015 ident: 10.1016/j.apcatb.2022.121092_bib42 article-title: Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies publication-title: Nanoscale doi: 10.1039/C5NR02345A – volume: 94 start-page: 288 year: 2010 ident: 10.1016/j.apcatb.2022.121092_bib24 article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2009.12.002 – volume: 397 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib43 article-title: Facile one-step synthesis of 3D hierarchical flower-like magnesium peroxide for efficient and fast removal of tetracycline from aqueous solution publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122877 – volume: 282 year: 2021 ident: 10.1016/j.apcatb.2022.121092_bib49 article-title: Visible light absorption by perylene diimide for synergistic persulfate activation towards efficient photodegradation of bisphenol A publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119579 – volume: 31 year: 2019 ident: 10.1016/j.apcatb.2022.121092_bib9 article-title: Dual cocatalysts in TiO2 photocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201807660 – volume: 278 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib45 article-title: 0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119298 – volume: 129 start-page: 182 year: 2013 ident: 10.1016/j.apcatb.2022.121092_bib39 article-title: Novel visible-light-driven AgX/graphite-like C3N4 (XBr, I) hybrid materials with synergistic photocatalytic activity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.08.015 – volume: 85 start-page: 693 year: 2011 ident: 10.1016/j.apcatb.2022.121092_bib15 article-title: Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes-degradation, elucidation of byproducts and assessment of their biological potency publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.06.082 – volume: 15 start-page: 14453 year: 2021 ident: 10.1016/j.apcatb.2022.121092_bib6 article-title: Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction publication-title: ACS Nano doi: 10.1021/acsnano.1c03961 – volume: 359 start-page: 13 year: 2019 ident: 10.1016/j.apcatb.2022.121092_bib22 article-title: Removal of nitrophenols and their derivatives by chemical redox: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.111 – volume: 227 start-page: 114 year: 2018 ident: 10.1016/j.apcatb.2022.121092_bib20 article-title: Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: kinetics, mechanism, and antibacterial activity elimination publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.01.024 – volume: 53 start-page: 1564 year: 2019 ident: 10.1016/j.apcatb.2022.121092_bib14 article-title: Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05827 – volume: 192 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib46 article-title: Dramatically enhanced degradation of recalcitrant organic contaminants in MgO2/Fe(III) Fenton-like system by organic chelating agents publication-title: Environ. Res. – volume: 81 year: 2021 ident: 10.1016/j.apcatb.2022.121092_bib35 article-title: Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105671 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2022.121092_bib5 article-title: Metal-organic-framework-based catalysts for photoreduction of CO2 publication-title: Adv. Mater. – volume: 150 start-page: 431 year: 2019 ident: 10.1016/j.apcatb.2022.121092_bib32 article-title: Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: mechanisms, degradation pathway and DFT calculation publication-title: Water Res doi: 10.1016/j.watres.2018.12.001 – volume: 185 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib18 article-title: Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: Experimental and theoretical evidences publication-title: Water Res. doi: 10.1016/j.watres.2020.116286 – volume: 386 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib31 article-title: Dual-site activation enhanced photocatalytic removal of no with Au/CeO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124047 – volume: 24 year: 2021 ident: 10.1016/j.apcatb.2022.121092_bib3 article-title: Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion publication-title: Appl. Mater. Today – volume: 43 start-page: 479 year: 2015 ident: 10.1016/j.apcatb.2022.121092_bib16 article-title: Antibiotic pollution in the environment: a review publication-title: CLEAN - Soil, Air, Water doi: 10.1002/clen.201300989 – volume: 303 year: 2022 ident: 10.1016/j.apcatb.2022.121092_bib44 article-title: Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: Morphology and defect evolution publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120904 – volume: 251 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib17 article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126351 – volume: 395 year: 2020 ident: 10.1016/j.apcatb.2022.121092_bib29 article-title: Historical development and prospects of photocatalysts for pollutant removal in water publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122599 – volume: 116 start-page: 7159 year: 2016 ident: 10.1016/j.apcatb.2022.121092_bib13 article-title: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00075 – volume: 414 year: 2021 ident: 10.1016/j.apcatb.2022.121092_bib25 article-title: Advanced oxidation processes in the removal of organic substances from produced water: potential, configurations, and research needs publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128668 – volume: 51 start-page: 13380 year: 2017 ident: 10.1016/j.apcatb.2022.121092_bib30 article-title: Is C3N4 chemically stable toward reactive oxygen species in sunlight-driven water treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04215 – volume: 47 start-page: 957 year: 2013 ident: 10.1016/j.apcatb.2022.121092_bib19 article-title: Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review publication-title: Water Res. doi: 10.1016/j.watres.2012.11.027 |
SSID | ssj0002328 |
Score | 2.6394517 |
Snippet | Nano-structured metal cocatalysts are easy to be oxidized and form mixed valences and interfaces which would facilitate the catalytic performance in previous... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121092 |
SubjectTerms | Carbon nitride Ciprofloxacin Contribution modulating Electron distribution Geographical distribution Hydrogen Interfaces Metal cocatalyst Oxidative active species Palladium Performance degradation Photocatalysis Photodegradation Species Surface states Valence regulation |
Title | Modulating the oxidative active species by regulating the valence of palladium cocatalyst in photocatalytic degradation of ciprofloxacin |
URI | https://dx.doi.org/10.1016/j.apcatb.2022.121092 https://www.proquest.com/docview/2639686036 |
Volume | 306 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxUxEG8IHtSDkadEEEkPXuvb1-1-9EheIE8MXJSEWzNtd3UN7m54SwIXz_zZzHS7oiaEhOM2M02zM_3NTDMfjH1EEwwazYRwclELBd4JyECJChKQOVoYlVKh8MlpvjpTx-fZ-QZbTrUwlFYZsX_E9IDWcWUe_-a8b5r510TLPE0L1Ehy7CVVlCtVkJZ_-n2f5oEeQ0BjJBZEPZXPhRwv6B0MFqNEKanNQqLlQ-bpP6AO1ufoNXsV3UZ-MJ5si21U7Yw9X07T2mbs5V-NBWds-_C-fg3Z4gVev2G3J50PA7va7xxdP95dNz60_uYQgI9T5SUGz9ze8MtxTP1EiipJm_Cu5j29vvvm6hdHOKX3n5v1wJuW9z-6IS7gObmnRhTjzCbicg0NCL_orsE17Vt2dnT4bbkScRiDcHjNB1FniXIYDdYYMlpfKls6X_m6qjMFiUsWsLCVtVbZCkq0u1oBIgHGc6nLtNdlmW6zzbZrq3eMF6Uvau09PWGpTIJOUl9oSLWXCWQLt8PSSQbGxU7lNDDjwkwpaT_NKDlDkjOj5HaY-MPVj506HqEvJvGafzTOoDF5hHNv0gYTb_zaoC7qvMzRIdh98sbv2Qv6Cplo2R7bHC6vqg_o8wx2Pyj1Pnt28PnL6vQO2k4EiA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcUFmoKLTgAxzDZh3n4QMH1Ie2tNsLrdSb8SttUEmibiq6F878H_4gY8dpCxKqhNSrE1uWZ_x9M9Y8AN4iBUuONBFpOikjJo2OZCpZZGUsaYYMwxKXKDw7zKbH7NNJerIEv4ZcGBdWGbC_x3SP1mFkHE5z3FbV-HPMaZYkOWqkM-xpHiIr9-3iO_pt8w972yjkd5Tu7hxtTaPQWiDSqLRdVKYx0-jblOgAKVMwVWhjTWnLlMlYxxM5UVYpxZSVBbIIZxL1Gr2TRKfc8KJIcN0H8JAhXLi2Ce9_3MSVoIni4R93F7ntDfl6PqhMtlp2Ct1SSl1dh5jTf_HhX8zg6W53FZ4EO5V87I_iKSzZegQrW0N7uBE8vlXJcARrOzcJczgtIMb8GfycNcZ3CKtPCdqapLmqjK81TqRHWuJSPdFbJ2pBLuzp7V_xDrhFSFOS1j33m-ryG0H8dg9Oi3lHqpq0Z00XBnCfxLjKF32TKDdLV64j-XlzJXVVP4fjexHRGizXTW1fAMkLk5fcGPdmxlIqeZyYnMuEGxrLdKLXIRlkIHQoje46dJyLIQbuq-glJ5zkRC-5dYiuZ7V9aZA7_s8H8Yo_VFwge90xc2PQBhEgZi5Q-XlWZGiBvPzvhd_AyvRodiAO9g73X8Ej98WHwaUbsNxdXNpNNLg69dorOIEv932jfgNY8UIc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+oxidative+active+species+by+regulating+the+valence+of+palladium+cocatalyst+in+photocatalytic+degradation+of+ciprofloxacin&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Guo%2C+Fa&rft.au=Zhang%2C+Hao&rft.au=Li%2C+Hui&rft.au=Shen%2C+Zhurui&rft.date=2022-06-05&rft.issn=0926-3373&rft.volume=306&rft.spage=121092&rft_id=info:doi/10.1016%2Fj.apcatb.2022.121092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2022_121092 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |