Effects of different carbon sources on methane production and the methanogenic communities in iron rich flooded paddy soil
Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe3+, the most abundant oxide in paddy soil, mediates the methanogenesis of diffe...
Saved in:
Published in | The Science of the total environment Vol. 823; p. 153636 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe3+, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH4 production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them.
[Display omitted]
•The methanogenic capacity of glucose and starch were stronger than acetate.•Methanosarcinales and Methanobacteriales were mainly responsible for CH4 production.•The type and abundance of methanogens changed with the incubation time.•mcrA gene copies positively correlated with the reduction of Fe(III). |
---|---|
AbstractList | Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe3+, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH4 production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them.Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe3+, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH4 production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them. Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe³⁺, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH₄ production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them. Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe , the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them. Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice cultivation has a severe impact on climate change. However, how Fe3+, the most abundant oxide in paddy soil, mediates the methanogenesis of different carbon sources is unknown. In this study, we investigated the effect of four carbon sources with different chain lengths (acetate, glucose, nonanoate, and starch) on CH4 production and associated methanogens in iron-rich paddy soil over 90 days of anaerobic incubation. We found that glucose and starch were the more preferential substrates for liberating methane compared to acetate, and the rate was also faster. Nonanoate was unable to support methane production. Methanosarcinales and Methanobacteriales were the most predominant methanogenic archaea as shown by 16S rRNA gene sequencing, though their abundance changed over time. Additionally, a significantly higher content of iron-reducing bacteria was observed in the glucose and starch treatments, and it was significantly positively correlated with the copy number of the methanogenic mcrA gene. Together, we confirmed the methanogenic capacity of different carbon sources and their related microorganisms. We also showed that iron oxides play a central role in regulating methane emissions from paddy soils and need more attention to be paid to them. [Display omitted] •The methanogenic capacity of glucose and starch were stronger than acetate.•Methanosarcinales and Methanobacteriales were mainly responsible for CH4 production.•The type and abundance of methanogens changed with the incubation time.•mcrA gene copies positively correlated with the reduction of Fe(III). |
ArticleNumber | 153636 |
Author | Luo, Dan Li, Yaying Yao, Huaiying Chapman, Stephen J. |
Author_xml | – sequence: 1 givenname: Dan surname: Luo fullname: Luo, Dan organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China – sequence: 2 givenname: Yaying surname: Li fullname: Li, Yaying organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China – sequence: 3 givenname: Huaiying surname: Yao fullname: Yao, Huaiying email: hyyao@iue.ac.cn organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China – sequence: 4 givenname: Stephen J. surname: Chapman fullname: Chapman, Stephen J. organization: The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35124061$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUbFuHCEURJGt-OzkFxLKNHsBdhd2ixSWZTuRLKVxasTBI8dpFy7AWnK-Pu905xRpHCh44s0MvJlLchZTBEI-crbmjMvPu3WxoaYK8WktmBBr3reylW_Iig9qbDgT8oysGOuGZpSjuiCXpewYLjXwt-Si7bnomOQr8vvWe7C10OSpC1hniJVakzcp0pKWbAF7kc5QtyYC3efkFlsDXpnoaN3CqZV-QgyW2jTPSww1IC1EGjICc7Bb6qeUHDi6N849o3KY3pFzb6YC70_nFflxd_t487V5-H7_7eb6obEdY7XxwlnZDtIN3ehUi9PIflCDlKzz3HTetcKqjRBG9WNrDJjOKSNGIW1rRyN8e0U-HXXx778WKFXPoViYJpwnLUULNA61lVL_AcUteiU4Qj-coMtmBqf3OcwmP-sXaxHw5QiwOZWSwWtMzBycq9mESXOmD1Hqnf4bpT5EqY9RIl_9w3954nXm9ZEJ6OpTgHzAQbTgQsastUvhVY0_bjW_Sg |
CitedBy_id | crossref_primary_10_1016_j_resconrec_2024_107773 crossref_primary_10_1128_aem_02238_24 crossref_primary_10_1016_j_apsoil_2022_104650 crossref_primary_10_1016_j_jclepro_2023_140404 crossref_primary_10_1016_j_ecoenv_2024_116716 crossref_primary_10_1016_j_still_2024_106026 crossref_primary_10_1016_j_apsoil_2025_105944 crossref_primary_10_1016_j_scitotenv_2023_166904 crossref_primary_10_2965_jwet_24_044 crossref_primary_10_3390_agronomy14091972 crossref_primary_10_1016_j_eti_2025_104099 crossref_primary_10_1016_j_fcr_2024_109562 crossref_primary_10_1016_j_jclepro_2023_139968 crossref_primary_10_1016_j_jenvman_2024_123883 crossref_primary_10_1007_s11356_023_29922_7 crossref_primary_10_1016_j_xplc_2024_101224 crossref_primary_10_3390_fermentation9060513 crossref_primary_10_3390_d14090735 crossref_primary_10_1016_j_geoderma_2023_116462 crossref_primary_10_1016_j_tplants_2024_06_006 crossref_primary_10_3390_agronomy13061636 crossref_primary_10_3390_microorganisms12040702 crossref_primary_10_1016_j_apsoil_2025_106005 crossref_primary_10_1016_j_still_2024_106032 crossref_primary_10_1016_j_biortech_2022_128277 crossref_primary_10_1016_j_scitotenv_2024_170660 crossref_primary_10_1016_j_scitotenv_2024_170980 crossref_primary_10_1029_2023JG007443 crossref_primary_10_3390_microorganisms12101940 crossref_primary_10_1017_S0021859623000631 crossref_primary_10_3390_agriculture15050520 crossref_primary_10_1016_j_ijhydene_2023_06_075 crossref_primary_10_1016_j_jenvman_2025_124044 crossref_primary_10_3390_agronomy14071535 crossref_primary_10_1016_j_cej_2025_160478 crossref_primary_10_3390_agronomy14091967 crossref_primary_10_1016_j_chemosphere_2022_136262 crossref_primary_10_1016_j_jgsce_2024_205391 |
Cites_doi | 10.1016/j.chemosphere.2011.05.027 10.3130/jaabe.12.213 10.1038/nature14673 10.1111/gbi.12320 10.1016/j.chemosphere.2008.04.016 10.1016/j.scitotenv.2021.145629 10.1146/annurev.micro.58.030603.123811 10.1016/0038-0717(87)90052-6 10.1016/j.scitotenv.2021.147773 10.1007/s00421-017-3795-6 10.1016/j.chemgeo.2011.11.003 10.1016/j.apsoil.2021.103892 10.1007/s00253-016-8065-8 10.1111/ejss.12042 10.3390/microorganisms7100412 10.1071/SR14287 10.3389/fmicb.2016.01184 10.1093/nar/gks1219 10.1186/gb-2011-12-6-r60 10.1021/ac60254a027 10.1186/1471-2164-15-679 10.4161/auto.5634 10.1196/annals.1419.019 10.1016/j.bioelechem.2015.06.003 10.1007/BF00336349 10.1016/S0065-2911(04)49005-5 10.1016/j.envint.2020.105650 10.1016/j.chemosphere.2020.127092 10.1038/s41467-020-19320-9 10.1016/0038-0717(92)90237-R 10.1073/pnas.1000080107 10.1016/j.soilbio.2016.11.010 10.1111/j.1574-6941.1993.tb00022.x 10.1111/gcb.13944 10.1016/S0038-0717(99)00050-4 10.1016/0038-0717(92)90058-6 10.1038/nmeth.2604 10.1016/j.jhazmat.2015.03.039 10.1038/s41467-020-16071-5 10.1016/j.scitotenv.2020.141351 10.1016/j.apgeochem.2008.04.001 10.1016/j.jhazmat.2018.04.023 10.3389/fmicb.2018.02566 10.1016/j.biortech.2016.05.048 10.1039/C3EE42189A 10.1002/fes3.230 10.1128/AEM.02818-10 10.1021/acs.chemrev.7b00421 10.1016/j.biortech.2008.03.011 10.1016/j.biortech.2019.121397 10.1038/sj.emboj.7600864 10.1016/j.soilbio.2017.10.004 10.1007/s10533-017-0337-6 10.1126/science.1196526 10.1128/AEM.02960-10 10.1021/es504200j 10.1128/AEM.01166-18 10.1038/nrmicro1490 10.1016/j.biortech.2010.06.050 10.1016/j.biortech.2020.122801 10.1128/mSystems.00897-19 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2022.153636 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 35124061 10_1016_j_scitotenv_2022_153636 S0048969722007288 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c400t-f2dc6386d849d73697658786604f1a4fd32c7b22a7593aaea4d7a2926c3c9a2f3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 02:28:09 EDT 2025 Thu Jul 10 18:13:52 EDT 2025 Wed Feb 19 02:27:04 EST 2025 Tue Jul 01 02:53:48 EDT 2025 Thu Apr 24 23:05:06 EDT 2025 Fri Feb 23 02:37:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Organic matter Iron reduction High-throughput sequencing Methanogen Rice paddy |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-f2dc6386d849d73697658786604f1a4fd32c7b22a7593aaea4d7a2926c3c9a2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35124061 |
PQID | 2626225721 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636849777 proquest_miscellaneous_2626225721 pubmed_primary_35124061 crossref_citationtrail_10_1016_j_scitotenv_2022_153636 crossref_primary_10_1016_j_scitotenv_2022_153636 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2022_153636 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wandersman, Delepelaire (bb0270) 2004; 58 Borrel, Parisot, Harris, Peyretaillade, Gaci, Tottey, Bardot, Raymann, Gribaldo, Peyret, O'Toole, Brugère (bb0020) 2014; 15 Nazarko, Futej, Thevelein, Sibirny (bb0195) 2008; 4 Peng, Shaaban, Hu, Mo, Wu, Ullah (bb0205) 2015; 53 Liechty, Santos-Medellín, Edwards, Nguyen, Mikhail, Eason, Phillips, Sundaresan (bb0140) 2020; 5 Seo, Kim, Kim (bb0235) 2013; 12 Zhang, Dong, Liu, Fischer, Wang, Huang (bb0315) 2012; 292–293 Pachauri, Allen, Barros, Broome, Cramer, Christ, Church, Clarke, Dahe, Dasgupta (bb0200) 2014 Rotaru, Shrestha, Liu, Shrestha, Shrestha, Embree, Zengler, Wardman, Nevin, Lovley (bb0225) 2014; 7 Bryce, Franz-Wachtel, Nalpas, Miot, Benzerara, Byrne, Kleindienst, Macek, Kappler, Müller (bb0035) 2018; 84 Liu, Yang, Wang, Jin, Zhou, Lv (bb0150) 2010; 101 Wang, Bai, Di, Mo, Han, Zhang, He (bb0275) 2018; 9 Wang, Hu, Shen, Liu, Islam, Wu, Dang, Chen (bb0285) 2021; 773 Beckmann, Lueders, Krüger, von Netzer, Engelen, Cypionka (bb0015) 2011; 77 Hanke, Cerli, Muhr, Borken, Kalbitz (bb0100) 2013; 64 Marquart, Haller, Paper, Flynn, Boyanov, Shodunke, Gura, Jin, Kirk (bb0180) 2019; 17 Summers, Fogarty, Leang, Franks, Malvankar, Lovley (bb0250) 2010; 330 Chen, Hall, Coward, Thompson (bb0050) 2020; 11 Fu, Lu, Tang, Hu, Xie, Zhong, Fan, Liu, Zhang (bb0080) 2021; 162 Luo, Meng, Zheng, Li, Yao, Chapman (bb0175) 2021; 788 Lanquar, Lelièvre, Bolte, Hamès, Alcon, Neumann, Vansuyt, Curie, Schröder, Krämer, Barbier-Brygoo, Thomine (bb0130) 2005; 24 Wang, Qin, Liu, Guo, Li, Zhai (bb0280) 2020; 9 Yin, Gu, Hermanowicz, Hu, Wu (bb0305) 2020; 138 Shen, Shi, Ni, Deng, Van Nostrand, He, Zhou, Chu (bb0240) 2016; 7 Bachoon, Jones (bb0010) 1992; 24 Vance, Brookes, Jenkinson (bb0265) 1987; 19 Lovley, Holmes, Nevin (bb0165) 2004 Bossio, Horwath, Mutters, van Kessel (bb0025) 1999; 31 Freitag, Toet, Ineson, Prosser (bb0075) 2010; 73 Luesken, Zhu, van Alen, Butler, Diaz, Song, Op Den Camp, Jetten, Ettwig (bb0170) 2011; 77 Bridgham, Richardson (bb0030) 1992; 24 Porras, Hicks Pries, McFarlane, Hanson, Torn (bb0210) 2017; 133 Segata, Izard, Waldron, Gevers, Miropolsky, Garrett, Huttenhower (bb0230) 2011; 12 Gwon, Khan, Alam, Das, Kim (bb0095) 2018; 353 Su, Hu, Yan, Jin, Chen, Guan, Wang, Zhong, Jansson, Wang, Schnürer, Sun (bb0245) 2015; 523 Vadlani, Ramachandran (bb0255) 2008; 99 Liu, Zhang, Ni (bb0155) 2015; 49 Vaksmaa, Jetten, Ettwig, Lüke (bb0260) 2017; 101 Weber, Achenbach, Coates (bb0290) 2006; 4 Liu, Li, Zhang, Si, Chen (bb0160) 2016; 216 Rago, Ruiz, Baeza, Guisasola, Cortés (bb0220) 2015; 106 Zhuang, Tang, Wang, Hu, Zhou (bb0320) 2015; 293 Kosugi, Matsuura, Liang, Yamamoto-Ikemoto (bb0120) 2020; 256 Fetzer, Bak, Conrad (bb0070) 1993; 12 Hernández, Conrad, Klose, Ma, Lu (bb0105) 2017; 105 Caporaso, Lauber, Walters, Berg-Lyons, Lozupone, Turnbaugh, Fierer, Knight (bb0045) 2011; 108 Nan, Wang, Wang, Yi, Wu (bb0190) 2020; 746 Ferguson, Rogatzki, Goodwin, Kane, Rightmire, Gladden (bb0065) 2018; 118 Xu, Zhang, Ou, Wang, Wang, Chu, Yao (bb0300) 2020; 11 Gütlein, Gerschlauer, Kikoti, Kiese (bb0090) 2018; 24 Edgar (bb0060) 2013; 10 Kwon, O Loughlin, Antonopoulos, Finneran (bb0125) 2011; 84 Achtnich, Bak, Conrad (bb0005) 1995; 19 Liu, Whitman (bb0145) 2008; 1125 Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (bb0215) 2012; 41 Lazcano, Gómez-Brandón, Domínguez (bb0135) 2008; 72 Jiang, Wang, Liu, Yang, Ren, Miao, Pan, Lv, Yan, Ding, Li (bb0115) 2019; 286 Horvath, Vilkhovoy, Wayman, Calhoun, Swartz, Varner (bb0110) 2019; 10 Guérin, Abril, de Junet, Bonnet (bb0085) 2008; 23 Cai, Ning, Zhang, Zhang, Guo, Niu, Shi (bb0040) 2019; 7 Xu, Zhang, Zuo, Qiao, He (bb0295) 2020; 302 Yuan, Hernández, Dumont, Rui, Fernández Scavino, Conrad (bb0310) 2018; 116 Meier, Jones, Kaper, Hansson, Koetsier, Karkehabadi, Solomon, Sandgren, Kelemen (bb0185) 2018; 118 Crouch, Malmstadt (bb0055) 1967; 39 Fetzer (10.1016/j.scitotenv.2022.153636_bb0070) 1993; 12 Xu (10.1016/j.scitotenv.2022.153636_bb0300) 2020; 11 Beckmann (10.1016/j.scitotenv.2022.153636_bb0015) 2011; 77 Wang (10.1016/j.scitotenv.2022.153636_bb0280) 2020; 9 Yin (10.1016/j.scitotenv.2022.153636_bb0305) 2020; 138 Guérin (10.1016/j.scitotenv.2022.153636_bb0085) 2008; 23 Bossio (10.1016/j.scitotenv.2022.153636_bb0025) 1999; 31 Hernández (10.1016/j.scitotenv.2022.153636_bb0105) 2017; 105 Vadlani (10.1016/j.scitotenv.2022.153636_bb0255) 2008; 99 Edgar (10.1016/j.scitotenv.2022.153636_bb0060) 2013; 10 Peng (10.1016/j.scitotenv.2022.153636_bb0205) 2015; 53 Quast (10.1016/j.scitotenv.2022.153636_bb0215) 2012; 41 Meier (10.1016/j.scitotenv.2022.153636_bb0185) 2018; 118 Rago (10.1016/j.scitotenv.2022.153636_bb0220) 2015; 106 Xu (10.1016/j.scitotenv.2022.153636_bb0295) 2020; 302 Gwon (10.1016/j.scitotenv.2022.153636_bb0095) 2018; 353 Liechty (10.1016/j.scitotenv.2022.153636_bb0140) 2020; 5 Rotaru (10.1016/j.scitotenv.2022.153636_bb0225) 2014; 7 Kwon (10.1016/j.scitotenv.2022.153636_bb0125) 2011; 84 Bryce (10.1016/j.scitotenv.2022.153636_bb0035) 2018; 84 Seo (10.1016/j.scitotenv.2022.153636_bb0235) 2013; 12 Kosugi (10.1016/j.scitotenv.2022.153636_bb0120) 2020; 256 Achtnich (10.1016/j.scitotenv.2022.153636_bb0005) 1995; 19 Gütlein (10.1016/j.scitotenv.2022.153636_bb0090) 2018; 24 Luesken (10.1016/j.scitotenv.2022.153636_bb0170) 2011; 77 Jiang (10.1016/j.scitotenv.2022.153636_bb0115) 2019; 286 Vance (10.1016/j.scitotenv.2022.153636_bb0265) 1987; 19 Nan (10.1016/j.scitotenv.2022.153636_bb0190) 2020; 746 Wang (10.1016/j.scitotenv.2022.153636_bb0275) 2018; 9 Lazcano (10.1016/j.scitotenv.2022.153636_bb0135) 2008; 72 Wang (10.1016/j.scitotenv.2022.153636_bb0285) 2021; 773 Nazarko (10.1016/j.scitotenv.2022.153636_bb0195) 2008; 4 Luo (10.1016/j.scitotenv.2022.153636_bb0175) 2021; 788 Ferguson (10.1016/j.scitotenv.2022.153636_bb0065) 2018; 118 Liu (10.1016/j.scitotenv.2022.153636_bb0160) 2016; 216 Horvath (10.1016/j.scitotenv.2022.153636_bb0110) 2019; 10 Yuan (10.1016/j.scitotenv.2022.153636_bb0310) 2018; 116 Freitag (10.1016/j.scitotenv.2022.153636_bb0075) 2010; 73 Hanke (10.1016/j.scitotenv.2022.153636_bb0100) 2013; 64 Porras (10.1016/j.scitotenv.2022.153636_bb0210) 2017; 133 Bridgham (10.1016/j.scitotenv.2022.153636_bb0030) 1992; 24 Pachauri (10.1016/j.scitotenv.2022.153636_bb0200) 2014 Crouch (10.1016/j.scitotenv.2022.153636_bb0055) 1967; 39 Summers (10.1016/j.scitotenv.2022.153636_bb0250) 2010; 330 Borrel (10.1016/j.scitotenv.2022.153636_bb0020) 2014; 15 Lanquar (10.1016/j.scitotenv.2022.153636_bb0130) 2005; 24 Su (10.1016/j.scitotenv.2022.153636_bb0245) 2015; 523 Segata (10.1016/j.scitotenv.2022.153636_bb0230) 2011; 12 Shen (10.1016/j.scitotenv.2022.153636_bb0240) 2016; 7 Liu (10.1016/j.scitotenv.2022.153636_bb0155) 2015; 49 Chen (10.1016/j.scitotenv.2022.153636_bb0050) 2020; 11 Liu (10.1016/j.scitotenv.2022.153636_bb0150) 2010; 101 Fu (10.1016/j.scitotenv.2022.153636_bb0080) 2021; 162 Weber (10.1016/j.scitotenv.2022.153636_bb0290) 2006; 4 Bachoon (10.1016/j.scitotenv.2022.153636_bb0010) 1992; 24 Cai (10.1016/j.scitotenv.2022.153636_bb0040) 2019; 7 Lovley (10.1016/j.scitotenv.2022.153636_bb0165) 2004 Zhang (10.1016/j.scitotenv.2022.153636_bb0315) 2012; 292–293 Wandersman (10.1016/j.scitotenv.2022.153636_bb0270) 2004; 58 Caporaso (10.1016/j.scitotenv.2022.153636_bb0045) 2011; 108 Vaksmaa (10.1016/j.scitotenv.2022.153636_bb0260) 2017; 101 Zhuang (10.1016/j.scitotenv.2022.153636_bb0320) 2015; 293 Liu (10.1016/j.scitotenv.2022.153636_bb0145) 2008; 1125 Marquart (10.1016/j.scitotenv.2022.153636_bb0180) 2019; 17 |
References_xml | – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: bb0265 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. – volume: 292–293 start-page: 35 year: 2012 end-page: 44 ident: bb0315 article-title: Microbial reduction of Fe(III) in illite–smectite minerals by methanogen publication-title: Chem. Geol. – volume: 11 start-page: 5441 year: 2020 ident: bb0300 article-title: Natural variations of SLG1 confer high-temperature tolerance in indica rice publication-title: Nat. Commun. – volume: 353 start-page: 236 year: 2018 end-page: 243 ident: bb0095 article-title: Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice ( publication-title: J. Hazard. Mater. – volume: 216 start-page: 87 year: 2016 end-page: 94 ident: bb0160 article-title: Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge publication-title: Bioresour. Technol. – volume: 77 start-page: 3749 year: 2011 ident: bb0015 article-title: Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines publication-title: Appl. Environ. Microb. – volume: 105 start-page: 81 year: 2017 end-page: 91 ident: bb0105 article-title: Structure and function of methanogenic microbial communities in soils from flooded rice and upland soybean fields from Sanjiang Plain, NE China publication-title: Soil Biol. Biochem. – volume: 24 start-page: 4041 year: 2005 end-page: 4051 ident: bb0130 article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron publication-title: EMBO J. – volume: 77 start-page: 3877 year: 2011 end-page: 3880 ident: bb0170 article-title: pmoA primers for detection of anaerobic methanotrophs publication-title: Appl. Environ. Microb. – volume: 23 start-page: 2272 year: 2008 end-page: 2283 ident: bb0085 article-title: Anaerobic decomposition of tropical soils and plant material: implication for the CO publication-title: Appl. Geochem. – volume: 523 start-page: 602 year: 2015 end-page: 606 ident: bb0245 article-title: Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice publication-title: Nature – volume: 256 year: 2020 ident: bb0120 article-title: Wastewater treatment using the “sulfate reduction, denitrification anammox and partial nitrification (SRDAPN)” process publication-title: Chemosphere – volume: 302 year: 2020 ident: bb0295 article-title: Comparative facilitation of activated carbon and goethite on methanogenesis from volatile fatty acids publication-title: Bioresource Technol. – volume: 330 start-page: 1413 year: 2010 end-page: 1415 ident: bb0250 article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria publication-title: Science – volume: 118 start-page: 2593 year: 2018 end-page: 2635 ident: bb0185 article-title: Oxygen activation by Cu LPMOs in recalcitrant carbohydrate polysaccharide conversion to monomer sugars publication-title: Chem. Rev. – volume: 101 start-page: 1631 year: 2017 end-page: 1641 ident: bb0260 article-title: McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘ publication-title: Appl. Microbiol. Biot. – volume: 12 start-page: 107 year: 1993 end-page: 115 ident: bb0070 article-title: Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation publication-title: FEMS Microbiol. Ecol. – volume: 1125 start-page: 171 year: 2008 end-page: 189 ident: bb0145 article-title: Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea publication-title: Ann. N. Y. Acad. Sci. – volume: 7 start-page: 408 year: 2014 end-page: 415 ident: bb0225 article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to methanosaeta for the reduction of carbon dioxide to methane publication-title: Energy Environ. Sci. – volume: 5 start-page: e819 year: 2020 end-page: e897 ident: bb0140 article-title: Comparative analysis of root microbiomes of rice cultivars with high and low methane emissions reveals differences in abundance of methanogenic archaea and putative upstream fermenters publication-title: mSystems – volume: 19 start-page: 65 year: 1995 end-page: 72 ident: bb0005 article-title: Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil publication-title: Biol. Fert. Soils – volume: 49 start-page: 2123 year: 2015 end-page: 2131 ident: bb0155 article-title: Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe(III) addition publication-title: Environ. Sci. Technol. – volume: 162 year: 2021 ident: bb0080 article-title: Dynamics of methane emission and archaeal microbial community in paddy soil amended with different types of biochar publication-title: Appl. Soil Ecol. – volume: 10 year: 2019 ident: bb0110 article-title: Toward a genome scale sequence specific dynamic model of cell-free protein synthesis in publication-title: Metab. Eng. Commun. – volume: 286 year: 2019 ident: bb0115 article-title: Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite: insights into the prediction of microbial metabolic function and enzymatic activity publication-title: Bioresour. Technol. – volume: 53 start-page: 316 year: 2015 end-page: 324 ident: bb0205 article-title: Effects of soluble organic carbon addition on CH publication-title: Soil Res. – volume: 746 year: 2020 ident: bb0190 article-title: Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field publication-title: Sci. Total Environ. – volume: 99 start-page: 8231 year: 2008 end-page: 8236 ident: bb0255 article-title: Evaluation of UASB reactor performance during start-up operation using synthetic mixed-acid waste publication-title: Bioresource Technol. – volume: 101 start-page: 8127 year: 2010 end-page: 8131 ident: bb0150 article-title: Enhanced chromate reduction by resting publication-title: Bioresour. Technol. – volume: 72 start-page: 1013 year: 2008 end-page: 1019 ident: bb0135 article-title: Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure publication-title: Chemosphere – volume: 24 start-page: 21 year: 1992 end-page: 27 ident: bb0010 article-title: Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the everglades publication-title: Soil Biol. Biochem. – volume: 116 start-page: 99 year: 2018 end-page: 109 ident: bb0310 article-title: Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter publication-title: Soil Biol. Biochem. – volume: 39 start-page: 1084 year: 1967 end-page: 1089 ident: bb0055 article-title: Mechanistic investigation of molybdenum blue method for determination of phosphate publication-title: Anal. Chem. – volume: 12 start-page: R60 year: 2011 ident: bb0230 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biol. – start-page: 219 year: 2004 end-page: 286 ident: bb0165 article-title: Dissimilatory Fe(III) and Mn(IV) reduction publication-title: Advances in Microbial Physiology – volume: 788 year: 2021 ident: bb0175 article-title: The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved publication-title: Sci. Total Environ. – volume: 84 start-page: e1118 year: 2018 end-page: e1166 ident: bb0035 article-title: Proteome response of a metabolically flexible anoxygenic phototroph to Fe(II) oxidation publication-title: Appl. Environ. Microb. – volume: 31 start-page: 1313 year: 1999 end-page: 1322 ident: bb0025 article-title: Methane pool and flux dynamics in a rice field following straw incorporation publication-title: Soil Biol. Biochem. – volume: 24 start-page: 1089 year: 1992 end-page: 1099 ident: bb0030 article-title: Mechanisms controlling soil respiration (CO publication-title: Soil Biol. Biochem. – volume: 7 start-page: 412 year: 2019 ident: bb0040 article-title: Insights into biodegradation related metabolism in an abnormally low dissolved inorganic carbon (DIC) petroleum-contaminated aquifer by metagenomics analysis publication-title: Microorganisms – volume: 10 start-page: 996 year: 2013 end-page: 998 ident: bb0060 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat. Methods – volume: 7 start-page: 1184 year: 2016 ident: bb0240 article-title: Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain publication-title: Front. Microbiol. – volume: 11 start-page: 2255 year: 2020 ident: bb0050 article-title: Iron-mediated organic matter decomposition in humid soils can counteract protection publication-title: Nat. Commun. – volume: 64 start-page: 476 year: 2013 end-page: 487 ident: bb0100 article-title: Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils publication-title: Eur. J. Soil Sci. – volume: 15 start-page: 679 year: 2014 ident: bb0020 article-title: Comparative genomics highlights the unique biology of methanomassiliicoccales, a thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine publication-title: BMC Genomics – volume: 133 start-page: 333 year: 2017 end-page: 345 ident: bb0210 article-title: Association with pedogenic iron and aluminum: effects on soil organic carbon storage and stability in four temperate forest soils publication-title: Biogeochemistry – volume: 12 start-page: 213 year: 2013 end-page: 220 ident: bb0235 article-title: Environmental and economic impacts of transit-oriented corridors in Korea publication-title: J. Asian Archit. Build. – volume: 9 start-page: 2566 year: 2018 ident: bb0275 article-title: Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy soils publication-title: Front. Microbiol. – volume: 118 start-page: 691 year: 2018 end-page: 728 ident: bb0065 article-title: Lactate metabolism: historical context, prior misinterpretations, and current understanding publication-title: Eur. J. Appl. Physiol. – volume: 73 start-page: 157 year: 2010 end-page: 165 ident: bb0075 article-title: Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog publication-title: FEMS Microbiol. Ecol. – volume: 41 start-page: D590 year: 2012 end-page: D596 ident: bb0215 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res. – volume: 4 start-page: 381 year: 2008 end-page: 384 ident: bb0195 article-title: Differences in glucose sensing and signaling for pexophagy between the baker's yeast publication-title: Autophagy – volume: 17 start-page: 185 year: 2019 end-page: 198 ident: bb0180 article-title: Influence of pH on the balance between methanogenesis and iron reduction publication-title: Geobiology – volume: 773 year: 2021 ident: bb0285 article-title: The process of methanogenesis in paddy fields under different elevated CO publication-title: Sci. Total Environ. – volume: 24 start-page: 1239 year: 2018 end-page: 1255 ident: bb0090 article-title: Impacts of climate and land use on N publication-title: Glob. Chang. Biol. – volume: 106 start-page: 359 year: 2015 end-page: 368 ident: bb0220 article-title: Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production publication-title: Bioelectrochemistry – volume: 4 start-page: 752 year: 2006 end-page: 764 ident: bb0290 article-title: Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction publication-title: Nat. Rev. Microbiol. – volume: 293 start-page: 37 year: 2015 end-page: 45 ident: bb0320 article-title: Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation publication-title: J. Hazard. Mater. – volume: 84 start-page: 1223 year: 2011 end-page: 1230 ident: bb0125 article-title: Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material publication-title: Chemosphere – volume: 58 start-page: 611 year: 2004 end-page: 647 ident: bb0270 article-title: Bacterial iron sources: from siderophores to hemophores publication-title: Annu. Rev. Microbiol. – year: 2014 ident: bb0200 article-title: Climate change 2014: synthesis report publication-title: Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change – volume: 138 year: 2020 ident: bb0305 article-title: Potential interactions between syntrophic bacteria and methanogens via type IV pili and quorum-sensing systems publication-title: Environ. Int. – volume: 108 start-page: 4516 year: 2011 end-page: 4522 ident: bb0045 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 year: 2020 ident: bb0280 article-title: Inclusion of microbial inoculants with straw mulch enhances grain yields from rice fields in Central China publication-title: Food Energy Secur. – volume: 84 start-page: 1223 issue: 9 year: 2011 ident: 10.1016/j.scitotenv.2022.153636_bb0125 article-title: Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.05.027 – volume: 12 start-page: 213 issue: 2 year: 2013 ident: 10.1016/j.scitotenv.2022.153636_bb0235 article-title: Environmental and economic impacts of transit-oriented corridors in Korea publication-title: J. Asian Archit. Build. doi: 10.3130/jaabe.12.213 – volume: 73 start-page: 157 issue: 1 year: 2010 ident: 10.1016/j.scitotenv.2022.153636_bb0075 article-title: Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog publication-title: FEMS Microbiol. Ecol. – volume: 523 start-page: 602 issue: 7562 year: 2015 ident: 10.1016/j.scitotenv.2022.153636_bb0245 article-title: Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice publication-title: Nature doi: 10.1038/nature14673 – volume: 17 start-page: 185 issue: 2 year: 2019 ident: 10.1016/j.scitotenv.2022.153636_bb0180 article-title: Influence of pH on the balance between methanogenesis and iron reduction publication-title: Geobiology doi: 10.1111/gbi.12320 – volume: 72 start-page: 1013 issue: 7 year: 2008 ident: 10.1016/j.scitotenv.2022.153636_bb0135 article-title: Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.04.016 – volume: 10 year: 2019 ident: 10.1016/j.scitotenv.2022.153636_bb0110 article-title: Toward a genome scale sequence specific dynamic model of cell-free protein synthesis in Escherichia coli publication-title: Metab. Eng. Commun. – volume: 773 year: 2021 ident: 10.1016/j.scitotenv.2022.153636_bb0285 article-title: The process of methanogenesis in paddy fields under different elevated CO2 concentrations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145629 – volume: 58 start-page: 611 issue: 1 year: 2004 ident: 10.1016/j.scitotenv.2022.153636_bb0270 article-title: Bacterial iron sources: from siderophores to hemophores publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.58.030603.123811 – volume: 19 start-page: 703 issue: 6 year: 1987 ident: 10.1016/j.scitotenv.2022.153636_bb0265 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 788 year: 2021 ident: 10.1016/j.scitotenv.2022.153636_bb0175 article-title: The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147773 – volume: 118 start-page: 691 issue: 4 year: 2018 ident: 10.1016/j.scitotenv.2022.153636_bb0065 article-title: Lactate metabolism: historical context, prior misinterpretations, and current understanding publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-017-3795-6 – volume: 292–293 start-page: 35 year: 2012 ident: 10.1016/j.scitotenv.2022.153636_bb0315 article-title: Microbial reduction of Fe(III) in illite–smectite minerals by methanogen Methanosarcina mazei publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2011.11.003 – volume: 162 year: 2021 ident: 10.1016/j.scitotenv.2022.153636_bb0080 article-title: Dynamics of methane emission and archaeal microbial community in paddy soil amended with different types of biochar publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2021.103892 – volume: 101 start-page: 1631 issue: 4 year: 2017 ident: 10.1016/j.scitotenv.2022.153636_bb0260 article-title: McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus methanoperedens nitroreducens’ publication-title: Appl. Microbiol. Biot. doi: 10.1007/s00253-016-8065-8 – volume: 64 start-page: 476 issue: 4 year: 2013 ident: 10.1016/j.scitotenv.2022.153636_bb0100 article-title: Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12042 – volume: 7 start-page: 412 issue: 10 year: 2019 ident: 10.1016/j.scitotenv.2022.153636_bb0040 article-title: Insights into biodegradation related metabolism in an abnormally low dissolved inorganic carbon (DIC) petroleum-contaminated aquifer by metagenomics analysis publication-title: Microorganisms doi: 10.3390/microorganisms7100412 – volume: 53 start-page: 316 issue: 3 year: 2015 ident: 10.1016/j.scitotenv.2022.153636_bb0205 article-title: Effects of soluble organic carbon addition on CH4 and CO2 emissions from paddy soils regulated by iron reduction processes publication-title: Soil Res. doi: 10.1071/SR14287 – volume: 7 start-page: 1184 year: 2016 ident: 10.1016/j.scitotenv.2022.153636_bb0240 article-title: Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01184 – volume: 41 start-page: D590 issue: D1 year: 2012 ident: 10.1016/j.scitotenv.2022.153636_bb0215 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 12 start-page: R60 issue: 6 year: 2011 ident: 10.1016/j.scitotenv.2022.153636_bb0230 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biol. doi: 10.1186/gb-2011-12-6-r60 – volume: 39 start-page: 1084 issue: 10 year: 1967 ident: 10.1016/j.scitotenv.2022.153636_bb0055 article-title: Mechanistic investigation of molybdenum blue method for determination of phosphate publication-title: Anal. Chem. doi: 10.1021/ac60254a027 – volume: 15 start-page: 679 year: 2014 ident: 10.1016/j.scitotenv.2022.153636_bb0020 article-title: Comparative genomics highlights the unique biology of methanomassiliicoccales, a thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine publication-title: BMC Genomics doi: 10.1186/1471-2164-15-679 – volume: 4 start-page: 381 issue: 3 year: 2008 ident: 10.1016/j.scitotenv.2022.153636_bb0195 article-title: Differences in glucose sensing and signaling for pexophagy between the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris publication-title: Autophagy doi: 10.4161/auto.5634 – volume: 1125 start-page: 171 issue: 1 year: 2008 ident: 10.1016/j.scitotenv.2022.153636_bb0145 article-title: Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1419.019 – volume: 106 start-page: 359 year: 2015 ident: 10.1016/j.scitotenv.2022.153636_bb0220 article-title: Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2015.06.003 – volume: 19 start-page: 65 issue: 1 year: 1995 ident: 10.1016/j.scitotenv.2022.153636_bb0005 article-title: Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil publication-title: Biol. Fert. Soils doi: 10.1007/BF00336349 – start-page: 219 year: 2004 ident: 10.1016/j.scitotenv.2022.153636_bb0165 article-title: Dissimilatory Fe(III) and Mn(IV) reduction doi: 10.1016/S0065-2911(04)49005-5 – volume: 138 year: 2020 ident: 10.1016/j.scitotenv.2022.153636_bb0305 article-title: Potential interactions between syntrophic bacteria and methanogens via type IV pili and quorum-sensing systems publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105650 – volume: 256 year: 2020 ident: 10.1016/j.scitotenv.2022.153636_bb0120 article-title: Wastewater treatment using the “sulfate reduction, denitrification anammox and partial nitrification (SRDAPN)” process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127092 – year: 2014 ident: 10.1016/j.scitotenv.2022.153636_bb0200 article-title: Climate change 2014: synthesis report – volume: 11 start-page: 5441 issue: 1 year: 2020 ident: 10.1016/j.scitotenv.2022.153636_bb0300 article-title: Natural variations of SLG1 confer high-temperature tolerance in indica rice publication-title: Nat. Commun. doi: 10.1038/s41467-020-19320-9 – volume: 24 start-page: 21 issue: 1 year: 1992 ident: 10.1016/j.scitotenv.2022.153636_bb0010 article-title: Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the everglades publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(92)90237-R – volume: 108 start-page: 4516 issue: Suppl. 1 year: 2011 ident: 10.1016/j.scitotenv.2022.153636_bb0045 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1000080107 – volume: 105 start-page: 81 year: 2017 ident: 10.1016/j.scitotenv.2022.153636_bb0105 article-title: Structure and function of methanogenic microbial communities in soils from flooded rice and upland soybean fields from Sanjiang Plain, NE China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.11.010 – volume: 12 start-page: 107 issue: 2 year: 1993 ident: 10.1016/j.scitotenv.2022.153636_bb0070 article-title: Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.1993.tb00022.x – volume: 24 start-page: 1239 issue: 3 year: 2018 ident: 10.1016/j.scitotenv.2022.153636_bb0090 article-title: Impacts of climate and land use on N2O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13944 – volume: 31 start-page: 1313 issue: 9 year: 1999 ident: 10.1016/j.scitotenv.2022.153636_bb0025 article-title: Methane pool and flux dynamics in a rice field following straw incorporation publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00050-4 – volume: 24 start-page: 1089 issue: 11 year: 1992 ident: 10.1016/j.scitotenv.2022.153636_bb0030 article-title: Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(92)90058-6 – volume: 10 start-page: 996 issue: 10 year: 2013 ident: 10.1016/j.scitotenv.2022.153636_bb0060 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat. Methods doi: 10.1038/nmeth.2604 – volume: 293 start-page: 37 year: 2015 ident: 10.1016/j.scitotenv.2022.153636_bb0320 article-title: Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.03.039 – volume: 11 start-page: 2255 issue: 1 year: 2020 ident: 10.1016/j.scitotenv.2022.153636_bb0050 article-title: Iron-mediated organic matter decomposition in humid soils can counteract protection publication-title: Nat. Commun. doi: 10.1038/s41467-020-16071-5 – volume: 746 year: 2020 ident: 10.1016/j.scitotenv.2022.153636_bb0190 article-title: Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141351 – volume: 23 start-page: 2272 issue: 8 year: 2008 ident: 10.1016/j.scitotenv.2022.153636_bb0085 article-title: Anaerobic decomposition of tropical soils and plant material: implication for the CO2 and CH4 budget of the petit saut reservoir publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.04.001 – volume: 353 start-page: 236 year: 2018 ident: 10.1016/j.scitotenv.2022.153636_bb0095 article-title: Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.04.023 – volume: 9 start-page: 2566 year: 2018 ident: 10.1016/j.scitotenv.2022.153636_bb0275 article-title: Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy soils publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02566 – volume: 216 start-page: 87 year: 2016 ident: 10.1016/j.scitotenv.2022.153636_bb0160 article-title: Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.048 – volume: 7 start-page: 408 issue: 1 year: 2014 ident: 10.1016/j.scitotenv.2022.153636_bb0225 article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to methanosaeta for the reduction of carbon dioxide to methane publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42189A – volume: 9 issue: 4 year: 2020 ident: 10.1016/j.scitotenv.2022.153636_bb0280 article-title: Inclusion of microbial inoculants with straw mulch enhances grain yields from rice fields in Central China publication-title: Food Energy Secur. doi: 10.1002/fes3.230 – volume: 77 start-page: 3749 issue: 11 year: 2011 ident: 10.1016/j.scitotenv.2022.153636_bb0015 article-title: Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.02818-10 – volume: 118 start-page: 2593 issue: 5 year: 2018 ident: 10.1016/j.scitotenv.2022.153636_bb0185 article-title: Oxygen activation by Cu LPMOs in recalcitrant carbohydrate polysaccharide conversion to monomer sugars publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00421 – volume: 99 start-page: 8231 issue: 17 year: 2008 ident: 10.1016/j.scitotenv.2022.153636_bb0255 article-title: Evaluation of UASB reactor performance during start-up operation using synthetic mixed-acid waste publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2008.03.011 – volume: 286 year: 2019 ident: 10.1016/j.scitotenv.2022.153636_bb0115 article-title: Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite: insights into the prediction of microbial metabolic function and enzymatic activity publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121397 – volume: 24 start-page: 4041 issue: 23 year: 2005 ident: 10.1016/j.scitotenv.2022.153636_bb0130 article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron publication-title: EMBO J. doi: 10.1038/sj.emboj.7600864 – volume: 116 start-page: 99 year: 2018 ident: 10.1016/j.scitotenv.2022.153636_bb0310 article-title: Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.10.004 – volume: 133 start-page: 333 issue: 3 year: 2017 ident: 10.1016/j.scitotenv.2022.153636_bb0210 article-title: Association with pedogenic iron and aluminum: effects on soil organic carbon storage and stability in four temperate forest soils publication-title: Biogeochemistry doi: 10.1007/s10533-017-0337-6 – volume: 330 start-page: 1413 issue: 6009 year: 2010 ident: 10.1016/j.scitotenv.2022.153636_bb0250 article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria publication-title: Science doi: 10.1126/science.1196526 – volume: 77 start-page: 3877 issue: 11 year: 2011 ident: 10.1016/j.scitotenv.2022.153636_bb0170 article-title: pmoA primers for detection of anaerobic methanotrophs publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.02960-10 – volume: 49 start-page: 2123 issue: 4 year: 2015 ident: 10.1016/j.scitotenv.2022.153636_bb0155 article-title: Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe(III) addition publication-title: Environ. Sci. Technol. doi: 10.1021/es504200j – volume: 84 start-page: e1118 issue: 16 year: 2018 ident: 10.1016/j.scitotenv.2022.153636_bb0035 article-title: Proteome response of a metabolically flexible anoxygenic phototroph to Fe(II) oxidation publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.01166-18 – volume: 4 start-page: 752 issue: 10 year: 2006 ident: 10.1016/j.scitotenv.2022.153636_bb0290 article-title: Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1490 – volume: 101 start-page: 8127 issue: 21 year: 2010 ident: 10.1016/j.scitotenv.2022.153636_bb0150 article-title: Enhanced chromate reduction by resting Escherichia coli cells in the presence of quinone redox mediators publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.050 – volume: 302 year: 2020 ident: 10.1016/j.scitotenv.2022.153636_bb0295 article-title: Comparative facilitation of activated carbon and goethite on methanogenesis from volatile fatty acids publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2020.122801 – volume: 5 start-page: e819 issue: 1 year: 2020 ident: 10.1016/j.scitotenv.2022.153636_bb0140 article-title: Comparative analysis of root microbiomes of rice cultivars with high and low methane emissions reveals differences in abundance of methanogenic archaea and putative upstream fermenters publication-title: mSystems doi: 10.1128/mSystems.00897-19 |
SSID | ssj0000781 |
Score | 2.549718 |
Snippet | Various carbon sources as substrates and electron donors can produce methane via different metabolic pathways. In particular, the methane produced by rice... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 153636 |
SubjectTerms | acetates carbon climate change environment genes glucose High-throughput sequencing Iron reduction methane methane production Methanobacteriales Methanogen methanogens Methanosarcinales Organic matter paddies paddy soils rice Rice paddy starch |
Title | Effects of different carbon sources on methane production and the methanogenic communities in iron rich flooded paddy soil |
URI | https://dx.doi.org/10.1016/j.scitotenv.2022.153636 https://www.ncbi.nlm.nih.gov/pubmed/35124061 https://www.proquest.com/docview/2626225721 https://www.proquest.com/docview/2636849777 |
Volume | 823 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFH-IpVAoUtfabv0gQq-ja5JJJt5ElG2XepBKvYVMMqFbZGZxR8Ee-rf3vc3MiqD10NMwM0l45H3kl-R9AHw2QeW5qnSmCuMy6VGMjeIxC4UpZRxxLys6Gvh2rsaX8utVfrUCJ30sDLlVdrY_2fSFte6-HHSzeTCbTinGVxZGGc3puI0XFPArpSYp3__z4OZByWzSLTMqNrZ-5OOF47YNYtM73Chyvo_arxa5mp9coZ5DoIuV6OwdrHUQkh0nKtdhpaoH8DoVlbwfwObpQ-waNuuUdz6At-mIjqXIow34nTIXz1kTWV8npWXe3ZRNzdKhPv6rGRWZdnXFZik5LDKSuTowRI7drwaFEMf1KdaEMrSyac2IBoZW9ieL5BxfBTZDK3ePI0-v38Pl2en3k3HWlWLIPCp5m0UePGqqCoU0QQucR0QuulBqJOOhkzEI7nXJudO5Ec5VTgbtuOHKC28cj2ITVuumrj4CC1yr8tAhrvIGsVqJw5SFiHnpIq6MSgxB9dNvfZennMplXNveIe2XXfLNEt9s4tsQRsuOs5Sq4-UuRz1_7SOps7igvNx5r5cIizpJFy3IjOZ2bjnuEtFO4ub6X22EwsnUWg_hQxKnJdUCURgBrU__Q94WvKG35Na2DavtzW21gwCqLXcXGrILr46_TMbn9Jxc_Jj8BcvgHig |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD7YlVKhlHZbdWsvKfR16ppkcvFNRFmr7pOCbyGTTOgWmVncUbC_viebzIrQ1oe-TnIOIeeSL5lzAfiqvShLUctCKG0L7lCNtaCh8EpXPIyp43V8Gjifiskl_35VXq3BYZ8LE8Mqs-9PPn3prfOX3bybu_PZLOb4cqWFljQ-t1GlnsF6rE5VDmD94OR0Mn1wyFKlxnkcbRsJHoV5IeuuRXh6h3dFSr-hAxDLcs1_PKT-BkKXh9Hxa3iVUSQ5SAt9A2t1M4Tnqa_k_RA2jx7S13Batt_FEF6mVzqSko_ewq9UvHhB2kD6VikdcfamahuS3vVxrCGxz7RtajJP9WFRlsQ2niB4zEMt6iHydSndJBZpJbOGxDUQdLQ_SIjx8bUnc3R098h5dv0OLo-PLg4nRe7GUDi0864I1Ds0VuEV114y3EcEL1IJMeZhz_LgGXWyotTKUjNra8u9tFRT4ZjTlga2CYOmbeptIJ5KUe1ZhFZOI1yrkE2lWCgrG_BwFGwEot9-43Kp8tgx49r0MWk_zUpuJsrNJLmNYLwinKdqHU-T7PfyNY8Uz-CZ8jTxl14jDJpl_NeCwmhvF4biRRFdJd6v_zWHCdxMKeUItpI6rVbNEIhFrPX-f5b3GV5MLs7PzNnJ9HQHNuJIinL7AIPu5rb-iHiqqz5le_kNimAfNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+different+carbon+sources+on+methane+production+and+the+methanogenic+communities+in+iron+rich+flooded+paddy+soil&rft.jtitle=The+Science+of+the+total+environment&rft.au=Luo%2C+Dan&rft.au=Li%2C+Yaying&rft.au=Yao%2C+Huaiying&rft.au=Chapman%2C+Stephen+J.&rft.date=2022-06-01&rft.issn=0048-9697&rft.volume=823&rft.spage=153636&rft_id=info:doi/10.1016%2Fj.scitotenv.2022.153636&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2022_153636 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |