Online feature selection for high-dimensional class-imbalanced data
When tackling high dimensionality in data mining, online feature selection which deals with features flowing in one by one over time, presents more advantages than traditional feature selection methods. However, in real-world applications, such as fraud detection and medical diagnosis, the data is h...
Saved in:
Published in | Knowledge-based systems Vol. 136; pp. 187 - 199 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.11.2017
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When tackling high dimensionality in data mining, online feature selection which deals with features flowing in one by one over time, presents more advantages than traditional feature selection methods. However, in real-world applications, such as fraud detection and medical diagnosis, the data is high-dimensional and highly class imbalanced, namely there are many more instances of some classes than others. In such cases of class imbalance, existing online feature selection algorithms usually ignore the small classes which can be important in these applications. It is hence a challenge to learn from high-dimensional and class imbalanced data in an online manner. Motivated by this, we first formalize the problem of online streaming feature selection for class imbalanced data, and then present an efficient online feature selection framework regarding the dependency between condition features and decision classes. Meanwhile, we propose a new algorithm of Online Feature Selection based on the Dependency in K nearest neighbors, called K-OFSD. In terms of Neighborhood Rough Set theory, K-OFSD uses the information of nearest neighbors to select relevant features which can get higher separability between the majority class and the minority class. Finally, experimental studies on seven high-dimensional and class imbalanced data sets show that our algorithm can achieve better performance than traditional feature selection methods with the same numbers of features and state-of-the-art online streaming feature selection algorithms in an online manner. |
---|---|
AbstractList | When tackling high dimensionality in data mining, online feature selection which deals with features flowing in one by one over time, presents more advantages than traditional feature selection methods. However, in real-world applications, such as fraud detection and medical diagnosis, the data is high-dimensional and highly class imbalanced, namely there are many more instances of some classes than others. In such cases of class imbalance, existing online feature selection algorithms usually ignore the small classes which can be important in these applications. It is hence a challenge to learn from high-dimensional and class imbalanced data in an online manner. Motivated by this, we first formalize the problem of online streaming feature selection for class imbalanced data, and then present an efficient online feature selection framework regarding the dependency between condition features and decision classes. Meanwhile, we propose a new algorithm of Online Feature Selection based on the Dependency in K nearest neighbors, called K-OFSD. In terms of Neighborhood Rough Set theory, K-OFSD uses the information of nearest neighbors to select relevant features which can get higher separability between the majority class and the minority class. Finally, experimental studies on seven high-dimensional and class imbalanced data sets show that our algorithm can achieve better performance than traditional feature selection methods with the same numbers of features and state-of-the-art online streaming feature selection algorithms in an online manner. |
Author | Hu, Xuegang Zhou, Peng Li, Peipei Wu, Xindong |
Author_xml | – sequence: 1 givenname: Peng surname: Zhou fullname: Zhou, Peng email: doodzhou@hotmail.com organization: Hefei University of Technology, Hefei 230009, China – sequence: 2 givenname: Xuegang surname: Hu fullname: Hu, Xuegang email: jsjxhuxg@hfut.edu.cn organization: Hefei University of Technology, Hefei 230009, China – sequence: 3 givenname: Peipei surname: Li fullname: Li, Peipei email: peipeili@hfut.edu.cn organization: Hefei University of Technology, Hefei 230009, China – sequence: 4 givenname: Xindong surname: Wu fullname: Wu, Xindong email: xwu@louisiana.edu organization: University of Louisiana, Lafayette, LA 70504, USA |
BookMark | eNqFkE1Lw0AQhhepYK3-Aw8Bz4kz2SSb9SBI8QsKvfS-bDcTuzHN1t1U6L83IZ486GlgeJ-XmeeSzTrXEWM3CAkCFndN8tG5cApJCigSkAlAccbmWIo0FhnIGZuDzCEWkOMFuwyhAYA0xXLOluuutR1FNen-6CkK1JLpreui2vloZ993cWX31IVhpdvItDqE2O63utWdoSqqdK-v2Hmt20DXP3PBNs9Pm-VrvFq_vC0fV7HJAPq4TrcGJTcy5ykVWkiuNdVghEFR5LIsBDflNkcoDSc0Ba8qiaI2aITOKuALdjvVHrz7PFLoVeOOfrgqKJQCBQfOxZDKppTxLgRPtTp4u9f-pBDUaEs1arKlRlsKpBpsDdj9L8zYXo8ieq9t-x_8MME0fP9lyatgLI1-rB9sqsrZvwu-AaYGiug |
CitedBy_id | crossref_primary_10_3390_app8122472 crossref_primary_10_1007_s10462_023_10546_9 crossref_primary_10_2478_amns_2024_2906 crossref_primary_10_1016_j_knosys_2020_106020 crossref_primary_10_1016_j_ijcce_2020_11_001 crossref_primary_10_1155_2019_4318463 crossref_primary_10_1016_j_inffus_2023_02_016 crossref_primary_10_1109_ACCESS_2020_2964845 crossref_primary_10_3233_JIFS_213112 crossref_primary_10_3390_sym12101635 crossref_primary_10_1016_j_ymssp_2021_108139 crossref_primary_10_1186_s12859_020_3411_3 crossref_primary_10_1007_s12559_019_09657_9 crossref_primary_10_1016_j_neucom_2019_08_100 crossref_primary_10_1515_comp_2020_0169 crossref_primary_10_1109_TAI_2022_3196637 crossref_primary_10_1016_j_patcog_2019_01_047 crossref_primary_10_1002_widm_1364 crossref_primary_10_1016_j_asoc_2019_105528 crossref_primary_10_3390_electronics13234807 crossref_primary_10_1109_JSEN_2022_3222535 crossref_primary_10_3390_app10030936 crossref_primary_10_1109_TNNLS_2020_3025922 crossref_primary_10_1093_jcde_qwae075 crossref_primary_10_1007_s10489_018_1314_z crossref_primary_10_1109_ACCESS_2021_3081366 crossref_primary_10_1007_s00500_019_04038_8 crossref_primary_10_1016_j_mbs_2019_108230 crossref_primary_10_1002_cpe_6435 crossref_primary_10_1049_cit2_12327 crossref_primary_10_1016_j_knosys_2019_07_008 crossref_primary_10_1016_j_fss_2023_108683 crossref_primary_10_1109_TNSM_2022_3180936 crossref_primary_10_1002_cem_3177 crossref_primary_10_1007_s11227_022_04509_0 crossref_primary_10_1016_j_patcog_2021_108511 crossref_primary_10_1007_s00521_023_09089_5 crossref_primary_10_1016_j_patcog_2018_08_009 crossref_primary_10_3390_app10041496 crossref_primary_10_1016_j_asoc_2022_109355 crossref_primary_10_1007_s13042_024_02416_9 crossref_primary_10_1016_j_engappai_2023_106911 crossref_primary_10_1016_j_knosys_2021_107157 crossref_primary_10_3390_s22176482 crossref_primary_10_1016_j_jvcir_2019_102605 crossref_primary_10_1016_j_ins_2022_08_118 crossref_primary_10_1016_j_ress_2021_107934 crossref_primary_10_3389_fnins_2022_1036244 crossref_primary_10_1016_j_conengprac_2024_105845 crossref_primary_10_1142_S0218001423500349 crossref_primary_10_1007_s00500_021_05800_7 crossref_primary_10_1109_TFUZZ_2023_3272316 crossref_primary_10_1109_TIV_2023_3314788 crossref_primary_10_1016_j_eswa_2019_113152 crossref_primary_10_1007_s10489_020_01863_5 crossref_primary_10_1007_s13042_019_00948_z crossref_primary_10_1016_j_sigpro_2019_05_034 crossref_primary_10_1016_j_eswa_2024_123778 crossref_primary_10_1016_j_ins_2018_12_074 crossref_primary_10_1016_j_knosys_2020_105818 crossref_primary_10_1016_j_aei_2024_102433 crossref_primary_10_1177_1088467X241305509 crossref_primary_10_3390_sym11121504 crossref_primary_10_3233_JIFS_221902 crossref_primary_10_1007_s10489_021_02257_x crossref_primary_10_1007_s13369_023_08217_6 crossref_primary_10_1016_j_asoc_2021_107993 crossref_primary_10_1002_cpe_8108 crossref_primary_10_3390_life11070638 crossref_primary_10_1007_s11538_020_00743_w crossref_primary_10_1016_j_eswa_2022_117520 crossref_primary_10_1016_j_ins_2022_02_004 crossref_primary_10_1007_s10489_021_02855_9 crossref_primary_10_1016_j_jfranklin_2019_12_039 crossref_primary_10_1016_j_knosys_2022_109849 crossref_primary_10_1109_ACCESS_2020_3011153 crossref_primary_10_1002_cpe_6994 crossref_primary_10_1109_TFUZZ_2019_2959995 crossref_primary_10_1016_j_jksuci_2019_04_009 crossref_primary_10_1016_j_ins_2019_01_041 crossref_primary_10_1016_j_knosys_2021_106897 crossref_primary_10_1016_j_jhydrol_2024_130742 crossref_primary_10_1016_j_knosys_2019_02_021 crossref_primary_10_1016_j_aei_2022_101762 crossref_primary_10_1016_j_eswa_2021_115041 crossref_primary_10_1145_3373086 crossref_primary_10_1016_j_jocs_2018_04_016 crossref_primary_10_1088_1361_6501_ad1708 crossref_primary_10_1109_TPAMI_2024_3416196 crossref_primary_10_1186_s12859_019_2754_0 crossref_primary_10_1007_s10489_021_03118_3 crossref_primary_10_1016_j_cie_2019_106266 crossref_primary_10_1016_j_knosys_2020_106087 crossref_primary_10_1142_S0219519422500658 crossref_primary_10_1002_cpe_6347 crossref_primary_10_3390_ijerph21050600 crossref_primary_10_1016_j_knosys_2021_107590 crossref_primary_10_1109_TEVC_2021_3106975 crossref_primary_10_1016_j_inffus_2018_11_019 crossref_primary_10_1016_j_tre_2024_103678 crossref_primary_10_3390_s21165571 crossref_primary_10_1016_j_knosys_2018_07_035 crossref_primary_10_1007_s40747_022_00763_0 crossref_primary_10_1088_1361_6501_ad24b5 crossref_primary_10_1145_3502737 crossref_primary_10_1016_j_asoc_2019_105581 crossref_primary_10_1016_j_measurement_2020_108522 crossref_primary_10_1109_ACCESS_2019_2909945 crossref_primary_10_1109_ACCESS_2020_3032520 crossref_primary_10_1088_1361_6501_ad64f5 |
Cites_doi | 10.1007/s10115-015-0875-y 10.1016/j.ins.2003.07.004 10.1145/1007730.1007741 10.1109/TKDE.2015.2441716 10.1109/TKDE.2008.239 10.1109/TIP.2012.2207397 10.1007/s10115-015-0846-3 10.1016/j.ins.2008.05.024 10.1016/j.ijar.2015.11.006 10.1016/j.ins.2014.07.015 10.1023/A:1025667309714 10.1016/j.ins.2016.09.012 10.3233/FI-2009-129 10.1109/TPAMI.2012.197 10.1016/j.ijar.2010.09.006 10.1016/j.knosys.2014.09.008 10.1007/s00521-013-1368-0 10.1007/s10115-015-0901-0 10.1016/j.knosys.2007.07.001 10.1002/int.21523 10.1016/j.ins.2017.04.030 10.1109/TKDE.2013.32 10.1109/TKDE.2009.187 10.1016/j.ins.2017.05.003 10.3724/SP.J.1001.2008.00640 10.1007/s10115-015-0913-9 10.1016/j.ijar.2016.11.002 10.1145/1007730.1007733 10.1016/j.ins.2016.01.099 10.1016/j.knosys.2007.01.002 10.1002/int.21599 10.1111/j.2517-6161.1996.tb02080.x 10.1145/2976744 10.1145/1989734.1989743 10.1016/j.neucom.2012.04.039 10.1007/s10115-015-0841-8 10.1109/TPAMI.2005.159 10.1016/j.knosys.2016.08.026 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier Science Ltd. Nov 15, 2017 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Nov 15, 2017 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2017.09.006 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
EndPage | 199 |
ExternalDocumentID | 10_1016_j_knosys_2017_09_006 S0950705117304124 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c400t-f2bc193c9532e6a793aaef0c7c176598673c8b5108c3e1c63dd917fc1c7a4d03 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Fri Jul 25 07:17:59 EDT 2025 Thu Apr 24 23:07:25 EDT 2025 Thu Jul 03 08:30:07 EDT 2025 Fri Feb 23 02:28:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Online feature selection Neighborhood rough set High dimensional Class imbalance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-f2bc193c9532e6a793aaef0c7c176598673c8b5108c3e1c63dd917fc1c7a4d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1971730337 |
PQPubID | 2035257 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1971730337 crossref_primary_10_1016_j_knosys_2017_09_006 crossref_citationtrail_10_1016_j_knosys_2017_09_006 elsevier_sciencedirect_doi_10_1016_j_knosys_2017_09_006 |
PublicationCentury | 2000 |
PublicationDate | 2017-11-15 |
PublicationDateYYYYMMDD | 2017-11-15 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Chawla, Japkowicz, Kotcz (bib0022) 2004; 6 Wang, Wang, Li, Liu, Zhao, Hu, Wu (bib0016) 2015; 27 Tibshirani (bib0008) 1996 Perkins, Theiler (bib0019) 2003 Lang, Miao, Cai (bib0050) 2017; 406–407 Wang, Li, Tao, Lu, Wu (bib0011) 2012; 21 He, Garcia (bib0026) 2009; 21 Maldonado, Weber, Famili (bib0029) 2014; 286 Hu, Yu, Xie (bib0052) 2008; 19 T, Y (bib0037) 1998 Ding, Stepinski, Mu, Bandeira, Ricardo, Wu, Lu, Cao, Wu (bib0012) 2011; 2 Chen, Li, Cai, Luo, Fujita (bib0036) 2016; 373 Wu, Chang (bib0025) 2003 Huang, Li, Luo, Fujita, jinn Horng (bib0034) 2017; 122 Jensen, Shen (bib0054) 2008 Vergara, EstȨvez (bib0004) 2014; 24 Lang, Miao, Yang, Cai (bib0051) 2016; 346–347 Hu, Yu, Liu, Wu (bib0038) 2008; 178 Mi, Wu, Zhang (bib0043) 2004; 159 Hu, Liu, Yu (bib0039) 2008; 21 Liu, Li, Ruan, Zou (bib0047) 2009; 94 Zhou, Foster, Stine, Ungar (bib0020) 2006; 3 Yang, Cai, Li, Lin (bib0055) 2005; 7 Hu, Zhou, Li, Wang, Wu (bib0013) 2016 Yu, Wu, Ding, Pei (bib0018) 2016; 11 Liu, Li, Zhang (bib0049) 2015; 73 Hoi, Wang, Zhao, Jin (bib0014) 2012 Kumar, Minz (bib0009) 2016; 49 Wasikowski, Chen (bib0030) 2010; 22 Alalga, Benabdeslem, Taleb (bib0007) 2016; 47 Li, Ruan, Geert, Song, Xu (bib0046) 2007; 20 Liu, Motoda (bib0001) 2007 Yu, Ding, Wu (bib0058) 2016; 113 Pawlak (bib0032) 1991 Hulse, Khoshgoftaar, Napolitano, Wald (bib0027) 2009 Zheng, Wu, Srihari (bib0028) 2004; 6 Pearson, Goney, Shwaber (bib0024) 2003 Yu, Ding, Loscalzo (bib0056) 2008 Zheng, Wang (bib0044) 2004; 59 Hu, Wang, Huang, Wu (bib0045) 2005 Hu, Li, Luo, Fujita, Li (bib0035) 2017; 81 Eskandari, Javidi (bib0021) 2016; 69 Jing, Li, Fujita, Yu, Wang (bib0033) 2017; 411 Kumar, Inbarani (bib0041) 2016 Li, Li, Liu (bib0048) 2013; 28 Ando (bib0023) 2016; 46 Wang, Irani, Pu (bib0010) 2012 Maji, Paul (bib0053) 2011; 52 Kubat, Matwin (bib0057) 1997 Robnik-Sikonja, Kononenko (bib0002) 2003; 53 Wu, Yu, Ding, Wang, Zhu (bib0015) 2013; 35 Yin, Ge, Xiao, Wang, Quan (bib0031) 2013; 105 Gu, Li, Han (bib0003) 2011 Peng, Long, Ding (bib0005) 2005; 27 Benabdeslem, Elghazel, Hindawi (bib0006) 2016; 49 Zhang, Li, Ruan, Liu (bib0040) 2012; 27 Shakiba, Hooshmandasl (bib0042) 2016; 49 Wang, Zhao, Hoi, Jing (bib0017) 2013; 26 Jensen (10.1016/j.knosys.2017.09.006_bib0054) 2008 Kubat (10.1016/j.knosys.2017.09.006_bib0057) 1997 Wang (10.1016/j.knosys.2017.09.006_bib0017) 2013; 26 Shakiba (10.1016/j.knosys.2017.09.006_bib0042) 2016; 49 Zhou (10.1016/j.knosys.2017.09.006_bib0020) 2006; 3 Robnik-Sikonja (10.1016/j.knosys.2017.09.006_bib0002) 2003; 53 Mi (10.1016/j.knosys.2017.09.006_bib0043) 2004; 159 Hu (10.1016/j.knosys.2017.09.006_bib0039) 2008; 21 Wang (10.1016/j.knosys.2017.09.006_bib0016) 2015; 27 Yang (10.1016/j.knosys.2017.09.006_bib0055) 2005; 7 Liu (10.1016/j.knosys.2017.09.006_bib0049) 2015; 73 Lang (10.1016/j.knosys.2017.09.006_bib0050) 2017; 406–407 Maji (10.1016/j.knosys.2017.09.006_bib0053) 2011; 52 Wang (10.1016/j.knosys.2017.09.006_bib0010) 2012 Vergara (10.1016/j.knosys.2017.09.006_bib0004) 2014; 24 Zheng (10.1016/j.knosys.2017.09.006_bib0044) 2004; 59 Eskandari (10.1016/j.knosys.2017.09.006_bib0021) 2016; 69 Perkins (10.1016/j.knosys.2017.09.006_bib0019) 2003 Gu (10.1016/j.knosys.2017.09.006_bib0003) 2011 Hu (10.1016/j.knosys.2017.09.006_bib0035) 2017; 81 Benabdeslem (10.1016/j.knosys.2017.09.006_bib0006) 2016; 49 Huang (10.1016/j.knosys.2017.09.006_bib0034) 2017; 122 He (10.1016/j.knosys.2017.09.006_bib0026) 2009; 21 Pawlak (10.1016/j.knosys.2017.09.006_bib0032) 1991 Hoi (10.1016/j.knosys.2017.09.006_bib0014) 2012 Tibshirani (10.1016/j.knosys.2017.09.006_bib0008) 1996 Zheng (10.1016/j.knosys.2017.09.006_bib0028) 2004; 6 Zhang (10.1016/j.knosys.2017.09.006_bib0040) 2012; 27 Kumar (10.1016/j.knosys.2017.09.006_bib0009) 2016; 49 Jing (10.1016/j.knosys.2017.09.006_bib0033) 2017; 411 Kumar (10.1016/j.knosys.2017.09.006_bib0041) 2016 Hu (10.1016/j.knosys.2017.09.006_bib0052) 2008; 19 Wasikowski (10.1016/j.knosys.2017.09.006_bib0030) 2010; 22 Hu (10.1016/j.knosys.2017.09.006_bib0038) 2008; 178 Ding (10.1016/j.knosys.2017.09.006_bib0012) 2011; 2 Ando (10.1016/j.knosys.2017.09.006_bib0023) 2016; 46 Hu (10.1016/j.knosys.2017.09.006_bib0013) 2016 Wu (10.1016/j.knosys.2017.09.006_bib0025) 2003 Chen (10.1016/j.knosys.2017.09.006_bib0036) 2016; 373 Maldonado (10.1016/j.knosys.2017.09.006_bib0029) 2014; 286 Liu (10.1016/j.knosys.2017.09.006_bib0001) 2007 Yu (10.1016/j.knosys.2017.09.006_bib0056) 2008 Wang (10.1016/j.knosys.2017.09.006_bib0011) 2012; 21 Hu (10.1016/j.knosys.2017.09.006_bib0045) 2005 Chawla (10.1016/j.knosys.2017.09.006_bib0022) 2004; 6 Wu (10.1016/j.knosys.2017.09.006_bib0015) 2013; 35 T (10.1016/j.knosys.2017.09.006_bib0037) 1998 Li (10.1016/j.knosys.2017.09.006_bib0046) 2007; 20 Alalga (10.1016/j.knosys.2017.09.006_bib0007) 2016; 47 Yin (10.1016/j.knosys.2017.09.006_bib0031) 2013; 105 Li (10.1016/j.knosys.2017.09.006_bib0048) 2013; 28 Peng (10.1016/j.knosys.2017.09.006_bib0005) 2005; 27 Pearson (10.1016/j.knosys.2017.09.006_bib0024) 2003 Hulse (10.1016/j.knosys.2017.09.006_bib0027) 2009 Lang (10.1016/j.knosys.2017.09.006_bib0051) 2016; 346–347 Yu (10.1016/j.knosys.2017.09.006_bib0018) 2016; 11 Liu (10.1016/j.knosys.2017.09.006_bib0047) 2009; 94 Yu (10.1016/j.knosys.2017.09.006_bib0058) 2016; 113 |
References_xml | – volume: 69 start-page: 35 year: 2016 end-page: 57 ident: bib0021 article-title: Online streaming feature selection using rough sets publication-title: Int. J. Approx. Reason. – start-page: 507 year: 2009 end-page: 514 ident: bib0027 article-title: Feature selection with high-dimensional imbalanced data publication-title: IEEE International Conference on Data Mining Workshops – volume: 49 start-page: 749 year: 2016 end-page: 794 ident: bib0042 article-title: Neighborhood system s-approximation spaces and applications publication-title: Knowl. Inf. Syst. – year: 2007 ident: bib0001 article-title: Computational Methods of Feature Selection – volume: 346–347 start-page: 236 year: 2016 end-page: 260 ident: bib0051 article-title: Knowledge reduction of dynamic covering decision information systems when varying covering cardinalities publication-title: Inf. Sci. (Ny) – volume: 49 start-page: 1161 year: 2016 end-page: 1185 ident: bib0006 article-title: Ensemble constrained Laplacian score for efficient and robust semi-supervised feature selection publication-title: Knowl. Inf. Syst. – volume: 11 start-page: 16 year: 2016 ident: bib0018 article-title: Scalable and accurate online feature selection for big data publication-title: ACM Trans. Knowl. Discov. Data – start-page: 267 year: 1996 end-page: 288 ident: bib0008 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B(Methodol.) – start-page: 179 year: 1997 end-page: 186 ident: bib0057 article-title: Addressing the curse of imbalanced training sets: One-sided selection publication-title: Proceedings of the 14th International Conference on Machine Learning – volume: 7 start-page: 3 year: 2005 end-page: 10 ident: bib0055 article-title: A stable gene selection in microarray data analysis publication-title: IEEE Symp. Bioinf. Bioeng. – volume: 6 start-page: 80 year: 2004 end-page: 89 ident: bib0028 article-title: Feature selection for text categorization on imbalanced data publication-title: ACM SIGKDD Explor. Newsl. – volume: 19 start-page: 640 year: 2008 end-page: 649 ident: bib0052 article-title: Numerical attribute reduction based on neighborhood granulation and rough approximation publication-title: J. Softw. – volume: 21 start-page: 294 year: 2008 end-page: 304 ident: bib0039 article-title: Mixed feature selection based on granulation and approximation publication-title: Knowl. Based Syst. – volume: 47 start-page: 75 year: 2016 end-page: 98 ident: bib0007 article-title: Soft-constrained Laplacian score for semi-supervised multi-label feature selection publication-title: Knowl. Inf. Syst. – volume: 22 start-page: 1388 year: 2010 end-page: 1400 ident: bib0030 article-title: Combating the small sample class imbalance problem using feature selection publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 185 year: 2005 end-page: 193 ident: bib0045 article-title: Incremental attribute reduction based on elementary sets publication-title: Proceedings of 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2005) – start-page: 592 year: 2003 end-page: 599 ident: bib0019 article-title: Online feature selection using grafting publication-title: Proceedings of the 20th International Conference on Machine Learning – volume: 94 start-page: 245 year: 2009 end-page: 260 ident: bib0047 article-title: An incremental approach for inducing knowledge from dynamic information systems publication-title: Fundam. Inform. – start-page: 266 year: 2011 end-page: 273 ident: bib0003 article-title: Generalized Fisher score for feature selection publication-title: Conference on Uai – volume: 27 start-page: 3029 year: 2015 end-page: 3041 ident: bib0016 article-title: Online feature selection with group structure analysis publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 107 year: 1998 end-page: 121 ident: bib0037 article-title: Computing on binary relations i: Data mining and neighborhood systems publication-title: Proceedings of the Rough Sets in Knowledge Discovery – volume: 81 start-page: 28 year: 2017 end-page: 48 ident: bib0035 article-title: Incremental fuzzy probabilistic rough sets over two universes publication-title: Int. J. Approx. Reason. – volume: 53 start-page: 23 year: 2003 end-page: 69 ident: bib0002 article-title: Theoretical and empirical analysis of relieff and rrelieff publication-title: Mach. Learn. – volume: 2 start-page: 1 year: 2011 end-page: 22 ident: bib0012 article-title: Subkilometer crater discovery with boosting and transfer learning publication-title: Acm Trans. Intell. Syst. Technol. – year: 2008 ident: bib0054 article-title: Computational intelligence and feature selection: rough and fuzzy approaches – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: bib0026 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 40 year: 2012 end-page: 49 ident: bib0010 article-title: Evolutionary study of web spam: Webb spam corpus 2011 versus webb spam corpus 2006 publication-title: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures – start-page: 1 year: 2016 end-page: 20 ident: bib0041 article-title: Pso-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task publication-title: Neural Comput. Appl. – volume: 28 start-page: 729 year: 2013 end-page: 751 ident: bib0048 article-title: Dynamic maintenance of approximations in dominance-based rough set approach under the variation of the object set publication-title: Int. J. Intell. Syst. – start-page: 93 year: 2012 end-page: 100 ident: bib0014 article-title: Online feature selection for mining big data publication-title: KDD BigMine 2012 – volume: 122 start-page: 131 year: 2017 end-page: 147 ident: bib0034 article-title: Dynamic variable precision rough set approach for probabilistic set-valued information systems publication-title: Inf. Sci. (Ny) – volume: 46 start-page: 707 year: 2016 end-page: 730 ident: bib0023 article-title: Classifying imbalanced data in distance-based feature space publication-title: Knowl. Inf. Syst. – volume: 178 start-page: 3577 year: 2008 end-page: 3594 ident: bib0038 article-title: Neighborhood rough set based heterogeneous feature subset selection publication-title: Inf. Sci. (Ny) – volume: 3 start-page: 1532 year: 2006 end-page: 4435 ident: bib0020 article-title: Streamwise feature selection publication-title: J. Mach. Learn. Res. – year: 1991 ident: bib0032 article-title: Rough Sets - Theoretical Aspects of Reasoning about Data – volume: 411 start-page: 23 year: 2017 end-page: 38 ident: bib0033 article-title: An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view publication-title: Inf. Sci. (Ny) – year: 2003 ident: bib0024 article-title: Imbalanced clustering for microarray time-series publication-title: Proceedings of the ICML’03 Workshop on Learning from Imbalanced Data Sets – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib0005 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 52 start-page: 408 year: 2011 end-page: 426 ident: bib0053 article-title: Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data publication-title: Int. J. Approx. Reason. – volume: 59 start-page: 299 year: 2004 end-page: 313 ident: bib0044 article-title: A rough set and rule tree based incremental knowledge acquisition algorithm publication-title: Fundam. Inform. – year: 2016 ident: bib0013 article-title: A survey on online feature selection with streaming features publication-title: Front. Comput. Sci. – volume: 6 start-page: 1 year: 2004 end-page: 6 ident: bib0022 article-title: Editorial: special issue on learning from imbalanced data sets publication-title: ACM SIGKDD Explor. Newsl. – volume: 49 start-page: 1 year: 2016 end-page: 59 ident: bib0009 article-title: Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification publication-title: Knowl. Inf. Syst. – volume: 27 start-page: 317 year: 2012 end-page: 342 ident: bib0040 article-title: Neighborhood rough sets for dynamic data mining publication-title: Int. J. Intell. Syst. – volume: 26 start-page: 698 year: 2013 end-page: 710 ident: bib0017 article-title: Online feature selection and its applications publication-title: IEEE Trans. Knowl. Data Eng. – volume: 24 start-page: 175 year: 2014 end-page: 186 ident: bib0004 article-title: A review of feature selection methods based on mutual information publication-title: Neural Comput. Appl. – volume: 21 start-page: 4649 year: 2012 end-page: 4661 ident: bib0011 article-title: Multimodal graph-based reranking for web image search publication-title: IEEE Trans. Image Process. – volume: 406–407 start-page: 185 year: 2017 end-page: 207 ident: bib0050 article-title: Three-way decision approaches to conflict analysis using decision-theoretic rough set theory publication-title: Inf. Sci. (Ny) – volume: 73 start-page: 81 year: 2015 end-page: 96 ident: bib0049 article-title: Incremental updating approximations in probabilistic rough sets under the variation of attributes publication-title: Knowl. Based Syst. – volume: 35 start-page: 1178 year: 2013 end-page: 1192 ident: bib0015 article-title: Online feature selection with streaming features publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 159 start-page: 255 year: 2004 end-page: 272 ident: bib0043 article-title: Approaches to knowledge reduction based on variable precision rough set model publication-title: Inf. Sci. (Ny) – start-page: 49 year: 2003 end-page: 56 ident: bib0025 article-title: Class-boundary alignment for imbalanced dataset learning publication-title: Proceedings of the ICML’03 Workshop on Learning from Imbalanced Data Sets – volume: 20 start-page: 485 year: 2007 end-page: 494 ident: bib0046 article-title: A rough sets based characteristic relation approach for dynamic attribute generalization in data mining publication-title: Knowl. Based Syst. – volume: 286 start-page: 228 year: 2014 end-page: 246 ident: bib0029 article-title: Feature selection for high-dimensional class-imbalanced data sets using support vector machines publication-title: Inf. Sci. (Ny) – volume: 373 start-page: 351 year: 2016 end-page: 368 ident: bib0036 article-title: Parallel attribute reduction in dominance-based neighborhood rough set publication-title: Inf. Sci. (Ny) – start-page: 803 year: 2008 end-page: 811 ident: bib0056 article-title: Stable feature selection via dense feature groups publication-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 105 start-page: 3 year: 2013 end-page: 11 ident: bib0031 article-title: Feature selection for high-dimensional imbalanced data publication-title: Neurocomputing – volume: 113 start-page: 1 year: 2016 end-page: 3 ident: bib0058 article-title: Lofs: library of online streaming feature selection publication-title: Knowl. Based Syst. – volume: 49 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0009 article-title: Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-015-0875-y – volume: 7 start-page: 3 issue: 1 year: 2005 ident: 10.1016/j.knosys.2017.09.006_bib0055 article-title: A stable gene selection in microarray data analysis publication-title: IEEE Symp. Bioinf. Bioeng. – volume: 159 start-page: 255 issue: 3 year: 2004 ident: 10.1016/j.knosys.2017.09.006_bib0043 article-title: Approaches to knowledge reduction based on variable precision rough set model publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2003.07.004 – volume: 6 start-page: 80 issue: 1 year: 2004 ident: 10.1016/j.knosys.2017.09.006_bib0028 article-title: Feature selection for text categorization on imbalanced data publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1007730.1007741 – volume: 27 start-page: 3029 issue: 11 year: 2015 ident: 10.1016/j.knosys.2017.09.006_bib0016 article-title: Online feature selection with group structure analysis publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2441716 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.knosys.2017.09.006_bib0026 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 21 start-page: 4649 issue: 11 year: 2012 ident: 10.1016/j.knosys.2017.09.006_bib0011 article-title: Multimodal graph-based reranking for web image search publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2207397 – volume: 46 start-page: 707 issue: 3 year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0023 article-title: Classifying imbalanced data in distance-based feature space publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-015-0846-3 – volume: 178 start-page: 3577 issue: 18 year: 2008 ident: 10.1016/j.knosys.2017.09.006_bib0038 article-title: Neighborhood rough set based heterogeneous feature subset selection publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2008.05.024 – start-page: 266 year: 2011 ident: 10.1016/j.knosys.2017.09.006_bib0003 article-title: Generalized Fisher score for feature selection – volume: 69 start-page: 35 issue: C year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0021 article-title: Online streaming feature selection using rough sets publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2015.11.006 – start-page: 107 year: 1998 ident: 10.1016/j.knosys.2017.09.006_bib0037 article-title: Computing on binary relations i: Data mining and neighborhood systems – year: 2007 ident: 10.1016/j.knosys.2017.09.006_bib0001 – volume: 286 start-page: 228 year: 2014 ident: 10.1016/j.knosys.2017.09.006_bib0029 article-title: Feature selection for high-dimensional class-imbalanced data sets using support vector machines publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2014.07.015 – volume: 53 start-page: 23 issue: 1–2 year: 2003 ident: 10.1016/j.knosys.2017.09.006_bib0002 article-title: Theoretical and empirical analysis of relieff and rrelieff publication-title: Mach. Learn. doi: 10.1023/A:1025667309714 – volume: 373 start-page: 351 year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0036 article-title: Parallel attribute reduction in dominance-based neighborhood rough set publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2016.09.012 – volume: 94 start-page: 245 issue: 2 year: 2009 ident: 10.1016/j.knosys.2017.09.006_bib0047 article-title: An incremental approach for inducing knowledge from dynamic information systems publication-title: Fundam. Inform. doi: 10.3233/FI-2009-129 – year: 2008 ident: 10.1016/j.knosys.2017.09.006_bib0054 – start-page: 93 year: 2012 ident: 10.1016/j.knosys.2017.09.006_bib0014 article-title: Online feature selection for mining big data – volume: 35 start-page: 1178 issue: 5 year: 2013 ident: 10.1016/j.knosys.2017.09.006_bib0015 article-title: Online feature selection with streaming features publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.197 – volume: 3 start-page: 1532 issue: 2 year: 2006 ident: 10.1016/j.knosys.2017.09.006_bib0020 article-title: Streamwise feature selection publication-title: J. Mach. Learn. Res. – volume: 52 start-page: 408 year: 2011 ident: 10.1016/j.knosys.2017.09.006_bib0053 article-title: Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2010.09.006 – start-page: 40 year: 2012 ident: 10.1016/j.knosys.2017.09.006_bib0010 article-title: Evolutionary study of web spam: Webb spam corpus 2011 versus webb spam corpus 2006 – volume: 59 start-page: 299 issue: 2–3 year: 2004 ident: 10.1016/j.knosys.2017.09.006_bib0044 article-title: A rough set and rule tree based incremental knowledge acquisition algorithm publication-title: Fundam. Inform. – volume: 73 start-page: 81 year: 2015 ident: 10.1016/j.knosys.2017.09.006_bib0049 article-title: Incremental updating approximations in probabilistic rough sets under the variation of attributes publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2014.09.008 – volume: 24 start-page: 175 issue: 1 year: 2014 ident: 10.1016/j.knosys.2017.09.006_bib0004 article-title: A review of feature selection methods based on mutual information publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1368-0 – volume: 49 start-page: 1161 issue: 3 year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0006 article-title: Ensemble constrained Laplacian score for efficient and robust semi-supervised feature selection publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-015-0901-0 – volume: 21 start-page: 294 issue: 4 year: 2008 ident: 10.1016/j.knosys.2017.09.006_bib0039 article-title: Mixed feature selection based on granulation and approximation publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2007.07.001 – start-page: 803 year: 2008 ident: 10.1016/j.knosys.2017.09.006_bib0056 article-title: Stable feature selection via dense feature groups – volume: 27 start-page: 317 issue: 4 year: 2012 ident: 10.1016/j.knosys.2017.09.006_bib0040 article-title: Neighborhood rough sets for dynamic data mining publication-title: Int. J. Intell. Syst. doi: 10.1002/int.21523 – year: 1991 ident: 10.1016/j.knosys.2017.09.006_bib0032 – volume: 406–407 start-page: 185 year: 2017 ident: 10.1016/j.knosys.2017.09.006_bib0050 article-title: Three-way decision approaches to conflict analysis using decision-theoretic rough set theory publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2017.04.030 – volume: 26 start-page: 698 issue: 3 year: 2013 ident: 10.1016/j.knosys.2017.09.006_bib0017 article-title: Online feature selection and its applications publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.32 – volume: 22 start-page: 1388 issue: 10 year: 2010 ident: 10.1016/j.knosys.2017.09.006_bib0030 article-title: Combating the small sample class imbalance problem using feature selection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.187 – year: 2003 ident: 10.1016/j.knosys.2017.09.006_bib0024 article-title: Imbalanced clustering for microarray time-series – volume: 411 start-page: 23 year: 2017 ident: 10.1016/j.knosys.2017.09.006_bib0033 article-title: An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2017.05.003 – volume: 19 start-page: 640 issue: 3 year: 2008 ident: 10.1016/j.knosys.2017.09.006_bib0052 article-title: Numerical attribute reduction based on neighborhood granulation and rough approximation publication-title: J. Softw. doi: 10.3724/SP.J.1001.2008.00640 – volume: 49 start-page: 749 issue: 2 year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0042 article-title: Neighborhood system s-approximation spaces and applications publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-015-0913-9 – volume: 81 start-page: 28 year: 2017 ident: 10.1016/j.knosys.2017.09.006_bib0035 article-title: Incremental fuzzy probabilistic rough sets over two universes publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2016.11.002 – volume: 6 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.knosys.2017.09.006_bib0022 article-title: Editorial: special issue on learning from imbalanced data sets publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1007730.1007733 – volume: 346–347 start-page: 236 year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0051 article-title: Knowledge reduction of dynamic covering decision information systems when varying covering cardinalities publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2016.01.099 – volume: 20 start-page: 485 issue: 5 year: 2007 ident: 10.1016/j.knosys.2017.09.006_bib0046 article-title: A rough sets based characteristic relation approach for dynamic attribute generalization in data mining publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2007.01.002 – volume: 28 start-page: 729 issue: 8 year: 2013 ident: 10.1016/j.knosys.2017.09.006_bib0048 article-title: Dynamic maintenance of approximations in dominance-based rough set approach under the variation of the object set publication-title: Int. J. Intell. Syst. doi: 10.1002/int.21599 – year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0013 article-title: A survey on online feature selection with streaming features publication-title: Front. Comput. Sci. – start-page: 267 year: 1996 ident: 10.1016/j.knosys.2017.09.006_bib0008 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B(Methodol.) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 122 start-page: 131 year: 2017 ident: 10.1016/j.knosys.2017.09.006_bib0034 article-title: Dynamic variable precision rough set approach for probabilistic set-valued information systems publication-title: Inf. Sci. (Ny) – volume: 11 start-page: 16 issue: 2 year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0018 article-title: Scalable and accurate online feature selection for big data publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/2976744 – start-page: 592 year: 2003 ident: 10.1016/j.knosys.2017.09.006_bib0019 article-title: Online feature selection using grafting – volume: 2 start-page: 1 issue: 4 year: 2011 ident: 10.1016/j.knosys.2017.09.006_bib0012 article-title: Subkilometer crater discovery with boosting and transfer learning publication-title: Acm Trans. Intell. Syst. Technol. doi: 10.1145/1989734.1989743 – start-page: 49 year: 2003 ident: 10.1016/j.knosys.2017.09.006_bib0025 article-title: Class-boundary alignment for imbalanced dataset learning – volume: 105 start-page: 3 issue: 3 year: 2013 ident: 10.1016/j.knosys.2017.09.006_bib0031 article-title: Feature selection for high-dimensional imbalanced data publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.04.039 – start-page: 507 year: 2009 ident: 10.1016/j.knosys.2017.09.006_bib0027 article-title: Feature selection with high-dimensional imbalanced data – start-page: 185 year: 2005 ident: 10.1016/j.knosys.2017.09.006_bib0045 article-title: Incremental attribute reduction based on elementary sets – start-page: 1 year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0041 article-title: Pso-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task publication-title: Neural Comput. Appl. – volume: 47 start-page: 75 issue: 1 year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0007 article-title: Soft-constrained Laplacian score for semi-supervised multi-label feature selection publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-015-0841-8 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.knosys.2017.09.006_bib0005 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 113 start-page: 1 year: 2016 ident: 10.1016/j.knosys.2017.09.006_bib0058 article-title: Lofs: library of online streaming feature selection publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.08.026 – start-page: 179 year: 1997 ident: 10.1016/j.knosys.2017.09.006_bib0057 article-title: Addressing the curse of imbalanced training sets: One-sided selection |
SSID | ssj0002218 |
Score | 2.5417154 |
Snippet | When tackling high dimensionality in data mining, online feature selection which deals with features flowing in one by one over time, presents more advantages... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 187 |
SubjectTerms | Algorithms Class imbalance Data mining Datasets Feature extraction Fraud High dimensional Neighborhood rough set Online data bases Online feature selection Set theory |
Title | Online feature selection for high-dimensional class-imbalanced data |
URI | https://dx.doi.org/10.1016/j.knosys.2017.09.006 https://www.proquest.com/docview/1971730337 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSiUygOraRIncTJWFVUB0YUidbOSiyOVj7SiZWDht3PnOCAQUiXGRHYUPd-dn627d4xdFAlEWZxYodvUXt2ItMhBKMDdL4bST-zVxd0kHj-EN7No1mLDphaG0ipd7K9juo3W7k3fodlfzuf9eyQHaK9IGNBIqYcyVbCHiqz88uM7zSMI7B0fDRY0uimfszleT9Vi9U6i3b6yaqfU9-jv7elXoLa7z2iP7TjayAf1n-2zlqkO2G7TkoE7Dz1kw1o6lJfGCnbylW1zg9hzJKectIlFQXr-tRYHB-LOYv6SU4IjYsEpYfSITUdX0-FYuD4JAtAD16IMckAeBmkkAxNniHeWmdIDBb6KSX9dSUhydL4EpPEhlkWBh7QSfFBZWHjymLWrRWVOGE9NAGGJnE2VUZgHaVLg-cpkUWTwDJ2ZoMNkg44GpyFOrSyedZMs9qhrTDVhqr1UI6YdJr5mLWsNjQ3jVQO8_mELGsP8hpndZp2088WV9lPKNPCkVKf__vAZ26YnKkL0oy5rr1_fzDmykXXes-bWY1uD69vx5BOeDd8p |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5t4dBeaOlDhVLwoRzdTZyHk0MPCIp2eV3YSnuzkokjbVuyK7IIcemP6i_sjOO0AlVCQtprElvW58nMN9b4G4BPVYZJkWZO6DZ3Rzcyr0qUGin6pViHmTu6OL9IR9_ik2kyHcDv_i4Ml1V639_5dOet_ZOhR3O4mM2Gl0QOyF6JMJCRcg9lX1l5au9uKW9rv4yPaJP3lTr-OjkcSd9aQCIZ7VLWqkSiLpgnkbJpQUssClsHqDHUKUuW6wizkuw1w8iGmEZVRXlNjSHqIq6CiKZ9BusxeQvumvD517-yEqXcmSIvTvLq-ut6rqbsRzNv71gkPNROXZX7LP0_HD4IDC7aHb-CDU9TxUGHxCYMbPMaXvYtIIT3CG_gsJMqFbV1AqGidW11aK8FkWHBWsiy4v4BnfaHQObqcnZVckElYS-4QPUtTFYB3jtYa-aNfQ8itwrjmjiirpO4VHlWUT5niySxlLMXVm1B1KNj0GuWc-uMn6YvTvtuOkwNY2qC3BCmWyD_jlp0mh2PfK974M092zMUVh4ZudPvk_H_fmvCnCsbgijS20-eeA-ejybnZ-ZsfHH6AV7wG74AGSY7sLa8vrEfiQkty11negLMik39DyMHGi4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+feature+selection+for+high-dimensional+class-imbalanced+data&rft.jtitle=Knowledge-based+systems&rft.au=Zhou%2C+Peng&rft.au=Hu%2C+Xuegang&rft.au=Li%2C+Peipei&rft.au=Wu%2C+Xindong&rft.date=2017-11-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=136&rft.spage=187&rft_id=info:doi/10.1016%2Fj.knosys.2017.09.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |