Online feature selection for high-dimensional class-imbalanced data

When tackling high dimensionality in data mining, online feature selection which deals with features flowing in one by one over time, presents more advantages than traditional feature selection methods. However, in real-world applications, such as fraud detection and medical diagnosis, the data is h...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 136; pp. 187 - 199
Main Authors Zhou, Peng, Hu, Xuegang, Li, Peipei, Wu, Xindong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.11.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When tackling high dimensionality in data mining, online feature selection which deals with features flowing in one by one over time, presents more advantages than traditional feature selection methods. However, in real-world applications, such as fraud detection and medical diagnosis, the data is high-dimensional and highly class imbalanced, namely there are many more instances of some classes than others. In such cases of class imbalance, existing online feature selection algorithms usually ignore the small classes which can be important in these applications. It is hence a challenge to learn from high-dimensional and class imbalanced data in an online manner. Motivated by this, we first formalize the problem of online streaming feature selection for class imbalanced data, and then present an efficient online feature selection framework regarding the dependency between condition features and decision classes. Meanwhile, we propose a new algorithm of Online Feature Selection based on the Dependency in K nearest neighbors, called K-OFSD. In terms of Neighborhood Rough Set theory, K-OFSD uses the information of nearest neighbors to select relevant features which can get higher separability between the majority class and the minority class. Finally, experimental studies on seven high-dimensional and class imbalanced data sets show that our algorithm can achieve better performance than traditional feature selection methods with the same numbers of features and state-of-the-art online streaming feature selection algorithms in an online manner.
AbstractList When tackling high dimensionality in data mining, online feature selection which deals with features flowing in one by one over time, presents more advantages than traditional feature selection methods. However, in real-world applications, such as fraud detection and medical diagnosis, the data is high-dimensional and highly class imbalanced, namely there are many more instances of some classes than others. In such cases of class imbalance, existing online feature selection algorithms usually ignore the small classes which can be important in these applications. It is hence a challenge to learn from high-dimensional and class imbalanced data in an online manner. Motivated by this, we first formalize the problem of online streaming feature selection for class imbalanced data, and then present an efficient online feature selection framework regarding the dependency between condition features and decision classes. Meanwhile, we propose a new algorithm of Online Feature Selection based on the Dependency in K nearest neighbors, called K-OFSD. In terms of Neighborhood Rough Set theory, K-OFSD uses the information of nearest neighbors to select relevant features which can get higher separability between the majority class and the minority class. Finally, experimental studies on seven high-dimensional and class imbalanced data sets show that our algorithm can achieve better performance than traditional feature selection methods with the same numbers of features and state-of-the-art online streaming feature selection algorithms in an online manner.
Author Hu, Xuegang
Zhou, Peng
Li, Peipei
Wu, Xindong
Author_xml – sequence: 1
  givenname: Peng
  surname: Zhou
  fullname: Zhou, Peng
  email: doodzhou@hotmail.com
  organization: Hefei University of Technology, Hefei 230009, China
– sequence: 2
  givenname: Xuegang
  surname: Hu
  fullname: Hu, Xuegang
  email: jsjxhuxg@hfut.edu.cn
  organization: Hefei University of Technology, Hefei 230009, China
– sequence: 3
  givenname: Peipei
  surname: Li
  fullname: Li, Peipei
  email: peipeili@hfut.edu.cn
  organization: Hefei University of Technology, Hefei 230009, China
– sequence: 4
  givenname: Xindong
  surname: Wu
  fullname: Wu, Xindong
  email: xwu@louisiana.edu
  organization: University of Louisiana, Lafayette, LA 70504, USA
BookMark eNqFkE1Lw0AQhhepYK3-Aw8Bz4kz2SSb9SBI8QsKvfS-bDcTuzHN1t1U6L83IZ486GlgeJ-XmeeSzTrXEWM3CAkCFndN8tG5cApJCigSkAlAccbmWIo0FhnIGZuDzCEWkOMFuwyhAYA0xXLOluuutR1FNen-6CkK1JLpreui2vloZ993cWX31IVhpdvItDqE2O63utWdoSqqdK-v2Hmt20DXP3PBNs9Pm-VrvFq_vC0fV7HJAPq4TrcGJTcy5ykVWkiuNdVghEFR5LIsBDflNkcoDSc0Ba8qiaI2aITOKuALdjvVHrz7PFLoVeOOfrgqKJQCBQfOxZDKppTxLgRPtTp4u9f-pBDUaEs1arKlRlsKpBpsDdj9L8zYXo8ieq9t-x_8MME0fP9lyatgLI1-rB9sqsrZvwu-AaYGiug
CitedBy_id crossref_primary_10_3390_app8122472
crossref_primary_10_1007_s10462_023_10546_9
crossref_primary_10_2478_amns_2024_2906
crossref_primary_10_1016_j_knosys_2020_106020
crossref_primary_10_1016_j_ijcce_2020_11_001
crossref_primary_10_1155_2019_4318463
crossref_primary_10_1016_j_inffus_2023_02_016
crossref_primary_10_1109_ACCESS_2020_2964845
crossref_primary_10_3233_JIFS_213112
crossref_primary_10_3390_sym12101635
crossref_primary_10_1016_j_ymssp_2021_108139
crossref_primary_10_1186_s12859_020_3411_3
crossref_primary_10_1007_s12559_019_09657_9
crossref_primary_10_1016_j_neucom_2019_08_100
crossref_primary_10_1515_comp_2020_0169
crossref_primary_10_1109_TAI_2022_3196637
crossref_primary_10_1016_j_patcog_2019_01_047
crossref_primary_10_1002_widm_1364
crossref_primary_10_1016_j_asoc_2019_105528
crossref_primary_10_3390_electronics13234807
crossref_primary_10_1109_JSEN_2022_3222535
crossref_primary_10_3390_app10030936
crossref_primary_10_1109_TNNLS_2020_3025922
crossref_primary_10_1093_jcde_qwae075
crossref_primary_10_1007_s10489_018_1314_z
crossref_primary_10_1109_ACCESS_2021_3081366
crossref_primary_10_1007_s00500_019_04038_8
crossref_primary_10_1016_j_mbs_2019_108230
crossref_primary_10_1002_cpe_6435
crossref_primary_10_1049_cit2_12327
crossref_primary_10_1016_j_knosys_2019_07_008
crossref_primary_10_1016_j_fss_2023_108683
crossref_primary_10_1109_TNSM_2022_3180936
crossref_primary_10_1002_cem_3177
crossref_primary_10_1007_s11227_022_04509_0
crossref_primary_10_1016_j_patcog_2021_108511
crossref_primary_10_1007_s00521_023_09089_5
crossref_primary_10_1016_j_patcog_2018_08_009
crossref_primary_10_3390_app10041496
crossref_primary_10_1016_j_asoc_2022_109355
crossref_primary_10_1007_s13042_024_02416_9
crossref_primary_10_1016_j_engappai_2023_106911
crossref_primary_10_1016_j_knosys_2021_107157
crossref_primary_10_3390_s22176482
crossref_primary_10_1016_j_jvcir_2019_102605
crossref_primary_10_1016_j_ins_2022_08_118
crossref_primary_10_1016_j_ress_2021_107934
crossref_primary_10_3389_fnins_2022_1036244
crossref_primary_10_1016_j_conengprac_2024_105845
crossref_primary_10_1142_S0218001423500349
crossref_primary_10_1007_s00500_021_05800_7
crossref_primary_10_1109_TFUZZ_2023_3272316
crossref_primary_10_1109_TIV_2023_3314788
crossref_primary_10_1016_j_eswa_2019_113152
crossref_primary_10_1007_s10489_020_01863_5
crossref_primary_10_1007_s13042_019_00948_z
crossref_primary_10_1016_j_sigpro_2019_05_034
crossref_primary_10_1016_j_eswa_2024_123778
crossref_primary_10_1016_j_ins_2018_12_074
crossref_primary_10_1016_j_knosys_2020_105818
crossref_primary_10_1016_j_aei_2024_102433
crossref_primary_10_1177_1088467X241305509
crossref_primary_10_3390_sym11121504
crossref_primary_10_3233_JIFS_221902
crossref_primary_10_1007_s10489_021_02257_x
crossref_primary_10_1007_s13369_023_08217_6
crossref_primary_10_1016_j_asoc_2021_107993
crossref_primary_10_1002_cpe_8108
crossref_primary_10_3390_life11070638
crossref_primary_10_1007_s11538_020_00743_w
crossref_primary_10_1016_j_eswa_2022_117520
crossref_primary_10_1016_j_ins_2022_02_004
crossref_primary_10_1007_s10489_021_02855_9
crossref_primary_10_1016_j_jfranklin_2019_12_039
crossref_primary_10_1016_j_knosys_2022_109849
crossref_primary_10_1109_ACCESS_2020_3011153
crossref_primary_10_1002_cpe_6994
crossref_primary_10_1109_TFUZZ_2019_2959995
crossref_primary_10_1016_j_jksuci_2019_04_009
crossref_primary_10_1016_j_ins_2019_01_041
crossref_primary_10_1016_j_knosys_2021_106897
crossref_primary_10_1016_j_jhydrol_2024_130742
crossref_primary_10_1016_j_knosys_2019_02_021
crossref_primary_10_1016_j_aei_2022_101762
crossref_primary_10_1016_j_eswa_2021_115041
crossref_primary_10_1145_3373086
crossref_primary_10_1016_j_jocs_2018_04_016
crossref_primary_10_1088_1361_6501_ad1708
crossref_primary_10_1109_TPAMI_2024_3416196
crossref_primary_10_1186_s12859_019_2754_0
crossref_primary_10_1007_s10489_021_03118_3
crossref_primary_10_1016_j_cie_2019_106266
crossref_primary_10_1016_j_knosys_2020_106087
crossref_primary_10_1142_S0219519422500658
crossref_primary_10_1002_cpe_6347
crossref_primary_10_3390_ijerph21050600
crossref_primary_10_1016_j_knosys_2021_107590
crossref_primary_10_1109_TEVC_2021_3106975
crossref_primary_10_1016_j_inffus_2018_11_019
crossref_primary_10_1016_j_tre_2024_103678
crossref_primary_10_3390_s21165571
crossref_primary_10_1016_j_knosys_2018_07_035
crossref_primary_10_1007_s40747_022_00763_0
crossref_primary_10_1088_1361_6501_ad24b5
crossref_primary_10_1145_3502737
crossref_primary_10_1016_j_asoc_2019_105581
crossref_primary_10_1016_j_measurement_2020_108522
crossref_primary_10_1109_ACCESS_2019_2909945
crossref_primary_10_1109_ACCESS_2020_3032520
crossref_primary_10_1088_1361_6501_ad64f5
Cites_doi 10.1007/s10115-015-0875-y
10.1016/j.ins.2003.07.004
10.1145/1007730.1007741
10.1109/TKDE.2015.2441716
10.1109/TKDE.2008.239
10.1109/TIP.2012.2207397
10.1007/s10115-015-0846-3
10.1016/j.ins.2008.05.024
10.1016/j.ijar.2015.11.006
10.1016/j.ins.2014.07.015
10.1023/A:1025667309714
10.1016/j.ins.2016.09.012
10.3233/FI-2009-129
10.1109/TPAMI.2012.197
10.1016/j.ijar.2010.09.006
10.1016/j.knosys.2014.09.008
10.1007/s00521-013-1368-0
10.1007/s10115-015-0901-0
10.1016/j.knosys.2007.07.001
10.1002/int.21523
10.1016/j.ins.2017.04.030
10.1109/TKDE.2013.32
10.1109/TKDE.2009.187
10.1016/j.ins.2017.05.003
10.3724/SP.J.1001.2008.00640
10.1007/s10115-015-0913-9
10.1016/j.ijar.2016.11.002
10.1145/1007730.1007733
10.1016/j.ins.2016.01.099
10.1016/j.knosys.2007.01.002
10.1002/int.21599
10.1111/j.2517-6161.1996.tb02080.x
10.1145/2976744
10.1145/1989734.1989743
10.1016/j.neucom.2012.04.039
10.1007/s10115-015-0841-8
10.1109/TPAMI.2005.159
10.1016/j.knosys.2016.08.026
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier Science Ltd. Nov 15, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Nov 15, 2017
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2017.09.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 199
ExternalDocumentID 10_1016_j_knosys_2017_09_006
S0950705117304124
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-f2bc193c9532e6a793aaef0c7c176598673c8b5108c3e1c63dd917fc1c7a4d03
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 07:17:59 EDT 2025
Thu Apr 24 23:07:25 EDT 2025
Thu Jul 03 08:30:07 EDT 2025
Fri Feb 23 02:28:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Online feature selection
Neighborhood rough set
High dimensional
Class imbalance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-f2bc193c9532e6a793aaef0c7c176598673c8b5108c3e1c63dd917fc1c7a4d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1971730337
PQPubID 2035257
PageCount 13
ParticipantIDs proquest_journals_1971730337
crossref_primary_10_1016_j_knosys_2017_09_006
crossref_citationtrail_10_1016_j_knosys_2017_09_006
elsevier_sciencedirect_doi_10_1016_j_knosys_2017_09_006
PublicationCentury 2000
PublicationDate 2017-11-15
PublicationDateYYYYMMDD 2017-11-15
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Chawla, Japkowicz, Kotcz (bib0022) 2004; 6
Wang, Wang, Li, Liu, Zhao, Hu, Wu (bib0016) 2015; 27
Tibshirani (bib0008) 1996
Perkins, Theiler (bib0019) 2003
Lang, Miao, Cai (bib0050) 2017; 406–407
Wang, Li, Tao, Lu, Wu (bib0011) 2012; 21
He, Garcia (bib0026) 2009; 21
Maldonado, Weber, Famili (bib0029) 2014; 286
Hu, Yu, Xie (bib0052) 2008; 19
T, Y (bib0037) 1998
Ding, Stepinski, Mu, Bandeira, Ricardo, Wu, Lu, Cao, Wu (bib0012) 2011; 2
Chen, Li, Cai, Luo, Fujita (bib0036) 2016; 373
Wu, Chang (bib0025) 2003
Huang, Li, Luo, Fujita, jinn Horng (bib0034) 2017; 122
Jensen, Shen (bib0054) 2008
Vergara, EstȨvez (bib0004) 2014; 24
Lang, Miao, Yang, Cai (bib0051) 2016; 346–347
Hu, Yu, Liu, Wu (bib0038) 2008; 178
Mi, Wu, Zhang (bib0043) 2004; 159
Hu, Liu, Yu (bib0039) 2008; 21
Liu, Li, Ruan, Zou (bib0047) 2009; 94
Zhou, Foster, Stine, Ungar (bib0020) 2006; 3
Yang, Cai, Li, Lin (bib0055) 2005; 7
Hu, Zhou, Li, Wang, Wu (bib0013) 2016
Yu, Wu, Ding, Pei (bib0018) 2016; 11
Liu, Li, Zhang (bib0049) 2015; 73
Hoi, Wang, Zhao, Jin (bib0014) 2012
Kumar, Minz (bib0009) 2016; 49
Wasikowski, Chen (bib0030) 2010; 22
Alalga, Benabdeslem, Taleb (bib0007) 2016; 47
Li, Ruan, Geert, Song, Xu (bib0046) 2007; 20
Liu, Motoda (bib0001) 2007
Yu, Ding, Wu (bib0058) 2016; 113
Pawlak (bib0032) 1991
Hulse, Khoshgoftaar, Napolitano, Wald (bib0027) 2009
Zheng, Wu, Srihari (bib0028) 2004; 6
Pearson, Goney, Shwaber (bib0024) 2003
Yu, Ding, Loscalzo (bib0056) 2008
Zheng, Wang (bib0044) 2004; 59
Hu, Wang, Huang, Wu (bib0045) 2005
Hu, Li, Luo, Fujita, Li (bib0035) 2017; 81
Eskandari, Javidi (bib0021) 2016; 69
Jing, Li, Fujita, Yu, Wang (bib0033) 2017; 411
Kumar, Inbarani (bib0041) 2016
Li, Li, Liu (bib0048) 2013; 28
Ando (bib0023) 2016; 46
Wang, Irani, Pu (bib0010) 2012
Maji, Paul (bib0053) 2011; 52
Kubat, Matwin (bib0057) 1997
Robnik-Sikonja, Kononenko (bib0002) 2003; 53
Wu, Yu, Ding, Wang, Zhu (bib0015) 2013; 35
Yin, Ge, Xiao, Wang, Quan (bib0031) 2013; 105
Gu, Li, Han (bib0003) 2011
Peng, Long, Ding (bib0005) 2005; 27
Benabdeslem, Elghazel, Hindawi (bib0006) 2016; 49
Zhang, Li, Ruan, Liu (bib0040) 2012; 27
Shakiba, Hooshmandasl (bib0042) 2016; 49
Wang, Zhao, Hoi, Jing (bib0017) 2013; 26
Jensen (10.1016/j.knosys.2017.09.006_bib0054) 2008
Kubat (10.1016/j.knosys.2017.09.006_bib0057) 1997
Wang (10.1016/j.knosys.2017.09.006_bib0017) 2013; 26
Shakiba (10.1016/j.knosys.2017.09.006_bib0042) 2016; 49
Zhou (10.1016/j.knosys.2017.09.006_bib0020) 2006; 3
Robnik-Sikonja (10.1016/j.knosys.2017.09.006_bib0002) 2003; 53
Mi (10.1016/j.knosys.2017.09.006_bib0043) 2004; 159
Hu (10.1016/j.knosys.2017.09.006_bib0039) 2008; 21
Wang (10.1016/j.knosys.2017.09.006_bib0016) 2015; 27
Yang (10.1016/j.knosys.2017.09.006_bib0055) 2005; 7
Liu (10.1016/j.knosys.2017.09.006_bib0049) 2015; 73
Lang (10.1016/j.knosys.2017.09.006_bib0050) 2017; 406–407
Maji (10.1016/j.knosys.2017.09.006_bib0053) 2011; 52
Wang (10.1016/j.knosys.2017.09.006_bib0010) 2012
Vergara (10.1016/j.knosys.2017.09.006_bib0004) 2014; 24
Zheng (10.1016/j.knosys.2017.09.006_bib0044) 2004; 59
Eskandari (10.1016/j.knosys.2017.09.006_bib0021) 2016; 69
Perkins (10.1016/j.knosys.2017.09.006_bib0019) 2003
Gu (10.1016/j.knosys.2017.09.006_bib0003) 2011
Hu (10.1016/j.knosys.2017.09.006_bib0035) 2017; 81
Benabdeslem (10.1016/j.knosys.2017.09.006_bib0006) 2016; 49
Huang (10.1016/j.knosys.2017.09.006_bib0034) 2017; 122
He (10.1016/j.knosys.2017.09.006_bib0026) 2009; 21
Pawlak (10.1016/j.knosys.2017.09.006_bib0032) 1991
Hoi (10.1016/j.knosys.2017.09.006_bib0014) 2012
Tibshirani (10.1016/j.knosys.2017.09.006_bib0008) 1996
Zheng (10.1016/j.knosys.2017.09.006_bib0028) 2004; 6
Zhang (10.1016/j.knosys.2017.09.006_bib0040) 2012; 27
Kumar (10.1016/j.knosys.2017.09.006_bib0009) 2016; 49
Jing (10.1016/j.knosys.2017.09.006_bib0033) 2017; 411
Kumar (10.1016/j.knosys.2017.09.006_bib0041) 2016
Hu (10.1016/j.knosys.2017.09.006_bib0052) 2008; 19
Wasikowski (10.1016/j.knosys.2017.09.006_bib0030) 2010; 22
Hu (10.1016/j.knosys.2017.09.006_bib0038) 2008; 178
Ding (10.1016/j.knosys.2017.09.006_bib0012) 2011; 2
Ando (10.1016/j.knosys.2017.09.006_bib0023) 2016; 46
Hu (10.1016/j.knosys.2017.09.006_bib0013) 2016
Wu (10.1016/j.knosys.2017.09.006_bib0025) 2003
Chen (10.1016/j.knosys.2017.09.006_bib0036) 2016; 373
Maldonado (10.1016/j.knosys.2017.09.006_bib0029) 2014; 286
Liu (10.1016/j.knosys.2017.09.006_bib0001) 2007
Yu (10.1016/j.knosys.2017.09.006_bib0056) 2008
Wang (10.1016/j.knosys.2017.09.006_bib0011) 2012; 21
Hu (10.1016/j.knosys.2017.09.006_bib0045) 2005
Chawla (10.1016/j.knosys.2017.09.006_bib0022) 2004; 6
Wu (10.1016/j.knosys.2017.09.006_bib0015) 2013; 35
T (10.1016/j.knosys.2017.09.006_bib0037) 1998
Li (10.1016/j.knosys.2017.09.006_bib0046) 2007; 20
Alalga (10.1016/j.knosys.2017.09.006_bib0007) 2016; 47
Yin (10.1016/j.knosys.2017.09.006_bib0031) 2013; 105
Li (10.1016/j.knosys.2017.09.006_bib0048) 2013; 28
Peng (10.1016/j.knosys.2017.09.006_bib0005) 2005; 27
Pearson (10.1016/j.knosys.2017.09.006_bib0024) 2003
Hulse (10.1016/j.knosys.2017.09.006_bib0027) 2009
Lang (10.1016/j.knosys.2017.09.006_bib0051) 2016; 346–347
Yu (10.1016/j.knosys.2017.09.006_bib0018) 2016; 11
Liu (10.1016/j.knosys.2017.09.006_bib0047) 2009; 94
Yu (10.1016/j.knosys.2017.09.006_bib0058) 2016; 113
References_xml – volume: 69
  start-page: 35
  year: 2016
  end-page: 57
  ident: bib0021
  article-title: Online streaming feature selection using rough sets
  publication-title: Int. J. Approx. Reason.
– start-page: 507
  year: 2009
  end-page: 514
  ident: bib0027
  article-title: Feature selection with high-dimensional imbalanced data
  publication-title: IEEE International Conference on Data Mining Workshops
– volume: 49
  start-page: 749
  year: 2016
  end-page: 794
  ident: bib0042
  article-title: Neighborhood system s-approximation spaces and applications
  publication-title: Knowl. Inf. Syst.
– year: 2007
  ident: bib0001
  article-title: Computational Methods of Feature Selection
– volume: 346–347
  start-page: 236
  year: 2016
  end-page: 260
  ident: bib0051
  article-title: Knowledge reduction of dynamic covering decision information systems when varying covering cardinalities
  publication-title: Inf. Sci. (Ny)
– volume: 49
  start-page: 1161
  year: 2016
  end-page: 1185
  ident: bib0006
  article-title: Ensemble constrained Laplacian score for efficient and robust semi-supervised feature selection
  publication-title: Knowl. Inf. Syst.
– volume: 11
  start-page: 16
  year: 2016
  ident: bib0018
  article-title: Scalable and accurate online feature selection for big data
  publication-title: ACM Trans. Knowl. Discov. Data
– start-page: 267
  year: 1996
  end-page: 288
  ident: bib0008
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B(Methodol.)
– start-page: 179
  year: 1997
  end-page: 186
  ident: bib0057
  article-title: Addressing the curse of imbalanced training sets: One-sided selection
  publication-title: Proceedings of the 14th International Conference on Machine Learning
– volume: 7
  start-page: 3
  year: 2005
  end-page: 10
  ident: bib0055
  article-title: A stable gene selection in microarray data analysis
  publication-title: IEEE Symp. Bioinf. Bioeng.
– volume: 6
  start-page: 80
  year: 2004
  end-page: 89
  ident: bib0028
  article-title: Feature selection for text categorization on imbalanced data
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 19
  start-page: 640
  year: 2008
  end-page: 649
  ident: bib0052
  article-title: Numerical attribute reduction based on neighborhood granulation and rough approximation
  publication-title: J. Softw.
– volume: 21
  start-page: 294
  year: 2008
  end-page: 304
  ident: bib0039
  article-title: Mixed feature selection based on granulation and approximation
  publication-title: Knowl. Based Syst.
– volume: 47
  start-page: 75
  year: 2016
  end-page: 98
  ident: bib0007
  article-title: Soft-constrained Laplacian score for semi-supervised multi-label feature selection
  publication-title: Knowl. Inf. Syst.
– volume: 22
  start-page: 1388
  year: 2010
  end-page: 1400
  ident: bib0030
  article-title: Combating the small sample class imbalance problem using feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 185
  year: 2005
  end-page: 193
  ident: bib0045
  article-title: Incremental attribute reduction based on elementary sets
  publication-title: Proceedings of 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2005)
– start-page: 592
  year: 2003
  end-page: 599
  ident: bib0019
  article-title: Online feature selection using grafting
  publication-title: Proceedings of the 20th International Conference on Machine Learning
– volume: 94
  start-page: 245
  year: 2009
  end-page: 260
  ident: bib0047
  article-title: An incremental approach for inducing knowledge from dynamic information systems
  publication-title: Fundam. Inform.
– start-page: 266
  year: 2011
  end-page: 273
  ident: bib0003
  article-title: Generalized Fisher score for feature selection
  publication-title: Conference on Uai
– volume: 27
  start-page: 3029
  year: 2015
  end-page: 3041
  ident: bib0016
  article-title: Online feature selection with group structure analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 107
  year: 1998
  end-page: 121
  ident: bib0037
  article-title: Computing on binary relations i: Data mining and neighborhood systems
  publication-title: Proceedings of the Rough Sets in Knowledge Discovery
– volume: 81
  start-page: 28
  year: 2017
  end-page: 48
  ident: bib0035
  article-title: Incremental fuzzy probabilistic rough sets over two universes
  publication-title: Int. J. Approx. Reason.
– volume: 53
  start-page: 23
  year: 2003
  end-page: 69
  ident: bib0002
  article-title: Theoretical and empirical analysis of relieff and rrelieff
  publication-title: Mach. Learn.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 22
  ident: bib0012
  article-title: Subkilometer crater discovery with boosting and transfer learning
  publication-title: Acm Trans. Intell. Syst. Technol.
– year: 2008
  ident: bib0054
  article-title: Computational intelligence and feature selection: rough and fuzzy approaches
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: bib0026
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 40
  year: 2012
  end-page: 49
  ident: bib0010
  article-title: Evolutionary study of web spam: Webb spam corpus 2011 versus webb spam corpus 2006
  publication-title: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures
– start-page: 1
  year: 2016
  end-page: 20
  ident: bib0041
  article-title: Pso-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task
  publication-title: Neural Comput. Appl.
– volume: 28
  start-page: 729
  year: 2013
  end-page: 751
  ident: bib0048
  article-title: Dynamic maintenance of approximations in dominance-based rough set approach under the variation of the object set
  publication-title: Int. J. Intell. Syst.
– start-page: 93
  year: 2012
  end-page: 100
  ident: bib0014
  article-title: Online feature selection for mining big data
  publication-title: KDD BigMine 2012
– volume: 122
  start-page: 131
  year: 2017
  end-page: 147
  ident: bib0034
  article-title: Dynamic variable precision rough set approach for probabilistic set-valued information systems
  publication-title: Inf. Sci. (Ny)
– volume: 46
  start-page: 707
  year: 2016
  end-page: 730
  ident: bib0023
  article-title: Classifying imbalanced data in distance-based feature space
  publication-title: Knowl. Inf. Syst.
– volume: 178
  start-page: 3577
  year: 2008
  end-page: 3594
  ident: bib0038
  article-title: Neighborhood rough set based heterogeneous feature subset selection
  publication-title: Inf. Sci. (Ny)
– volume: 3
  start-page: 1532
  year: 2006
  end-page: 4435
  ident: bib0020
  article-title: Streamwise feature selection
  publication-title: J. Mach. Learn. Res.
– year: 1991
  ident: bib0032
  article-title: Rough Sets - Theoretical Aspects of Reasoning about Data
– volume: 411
  start-page: 23
  year: 2017
  end-page: 38
  ident: bib0033
  article-title: An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view
  publication-title: Inf. Sci. (Ny)
– year: 2003
  ident: bib0024
  article-title: Imbalanced clustering for microarray time-series
  publication-title: Proceedings of the ICML’03 Workshop on Learning from Imbalanced Data Sets
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: bib0005
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 52
  start-page: 408
  year: 2011
  end-page: 426
  ident: bib0053
  article-title: Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data
  publication-title: Int. J. Approx. Reason.
– volume: 59
  start-page: 299
  year: 2004
  end-page: 313
  ident: bib0044
  article-title: A rough set and rule tree based incremental knowledge acquisition algorithm
  publication-title: Fundam. Inform.
– year: 2016
  ident: bib0013
  article-title: A survey on online feature selection with streaming features
  publication-title: Front. Comput. Sci.
– volume: 6
  start-page: 1
  year: 2004
  end-page: 6
  ident: bib0022
  article-title: Editorial: special issue on learning from imbalanced data sets
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 49
  start-page: 1
  year: 2016
  end-page: 59
  ident: bib0009
  article-title: Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification
  publication-title: Knowl. Inf. Syst.
– volume: 27
  start-page: 317
  year: 2012
  end-page: 342
  ident: bib0040
  article-title: Neighborhood rough sets for dynamic data mining
  publication-title: Int. J. Intell. Syst.
– volume: 26
  start-page: 698
  year: 2013
  end-page: 710
  ident: bib0017
  article-title: Online feature selection and its applications
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 24
  start-page: 175
  year: 2014
  end-page: 186
  ident: bib0004
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput. Appl.
– volume: 21
  start-page: 4649
  year: 2012
  end-page: 4661
  ident: bib0011
  article-title: Multimodal graph-based reranking for web image search
  publication-title: IEEE Trans. Image Process.
– volume: 406–407
  start-page: 185
  year: 2017
  end-page: 207
  ident: bib0050
  article-title: Three-way decision approaches to conflict analysis using decision-theoretic rough set theory
  publication-title: Inf. Sci. (Ny)
– volume: 73
  start-page: 81
  year: 2015
  end-page: 96
  ident: bib0049
  article-title: Incremental updating approximations in probabilistic rough sets under the variation of attributes
  publication-title: Knowl. Based Syst.
– volume: 35
  start-page: 1178
  year: 2013
  end-page: 1192
  ident: bib0015
  article-title: Online feature selection with streaming features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 159
  start-page: 255
  year: 2004
  end-page: 272
  ident: bib0043
  article-title: Approaches to knowledge reduction based on variable precision rough set model
  publication-title: Inf. Sci. (Ny)
– start-page: 49
  year: 2003
  end-page: 56
  ident: bib0025
  article-title: Class-boundary alignment for imbalanced dataset learning
  publication-title: Proceedings of the ICML’03 Workshop on Learning from Imbalanced Data Sets
– volume: 20
  start-page: 485
  year: 2007
  end-page: 494
  ident: bib0046
  article-title: A rough sets based characteristic relation approach for dynamic attribute generalization in data mining
  publication-title: Knowl. Based Syst.
– volume: 286
  start-page: 228
  year: 2014
  end-page: 246
  ident: bib0029
  article-title: Feature selection for high-dimensional class-imbalanced data sets using support vector machines
  publication-title: Inf. Sci. (Ny)
– volume: 373
  start-page: 351
  year: 2016
  end-page: 368
  ident: bib0036
  article-title: Parallel attribute reduction in dominance-based neighborhood rough set
  publication-title: Inf. Sci. (Ny)
– start-page: 803
  year: 2008
  end-page: 811
  ident: bib0056
  article-title: Stable feature selection via dense feature groups
  publication-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 105
  start-page: 3
  year: 2013
  end-page: 11
  ident: bib0031
  article-title: Feature selection for high-dimensional imbalanced data
  publication-title: Neurocomputing
– volume: 113
  start-page: 1
  year: 2016
  end-page: 3
  ident: bib0058
  article-title: Lofs: library of online streaming feature selection
  publication-title: Knowl. Based Syst.
– volume: 49
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0009
  article-title: Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0875-y
– volume: 7
  start-page: 3
  issue: 1
  year: 2005
  ident: 10.1016/j.knosys.2017.09.006_bib0055
  article-title: A stable gene selection in microarray data analysis
  publication-title: IEEE Symp. Bioinf. Bioeng.
– volume: 159
  start-page: 255
  issue: 3
  year: 2004
  ident: 10.1016/j.knosys.2017.09.006_bib0043
  article-title: Approaches to knowledge reduction based on variable precision rough set model
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2003.07.004
– volume: 6
  start-page: 80
  issue: 1
  year: 2004
  ident: 10.1016/j.knosys.2017.09.006_bib0028
  article-title: Feature selection for text categorization on imbalanced data
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007741
– volume: 27
  start-page: 3029
  issue: 11
  year: 2015
  ident: 10.1016/j.knosys.2017.09.006_bib0016
  article-title: Online feature selection with group structure analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2441716
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.knosys.2017.09.006_bib0026
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 21
  start-page: 4649
  issue: 11
  year: 2012
  ident: 10.1016/j.knosys.2017.09.006_bib0011
  article-title: Multimodal graph-based reranking for web image search
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2207397
– volume: 46
  start-page: 707
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0023
  article-title: Classifying imbalanced data in distance-based feature space
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0846-3
– volume: 178
  start-page: 3577
  issue: 18
  year: 2008
  ident: 10.1016/j.knosys.2017.09.006_bib0038
  article-title: Neighborhood rough set based heterogeneous feature subset selection
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2008.05.024
– start-page: 266
  year: 2011
  ident: 10.1016/j.knosys.2017.09.006_bib0003
  article-title: Generalized Fisher score for feature selection
– volume: 69
  start-page: 35
  issue: C
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0021
  article-title: Online streaming feature selection using rough sets
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2015.11.006
– start-page: 107
  year: 1998
  ident: 10.1016/j.knosys.2017.09.006_bib0037
  article-title: Computing on binary relations i: Data mining and neighborhood systems
– year: 2007
  ident: 10.1016/j.knosys.2017.09.006_bib0001
– volume: 286
  start-page: 228
  year: 2014
  ident: 10.1016/j.knosys.2017.09.006_bib0029
  article-title: Feature selection for high-dimensional class-imbalanced data sets using support vector machines
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.07.015
– volume: 53
  start-page: 23
  issue: 1–2
  year: 2003
  ident: 10.1016/j.knosys.2017.09.006_bib0002
  article-title: Theoretical and empirical analysis of relieff and rrelieff
  publication-title: Mach. Learn.
  doi: 10.1023/A:1025667309714
– volume: 373
  start-page: 351
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0036
  article-title: Parallel attribute reduction in dominance-based neighborhood rough set
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2016.09.012
– volume: 94
  start-page: 245
  issue: 2
  year: 2009
  ident: 10.1016/j.knosys.2017.09.006_bib0047
  article-title: An incremental approach for inducing knowledge from dynamic information systems
  publication-title: Fundam. Inform.
  doi: 10.3233/FI-2009-129
– year: 2008
  ident: 10.1016/j.knosys.2017.09.006_bib0054
– start-page: 93
  year: 2012
  ident: 10.1016/j.knosys.2017.09.006_bib0014
  article-title: Online feature selection for mining big data
– volume: 35
  start-page: 1178
  issue: 5
  year: 2013
  ident: 10.1016/j.knosys.2017.09.006_bib0015
  article-title: Online feature selection with streaming features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.197
– volume: 3
  start-page: 1532
  issue: 2
  year: 2006
  ident: 10.1016/j.knosys.2017.09.006_bib0020
  article-title: Streamwise feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 52
  start-page: 408
  year: 2011
  ident: 10.1016/j.knosys.2017.09.006_bib0053
  article-title: Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2010.09.006
– start-page: 40
  year: 2012
  ident: 10.1016/j.knosys.2017.09.006_bib0010
  article-title: Evolutionary study of web spam: Webb spam corpus 2011 versus webb spam corpus 2006
– volume: 59
  start-page: 299
  issue: 2–3
  year: 2004
  ident: 10.1016/j.knosys.2017.09.006_bib0044
  article-title: A rough set and rule tree based incremental knowledge acquisition algorithm
  publication-title: Fundam. Inform.
– volume: 73
  start-page: 81
  year: 2015
  ident: 10.1016/j.knosys.2017.09.006_bib0049
  article-title: Incremental updating approximations in probabilistic rough sets under the variation of attributes
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2014.09.008
– volume: 24
  start-page: 175
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2017.09.006_bib0004
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1368-0
– volume: 49
  start-page: 1161
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0006
  article-title: Ensemble constrained Laplacian score for efficient and robust semi-supervised feature selection
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0901-0
– volume: 21
  start-page: 294
  issue: 4
  year: 2008
  ident: 10.1016/j.knosys.2017.09.006_bib0039
  article-title: Mixed feature selection based on granulation and approximation
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2007.07.001
– start-page: 803
  year: 2008
  ident: 10.1016/j.knosys.2017.09.006_bib0056
  article-title: Stable feature selection via dense feature groups
– volume: 27
  start-page: 317
  issue: 4
  year: 2012
  ident: 10.1016/j.knosys.2017.09.006_bib0040
  article-title: Neighborhood rough sets for dynamic data mining
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.21523
– year: 1991
  ident: 10.1016/j.knosys.2017.09.006_bib0032
– volume: 406–407
  start-page: 185
  year: 2017
  ident: 10.1016/j.knosys.2017.09.006_bib0050
  article-title: Three-way decision approaches to conflict analysis using decision-theoretic rough set theory
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2017.04.030
– volume: 26
  start-page: 698
  issue: 3
  year: 2013
  ident: 10.1016/j.knosys.2017.09.006_bib0017
  article-title: Online feature selection and its applications
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.32
– volume: 22
  start-page: 1388
  issue: 10
  year: 2010
  ident: 10.1016/j.knosys.2017.09.006_bib0030
  article-title: Combating the small sample class imbalance problem using feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.187
– year: 2003
  ident: 10.1016/j.knosys.2017.09.006_bib0024
  article-title: Imbalanced clustering for microarray time-series
– volume: 411
  start-page: 23
  year: 2017
  ident: 10.1016/j.knosys.2017.09.006_bib0033
  article-title: An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2017.05.003
– volume: 19
  start-page: 640
  issue: 3
  year: 2008
  ident: 10.1016/j.knosys.2017.09.006_bib0052
  article-title: Numerical attribute reduction based on neighborhood granulation and rough approximation
  publication-title: J. Softw.
  doi: 10.3724/SP.J.1001.2008.00640
– volume: 49
  start-page: 749
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0042
  article-title: Neighborhood system s-approximation spaces and applications
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0913-9
– volume: 81
  start-page: 28
  year: 2017
  ident: 10.1016/j.knosys.2017.09.006_bib0035
  article-title: Incremental fuzzy probabilistic rough sets over two universes
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2016.11.002
– volume: 6
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.knosys.2017.09.006_bib0022
  article-title: Editorial: special issue on learning from imbalanced data sets
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007733
– volume: 346–347
  start-page: 236
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0051
  article-title: Knowledge reduction of dynamic covering decision information systems when varying covering cardinalities
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2016.01.099
– volume: 20
  start-page: 485
  issue: 5
  year: 2007
  ident: 10.1016/j.knosys.2017.09.006_bib0046
  article-title: A rough sets based characteristic relation approach for dynamic attribute generalization in data mining
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2007.01.002
– volume: 28
  start-page: 729
  issue: 8
  year: 2013
  ident: 10.1016/j.knosys.2017.09.006_bib0048
  article-title: Dynamic maintenance of approximations in dominance-based rough set approach under the variation of the object set
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.21599
– year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0013
  article-title: A survey on online feature selection with streaming features
  publication-title: Front. Comput. Sci.
– start-page: 267
  year: 1996
  ident: 10.1016/j.knosys.2017.09.006_bib0008
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B(Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 122
  start-page: 131
  year: 2017
  ident: 10.1016/j.knosys.2017.09.006_bib0034
  article-title: Dynamic variable precision rough set approach for probabilistic set-valued information systems
  publication-title: Inf. Sci. (Ny)
– volume: 11
  start-page: 16
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0018
  article-title: Scalable and accurate online feature selection for big data
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2976744
– start-page: 592
  year: 2003
  ident: 10.1016/j.knosys.2017.09.006_bib0019
  article-title: Online feature selection using grafting
– volume: 2
  start-page: 1
  issue: 4
  year: 2011
  ident: 10.1016/j.knosys.2017.09.006_bib0012
  article-title: Subkilometer crater discovery with boosting and transfer learning
  publication-title: Acm Trans. Intell. Syst. Technol.
  doi: 10.1145/1989734.1989743
– start-page: 49
  year: 2003
  ident: 10.1016/j.knosys.2017.09.006_bib0025
  article-title: Class-boundary alignment for imbalanced dataset learning
– volume: 105
  start-page: 3
  issue: 3
  year: 2013
  ident: 10.1016/j.knosys.2017.09.006_bib0031
  article-title: Feature selection for high-dimensional imbalanced data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.04.039
– start-page: 507
  year: 2009
  ident: 10.1016/j.knosys.2017.09.006_bib0027
  article-title: Feature selection with high-dimensional imbalanced data
– start-page: 185
  year: 2005
  ident: 10.1016/j.knosys.2017.09.006_bib0045
  article-title: Incremental attribute reduction based on elementary sets
– start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0041
  article-title: Pso-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task
  publication-title: Neural Comput. Appl.
– volume: 47
  start-page: 75
  issue: 1
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0007
  article-title: Soft-constrained Laplacian score for semi-supervised multi-label feature selection
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0841-8
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.knosys.2017.09.006_bib0005
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 113
  start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2017.09.006_bib0058
  article-title: Lofs: library of online streaming feature selection
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.08.026
– start-page: 179
  year: 1997
  ident: 10.1016/j.knosys.2017.09.006_bib0057
  article-title: Addressing the curse of imbalanced training sets: One-sided selection
SSID ssj0002218
Score 2.5417154
Snippet When tackling high dimensionality in data mining, online feature selection which deals with features flowing in one by one over time, presents more advantages...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 187
SubjectTerms Algorithms
Class imbalance
Data mining
Datasets
Feature extraction
Fraud
High dimensional
Neighborhood rough set
Online data bases
Online feature selection
Set theory
Title Online feature selection for high-dimensional class-imbalanced data
URI https://dx.doi.org/10.1016/j.knosys.2017.09.006
https://www.proquest.com/docview/1971730337
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSiUygOraRIncTJWFVUB0YUidbOSiyOVj7SiZWDht3PnOCAQUiXGRHYUPd-dn627d4xdFAlEWZxYodvUXt2ItMhBKMDdL4bST-zVxd0kHj-EN7No1mLDphaG0ipd7K9juo3W7k3fodlfzuf9eyQHaK9IGNBIqYcyVbCHiqz88uM7zSMI7B0fDRY0uimfszleT9Vi9U6i3b6yaqfU9-jv7elXoLa7z2iP7TjayAf1n-2zlqkO2G7TkoE7Dz1kw1o6lJfGCnbylW1zg9hzJKectIlFQXr-tRYHB-LOYv6SU4IjYsEpYfSITUdX0-FYuD4JAtAD16IMckAeBmkkAxNniHeWmdIDBb6KSX9dSUhydL4EpPEhlkWBh7QSfFBZWHjymLWrRWVOGE9NAGGJnE2VUZgHaVLg-cpkUWTwDJ2ZoMNkg44GpyFOrSyedZMs9qhrTDVhqr1UI6YdJr5mLWsNjQ3jVQO8_mELGsP8hpndZp2088WV9lPKNPCkVKf__vAZ26YnKkL0oy5rr1_fzDmykXXes-bWY1uD69vx5BOeDd8p
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5t4dBeaOlDhVLwoRzdTZyHk0MPCIp2eV3YSnuzkokjbVuyK7IIcemP6i_sjOO0AlVCQtprElvW58nMN9b4G4BPVYZJkWZO6DZ3Rzcyr0qUGin6pViHmTu6OL9IR9_ik2kyHcDv_i4Ml1V639_5dOet_ZOhR3O4mM2Gl0QOyF6JMJCRcg9lX1l5au9uKW9rv4yPaJP3lTr-OjkcSd9aQCIZ7VLWqkSiLpgnkbJpQUssClsHqDHUKUuW6wizkuw1w8iGmEZVRXlNjSHqIq6CiKZ9BusxeQvumvD517-yEqXcmSIvTvLq-ut6rqbsRzNv71gkPNROXZX7LP0_HD4IDC7aHb-CDU9TxUGHxCYMbPMaXvYtIIT3CG_gsJMqFbV1AqGidW11aK8FkWHBWsiy4v4BnfaHQObqcnZVckElYS-4QPUtTFYB3jtYa-aNfQ8itwrjmjiirpO4VHlWUT5niySxlLMXVm1B1KNj0GuWc-uMn6YvTvtuOkwNY2qC3BCmWyD_jlp0mh2PfK974M092zMUVh4ZudPvk_H_fmvCnCsbgijS20-eeA-ejybnZ-ZsfHH6AV7wG74AGSY7sLa8vrEfiQkty11negLMik39DyMHGi4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+feature+selection+for+high-dimensional+class-imbalanced+data&rft.jtitle=Knowledge-based+systems&rft.au=Zhou%2C+Peng&rft.au=Hu%2C+Xuegang&rft.au=Li%2C+Peipei&rft.au=Wu%2C+Xindong&rft.date=2017-11-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=136&rft.spage=187&rft_id=info:doi/10.1016%2Fj.knosys.2017.09.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon