Effects of different carbon sources on methane production and the methanogenic communities in iron rich flooded paddy soil

Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe3+, the most abundant oxide in paddy soil, mediates the methanogenesis of diffe...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 823; p. 153636
Main Authors Luo, Dan, Li, Yaying, Yao, Huaiying, Chapman, Stephen J.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe3+, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH4 production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them. [Display omitted] •The methanogenic capacity of glucose and starch were stronger than acetate.•Methanosarcinales and Methanobacteriales were mainly responsible for CH4 production.•The type and abundance of methanogens changed with the incubation time.•mcrA gene copies positively correlated with the reduction of Fe(III).
AbstractList Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe3+, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH4 production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them.Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe3+, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH4 production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them.
Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe³⁺, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH₄ production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them.
Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe , the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them.
Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe3+, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH4 production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them. [Display omitted] •The methanogenic capacity of glucose and starch were stronger than acetate.•Methanosarcinales and Methanobacteriales were mainly responsible for CH4 production.•The type and abundance of methanogens changed with the incubation time.•mcrA gene copies positively correlated with the reduction of Fe(III).
ArticleNumber 153636
Author Luo, Dan
Li, Yaying
Yao, Huaiying
Chapman, Stephen J.
Author_xml – sequence: 1
  givenname: Dan
  surname: Luo
  fullname: Luo, Dan
  organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
– sequence: 2
  givenname: Yaying
  surname: Li
  fullname: Li, Yaying
  organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
– sequence: 3
  givenname: Huaiying
  surname: Yao
  fullname: Yao, Huaiying
  email: hyyao@iue.ac.cn
  organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
– sequence: 4
  givenname: Stephen J.
  surname: Chapman
  fullname: Chapman, Stephen J.
  organization: The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35124061$$D View this record in MEDLINE/PubMed
BookMark eNqNUbFuHCEURJGt-OzkFxLKNHsBdhd2ixSWZTuRLKVxasTBI8dpFy7AWnK-Pu905xRpHCh44s0MvJlLchZTBEI-crbmjMvPu3WxoaYK8WktmBBr3reylW_Iig9qbDgT8oysGOuGZpSjuiCXpewYLjXwt-Si7bnomOQr8vvWe7C10OSpC1hniJVakzcp0pKWbAF7kc5QtyYC3efkFlsDXpnoaN3CqZV-QgyW2jTPSww1IC1EGjICc7Bb6qeUHDi6N849o3KY3pFzb6YC70_nFflxd_t487V5-H7_7eb6obEdY7XxwlnZDtIN3ehUi9PIflCDlKzz3HTetcKqjRBG9WNrDJjOKSNGIW1rRyN8e0U-HXXx778WKFXPoViYJpwnLUULNA61lVL_AcUteiU4Qj-coMtmBqf3OcwmP-sXaxHw5QiwOZWSwWtMzBycq9mESXOmD1Hqnf4bpT5EqY9RIl_9w3954nXm9ZEJ6OpTgHzAQbTgQsastUvhVY0_bjW_Sg
CitedBy_id crossref_primary_10_1016_j_resconrec_2024_107773
crossref_primary_10_1128_aem_02238_24
crossref_primary_10_1016_j_apsoil_2022_104650
crossref_primary_10_1016_j_jclepro_2023_140404
crossref_primary_10_1016_j_ecoenv_2024_116716
crossref_primary_10_1016_j_still_2024_106026
crossref_primary_10_1016_j_apsoil_2025_105944
crossref_primary_10_1016_j_scitotenv_2023_166904
crossref_primary_10_2965_jwet_24_044
crossref_primary_10_3390_agronomy14091972
crossref_primary_10_1016_j_eti_2025_104099
crossref_primary_10_1016_j_fcr_2024_109562
crossref_primary_10_1016_j_jclepro_2023_139968
crossref_primary_10_1016_j_jenvman_2024_123883
crossref_primary_10_1007_s11356_023_29922_7
crossref_primary_10_1016_j_xplc_2024_101224
crossref_primary_10_3390_fermentation9060513
crossref_primary_10_3390_d14090735
crossref_primary_10_1016_j_geoderma_2023_116462
crossref_primary_10_1016_j_tplants_2024_06_006
crossref_primary_10_3390_agronomy13061636
crossref_primary_10_3390_microorganisms12040702
crossref_primary_10_1016_j_apsoil_2025_106005
crossref_primary_10_1016_j_still_2024_106032
crossref_primary_10_1016_j_biortech_2022_128277
crossref_primary_10_1016_j_scitotenv_2024_170660
crossref_primary_10_1016_j_scitotenv_2024_170980
crossref_primary_10_1029_2023JG007443
crossref_primary_10_3390_microorganisms12101940
crossref_primary_10_1017_S0021859623000631
crossref_primary_10_3390_agriculture15050520
crossref_primary_10_1016_j_ijhydene_2023_06_075
crossref_primary_10_1016_j_jenvman_2025_124044
crossref_primary_10_3390_agronomy14071535
crossref_primary_10_1016_j_cej_2025_160478
crossref_primary_10_3390_agronomy14091967
crossref_primary_10_1016_j_chemosphere_2022_136262
crossref_primary_10_1016_j_jgsce_2024_205391
Cites_doi 10.1016/j.chemosphere.2011.05.027
10.3130/jaabe.12.213
10.1038/nature14673
10.1111/gbi.12320
10.1016/j.chemosphere.2008.04.016
10.1016/j.scitotenv.2021.145629
10.1146/annurev.micro.58.030603.123811
10.1016/0038-0717(87)90052-6
10.1016/j.scitotenv.2021.147773
10.1007/s00421-017-3795-6
10.1016/j.chemgeo.2011.11.003
10.1016/j.apsoil.2021.103892
10.1007/s00253-016-8065-8
10.1111/ejss.12042
10.3390/microorganisms7100412
10.1071/SR14287
10.3389/fmicb.2016.01184
10.1093/nar/gks1219
10.1186/gb-2011-12-6-r60
10.1021/ac60254a027
10.1186/1471-2164-15-679
10.4161/auto.5634
10.1196/annals.1419.019
10.1016/j.bioelechem.2015.06.003
10.1007/BF00336349
10.1016/S0065-2911(04)49005-5
10.1016/j.envint.2020.105650
10.1016/j.chemosphere.2020.127092
10.1038/s41467-020-19320-9
10.1016/0038-0717(92)90237-R
10.1073/pnas.1000080107
10.1016/j.soilbio.2016.11.010
10.1111/j.1574-6941.1993.tb00022.x
10.1111/gcb.13944
10.1016/S0038-0717(99)00050-4
10.1016/0038-0717(92)90058-6
10.1038/nmeth.2604
10.1016/j.jhazmat.2015.03.039
10.1038/s41467-020-16071-5
10.1016/j.scitotenv.2020.141351
10.1016/j.apgeochem.2008.04.001
10.1016/j.jhazmat.2018.04.023
10.3389/fmicb.2018.02566
10.1016/j.biortech.2016.05.048
10.1039/C3EE42189A
10.1002/fes3.230
10.1128/AEM.02818-10
10.1021/acs.chemrev.7b00421
10.1016/j.biortech.2008.03.011
10.1016/j.biortech.2019.121397
10.1038/sj.emboj.7600864
10.1016/j.soilbio.2017.10.004
10.1007/s10533-017-0337-6
10.1126/science.1196526
10.1128/AEM.02960-10
10.1021/es504200j
10.1128/AEM.01166-18
10.1038/nrmicro1490
10.1016/j.biortech.2010.06.050
10.1016/j.biortech.2020.122801
10.1128/mSystems.00897-19
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2022.153636
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 35124061
10_1016_j_scitotenv_2022_153636
S0048969722007288
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c400t-f2dc6386d849d73697658786604f1a4fd32c7b22a7593aaea4d7a2926c3c9a2f3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 02:28:09 EDT 2025
Thu Jul 10 18:13:52 EDT 2025
Wed Feb 19 02:27:04 EST 2025
Tue Jul 01 02:53:48 EDT 2025
Thu Apr 24 23:05:06 EDT 2025
Fri Feb 23 02:37:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Organic matter
Iron reduction
High-throughput sequencing
Methanogen
Rice paddy
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-f2dc6386d849d73697658786604f1a4fd32c7b22a7593aaea4d7a2926c3c9a2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35124061
PQID 2626225721
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636849777
proquest_miscellaneous_2626225721
pubmed_primary_35124061
crossref_citationtrail_10_1016_j_scitotenv_2022_153636
crossref_primary_10_1016_j_scitotenv_2022_153636
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2022_153636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wandersman, Delepelaire (bb0270) 2004; 58
Borrel, Parisot, Harris, Peyretaillade, Gaci, Tottey, Bardot, Raymann, Gribaldo, Peyret, O'Toole, Brugère (bb0020) 2014; 15
Nazarko, Futej, Thevelein, Sibirny (bb0195) 2008; 4
Peng, Shaaban, Hu, Mo, Wu, Ullah (bb0205) 2015; 53
Liechty, Santos-Medellín, Edwards, Nguyen, Mikhail, Eason, Phillips, Sundaresan (bb0140) 2020; 5
Seo, Kim, Kim (bb0235) 2013; 12
Zhang, Dong, Liu, Fischer, Wang, Huang (bb0315) 2012; 292–293
Pachauri, Allen, Barros, Broome, Cramer, Christ, Church, Clarke, Dahe, Dasgupta (bb0200) 2014
Rotaru, Shrestha, Liu, Shrestha, Shrestha, Embree, Zengler, Wardman, Nevin, Lovley (bb0225) 2014; 7
Bryce, Franz-Wachtel, Nalpas, Miot, Benzerara, Byrne, Kleindienst, Macek, Kappler, Müller (bb0035) 2018; 84
Liu, Yang, Wang, Jin, Zhou, Lv (bb0150) 2010; 101
Wang, Bai, Di, Mo, Han, Zhang, He (bb0275) 2018; 9
Wang, Hu, Shen, Liu, Islam, Wu, Dang, Chen (bb0285) 2021; 773
Beckmann, Lueders, Krüger, von Netzer, Engelen, Cypionka (bb0015) 2011; 77
Hanke, Cerli, Muhr, Borken, Kalbitz (bb0100) 2013; 64
Marquart, Haller, Paper, Flynn, Boyanov, Shodunke, Gura, Jin, Kirk (bb0180) 2019; 17
Summers, Fogarty, Leang, Franks, Malvankar, Lovley (bb0250) 2010; 330
Chen, Hall, Coward, Thompson (bb0050) 2020; 11
Fu, Lu, Tang, Hu, Xie, Zhong, Fan, Liu, Zhang (bb0080) 2021; 162
Luo, Meng, Zheng, Li, Yao, Chapman (bb0175) 2021; 788
Lanquar, Lelièvre, Bolte, Hamès, Alcon, Neumann, Vansuyt, Curie, Schröder, Krämer, Barbier-Brygoo, Thomine (bb0130) 2005; 24
Wang, Qin, Liu, Guo, Li, Zhai (bb0280) 2020; 9
Yin, Gu, Hermanowicz, Hu, Wu (bb0305) 2020; 138
Shen, Shi, Ni, Deng, Van Nostrand, He, Zhou, Chu (bb0240) 2016; 7
Bachoon, Jones (bb0010) 1992; 24
Vance, Brookes, Jenkinson (bb0265) 1987; 19
Lovley, Holmes, Nevin (bb0165) 2004
Bossio, Horwath, Mutters, van Kessel (bb0025) 1999; 31
Freitag, Toet, Ineson, Prosser (bb0075) 2010; 73
Luesken, Zhu, van Alen, Butler, Diaz, Song, Op Den Camp, Jetten, Ettwig (bb0170) 2011; 77
Bridgham, Richardson (bb0030) 1992; 24
Porras, Hicks Pries, McFarlane, Hanson, Torn (bb0210) 2017; 133
Segata, Izard, Waldron, Gevers, Miropolsky, Garrett, Huttenhower (bb0230) 2011; 12
Gwon, Khan, Alam, Das, Kim (bb0095) 2018; 353
Su, Hu, Yan, Jin, Chen, Guan, Wang, Zhong, Jansson, Wang, Schnürer, Sun (bb0245) 2015; 523
Vadlani, Ramachandran (bb0255) 2008; 99
Liu, Zhang, Ni (bb0155) 2015; 49
Vaksmaa, Jetten, Ettwig, Lüke (bb0260) 2017; 101
Weber, Achenbach, Coates (bb0290) 2006; 4
Liu, Li, Zhang, Si, Chen (bb0160) 2016; 216
Rago, Ruiz, Baeza, Guisasola, Cortés (bb0220) 2015; 106
Zhuang, Tang, Wang, Hu, Zhou (bb0320) 2015; 293
Kosugi, Matsuura, Liang, Yamamoto-Ikemoto (bb0120) 2020; 256
Fetzer, Bak, Conrad (bb0070) 1993; 12
Hernández, Conrad, Klose, Ma, Lu (bb0105) 2017; 105
Caporaso, Lauber, Walters, Berg-Lyons, Lozupone, Turnbaugh, Fierer, Knight (bb0045) 2011; 108
Nan, Wang, Wang, Yi, Wu (bb0190) 2020; 746
Ferguson, Rogatzki, Goodwin, Kane, Rightmire, Gladden (bb0065) 2018; 118
Xu, Zhang, Ou, Wang, Wang, Chu, Yao (bb0300) 2020; 11
Gütlein, Gerschlauer, Kikoti, Kiese (bb0090) 2018; 24
Edgar (bb0060) 2013; 10
Kwon, O Loughlin, Antonopoulos, Finneran (bb0125) 2011; 84
Achtnich, Bak, Conrad (bb0005) 1995; 19
Liu, Whitman (bb0145) 2008; 1125
Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (bb0215) 2012; 41
Lazcano, Gómez-Brandón, Domínguez (bb0135) 2008; 72
Jiang, Wang, Liu, Yang, Ren, Miao, Pan, Lv, Yan, Ding, Li (bb0115) 2019; 286
Horvath, Vilkhovoy, Wayman, Calhoun, Swartz, Varner (bb0110) 2019; 10
Guérin, Abril, de Junet, Bonnet (bb0085) 2008; 23
Cai, Ning, Zhang, Zhang, Guo, Niu, Shi (bb0040) 2019; 7
Xu, Zhang, Zuo, Qiao, He (bb0295) 2020; 302
Yuan, Hernández, Dumont, Rui, Fernández Scavino, Conrad (bb0310) 2018; 116
Meier, Jones, Kaper, Hansson, Koetsier, Karkehabadi, Solomon, Sandgren, Kelemen (bb0185) 2018; 118
Crouch, Malmstadt (bb0055) 1967; 39
Fetzer (10.1016/j.scitotenv.2022.153636_bb0070) 1993; 12
Xu (10.1016/j.scitotenv.2022.153636_bb0300) 2020; 11
Beckmann (10.1016/j.scitotenv.2022.153636_bb0015) 2011; 77
Wang (10.1016/j.scitotenv.2022.153636_bb0280) 2020; 9
Yin (10.1016/j.scitotenv.2022.153636_bb0305) 2020; 138
Guérin (10.1016/j.scitotenv.2022.153636_bb0085) 2008; 23
Bossio (10.1016/j.scitotenv.2022.153636_bb0025) 1999; 31
Hernández (10.1016/j.scitotenv.2022.153636_bb0105) 2017; 105
Vadlani (10.1016/j.scitotenv.2022.153636_bb0255) 2008; 99
Edgar (10.1016/j.scitotenv.2022.153636_bb0060) 2013; 10
Peng (10.1016/j.scitotenv.2022.153636_bb0205) 2015; 53
Quast (10.1016/j.scitotenv.2022.153636_bb0215) 2012; 41
Meier (10.1016/j.scitotenv.2022.153636_bb0185) 2018; 118
Rago (10.1016/j.scitotenv.2022.153636_bb0220) 2015; 106
Xu (10.1016/j.scitotenv.2022.153636_bb0295) 2020; 302
Gwon (10.1016/j.scitotenv.2022.153636_bb0095) 2018; 353
Liechty (10.1016/j.scitotenv.2022.153636_bb0140) 2020; 5
Rotaru (10.1016/j.scitotenv.2022.153636_bb0225) 2014; 7
Kwon (10.1016/j.scitotenv.2022.153636_bb0125) 2011; 84
Bryce (10.1016/j.scitotenv.2022.153636_bb0035) 2018; 84
Seo (10.1016/j.scitotenv.2022.153636_bb0235) 2013; 12
Kosugi (10.1016/j.scitotenv.2022.153636_bb0120) 2020; 256
Achtnich (10.1016/j.scitotenv.2022.153636_bb0005) 1995; 19
Gütlein (10.1016/j.scitotenv.2022.153636_bb0090) 2018; 24
Luesken (10.1016/j.scitotenv.2022.153636_bb0170) 2011; 77
Jiang (10.1016/j.scitotenv.2022.153636_bb0115) 2019; 286
Vance (10.1016/j.scitotenv.2022.153636_bb0265) 1987; 19
Nan (10.1016/j.scitotenv.2022.153636_bb0190) 2020; 746
Wang (10.1016/j.scitotenv.2022.153636_bb0275) 2018; 9
Lazcano (10.1016/j.scitotenv.2022.153636_bb0135) 2008; 72
Wang (10.1016/j.scitotenv.2022.153636_bb0285) 2021; 773
Nazarko (10.1016/j.scitotenv.2022.153636_bb0195) 2008; 4
Luo (10.1016/j.scitotenv.2022.153636_bb0175) 2021; 788
Ferguson (10.1016/j.scitotenv.2022.153636_bb0065) 2018; 118
Liu (10.1016/j.scitotenv.2022.153636_bb0160) 2016; 216
Horvath (10.1016/j.scitotenv.2022.153636_bb0110) 2019; 10
Yuan (10.1016/j.scitotenv.2022.153636_bb0310) 2018; 116
Freitag (10.1016/j.scitotenv.2022.153636_bb0075) 2010; 73
Hanke (10.1016/j.scitotenv.2022.153636_bb0100) 2013; 64
Porras (10.1016/j.scitotenv.2022.153636_bb0210) 2017; 133
Bridgham (10.1016/j.scitotenv.2022.153636_bb0030) 1992; 24
Pachauri (10.1016/j.scitotenv.2022.153636_bb0200) 2014
Crouch (10.1016/j.scitotenv.2022.153636_bb0055) 1967; 39
Summers (10.1016/j.scitotenv.2022.153636_bb0250) 2010; 330
Borrel (10.1016/j.scitotenv.2022.153636_bb0020) 2014; 15
Lanquar (10.1016/j.scitotenv.2022.153636_bb0130) 2005; 24
Su (10.1016/j.scitotenv.2022.153636_bb0245) 2015; 523
Segata (10.1016/j.scitotenv.2022.153636_bb0230) 2011; 12
Shen (10.1016/j.scitotenv.2022.153636_bb0240) 2016; 7
Liu (10.1016/j.scitotenv.2022.153636_bb0155) 2015; 49
Chen (10.1016/j.scitotenv.2022.153636_bb0050) 2020; 11
Liu (10.1016/j.scitotenv.2022.153636_bb0150) 2010; 101
Fu (10.1016/j.scitotenv.2022.153636_bb0080) 2021; 162
Weber (10.1016/j.scitotenv.2022.153636_bb0290) 2006; 4
Bachoon (10.1016/j.scitotenv.2022.153636_bb0010) 1992; 24
Cai (10.1016/j.scitotenv.2022.153636_bb0040) 2019; 7
Lovley (10.1016/j.scitotenv.2022.153636_bb0165) 2004
Zhang (10.1016/j.scitotenv.2022.153636_bb0315) 2012; 292–293
Wandersman (10.1016/j.scitotenv.2022.153636_bb0270) 2004; 58
Caporaso (10.1016/j.scitotenv.2022.153636_bb0045) 2011; 108
Vaksmaa (10.1016/j.scitotenv.2022.153636_bb0260) 2017; 101
Zhuang (10.1016/j.scitotenv.2022.153636_bb0320) 2015; 293
Liu (10.1016/j.scitotenv.2022.153636_bb0145) 2008; 1125
Marquart (10.1016/j.scitotenv.2022.153636_bb0180) 2019; 17
References_xml – volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: bb0265
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
– volume: 292–293
  start-page: 35
  year: 2012
  end-page: 44
  ident: bb0315
  article-title: Microbial reduction of Fe(III) in illite–smectite minerals by methanogen
  publication-title: Chem. Geol.
– volume: 11
  start-page: 5441
  year: 2020
  ident: bb0300
  article-title: Natural variations of SLG1 confer high-temperature tolerance in indica rice
  publication-title: Nat. Commun.
– volume: 353
  start-page: 236
  year: 2018
  end-page: 243
  ident: bb0095
  article-title: Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (
  publication-title: J. Hazard. Mater.
– volume: 216
  start-page: 87
  year: 2016
  end-page: 94
  ident: bb0160
  article-title: Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge
  publication-title: Bioresour. Technol.
– volume: 77
  start-page: 3749
  year: 2011
  ident: bb0015
  article-title: Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines
  publication-title: Appl. Environ. Microb.
– volume: 105
  start-page: 81
  year: 2017
  end-page: 91
  ident: bb0105
  article-title: Structure and function of methanogenic microbial communities in soils from flooded rice and upland soybean fields from Sanjiang Plain, NE China
  publication-title: Soil Biol. Biochem.
– volume: 24
  start-page: 4041
  year: 2005
  end-page: 4051
  ident: bb0130
  article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron
  publication-title: EMBO J.
– volume: 77
  start-page: 3877
  year: 2011
  end-page: 3880
  ident: bb0170
  article-title: pmoA primers for detection of anaerobic methanotrophs
  publication-title: Appl. Environ. Microb.
– volume: 23
  start-page: 2272
  year: 2008
  end-page: 2283
  ident: bb0085
  article-title: Anaerobic decomposition of tropical soils and plant material: implication for the CO
  publication-title: Appl. Geochem.
– volume: 523
  start-page: 602
  year: 2015
  end-page: 606
  ident: bb0245
  article-title: Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice
  publication-title: Nature
– volume: 256
  year: 2020
  ident: bb0120
  article-title: Wastewater treatment using the “sulfate reduction, denitrification anammox and partial nitrification (SRDAPN)” process
  publication-title: Chemosphere
– volume: 302
  year: 2020
  ident: bb0295
  article-title: Comparative facilitation of activated carbon and goethite on methanogenesis from volatile fatty acids
  publication-title: Bioresource Technol.
– volume: 330
  start-page: 1413
  year: 2010
  end-page: 1415
  ident: bb0250
  article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
  publication-title: Science
– volume: 118
  start-page: 2593
  year: 2018
  end-page: 2635
  ident: bb0185
  article-title: Oxygen activation by Cu LPMOs in recalcitrant carbohydrate polysaccharide conversion to monomer sugars
  publication-title: Chem. Rev.
– volume: 101
  start-page: 1631
  year: 2017
  end-page: 1641
  ident: bb0260
  article-title: McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘
  publication-title: Appl. Microbiol. Biot.
– volume: 12
  start-page: 107
  year: 1993
  end-page: 115
  ident: bb0070
  article-title: Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation
  publication-title: FEMS Microbiol. Ecol.
– volume: 1125
  start-page: 171
  year: 2008
  end-page: 189
  ident: bb0145
  article-title: Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 7
  start-page: 408
  year: 2014
  end-page: 415
  ident: bb0225
  article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to methanosaeta for the reduction of carbon dioxide to methane
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: e819
  year: 2020
  end-page: e897
  ident: bb0140
  article-title: Comparative analysis of root microbiomes of rice cultivars with high and low methane emissions reveals differences in abundance of methanogenic archaea and putative upstream fermenters
  publication-title: mSystems
– volume: 19
  start-page: 65
  year: 1995
  end-page: 72
  ident: bb0005
  article-title: Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil
  publication-title: Biol. Fert. Soils
– volume: 49
  start-page: 2123
  year: 2015
  end-page: 2131
  ident: bb0155
  article-title: Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe(III) addition
  publication-title: Environ. Sci. Technol.
– volume: 162
  year: 2021
  ident: bb0080
  article-title: Dynamics of methane emission and archaeal microbial community in paddy soil amended with different types of biochar
  publication-title: Appl. Soil Ecol.
– volume: 10
  year: 2019
  ident: bb0110
  article-title: Toward a genome scale sequence specific dynamic model of cell-free protein synthesis in
  publication-title: Metab. Eng. Commun.
– volume: 286
  year: 2019
  ident: bb0115
  article-title: Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite: insights into the prediction of microbial metabolic function and enzymatic activity
  publication-title: Bioresour. Technol.
– volume: 53
  start-page: 316
  year: 2015
  end-page: 324
  ident: bb0205
  article-title: Effects of soluble organic carbon addition on CH
  publication-title: Soil Res.
– volume: 746
  year: 2020
  ident: bb0190
  article-title: Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field
  publication-title: Sci. Total Environ.
– volume: 99
  start-page: 8231
  year: 2008
  end-page: 8236
  ident: bb0255
  article-title: Evaluation of UASB reactor performance during start-up operation using synthetic mixed-acid waste
  publication-title: Bioresource Technol.
– volume: 101
  start-page: 8127
  year: 2010
  end-page: 8131
  ident: bb0150
  article-title: Enhanced chromate reduction by resting
  publication-title: Bioresour. Technol.
– volume: 72
  start-page: 1013
  year: 2008
  end-page: 1019
  ident: bb0135
  article-title: Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure
  publication-title: Chemosphere
– volume: 24
  start-page: 21
  year: 1992
  end-page: 27
  ident: bb0010
  article-title: Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the everglades
  publication-title: Soil Biol. Biochem.
– volume: 116
  start-page: 99
  year: 2018
  end-page: 109
  ident: bb0310
  article-title: Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter
  publication-title: Soil Biol. Biochem.
– volume: 39
  start-page: 1084
  year: 1967
  end-page: 1089
  ident: bb0055
  article-title: Mechanistic investigation of molybdenum blue method for determination of phosphate
  publication-title: Anal. Chem.
– volume: 12
  start-page: R60
  year: 2011
  ident: bb0230
  article-title: Metagenomic biomarker discovery and explanation
  publication-title: Genome Biol.
– start-page: 219
  year: 2004
  end-page: 286
  ident: bb0165
  article-title: Dissimilatory Fe(III) and Mn(IV) reduction
  publication-title: Advances in Microbial Physiology
– volume: 788
  year: 2021
  ident: bb0175
  article-title: The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved
  publication-title: Sci. Total Environ.
– volume: 84
  start-page: e1118
  year: 2018
  end-page: e1166
  ident: bb0035
  article-title: Proteome response of a metabolically flexible anoxygenic phototroph to Fe(II) oxidation
  publication-title: Appl. Environ. Microb.
– volume: 31
  start-page: 1313
  year: 1999
  end-page: 1322
  ident: bb0025
  article-title: Methane pool and flux dynamics in a rice field following straw incorporation
  publication-title: Soil Biol. Biochem.
– volume: 24
  start-page: 1089
  year: 1992
  end-page: 1099
  ident: bb0030
  article-title: Mechanisms controlling soil respiration (CO
  publication-title: Soil Biol. Biochem.
– volume: 7
  start-page: 412
  year: 2019
  ident: bb0040
  article-title: Insights into biodegradation related metabolism in an abnormally low dissolved inorganic carbon (DIC) petroleum-contaminated aquifer by metagenomics analysis
  publication-title: Microorganisms
– volume: 10
  start-page: 996
  year: 2013
  end-page: 998
  ident: bb0060
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
– volume: 7
  start-page: 1184
  year: 2016
  ident: bb0240
  article-title: Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain
  publication-title: Front. Microbiol.
– volume: 11
  start-page: 2255
  year: 2020
  ident: bb0050
  article-title: Iron-mediated organic matter decomposition in humid soils can counteract protection
  publication-title: Nat. Commun.
– volume: 64
  start-page: 476
  year: 2013
  end-page: 487
  ident: bb0100
  article-title: Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils
  publication-title: Eur. J. Soil Sci.
– volume: 15
  start-page: 679
  year: 2014
  ident: bb0020
  article-title: Comparative genomics highlights the unique biology of methanomassiliicoccales, a thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine
  publication-title: BMC Genomics
– volume: 133
  start-page: 333
  year: 2017
  end-page: 345
  ident: bb0210
  article-title: Association with pedogenic iron and aluminum: effects on soil organic carbon storage and stability in four temperate forest soils
  publication-title: Biogeochemistry
– volume: 12
  start-page: 213
  year: 2013
  end-page: 220
  ident: bb0235
  article-title: Environmental and economic impacts of transit-oriented corridors in Korea
  publication-title: J. Asian Archit. Build.
– volume: 9
  start-page: 2566
  year: 2018
  ident: bb0275
  article-title: Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy soils
  publication-title: Front. Microbiol.
– volume: 118
  start-page: 691
  year: 2018
  end-page: 728
  ident: bb0065
  article-title: Lactate metabolism: historical context, prior misinterpretations, and current understanding
  publication-title: Eur. J. Appl. Physiol.
– volume: 73
  start-page: 157
  year: 2010
  end-page: 165
  ident: bb0075
  article-title: Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog
  publication-title: FEMS Microbiol. Ecol.
– volume: 41
  start-page: D590
  year: 2012
  end-page: D596
  ident: bb0215
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res.
– volume: 4
  start-page: 381
  year: 2008
  end-page: 384
  ident: bb0195
  article-title: Differences in glucose sensing and signaling for pexophagy between the baker's yeast
  publication-title: Autophagy
– volume: 17
  start-page: 185
  year: 2019
  end-page: 198
  ident: bb0180
  article-title: Influence of pH on the balance between methanogenesis and iron reduction
  publication-title: Geobiology
– volume: 773
  year: 2021
  ident: bb0285
  article-title: The process of methanogenesis in paddy fields under different elevated CO
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 1239
  year: 2018
  end-page: 1255
  ident: bb0090
  article-title: Impacts of climate and land use on N
  publication-title: Glob. Chang. Biol.
– volume: 106
  start-page: 359
  year: 2015
  end-page: 368
  ident: bb0220
  article-title: Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production
  publication-title: Bioelectrochemistry
– volume: 4
  start-page: 752
  year: 2006
  end-page: 764
  ident: bb0290
  article-title: Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction
  publication-title: Nat. Rev. Microbiol.
– volume: 293
  start-page: 37
  year: 2015
  end-page: 45
  ident: bb0320
  article-title: Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation
  publication-title: J. Hazard. Mater.
– volume: 84
  start-page: 1223
  year: 2011
  end-page: 1230
  ident: bb0125
  article-title: Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material
  publication-title: Chemosphere
– volume: 58
  start-page: 611
  year: 2004
  end-page: 647
  ident: bb0270
  article-title: Bacterial iron sources: from siderophores to hemophores
  publication-title: Annu. Rev. Microbiol.
– year: 2014
  ident: bb0200
  article-title: Climate change 2014: synthesis report
  publication-title: Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change
– volume: 138
  year: 2020
  ident: bb0305
  article-title: Potential interactions between syntrophic bacteria and methanogens via type IV pili and quorum-sensing systems
  publication-title: Environ. Int.
– volume: 108
  start-page: 4516
  year: 2011
  end-page: 4522
  ident: bb0045
  article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  year: 2020
  ident: bb0280
  article-title: Inclusion of microbial inoculants with straw mulch enhances grain yields from rice fields in Central China
  publication-title: Food Energy Secur.
– volume: 84
  start-page: 1223
  issue: 9
  year: 2011
  ident: 10.1016/j.scitotenv.2022.153636_bb0125
  article-title: Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.05.027
– volume: 12
  start-page: 213
  issue: 2
  year: 2013
  ident: 10.1016/j.scitotenv.2022.153636_bb0235
  article-title: Environmental and economic impacts of transit-oriented corridors in Korea
  publication-title: J. Asian Archit. Build.
  doi: 10.3130/jaabe.12.213
– volume: 73
  start-page: 157
  issue: 1
  year: 2010
  ident: 10.1016/j.scitotenv.2022.153636_bb0075
  article-title: Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog
  publication-title: FEMS Microbiol. Ecol.
– volume: 523
  start-page: 602
  issue: 7562
  year: 2015
  ident: 10.1016/j.scitotenv.2022.153636_bb0245
  article-title: Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice
  publication-title: Nature
  doi: 10.1038/nature14673
– volume: 17
  start-page: 185
  issue: 2
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153636_bb0180
  article-title: Influence of pH on the balance between methanogenesis and iron reduction
  publication-title: Geobiology
  doi: 10.1111/gbi.12320
– volume: 72
  start-page: 1013
  issue: 7
  year: 2008
  ident: 10.1016/j.scitotenv.2022.153636_bb0135
  article-title: Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.04.016
– volume: 10
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153636_bb0110
  article-title: Toward a genome scale sequence specific dynamic model of cell-free protein synthesis in Escherichia coli
  publication-title: Metab. Eng. Commun.
– volume: 773
  year: 2021
  ident: 10.1016/j.scitotenv.2022.153636_bb0285
  article-title: The process of methanogenesis in paddy fields under different elevated CO2 concentrations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145629
– volume: 58
  start-page: 611
  issue: 1
  year: 2004
  ident: 10.1016/j.scitotenv.2022.153636_bb0270
  article-title: Bacterial iron sources: from siderophores to hemophores
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.58.030603.123811
– volume: 19
  start-page: 703
  issue: 6
  year: 1987
  ident: 10.1016/j.scitotenv.2022.153636_bb0265
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(87)90052-6
– volume: 788
  year: 2021
  ident: 10.1016/j.scitotenv.2022.153636_bb0175
  article-title: The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147773
– volume: 118
  start-page: 691
  issue: 4
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153636_bb0065
  article-title: Lactate metabolism: historical context, prior misinterpretations, and current understanding
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-017-3795-6
– volume: 292–293
  start-page: 35
  year: 2012
  ident: 10.1016/j.scitotenv.2022.153636_bb0315
  article-title: Microbial reduction of Fe(III) in illite–smectite minerals by methanogen Methanosarcina mazei
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2011.11.003
– volume: 162
  year: 2021
  ident: 10.1016/j.scitotenv.2022.153636_bb0080
  article-title: Dynamics of methane emission and archaeal microbial community in paddy soil amended with different types of biochar
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2021.103892
– volume: 101
  start-page: 1631
  issue: 4
  year: 2017
  ident: 10.1016/j.scitotenv.2022.153636_bb0260
  article-title: McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus methanoperedens nitroreducens’
  publication-title: Appl. Microbiol. Biot.
  doi: 10.1007/s00253-016-8065-8
– volume: 64
  start-page: 476
  issue: 4
  year: 2013
  ident: 10.1016/j.scitotenv.2022.153636_bb0100
  article-title: Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12042
– volume: 7
  start-page: 412
  issue: 10
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153636_bb0040
  article-title: Insights into biodegradation related metabolism in an abnormally low dissolved inorganic carbon (DIC) petroleum-contaminated aquifer by metagenomics analysis
  publication-title: Microorganisms
  doi: 10.3390/microorganisms7100412
– volume: 53
  start-page: 316
  issue: 3
  year: 2015
  ident: 10.1016/j.scitotenv.2022.153636_bb0205
  article-title: Effects of soluble organic carbon addition on CH4 and CO2 emissions from paddy soils regulated by iron reduction processes
  publication-title: Soil Res.
  doi: 10.1071/SR14287
– volume: 7
  start-page: 1184
  year: 2016
  ident: 10.1016/j.scitotenv.2022.153636_bb0240
  article-title: Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01184
– volume: 41
  start-page: D590
  issue: D1
  year: 2012
  ident: 10.1016/j.scitotenv.2022.153636_bb0215
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1219
– volume: 12
  start-page: R60
  issue: 6
  year: 2011
  ident: 10.1016/j.scitotenv.2022.153636_bb0230
  article-title: Metagenomic biomarker discovery and explanation
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-6-r60
– volume: 39
  start-page: 1084
  issue: 10
  year: 1967
  ident: 10.1016/j.scitotenv.2022.153636_bb0055
  article-title: Mechanistic investigation of molybdenum blue method for determination of phosphate
  publication-title: Anal. Chem.
  doi: 10.1021/ac60254a027
– volume: 15
  start-page: 679
  year: 2014
  ident: 10.1016/j.scitotenv.2022.153636_bb0020
  article-title: Comparative genomics highlights the unique biology of methanomassiliicoccales, a thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-679
– volume: 4
  start-page: 381
  issue: 3
  year: 2008
  ident: 10.1016/j.scitotenv.2022.153636_bb0195
  article-title: Differences in glucose sensing and signaling for pexophagy between the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris
  publication-title: Autophagy
  doi: 10.4161/auto.5634
– volume: 1125
  start-page: 171
  issue: 1
  year: 2008
  ident: 10.1016/j.scitotenv.2022.153636_bb0145
  article-title: Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1419.019
– volume: 106
  start-page: 359
  year: 2015
  ident: 10.1016/j.scitotenv.2022.153636_bb0220
  article-title: Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2015.06.003
– volume: 19
  start-page: 65
  issue: 1
  year: 1995
  ident: 10.1016/j.scitotenv.2022.153636_bb0005
  article-title: Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil
  publication-title: Biol. Fert. Soils
  doi: 10.1007/BF00336349
– start-page: 219
  year: 2004
  ident: 10.1016/j.scitotenv.2022.153636_bb0165
  article-title: Dissimilatory Fe(III) and Mn(IV) reduction
  doi: 10.1016/S0065-2911(04)49005-5
– volume: 138
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153636_bb0305
  article-title: Potential interactions between syntrophic bacteria and methanogens via type IV pili and quorum-sensing systems
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105650
– volume: 256
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153636_bb0120
  article-title: Wastewater treatment using the “sulfate reduction, denitrification anammox and partial nitrification (SRDAPN)” process
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127092
– year: 2014
  ident: 10.1016/j.scitotenv.2022.153636_bb0200
  article-title: Climate change 2014: synthesis report
– volume: 11
  start-page: 5441
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153636_bb0300
  article-title: Natural variations of SLG1 confer high-temperature tolerance in indica rice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19320-9
– volume: 24
  start-page: 21
  issue: 1
  year: 1992
  ident: 10.1016/j.scitotenv.2022.153636_bb0010
  article-title: Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the everglades
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(92)90237-R
– volume: 108
  start-page: 4516
  issue: Suppl. 1
  year: 2011
  ident: 10.1016/j.scitotenv.2022.153636_bb0045
  article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1000080107
– volume: 105
  start-page: 81
  year: 2017
  ident: 10.1016/j.scitotenv.2022.153636_bb0105
  article-title: Structure and function of methanogenic microbial communities in soils from flooded rice and upland soybean fields from Sanjiang Plain, NE China
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.11.010
– volume: 12
  start-page: 107
  issue: 2
  year: 1993
  ident: 10.1016/j.scitotenv.2022.153636_bb0070
  article-title: Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1993.tb00022.x
– volume: 24
  start-page: 1239
  issue: 3
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153636_bb0090
  article-title: Impacts of climate and land use on N2O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13944
– volume: 31
  start-page: 1313
  issue: 9
  year: 1999
  ident: 10.1016/j.scitotenv.2022.153636_bb0025
  article-title: Methane pool and flux dynamics in a rice field following straw incorporation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00050-4
– volume: 24
  start-page: 1089
  issue: 11
  year: 1992
  ident: 10.1016/j.scitotenv.2022.153636_bb0030
  article-title: Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(92)90058-6
– volume: 10
  start-page: 996
  issue: 10
  year: 2013
  ident: 10.1016/j.scitotenv.2022.153636_bb0060
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2604
– volume: 293
  start-page: 37
  year: 2015
  ident: 10.1016/j.scitotenv.2022.153636_bb0320
  article-title: Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.03.039
– volume: 11
  start-page: 2255
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153636_bb0050
  article-title: Iron-mediated organic matter decomposition in humid soils can counteract protection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16071-5
– volume: 746
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153636_bb0190
  article-title: Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141351
– volume: 23
  start-page: 2272
  issue: 8
  year: 2008
  ident: 10.1016/j.scitotenv.2022.153636_bb0085
  article-title: Anaerobic decomposition of tropical soils and plant material: implication for the CO2 and CH4 budget of the petit saut reservoir
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.04.001
– volume: 353
  start-page: 236
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153636_bb0095
  article-title: Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.04.023
– volume: 9
  start-page: 2566
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153636_bb0275
  article-title: Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy soils
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02566
– volume: 216
  start-page: 87
  year: 2016
  ident: 10.1016/j.scitotenv.2022.153636_bb0160
  article-title: Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.048
– volume: 7
  start-page: 408
  issue: 1
  year: 2014
  ident: 10.1016/j.scitotenv.2022.153636_bb0225
  article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to methanosaeta for the reduction of carbon dioxide to methane
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42189A
– volume: 9
  issue: 4
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153636_bb0280
  article-title: Inclusion of microbial inoculants with straw mulch enhances grain yields from rice fields in Central China
  publication-title: Food Energy Secur.
  doi: 10.1002/fes3.230
– volume: 77
  start-page: 3749
  issue: 11
  year: 2011
  ident: 10.1016/j.scitotenv.2022.153636_bb0015
  article-title: Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.02818-10
– volume: 118
  start-page: 2593
  issue: 5
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153636_bb0185
  article-title: Oxygen activation by Cu LPMOs in recalcitrant carbohydrate polysaccharide conversion to monomer sugars
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00421
– volume: 99
  start-page: 8231
  issue: 17
  year: 2008
  ident: 10.1016/j.scitotenv.2022.153636_bb0255
  article-title: Evaluation of UASB reactor performance during start-up operation using synthetic mixed-acid waste
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2008.03.011
– volume: 286
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153636_bb0115
  article-title: Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite: insights into the prediction of microbial metabolic function and enzymatic activity
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121397
– volume: 24
  start-page: 4041
  issue: 23
  year: 2005
  ident: 10.1016/j.scitotenv.2022.153636_bb0130
  article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600864
– volume: 116
  start-page: 99
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153636_bb0310
  article-title: Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.10.004
– volume: 133
  start-page: 333
  issue: 3
  year: 2017
  ident: 10.1016/j.scitotenv.2022.153636_bb0210
  article-title: Association with pedogenic iron and aluminum: effects on soil organic carbon storage and stability in four temperate forest soils
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-017-0337-6
– volume: 330
  start-page: 1413
  issue: 6009
  year: 2010
  ident: 10.1016/j.scitotenv.2022.153636_bb0250
  article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
  publication-title: Science
  doi: 10.1126/science.1196526
– volume: 77
  start-page: 3877
  issue: 11
  year: 2011
  ident: 10.1016/j.scitotenv.2022.153636_bb0170
  article-title: pmoA primers for detection of anaerobic methanotrophs
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.02960-10
– volume: 49
  start-page: 2123
  issue: 4
  year: 2015
  ident: 10.1016/j.scitotenv.2022.153636_bb0155
  article-title: Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe(III) addition
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es504200j
– volume: 84
  start-page: e1118
  issue: 16
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153636_bb0035
  article-title: Proteome response of a metabolically flexible anoxygenic phototroph to Fe(II) oxidation
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.01166-18
– volume: 4
  start-page: 752
  issue: 10
  year: 2006
  ident: 10.1016/j.scitotenv.2022.153636_bb0290
  article-title: Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1490
– volume: 101
  start-page: 8127
  issue: 21
  year: 2010
  ident: 10.1016/j.scitotenv.2022.153636_bb0150
  article-title: Enhanced chromate reduction by resting Escherichia coli cells in the presence of quinone redox mediators
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.050
– volume: 302
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153636_bb0295
  article-title: Comparative facilitation of activated carbon and goethite on methanogenesis from volatile fatty acids
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2020.122801
– volume: 5
  start-page: e819
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153636_bb0140
  article-title: Comparative analysis of root microbiomes of rice cultivars with high and low methane emissions reveals differences in abundance of methanogenic archaea and putative upstream fermenters
  publication-title: mSystems
  doi: 10.1128/mSystems.00897-19
SSID ssj0000781
Score 2.549718
Snippet Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153636
SubjectTerms acetates
carbon
climate change
environment
genes
glucose
High-throughput sequencing
Iron reduction
methane
methane production
Methanobacteriales
Methanogen
methanogens
Methanosarcinales
Organic matter
paddies
paddy soils
rice
Rice paddy
starch
Title Effects of different carbon sources on methane production and the methanogenic communities in iron rich flooded paddy soil
URI https://dx.doi.org/10.1016/j.scitotenv.2022.153636
https://www.ncbi.nlm.nih.gov/pubmed/35124061
https://www.proquest.com/docview/2626225721
https://www.proquest.com/docview/2636849777
Volume 823
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFH-IpVAoUtfabv0gQq-ja5JJJt5ElG2XepBKvYVMMqFbZGZxR8Ee-rf3vc3MiqD10NMwM0l45H3kl-R9AHw2QeW5qnSmCuMy6VGMjeIxC4UpZRxxLys6Gvh2rsaX8utVfrUCJ30sDLlVdrY_2fSFte6-HHSzeTCbTinGVxZGGc3puI0XFPArpSYp3__z4OZByWzSLTMqNrZ-5OOF47YNYtM73Chyvo_arxa5mp9coZ5DoIuV6OwdrHUQkh0nKtdhpaoH8DoVlbwfwObpQ-waNuuUdz6At-mIjqXIow34nTIXz1kTWV8npWXe3ZRNzdKhPv6rGRWZdnXFZik5LDKSuTowRI7drwaFEMf1KdaEMrSyac2IBoZW9ieL5BxfBTZDK3ePI0-v38Pl2en3k3HWlWLIPCp5m0UePGqqCoU0QQucR0QuulBqJOOhkzEI7nXJudO5Ec5VTgbtuOHKC28cj2ITVuumrj4CC1yr8tAhrvIGsVqJw5SFiHnpIq6MSgxB9dNvfZennMplXNveIe2XXfLNEt9s4tsQRsuOs5Sq4-UuRz1_7SOps7igvNx5r5cIizpJFy3IjOZ2bjnuEtFO4ub6X22EwsnUWg_hQxKnJdUCURgBrU__Q94WvKG35Na2DavtzW21gwCqLXcXGrILr46_TMbn9Jxc_Jj8BcvgHig
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD7YlVKhlHZbdWsvKfR16ppkcvFNRFmr7pOCbyGTTOgWmVncUbC_viebzIrQ1oe-TnIOIeeSL5lzAfiqvShLUctCKG0L7lCNtaCh8EpXPIyp43V8Gjifiskl_35VXq3BYZ8LE8Mqs-9PPn3prfOX3bybu_PZLOb4cqWFljQ-t1GlnsF6rE5VDmD94OR0Mn1wyFKlxnkcbRsJHoV5IeuuRXh6h3dFSr-hAxDLcs1_PKT-BkKXh9Hxa3iVUSQ5SAt9A2t1M4Tnqa_k_RA2jx7S13Batt_FEF6mVzqSko_ewq9UvHhB2kD6VikdcfamahuS3vVxrCGxz7RtajJP9WFRlsQ2niB4zEMt6iHydSndJBZpJbOGxDUQdLQ_SIjx8bUnc3R098h5dv0OLo-PLg4nRe7GUDi0864I1Ds0VuEV114y3EcEL1IJMeZhz_LgGXWyotTKUjNra8u9tFRT4ZjTlga2CYOmbeptIJ5KUe1ZhFZOI1yrkE2lWCgrG_BwFGwEot9-43Kp8tgx49r0MWk_zUpuJsrNJLmNYLwinKdqHU-T7PfyNY8Uz-CZ8jTxl14jDJpl_NeCwmhvF4biRRFdJd6v_zWHCdxMKeUItpI6rVbNEIhFrPX-f5b3GV5MLs7PzNnJ9HQHNuJIinL7AIPu5rb-iHiqqz5le_kNimAfNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+different+carbon+sources+on+methane+production+and+the+methanogenic+communities+in+iron+rich+flooded+paddy+soil&rft.jtitle=The+Science+of+the+total+environment&rft.au=Luo%2C+Dan&rft.au=Li%2C+Yaying&rft.au=Yao%2C+Huaiying&rft.au=Chapman%2C+Stephen+J.&rft.date=2022-06-01&rft.issn=0048-9697&rft.volume=823&rft.spage=153636&rft_id=info:doi/10.1016%2Fj.scitotenv.2022.153636&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2022_153636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon